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Abstract: In this study, first, it is pointed out that R*-tree can be applied to OLAP (On-Line 
Analytical Processing) application. And then, some features of OLAP databases are introduced. 
After we present that how the R*-tree is applied to OLAP field, we also introduce how to enhance 
the R*-tree to further improve the search performance in accordance with the features of OLAP 
application. This study is focused on ROLAP (Relational OLAP), one popular kind of the OLAP 
systems. Our proposals are discussed in details and examined by experiments using synthetic 
data. The experimental result indicates that our proposals can clearly improve the search perfor-
mance. 
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 1. Introduction 

 There is increasing requirement for processing 
multidimensional range queries on business data 
usually stored in relational tables. For example, Re-
lational On-Line Analytical Processing (ROLAP) in 
data warehouse is required to answer complex and 
various types of range queries on large amount of 
such data. In order to get good performance for 
such multidimensional range queries, multidimen-
sional indices are helpfull),2). 

 Many index structures have been proposed in the 
last two decades. Among them, R*-tree3) is one 
of the well-known and successful ones and widely 
used in many applications and researches4),5),6),7),^) 
In this study, the R*-tree is enhanced for indexing 
business data to improve the performance of mul-
tidimensional range queries on the business data. 
Note that our proposal can also be used to other 
members of the famous R-tree family. 

In the works4),9),$),10),11) , the aggregate values are 
pre-computed and stored in a multidimensional in-
dex as materialized view. The OLAP queries find 
aggregate values of data within a given range. When 
required, the aggregate values can be retrieved effi-
ciently. In this study, we also use a multidimension-
al index for OLAP data. However, it is completely 
different from the related works in that our study 
focuses on using an enhanced R*-tree to speed up 
evaluation of range queries themselves. 

In this study, first, it is pointed out that R*-tree 
can be applied to OLAP (On-Line Analytical Pro-
cessing) application. And then, some features of 
OLAP databases are introduced. After we present

that how the R*-tree is applied to OLAP field, we 
also introduce how to enhance the R*-tree to further 
improve the search performance in accordance with 
the feathers of OLAP application. This study is fo-
cused on ROLAP (Relational OLAP), one popular 
kind of the OLAP systems. Our proposals are dis-
cussed in detail and examined by experiments using 
synthetic data. Examination with TPC-H bench-
mark data is one of our future works. 

2. Indexing Business Data Using R*- 
    tree 

Now, we briefly recall how the R*-tree index 
business data stored in a relational table and give 
some terms. Let T be a relational table with n at-
tributes, denoted by T(A1, A2, • • • , An). Attribute 
Ai (1 < i < n) has domain D(Ai), a set of possi-
ble values for A. The attributes often have types 
such as boolean, integer, floating point, character 
string, date and so on. Each tuple t in T is denoted 
by < al, a2i • • • , an >, where ai (1 < i < n)) is an 
element of D(A). 

When the R*-tree is used in relational tables, 
some of the attributes are usually chosen as index 
attributes, which are used to build the R*-tree. For 
simplification of description, it is supposed without 
loss of generality that the first k (1 < k< n) at-
tributes of T, < A1, A2, • • • , Ak >, are chosen as in-
dex attributes. Since the R*-tree can only deal with 
numeric data, an order-preserving transformation is 
necessary for each non-numeric index attributes. 

 After necessary transformations, the k index at-
tributes form an k-dimensional space, called index 
space, where each tuple of T corresponds to one 
point.
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 It is not difficult to find such a mapping func-
tion for boolean attributes and date attributes. For 
boolean data, "True" and "False" can be mapped 

 onto  1  and  0,  respectively,  if  "True">  "False"  is 
assumed forcedly. This ordering has no practical 
problems, because the predicate of "equality" such 
as "A True" or "A = False" is the only predicate 
pattern for the boolean attribute. Although im-
plementation of "date" depends on DBMS, typical 
example of "date" in TPC-H benchmark consists of 
three integers representing year, month, and day. A 
simple function to get a numeric value for a "date" 
is to use the number of days from some reference 
date to this "date". In this paper, the day of Jan. 
1, 1900 is used as the reference day, that is, the 
number of days from Jan. 1, 1900 to Apr. 5, 1998 
is used to represent the date of Apr. 5, 1998. 

 It is not easy to map an arbitrary character string 
to a unique numeric data.The work') proposes an 
efficient approach that maps character strings to re-
al numeric values within [0,1], where the mapping 
preserves the lexicographic order. This approach is 
also used in this study to deal with attributes of 
character string. 

