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An Incremental Learning of Neural Network with Multiplication Units for 

                     Function Approximation 
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                          (Received June 12, 2003)

Abstract: This paper presents a constructive neural network with sigmoidal units and mul-

tiplication units, which can uniformly approximate any continuous function on a compact set 

in multi-dimensional input space. This network provides a more efficient and regular architec-

ture compared to existing higher-order feedforward networks while maintaining their fast learning 

property. Proposed network provides a natural mechanism for incremental network growth. Sim-
ulation results on function approximation problem are given to highlight the capability of the 

proposed network. In particular, self-organizing process with RasID learning algorithm developed 
for the network is shown to yield smooth generation and steady learning. 

Keywords: Higher order neural networks, Function approximation, Multiplication units, Sig-

moidal units, Random search

 1. Introduction 
 Using neural networks to approximate functions 

is an extremely broad topic. The necessary to learn 
a function with neural networks is lying in that we 
have a function that is difficult to compute, or even 
if the computation is possible, but is very slow. A 
neural network accepts one or more inputs and pro-
duce one or more outputs. It is well known that 
conventional neural networks are intrinsically func-
tion approximators. 

 More recent results also show that radial basis 
function networks, recurrent neural networks et. al 
can be also uniform approximators. Difficulties of 
these networks in function approximation and map-
ping lie in that with the increase of the input dimen-
sion and the complexity of the mapping, learning 
process will become more unpredictably long. 

 Another class of neural network model which is 
worth stressing is nonlinear model. Nonlinear mod-
els of neural networks are certified to have higher 
performances. The development of nonlinear mod-
els of neural networks has been approached by many 
researchers. The most well-known units that com-
prise multiplicative synapses perhaps are higher-
order neurons(HONs)1)2). It is well known that 
higher order neural networks perform better than
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networks of first order. Actually it is well known 
that multiplications in the unit increase the compu-
tation power and capacity of the neural networks. 

Higher-order neural networks(HONNs) constructed 
by the HONs have been developed to enhance the 
nonlinear expression ability of the feed-forward mul-
tiplayer networks. A basic HON, with the output 
h0 and inputs hi, hk, h1, . . . can be computed as: 

ho = f (wo + E wihi + E Wjkhihk 
j j,k(j<k) 

+ E wikthihkhi + • • •)•(1) 
j,k,l(j<k<l) 

where f(S) is the sigmoidal activation function. 
 Although higher-order correlations enable the 

networks to learn geometrically invariant properties 
more easily, it was noticed that the number of hid-
den units in the fully connected HONNs increases 
exponentially with the number of inputs. In fact, 

the number of parameters, that is, the weights, in-
creases rapidly with the number of inputs and be-
comes unacceptably large for use in many situa-
tions. Consequently, typically only second or third 
order networks are mostly considered in practice'". 

 This paper studies mainly the approximation 
ability of a polynomial neural network which is 
mainly constructed by a kind of multiplication units 

proposed. The remaining of the paper is organized 
as follows. In section 2, the multiplicative connec-

tionist neural network is formulated, and different 
combinations of multiplication units as well as sum-
mation unit will be investigated. In section 3, to 
achieve the incremental growth of networks, a ran-



dom search method is described for training. Al-

though there are many applications of HONNs, few 

papers are concentrated on function approximation 

problems, so in Section 4, some simulation results 

for parity problems and a function approximation 

problem by constructed HONNs will be given. Sec-
tion 5 gives conclusions of this paper.

Fig.1 Combinations of Different Node Types.

 2. Constructive Neural Networks 

 2.1 Description of the Model 

 It is well known that a general sigmoidal unit can 

 be  described  as4): 

 hi =E • •h • n     21123—z j.(2) 

where hi is input to node j, wii is an adjustable pa-
rameter from node i to node j, Oi is the threshold 

parameter of node j. 
 Differently from the conventional summation unit 

described above, instead of dealing with all the in-
puts by a linear summation, a developed multiplica-
tion unit multiplies all the inputs after subtracting 
an adjustable weight from them. Operation of the 
proposed multiplication unit for all the inputs hi is 
expressed as: 

hj = zj H (hi — wi3)+0i,(3) 
       iEJF(j) 

where zj is the gain parameter of node j. wij is an 
adjustable parameter from node i to node j. JF(j) 
is set of suffixes of nodes connecting to node j. 

