
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Enhancing R^*-tree to Improve Search
Performance in OLAP Application

Feng, Yaokai
Department of Intelligent Systems, Faculty of Information Science and Electrical Engineering,
Kyushu University

Makinouchi, Akifumi
Department of Intelligent Systems, Faculty of Information Science and Electrical Engineering,
Kyushu University

https://doi.org/10.15017/1515918

出版情報：九州大学大学院システム情報科学紀要. 9 (1), pp.1-6, 2004-03-26. 九州大学大学院システ
ム情報科学研究院
バージョン：
権利関係：

 Enhancing R*-tree to Improve Search Performance in OLAP Application

 Yaokai FENG* and Akifumi MAKINOUCHI*

 (Received December 11, 2003)

Abstract: In this study, first, it is pointed out that R*-tree can be applied to OLAP (On-Line
Analytical Processing) application. And then, some features of OLAP databases are introduced.
After we present that how the R*-tree is applied to OLAP field, we also introduce how to enhance
the R*-tree to further improve the search performance in accordance with the features of OLAP
application. This study is focused on ROLAP (Relational OLAP), one popular kind of the OLAP
systems. Our proposals are discussed in details and examined by experiments using synthetic
data. The experimental result indicates that our proposals can clearly improve the search perfor-
mance.

Keywords: R*-tree, OLAP, SQL, Multidimensional search, OLTP

 1. Introduction

 There is increasing requirement for processing
multidimensional range queries on business data
usually stored in relational tables. For example, Re-
lational On-Line Analytical Processing (ROLAP) in
data warehouse is required to answer complex and
various types of range queries on large amount of
such data. In order to get good performance for
such multidimensional range queries, multidimen-
sional indices are helpfull),2).

 Many index structures have been proposed in the
last two decades. Among them, R*-tree3) is one
of the well-known and successful ones and widely
used in many applications and researches4),5),6),7),^)
In this study, the R*-tree is enhanced for indexing
business data to improve the performance of mul-
tidimensional range queries on the business data.
Note that our proposal can also be used to other
members of the famous R-tree family.

In the works4),9),$),10),11) , the aggregate values are
pre-computed and stored in a multidimensional in-
dex as materialized view. The OLAP queries find
aggregate values of data within a given range. When
required, the aggregate values can be retrieved effi-
ciently. In this study, we also use a multidimension-
al index for OLAP data. However, it is completely
different from the related works in that our study
focuses on using an enhanced R*-tree to speed up
evaluation of range queries themselves.

In this study, first, it is pointed out that R*-tree
can be applied to OLAP (On-Line Analytical Pro-
cessing) application. And then, some features of
OLAP databases are introduced. After we present

that how the R*-tree is applied to OLAP field, we
also introduce how to enhance the R*-tree to further
improve the search performance in accordance with
the feathers of OLAP application. This study is fo-
cused on ROLAP (Relational OLAP), one popular
kind of the OLAP systems. Our proposals are dis-
cussed in detail and examined by experiments using
synthetic data. Examination with TPC-H bench-
mark data is one of our future works.

2. Indexing Business Data Using R*-
 tree

Now, we briefly recall how the R*-tree index
business data stored in a relational table and give
some terms. Let T be a relational table with n at-
tributes, denoted by T(A1, A2, • • • , An). Attribute
Ai (1 < i < n) has domain D(Ai), a set of possi-
ble values for A. The attributes often have types
such as boolean, integer, floating point, character
string, date and so on. Each tuple t in T is denoted
by < al, a2i • • • , an >, where ai (1 < i < n)) is an
element of D(A).

When the R*-tree is used in relational tables,
some of the attributes are usually chosen as index
attributes, which are used to build the R*-tree. For
simplification of description, it is supposed without
loss of generality that the first k (1 < k< n) at-
tributes of T, < A1, A2, • • • , Ak >, are chosen as in-
dex attributes. Since the R*-tree can only deal with
numeric data, an order-preserving transformation is
necessary for each non-numeric index attributes.

 After necessary transformations, the k index at-
tributes form an k-dimensional space, called index
space, where each tuple of T corresponds to one
point.