We call the value range of Ai, [/1,u} (1 < i < k), 
data range of Ai attribute (in this paper, "dimen-
sion" and "index attribute" are used interchange-
ably). The length of the data range of Ai, lui — 
is denoted by R(A). The k-dimensional hyper-
rectangle, [4, ui] x [12,U2 x • • x [/k,uk], forms the 
index space. 

 Simple but basic range queries are considered 
in the paper. The query condition is formed by 
chaining atomic predicates by logical "And". An 
atomic predicate represents an interval of a dimen-
sion like "/ < A < u", where A is an attribute, 
1 and u are range constants. The special case of 
"1 < A < 1" means "A = 1" . A range query on ta-
ble T(A1, A2, • • • , An) is expressed by an SQL-like 
query language as follows.

where {Agi, • • , 4.0 C {A1, • • , AO. Attributes 
specified in the range query condition is called query

attributes. 

3. R*-tree Used For OLAP Applica-
    tion 

 Because of the particularity of business data, 
some new features occur when the R*-tree is used 
to index business data. 

 As a feature of business data, the data ranges of 
the attributes are very different from each other. 
For instance, the data range of "Year" from 1990 
to 2003 is only 13 while the amount of "Sales" for 
different "Product" may be up to several hundreds 
of thousands. 

 Another typical example of such domains with 
small cardinalities is boolean attribute, which has 
inherently only two possible values. Attribute 
with other data type may also semantically have 
small cardinality (e.g., day of the "week" with 
seven values). In LINEITEM table of TPC-
H benchmark, RETURNFLAG, SHIPINSTRUCT, 
and SHIPMODE have only 3, 4, and 7 distinct val-
ues, respectively, although their data type is char-
acter string. These attributes cause inappropriate 
clustering pattern of the tuples among the R*-tree 
leaf nodes, which may deteriorates the search per-
formance. 
  Now, two observations are presented as follows. 

 1) Imbalanced clustering. 
 Let us see the following example.

Table 1 YearlySales.

 The length of data range in "YearlySales" di-
mension is very large (e.g., 9,000,000) while that in 
"Year" dimension is very small (e.g., only 14 from 
1990 to 2003). According to our investigations, the 
MBR of each leaf node almost cover entire data 
range of Year dimension. This incurs fatal dete-
rioration of range query performance. If only Sales 
dimension is specified as the query attribute, the 
query can restrict the nodes to be accessed, so it 
is evaluated more efficiently. On the other hand, if 
only Year attribute is specified in the range query 
condition like "Year = 1993" , almost all nodes of the 
index have to be accessed to evaluate the queries. 
Thus, range query performance in this case depends 
on what attributes are used as query attributes. 

 Fortunately, the clustering pattern of the tuples



 among the R*-tree leaf nodes can be controlled, 
which will be discussed in detail later. 

 2) Many slender nodes exist. 
Slender nodes means those having a very narrow 

side (even side length is zero) in some dimension. 
Some examples are those MBRs roughly shaped as 
a line segments in 2-dimensional spaces and roughly 
shaped as plane segments in 3-dimensional spaces. 

The existing of slender nodes may leads to prob-
lems both with the R*-tree construction and with 
queries. 

Let us consider the insertion algorithm of the R*- 
tree, using the example depicted in Fig.l. Point p 
is to be newly inserted. Certainly it should be in-
serted in Node B since it is nearer to Node B than to 
Node A. However, according to the insert algorithm 
of the R*-tree, p will be inserted to Node A in this 
case. This is because the area increment of doing 
so is smaller than that of inserting p to B. This will 
lead to a bad clustering of tuples among the leaf 
nodes, which greatly cut down the performance of 
queries.

Fig.1 Slender nodes exist.

 In all the range search algorithms, it is necessary 
to decide whether one node MBR and the query 
range intersect or not. The existing method to do 
so is to calculate the overlap volume between them. 
If one of them has the volume of zero, their overlap 
volume is zero and they are considered not inter-
sected with each other even if the fact is contrary, 
which may lead to a wrong query result. 

 In addition, the range query performance with 
imbalanced clustering depends on what attributes 
are used as query attributes (discussed in Section 
3.). That is, if some attributes are used in query, 
the query performance may be much worse than 
that of some others being used. 

4. Enhancing R*-tree in Accordance 
    with the Features of Business Data 

 In this section, we explain how to control the clus-
tering pattern to improve range search performance

and how to solve the problems of slender nodes. 