 One problem is to decide the order of the network 

architecture required to implement the problem be-
cause it can directly affect the training time and 

generalization of the network. The form of a HONN 
is somewhat similar to the form of a polynomial 
with inputs. The network order can be identified 

by the polynomial formed, and when the polyno-
mial includes products of up to n input terms, the 
network can be termed as a n-order HONN. For the 
speciality of our multiplication units, if full connec-
tions between nodes are expected, higher order of 
N (number of inputs) can be reached only by one 
multiplication unit. Differently from higher order

networks of sigma-pi units') with tensor product as 

n hi, higher order of more than N can be reached 
by more than one layer of multiplication units. 

 It is necessary for the incremental procedure to 
determine the basic structure to start. There are 
many ways of combining sigmoidal units and multi-

plication units(see Fig.1) in neural networks. Here 
we take E-fl-fl structure as an example to explain 
the growth procedure of the networks. Because of 

the connection between the multiplication units, the 

order of the network will be decided on the basis of 

the number of input variables in the first hidden 

layer and the number of units in the layer behind 

the first hidden layer. The incremental mechanism 

of the >-fl-fl networks was illustrated in Fig.2, 
which begins with a small network size. New units 
will be added one by one as more precise approxima-
tion is demanded considering to avoid constructing 
an oversized network concurrently(new added nodes 
are illustrated by shading). 

 The advantage of the new method is mainly based 
on the following points: 

 • Because of the special characteristics of the pro-

 posed unit, constructed networks with multipli-
 cation units can form higher order terms while 

 eliminating the combinational explosion.

Fig.2 Mechanism for incremental network growth. (a) 
      An incremental network of 3 layers; (b) An incre-

      mental network extended to 4 layers.



 • The overall network will grow from a small 
 structure, in one study, only one unit or layer can 

 be added so as to avoid the oversized network 
 structure for the problem. 

 Next  we  can  define  the  E  -  fl  structure  by  the 
proposed multiplication units and conventional sig-
moidal units as: 

hk = wik (zj [J (h, — wii) + + Ok, (4) 
2 iEJ F(j) 

and if there are more than one hidden layer with 
multiplication units, by means of Eq.(1) we have: 

= Wkl lzk [J {(zi H (h, — wii) + 
     k jEJF(k)iEJF(j) 

   Wjkl 0k} -I- 01.(5) 

 3. Learning of the Neural Network 
    with RasID 

 3.1 Random Search with Intensifica-
     tion and Diversification 

 The gradient-based schemes such as well-known 
backpropagation(BP) are well used for neural net-
works training5). However, sometimes it is diffi-
cult to get the gradient information of the pro-
posed units, and also the big amount of multipli-
cations makes it easier to trap into local minima 
by searching the gradient direction. In this pa-
per, we train the networks with multiplication units 
by using a modified random search method called 
RasID ( Random Search with Intensification and 
Diversification)6) . 

 RasID is a kind of random search optimization 
methods and executes intensified and diversified 
search in a unified manner using information on suc-
cess and failure of the past searching. One of the dis-
tinguished features of RasID is that the probability 
density function(PDF) can be changed adaptively 
based on the past success and failure information 
of the searching in order to realize the intensified 
search and diversified search. We introduce a so-

phisticated PDF g(0,,) for generating the random 
search variable 0m, defined by 

       { (1 — qm)13me13mem If 0,, 0 Om) =(6)            qmome-137nOinIf 0>0, 

where qm E [0, 11 and /3m are two kinds of param-
eters used to perform intensification-diversification 

search. Therefore, it follows that a random search 

variable 0 is generated by

Fig.3 Probability density function for generating ran-

      dom variable Om.

    =in(1mz,„ ) If 0 < zm<1 — qm       OmVq Om(7)            1 in(1-_-Zza) If 1 — qm < zm < 1.0, 

where zm's are random values uniformly distributed 
between 0 and 1. 

 So, by using RasID, faster computation is ex-
pected and escaping from local minima becomes 
possible. As shown in Fig.3, the RasID parame-
ter Om can be used to control the local search range 

(the variance of search variable Om). The larger the 
Om is, the smaller the local search range will be, 
and vice versa. On the other hand, the parameter 
qm can be used to control the search probability in 
positive or negative direction. The larger the qm is, 
the higher the search probability in positive direc-
tion is. Typically, when qm 0.5 there is the same 
search probability in positive and in negative direc-
tion. In this way, intensified and diversified search 
can be realized by adjusting the parameters /3m and 
qm effectively based on the past success-failure in-
formation and local information. 