* Department of Intelligent Systems

 It is not difficult to find such a mapping func-
tion for boolean attributes and date attributes. For
boolean data, "True" and "False" can be mapped

 onto 1 and 0, respectively, if "True"> "False" is
assumed forcedly. This ordering has no practical
problems, because the predicate of "equality" such
as "A True" or "A = False" is the only predicate
pattern for the boolean attribute. Although im-
plementation of "date" depends on DBMS, typical
example of "date" in TPC-H benchmark consists of
three integers representing year, month, and day. A
simple function to get a numeric value for a "date"
is to use the number of days from some reference
date to this "date". In this paper, the day of Jan.
1, 1900 is used as the reference day, that is, the
number of days from Jan. 1, 1900 to Apr. 5, 1998
is used to represent the date of Apr. 5, 1998.

 It is not easy to map an arbitrary character string
to a unique numeric data.The work') proposes an
efficient approach that maps character strings to re-
al numeric values within [0,1], where the mapping
preserves the lexicographic order. This approach is
also used in this study to deal with attributes of
character string.

We call the value range of Ai, [/1,u} (1 < i < k),
data range of Ai attribute (in this paper, "dimen-
sion" and "index attribute" are used interchange-
ably). The length of the data range of Ai, lui —
is denoted by R(A). The k-dimensional hyper-
rectangle, [4, ui] x [12,U2 x • • x [/k,uk], forms the
index space.

 Simple but basic range queries are considered
in the paper. The query condition is formed by
chaining atomic predicates by logical "And". An
atomic predicate represents an interval of a dimen-
sion like "/ < A < u", where A is an attribute,
1 and u are range constants. The special case of
"1 < A < 1" means "A = 1" . A range query on ta-
ble T(A1, A2, • • • , An) is expressed by an SQL-like
query language as follows.

where {Agi, • • , 4.0 C {A1, • • , AO. Attributes
specified in the range query condition is called query

attributes.

3. R*-tree Used For OLAP Applica-
 tion

 Because of the particularity of business data,
some new features occur when the R*-tree is used
to index business data.

 As a feature of business data, the data ranges of
the attributes are very different from each other.
For instance, the data range of "Year" from 1990
to 2003 is only 13 while the amount of "Sales" for
different "Product" may be up to several hundreds
of thousands.

 Another typical example of such domains with
small cardinalities is boolean attribute, which has
inherently only two possible values. Attribute
with other data type may also semantically have
small cardinality (e.g., day of the "week" with
seven values). In LINEITEM table of TPC-
H benchmark, RETURNFLAG, SHIPINSTRUCT,
and SHIPMODE have only 3, 4, and 7 distinct val-
ues, respectively, although their data type is char-
acter string. These attributes cause inappropriate
clustering pattern of the tuples among the R*-tree
leaf nodes, which may deteriorates the search per-
formance.
 Now, two observations are presented as follows.

 1) Imbalanced clustering.
 Let us see the following example.

Table 1 YearlySales.

 The length of data range in "YearlySales" di-
mension is very large (e.g., 9,000,000) while that in
"Year" dimension is very small (e.g., only 14 from
1990 to 2003). According to our investigations, the
MBR of each leaf node almost cover entire data
range of Year dimension. This incurs fatal dete-
rioration of range query performance. If only Sales
dimension is specified as the query attribute, the
query can restrict the nodes to be accessed, so it
is evaluated more efficiently. On the other hand, if
only Year attribute is specified in the range query
condition like "Year = 1993" , almost all nodes of the
index have to be accessed to evaluate the queries.
Thus, range query performance in this case depends
on what attributes are used as query attributes.

 Fortunately, the clustering pattern of the tuples

 among the R*-tree leaf nodes can be controlled,
which will be discussed in detail later.

 2) Many slender nodes exist.
Slender nodes means those having a very narrow

side (even side length is zero) in some dimension.
Some examples are those MBRs roughly shaped as
a line segments in 2-dimensional spaces and roughly
shaped as plane segments in 3-dimensional spaces.