 4.1 Solving the Slender Nodes Prob-
     lem 

 Extended normalization can improve the group 
performance of range queries. However it can not 
solve the problems of slender nodes. The reason 
is as follows. After normalization or extended nor-
malization, the density of objects (or say tuples) 
along every dimension may become very different 
from each other. Thus, when the objects are insert-
ed one by one to build the R*-tree, some dimension 
may be chosen as split axis very often. As a result, 
many slender nodes arise. 

 Our solution to the Problem of Slender Nodes is 
as follows. 

 The insert algorithm is revised. It is known that 
the insert algorithm of the R*-tree is a decisive fac-
tor to the clustering pattern of the objects among 
the leaf nodes, which greatly affect the query per-
formance. The R*-tree use area-criterion, includ-
ing area-enlargement and overlap-enlargement, to 
decide the subtree that the insert algorithm should 
follow next. However, this method has caused some 
problems, as discussed before, when the R*-tree 
is used on business data. In this study, a novel 
distance-criterion is introduced to settle this prob-
lem. When a new object is inserted, the distance-
criterion is used first to decide which subtree should 
be followed next. Concretely speaking, the insert al-
gorithm will recursively choose the child node hav-
ing the nearest distance from the new object to fol-
low. In the cases that more than one nodes have the 
nearest distance from the new object, the existing 
area-criterion is used. 

 4.2 Controlling the Tuples Clustering 
 It is well known that normalization is a common 

way to deal with the big difference among the data 
range in different dimensions. In the existing nor-
malization, the attribute data are scaled so as to 
fall within a small range of [-1.0, 1.0] or [0.0, 1.0] in 
each index dimension6) 43> 

 However, the existing normalization is too stiff; 
that is, all the index attributes are dealt with in the 
same way. In this study, extended normalization is 
used to control the clustering pattern according to 
requirement (e.g., according to importance degrees 
of the index attributes). 

A point (al, a2, •••, ak) in the index space is vir-
tually mapped to



 where  (ii,  /2,  •  •  •  ,  lk)  is  the  left-lower  corner  of  the 
index space , R(Ai) (1 < i < k) is the length of 
data range of Ai, and c(Ai) (1 < i < k) is con-
trol coefficient of Ai. The new normalized distance 
Ndist(pi,p2) between two points pi. = (al, • • • , ak) 
and p2 =-- (bi , • • • , bk) is defined as

 While the existing normalization relocates virtu-

ally the data range of each dimension to [0.0, 1.0] 
or [-1.0, 1.0], the extended normalization relocates 
the data range of Ai (1 < i < k) dimension to 

[0, c(Ai)]. Obviously, the existing normalization is 
a special case of the extended normalization when 
c(Ai) = 1 for 1 < i < k. Data clustering among the 
leaf nodes will change along with the control coef-
ficients varying. Our basic idea is, by selecting ap-
propriate control coefficients for each dimension, to 
control the tuples clustering pattern among the leaf 
nodes and then to improve the total performance of 
a group of queries. 

 If the index attributes with larger control coeffi-
cients are used as query attributes, the number of 
index nodes to be accessed to evaluate the range 
query becomes smaller. This consideration leads 
to the idea that giving larger control coefficients to 
more important attributes may improve the total 
performance of range queries. 

 A simple idea to determine importance degree of 
each attribute is based on the number of its occur-
rences in the range conditions of the given query 
group. The more frequent some attribute is used, 
the bigger its importance degree is. The control 
coefficients of the attributes used in the index con-
struction are roughly proportional to their impor-
tance degrees. Generally speaking, importance de-
gree of each attribute is not necessarily proportional 
to the number of its occurrence if some attribute(s) 
need to be more emphasized. Anyway, it is not nec-
essary to create a new data set for the extended 
normalization, which can be realized when the data 
are inserted in the index.

 5. Experiments 
 We performed various experiments to show how 

much the range query performance is improved us-
ing our proposals. The page size in our system is 
4KB and all the index structures are built based on 
"one node one page". To evaluate the performance 
of range queries we use average number of node ac-
cesses, which is common criterion for evaluation of 
search performance"). In OLAP field, attributes 
are generally categorized into two types"): index 
attribute (dimensions in index space) and measure 
attributes (whose values are often aggregated). The 
measure attribute is rarely specified as query at-
tribute. This implies that a multidimensional in-
dex is built with all the attributes possibly used in 
queries. 