 Basic idea of RasID is that it continues to it-
erate the searching in the following way. When 
there is quite a possibility of finding a better so-
lution around the current one, intensified search is 
executed near the current solution, and when find-
ing a better solution cannot be expected because of 
falling into local minima, then diversified search is 
executed looking for a better solution. Determina-
tion of /3m is introduced by 

13m=+—)(8) 
   mme 

where r3m, and I are adjustable indexes with ini-
tial values Ano, 00 and 10, respectively. Figure 4 
shows the relation between 13m and ,L , Om, 0, I. 

 In the area where it is possible to find a good



 Fig.4 Relation between /3m and /3,,,  Om, 4i, f.

solution locally, an intensified search is performed. 
The intensified search is performed with keeping the 
success-failure ratio, P, in a moving window close 
to a pre-assigned value Po. This can be realized by 

fixing I and adapting 0 according to the relation 
between P and Po. The diversified search is carried 
out in order to escape from the local minimum by 
fixing 0 < qm;„ and adapting I based on success 
and failure information of the searching. 

In our scheme, the same function will be real-
ized more efficiently by adapting the parameter qn.. 

Obviously, the local gradient, if available, is useful 
information for adjusting gin. Let us first give q,n an 
initial value of 0.5 and adjust it only when the past 
search is success in the following way 

       aq,n, If 9,n(n) < 0 or aef > 0 
 qrn =qm If Om (n) = 0 or8+1 = 0 
      aqm+(1 –a) If9,n(n)>0orae<0 

                        (9) 

where a E (0, 1] is an appropriate value, and a—I 
is the ordered derivative of the objective function f 
with respect to the object variable Om of the nth 
search. 

 3.2 Constructing HONN with Multi-
     plication Units 

 For the input-output data set given in the form: 

(Xi,yi) = (xi1,xi2,••.,xiN,yi),i = 1,2,3, ... ,I. 
                         (10) 

the incremental process of the constructive networks 
by RasID can be described as the following steps: 

 1. Initialization: The network is initialized 
with 2 layers besides the input layer (that is, a 
3 layers network) at first, with one unit in each

layer. Output node is a summation unit, and the 
first hidden node is a multiplication unit. For I 
training patterns, criterion function of RasID train-
ing is defined as the average relative variance(ARV) 

measure7>8 of the neural networks: 

ARV =  I(f (Xti) – f(Xi))2 (11) 
(f(Xi) – f)2 

where f ( • ) is the function to be approximated, f(.) 
is the outcome estimated, such as f(Xi) is the esti-
mated value with the ith input vector Xi and f is 
the mean value of f(.). 

 2. Judgement: If the network error defined 
above is smaller than a pre-specified value, the con-
structive process will be terminated. 

 3. Constructing: A new multiplication unit 
is added in the hidden layer. On the other hand, 
if there is no significant change in the monitored 
ARV, that is, the absolute value of the chang-
ing rate of ARV(CRARV(see Eq.(12)) is less than 
some prespecified value, then add a multiplication 
unit(the mth unit in the network) in a new hidden 
layer. The added unit receives its inputs from units 
in the last hidden layer. Comparison will be done 
after several iterations to decide whether or not the 
added unit will be accepted. The learning process 
is iterated to step 2 until the satisfactory estimation 
is available. 

CRARV —ARV(m– 1) – ARV(m)x 100% (12)            ARV(m – 1) 
where ARV (m) is the training error ARV after the 
mth unit is added. 

 4. Stop The constructive process without con-
vergence until the prespecified iteration will be de-
noted failed and then be terminated. 

 The number of hidden layers and the number of 
nodes in one hidden layer decide the order of the 
neural network being constructed. 

The outstanding feature of the constructive algo-
rithm with multiplication units is its high flexibility. 
Not only the order of the network but also the coeffi-
cients of the product terms may vary with the multi-
plication units located at different layers. Therefore 
the multiplication units as well as sigmoidal units 
can be utilized effectively according to the order of 
the problem. 