The existing of slender nodes may leads to prob-
lems both with the R*-tree construction and with
queries.

Let us consider the insertion algorithm of the R*-
tree, using the example depicted in Fig.l. Point p
is to be newly inserted. Certainly it should be in-
serted in Node B since it is nearer to Node B than to
Node A. However, according to the insert algorithm
of the R*-tree, p will be inserted to Node A in this
case. This is because the area increment of doing
so is smaller than that of inserting p to B. This will
lead to a bad clustering of tuples among the leaf
nodes, which greatly cut down the performance of
queries.

Fig.1 Slender nodes exist.

 In all the range search algorithms, it is necessary
to decide whether one node MBR and the query
range intersect or not. The existing method to do
so is to calculate the overlap volume between them.
If one of them has the volume of zero, their overlap
volume is zero and they are considered not inter-
sected with each other even if the fact is contrary,
which may lead to a wrong query result.

 In addition, the range query performance with
imbalanced clustering depends on what attributes
are used as query attributes (discussed in Section
3.). That is, if some attributes are used in query,
the query performance may be much worse than
that of some others being used.

4. Enhancing R*-tree in Accordance
 with the Features of Business Data

 In this section, we explain how to control the clus-
tering pattern to improve range search performance

and how to solve the problems of slender nodes.

 4.1 Solving the Slender Nodes Prob-
 lem

 Extended normalization can improve the group
performance of range queries. However it can not
solve the problems of slender nodes. The reason
is as follows. After normalization or extended nor-
malization, the density of objects (or say tuples)
along every dimension may become very different
from each other. Thus, when the objects are insert-
ed one by one to build the R*-tree, some dimension
may be chosen as split axis very often. As a result,
many slender nodes arise.

 Our solution to the Problem of Slender Nodes is
as follows.

 The insert algorithm is revised. It is known that
the insert algorithm of the R*-tree is a decisive fac-
tor to the clustering pattern of the objects among
the leaf nodes, which greatly affect the query per-
formance. The R*-tree use area-criterion, includ-
ing area-enlargement and overlap-enlargement, to
decide the subtree that the insert algorithm should
follow next. However, this method has caused some
problems, as discussed before, when the R*-tree
is used on business data. In this study, a novel
distance-criterion is introduced to settle this prob-
lem. When a new object is inserted, the distance-
criterion is used first to decide which subtree should
be followed next. Concretely speaking, the insert al-
gorithm will recursively choose the child node hav-
ing the nearest distance from the new object to fol-
low. In the cases that more than one nodes have the
nearest distance from the new object, the existing
area-criterion is used.

 4.2 Controlling the Tuples Clustering
 It is well known that normalization is a common

way to deal with the big difference among the data
range in different dimensions. In the existing nor-
malization, the attribute data are scaled so as to
fall within a small range of [-1.0, 1.0] or [0.0, 1.0] in
each index dimension6) 43>

 However, the existing normalization is too stiff;
that is, all the index attributes are dealt with in the
same way. In this study, extended normalization is
used to control the clustering pattern according to
requirement (e.g., according to importance degrees
of the index attributes).

A point (al, a2, •••, ak) in the index space is vir-
tually mapped to

 where (ii, /2, • • • , lk) is the left-lower corner of the
index space , R(Ai) (1 < i < k) is the length of
data range of Ai, and c(Ai) (1 < i < k) is con-
trol coefficient of Ai. The new normalized distance
Ndist(pi,p2) between two points pi. = (al, • • • , ak)
and p2 =-- (bi , • • • , bk) is defined as

 While the existing normalization relocates virtu-

ally the data range of each dimension to [0.0, 1.0]
or [-1.0, 1.0], the extended normalization relocates
the data range of Ai (1 < i < k) dimension to

[0, c(Ai)]. Obviously, the existing normalization is
a special case of the extended normalization when
c(Ai) = 1 for 1 < i < k. Data clustering among the
leaf nodes will change along with the control coef-
ficients varying. Our basic idea is, by selecting ap-
propriate control coefficients for each dimension, to
control the tuples clustering pattern among the leaf
nodes and then to improve the total performance of
a group of queries.