 5.1 Examination without Considering 
Execution Frequencies of Queries 

 Here, it is investigated how the tuples clustering 
controlled by the extended normalization affects the 
group performance of range queries. The synthetic 
tuples consist of 8 attributes A1, A2, • • • , A8, each of 
which is a floating point value uniformly distributed 
in the range of [0, 10000]. We use four of the eight 
attributes as index attributes. Each of leaf nodes 
contains all eight attributes and each of the oth-
er nodes contains the values of Al, A2, A3, A4. The 
total number of tuples is 1,000,000.

Table 2 Query group 1.

Table 3 Control coefficient used in each tree.

 Table 2 shows query attributes specified in each 

query of Query Group 1. For example, in query-2, 
attributes Al and A2 are used as query attributes. 
The last row of the table shows the importance de-



Fig.2 Relative performance of queries in group 1.

grees of index attributes, which is used to decide 
the control coefficients (discussed in Section 4.2). 
In this experiment the importance degree of each 
attribute is determined according to the number of 
its occurrences in the query group. For example, A1 
is specified in four queries in the group, while A4 is 
specified only once. The indices used in this exper-
iments are created using the new distance-criterion 
and the extended normalization. The three trees 
shown in Table 3 of Tree A, Tree B, and Tree C 
are different in their control coefficients. Note that 
Tree A is normalized by "original normalization" 
and the control coefficients of Tree B are equal to 
the importance degrees of the query attributes. In 
Tree C, importance degrees of A1 and A2 are em-
phasized. 

 In the experiments, each query is executed 100 
times with different intervals (selected randomly) 
for each predicate while the selectivity keeps fixed. 
The performance is measured in the average number 
of nodes accesses. 

 Figure 2 shows the relative performance to Tree 
A. In this experiment, the selectivity of each pred-
icate is fixed to 1%. The numbers of node accesses 
of the Query Group 1 is showed in Table 4.

Fig.3 Group performance of queries in group 1 with 

      varying selectivity.

using Query Group 1, where selectivity is changed 
from 0.1% to 100%. The performance is measured 
in terms of total number of node accesses of query 

group 1. Relative performance to Tree A is shown. 
This figure shows Tree B and Tree C outperform 
Tree A, especially when selectivity is small. When 

selectivity is too large, almost all nodes have to be 
accessed. Thus, the difference between Tree A and 
the others becomes small.

5.2 Examination with Considering Ex-
    ecution Frequencies of Queries

Table 5 Query group 2.

Table 4 Node Accesses of Query Group 1.

Figure 3 shows the result of another experiment

 Unlike Query Group 1, queries in Query Group 2 
shown in Table 5 have the same number of query 
attributes. The group is tested using the same set 
of tuples. Every query has two query attributes 
and the query group consists of 6 different queries. 
The frequency of each query being executed is con-
sidered to estimate the importance degree of each 
query attribute. The way to decide the importance 
degree for each index attribute is as follows. 

 See Table 5. The execution frequency of query-
1, 7/15, means that query-1 is executed 7 times if 
the total number of times of executing queries is



Fig.4 Group performance of queries in group 2 with 

      varying selectivity.

 15. This implies that the predicate concerning at-

tribute A1 like "1'1. < A1 < ul" is evaluated 12 times 
in the 15 times of executions (shown in the last row) 
since attribute A1 is specified in query-1, query-2, 
and query-3, whose execution frequencies are 7/15, 
4/15, and 1/15, respectively. We let the importance 
degree of A1 be 12, shown in the last row. 

 In this examination, total number of node access-
es is measured while the selectivity of each query 
attribute changes from 0.1% to 100%. The impor-
tance degrees in Trees A and C are the same as the 
last examination, see Table 3. The importance de-
grees used in Tree B are determined considering the 
frequencies of executions as mentioned above. 

 Figure 4 shows the relative performance of Tree 
A, Tree B, and Tree C. This result also shows that 
Tree B and Tree C outperform Tree A. 

 6. Conclusions 
In this study, first, it was pointed out that R*- 

tree can be applied to OLAP application. And then, 
some features of OLAP databases were introduced. 
After we presented that how the R*-tree is applied 
to OLAP field, we also introduced how to enhance 
the R*-tree to further improve the search perfor-
mance in accordance with the feathers of OLAP 
application. This study was focused on ROLAP sys-
tem, one popular kind of the OLAP systems. Our

proposals are discussed in detail and examined by 
experiments using synthetic data. 

 7. Future works 

 The following two future works are being thought. 

 1. Examining our proposal with THC-H bench-

   mark data. 

2. Constructuring a new kind of multidimension-

   al indices focusing OLAP databases. 
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