 4. Experiments and Results 
 Different combinations of multiplication units 

and summation units have been tried and evaluated



Table 1 Comparisons of simulation results for the par-

      ity check problem

 for different problems. For example, in the experi-

ments for Boolean function learning, a>2-fl struc-
ture is enough; But for function approximations, the 

structure was derived out. Simulation re-
sults show that this method can solve certain prob-
lems better with more compact structures. 

 4.1 Parity Problems 
 Boolean function learning is studied many times 

in the research of neural networks. Some of the 
problems, such as parity problems, also act as 
benchmarks for algorithms of neural networks . 
A parity problem is a very demanding classifica-
tion task for neural networks to solve, because the 
target-output changes whenever a single bit in the 
input vector changes. This makes generalization dif-
ficult, and a general feed-forward neural network 
which tries to solve parity problems does not al-
ways converge easily because of the local minima 
problem. 
 The networks to solve the problems were con-
structed with one multiplication unit only in the 
hidden layer and one sigmoidal output unit that 
uses the sigmoidal activation function: s(h) = 
1+e T•They all can converge very faster than con- 
ventional sigmoidal neural networks which need at 
least 3, 4 and 4 sigmoidal units in the hidden layer 
respectively for parity 5, 6 and 7 problems. Com-
parisons of the constructed neural network(CNN) 
with conventional MLP(trained by fast-BP) for 5, 6 
and 7 bits parity problems are shown in Table 1. 
This result can be extended to parity problems of 
more higher orders, that is, the parity problem of 
order n can be represented by a network constructed 
with one multiplication unit in the hidden layer 
while forming higher order terms until order n. 

 4.2 Function Approximation 
 In order to study the approximation ability of 

the networks constructed with multiplication units, 
a simulation was executed by using the following 
two-dimensional function approximation problem. 
The function f (h1, h2) is defined on -0.5 < hi < 
0.5,-0.5<h2<0.5.

Fig.5 Results for function approximation.

 f (h1, h2) _127(0 .5)2e-I(hi+h2)/2(0.5)21 
• cos(2ir(h1 + h2)) . (13) 

The training data set contain 256(16 x 16) data 

patterns, and the testing data set are composed of



 441(21  x  21)  data  patterns,  which  are  different  from 
the 256 training data set. 

 Constructive process was executed for the func-
tion approximation problem. The network used to 
learn this function looks like the structure shown 
in Fig.2(b). The following neural network struc-
ture was obtained after training: 4 layers with two 
inputs and one output: 2:N1 :N2:1, output unit is 
a summation unit with a tangent function, N1, N2 
obtained for this problem is 6 and 2, respectively. 
The generated surfaces of the units in different lay-
ers along with its original and produced surfaces are 
shown in Fig.5. 

 Table 2 gives a simple comparison on the gen-
eralized performance of the constructed network 
and conventional sigmoidal network which is trained 
with fast backpropagation after 200,000 iterations. 
For training of the constructed network, initial value 
of weights were initialized within the range[-0.2, 
0.2], the parameters of RasID method were set to 
,(30 = 0.1,13i = 5000, a = 0.95, 00 = 0.1, 13810 = 0.5, 
Isfmax = 100, AIsfi = 0.02, Aisf2 = 1.0, Ci 
1.05, cd = 0.995, etc. For conventional feedforward 
neural networks, the weights and biases were initial-
ized within the range [-0.1, 0.1], the initial learn-
ing rate was set to 0.01. Results show that with 
more compact structure and less weight parame-
ters, the constructed network with RasID training 
can achieve better generalization ability and faster 
learning than ordinary networks.

Table 2 Comparison of performances between con-
      structed network(CNN) and conventional feed-
      forward neural networks(FFNN)

 5. Conclusion 

 In this paper, a new constructed neural network 

by multiplication units and summation units with 

an efficient random search algorithm has been de-

veloped. The proposed network with multiplica-

tion units has a potential incremental mechanism to 

form higher order terms while avoiding the explo-

sion problem of higher order neural networks. It is

very flexible to organize different network structures 

with the proposed multiplication units and conven-

tional summation units. Besides, the capability of 

the RasID method for training of higher order neu-

ral networks was also investigated. 

  Simulation results for parity problems and a func-

tion approximation problem show that this method 

can solve a certain problems faster with more com-

pact structures. Future work will be focus on im-

proving the success rate of the learning process, 
which is not competitive because of limitation of 

the search method as well as the local minimums 

caused by the multiplication units. 
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