 If the index attributes with larger control coeffi-
cients are used as query attributes, the number of
index nodes to be accessed to evaluate the range
query becomes smaller. This consideration leads
to the idea that giving larger control coefficients to
more important attributes may improve the total
performance of range queries.

 A simple idea to determine importance degree of
each attribute is based on the number of its occur-
rences in the range conditions of the given query
group. The more frequent some attribute is used,
the bigger its importance degree is. The control
coefficients of the attributes used in the index con-
struction are roughly proportional to their impor-
tance degrees. Generally speaking, importance de-
gree of each attribute is not necessarily proportional
to the number of its occurrence if some attribute(s)
need to be more emphasized. Anyway, it is not nec-
essary to create a new data set for the extended
normalization, which can be realized when the data
are inserted in the index.

 5. Experiments
 We performed various experiments to show how

much the range query performance is improved us-
ing our proposals. The page size in our system is
4KB and all the index structures are built based on
"one node one page". To evaluate the performance
of range queries we use average number of node ac-
cesses, which is common criterion for evaluation of
search performance"). In OLAP field, attributes
are generally categorized into two types"): index
attribute (dimensions in index space) and measure
attributes (whose values are often aggregated). The
measure attribute is rarely specified as query at-
tribute. This implies that a multidimensional in-
dex is built with all the attributes possibly used in
queries.

 5.1 Examination without Considering
Execution Frequencies of Queries

 Here, it is investigated how the tuples clustering
controlled by the extended normalization affects the
group performance of range queries. The synthetic
tuples consist of 8 attributes A1, A2, • • • , A8, each of
which is a floating point value uniformly distributed
in the range of [0, 10000]. We use four of the eight
attributes as index attributes. Each of leaf nodes
contains all eight attributes and each of the oth-
er nodes contains the values of Al, A2, A3, A4. The
total number of tuples is 1,000,000.

Table 2 Query group 1.

Table 3 Control coefficient used in each tree.

 Table 2 shows query attributes specified in each

query of Query Group 1. For example, in query-2,
attributes Al and A2 are used as query attributes.
The last row of the table shows the importance de-

Fig.2 Relative performance of queries in group 1.

grees of index attributes, which is used to decide
the control coefficients (discussed in Section 4.2).
In this experiment the importance degree of each
attribute is determined according to the number of
its occurrences in the query group. For example, A1
is specified in four queries in the group, while A4 is
specified only once. The indices used in this exper-
iments are created using the new distance-criterion
and the extended normalization. The three trees
shown in Table 3 of Tree A, Tree B, and Tree C
are different in their control coefficients. Note that
Tree A is normalized by "original normalization"
and the control coefficients of Tree B are equal to
the importance degrees of the query attributes. In
Tree C, importance degrees of A1 and A2 are em-
phasized.

 In the experiments, each query is executed 100
times with different intervals (selected randomly)
for each predicate while the selectivity keeps fixed.
The performance is measured in the average number
of nodes accesses.

 Figure 2 shows the relative performance to Tree
A. In this experiment, the selectivity of each pred-
icate is fixed to 1%. The numbers of node accesses
of the Query Group 1 is showed in Table 4.

Fig.3 Group performance of queries in group 1 with

 varying selectivity.

using Query Group 1, where selectivity is changed
from 0.1% to 100%. The performance is measured
in terms of total number of node accesses of query

group 1. Relative performance to Tree A is shown.
This figure shows Tree B and Tree C outperform
Tree A, especially when selectivity is small. When

selectivity is too large, almost all nodes have to be
accessed. Thus, the difference between Tree A and
the others becomes small.

5.2 Examination with Considering Ex-
 ecution Frequencies of Queries

Table 5 Query group 2.

Table 4 Node Accesses of Query Group 1.

Figure 3 shows the result of another experiment

 Unlike Query Group 1, queries in Query Group 2
shown in Table 5 have the same number of query
attributes. The group is tested using the same set
of tuples. Every query has two query attributes
and the query group consists of 6 different queries.
The frequency of each query being executed is con-
sidered to estimate the importance degree of each
query attribute. The way to decide the importance
degree for each index attribute is as follows.

 See Table 5. The execution frequency of query-
1, 7/15, means that query-1 is executed 7 times if
the total number of times of executing queries is

Fig.4 Group performance of queries in group 2 with

 varying selectivity.

 15. This implies that the predicate concerning at-

tribute A1 like "1'1. < A1 < ul" is evaluated 12 times
in the 15 times of executions (shown in the last row)
since attribute A1 is specified in query-1, query-2,
and query-3, whose execution frequencies are 7/15,
4/15, and 1/15, respectively. We let the importance
degree of A1 be 12, shown in the last row.

 In this examination, total number of node access-
es is measured while the selectivity of each query
attribute changes from 0.1% to 100%. The impor-
tance degrees in Trees A and C are the same as the
last examination, see Table 3. The importance de-
grees used in Tree B are determined considering the
frequencies of executions as mentioned above.

 Figure 4 shows the relative performance of Tree
A, Tree B, and Tree C. This result also shows that
Tree B and Tree C outperform Tree A.

 6. Conclusions
In this study, first, it was pointed out that R*-

tree can be applied to OLAP application. And then,
some features of OLAP databases were introduced.
After we presented that how the R*-tree is applied
to OLAP field, we also introduced how to enhance
the R*-tree to further improve the search perfor-
mance in accordance with the feathers of OLAP
application. This study was focused on ROLAP sys-
tem, one popular kind of the OLAP systems. Our

proposals are discussed in detail and examined by
experiments using synthetic data.

 7. Future works

 The following two future works are being thought.

 1. Examining our proposal with THC-H bench-

 mark data.

2. Constructuring a new kind of multidimension-

 al indices focusing OLAP databases.

 References

1) V. Markl, F. Ramsak, and R. Bayer. Improving OLAP
 Performance by Multidimensional Hierarchical Cluster-

 ing, 1999.
2) V. Markl, M. Zirkel, and R. Bayer. Processing Oper-

 ations with Restrictions in Relational Database Man-
 agement Systems without external Sorting, 1999.

3) N. Beckmann, and H. Kriegel. The R*-tree: An Effi-
 cient and Robust Access Method for Points and Rect-

 angles, 1990.
 4) C. Chung, S. Chun, J. Lee, and S. Lee. Dynamic Up-

 date Cube for Range-Sum Queries, 2001.
 5) D. Papadias, N. Mamoulis, and V. Delis. Algorithms

 for Querying by Spatial Structure, 1998.
6) H. Horinokuchi, S. Kuroki, and A. Makinouchi. Nor-

 malized R*-tree for Spatiotemporal Databases and Its
 Performance Tests, 1999.

7) H. P. Kriegel, T. Brinkhoff, and R. Schneider. Efficient
 Spatial Query Processing in Geographic Database Sys-

 tems, 1993.
8) M. Jurgens, and H.-J. Lenz. The Ra*-tree: An Im-

 proved R-tree with Materialized Data for Supporting
Range Queries on OLAP-Data, 1998.

 9) Y. Kotidis, and N. Roussopoulos. An Alternative Stor-
 age Organization for ROLAP Aggregate Views Based

 on Cubetrees, 1998.
10) N. Roussopoulos, Y. Kotidis, and M. Roussopoulos.

 Cubetree: Organizaiton of and Bulk Incremental Up-
 dates on the Data Cube, 1997.

11) S. Hon, B. Song, and S. Lee. Efficient Execution of
 Range-Aggregate Queries in Data Warehouse Environ-

 ments, 2001.
12) H. V. Jagadish, N. Koudas, and D. Srivastava. On Ef-

 fective Multi-Dimensional Indexing for Strings, 2000.
13) J.Han, and M.Kamber. Data Mining: Concepts and

 Techniques. Morgan Kaufmann, USA, 2001.
14) R. Agrawal, A. Gupta, and S. Sarawagi. Modeling Mul-

 tidimesnional Databases, 1997.

