
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Formalizing Moving Block Railway Interlocking
System for Directed Network

Zafar, Nazir A.
Department of Computer Science and Communication Engineering, Graduate School of Information
Science and Electrical Engineering, Kyushu University : Graduate Student

Araki, Keijiro
Department of Computer Science and Communication Engineering, Faculty of Information Science
and Electrical Engineering, Kyushu University

https://doi.org/10.15017/1515841

出版情報：九州大学大学院システム情報科学紀要. 8 (2), pp.109-114, 2003-09-26. 九州大学大学院シ
ステム情報科学研究院
バージョン：
権利関係：

Formalizing Moving Block Railway Interlocking System for Directed Network

 Nazir A. ZAFAR* and Keijiro ARAKI**

 (Received June 13, 2003)

Abstract: The safety and complexity of Railway Interlocking System (RIS) requires the use
of advanced methodologies. Formal methods increase quality and provide highest confidence

 in this area. In this paper, safety analysis of moving block RIS is presented. The system is
decomposed into four components, i.e., network topology, network state, controls and trains. The
formal analysis of the components is presented after further decomposition. Finally, the safety
requirements, no collision and no derailing, are defined abstractly and then refined by integrating
with the notion of moving block. The railway network is modeled using directed graph. Formal
specification is described in VDM-SL.

Keywords: Formal methods, Graph theory, Railway Interlocking System, Directed network,
Moving block, Safety analysis, VDM-SL

 1. Introduction

 Railway Interlocking System (RIS) is a safety
critical system, so there is a need to ensure that
the system prevents dangerous situations 7) Formal
methods, because of tool support, increase quality
and provide highest confidence in this area 6).
Primarily, the task of RIS is preventing trains from
collisions and derailing. There are two existing
technologies, fixed block and moving block, for RIS.
Because of some disadvantages in fixed block RIS,
the moving block RIS is getting important.

 Most of the researchers have their publications
on fixed block RIS while this research is for moving
block RIS with a different approach. The work 2)
of A. Simpson is close to ours but he uses Z, CSP
and FDR2, and his work is the starting point in this
area. Hansen 7) uses VDM 12) to model concepts of
railway topology, and safety analysis is presented
but again his work is for fixed block interlocking.
A. E. Haxthausen 1) described elegant formal
representation of a distributed railway control using
RAISE, the system described therein is not, in a
strict sense, a moving block interlocking. Some
work of interest is also reported 4),8),5)

Our previous work 9),10) was for bi-directional
railway network while this work is for directed
network. This work is one step forward to develop
an abstract model for dynamic topology, i.e., a
topology in which at some parts one way movement
while at other parts both way movement of train
is possible and direction of any track segment in
topology can also be changed if required.

 There are three main objectives to be achieved
in the paper: (i) applying formal methods in RIS,

* Department of Computer Science and Communication

Engineering, Graduate Student

** Department of Computer Science and Communication

Engineering

Fig.1 Approach to Construct Formal Model.

(ii) integration of formal and informal approaches
and (iii) safety analysis preventing collisions and
derailing, and allowing normal trains movements.

 Figure 1 shows our approach. The system
consists of network topology, network state, controls
and trains. The formal analysis of the components
is presented after the further decomposition. In
our topology, it is supposed that if a train can
move from one track segment to another it can
not move in the opposite direction and as a result
the topology is a directed graph. That is why
ordered pairs are used to represent the connectivity
of track segments. In the model topology, a track
segment is represented by node and the connectivity
of two track segments shows the permission for a
train to move from one track segment to the other.
The state space of the components is analyzed.
The controls which are responsible for observing
trains and network state are formalized. Finally,
the components are composed to define the formal
model for the whole system.

 The abstract safety properties, no collision and
no derailing, are formalized. It is supposed that
there will be no collision if there is one train at
a network component. Further, the direction of
train and switch control must be same preventing
derailing. In the refinement, consistency between
the moving block and directed topology is analyzed.

 Fig.3 Moving Block Interlocking System.

It is assumed that the system will be safe if the
moving block respects the state of network. The
formal specification is described in VDM-SL 12).

 In section 2, an introduction to RIS is given.
In section 3, real topology is transformed to
model topology. In section 4, formal model is

presented. Safety properties are formalized in
section 5. Conclusion and future work are discussed
in section 6.

 2. Railway Interlocking Systems

 2.1 Fixed Block Interlocking
 In fixed block RIS, the railway network is divided

into fixed blocks which are separated by signals as
shown in Fig. 2. At one time, only one train can
move in a block and can enter into a block only if
the next is clear. For example, in Fig. 2, the train
ti can enter block b2 only when train t2 has cleared
the block 63. This means that there is always a
distance of more than one block between two trains.

 2.2 Moving Block Interlocking
 In reality, the safe distance between two trains

is the distance needed for a train to come to a
complete stop which is much less than the length
of a fixed block. The idea of moving block is based
on this concept, i.e., keeping only safe distances
between trains. Instead of cutting piece of railway
line into fixed blocks, train's position and some
distance in front of it becomes the moving block
in which no other train can enter. For example,
intersection of moving blocks of trains t2 and t3 is
always empty for safe operation of the trains as in
Fig. 3, which are observed by a computer based
control system.

 3. Model in Graph Theory

 3.1 Real Topology
 Real topology is composed of track segments as in

Fig. 4. A track segment is switch if it is related with
three track segments otherwise a linear segment.
Railway crossing is composed of two linear segments
having a certain relation. It is supposed without
loss of reality that segment is small enough. Due
to this assumption, for simplicity of the model, it is

Fig.5 Model Topology.

always possible to decompose a network in such a
way that no two switches or crossings are connected
physically. Moreover, it is assumed that a switch or
a crossing is not at the end of topology.

 3.2 Model Topology
 A track segment in real topology is represented

by a node in model topology in Fig. 5. The
connectivity of track segment sl with track segment
s2 means that a train can move from sl to s2 directly
and is denoted by (sl, s2).

 4. Formal Model

 Formal model consists of network topology,
network state, trains and controls. A brief informal
description of definitions is given following the
formal analysis of the components.

 4.1 Directed Network Topology
 First, the formal specification of connections,

switches and crossings is described. And then, we
composed these components to define the model
topology.
 4.1.1 Connections

 Connections is defined by a relation on the track
segments of directed topology. The interpretation of
the relation is that each pair of track segments in the
relation is physically connected. The Connections
relation is modeled by a graph in Fig. 5. This graph
is defined by

Connections = {(4, 5), (5, 6), (6, 7), (7, 8),
(8, 9), (9, 10), (10, 11), (11, 12), (13, 14),
(14, 15), (15, 7), (14, 16), (16, 17), (17, 18),
(18, 19), (19, 20), (20, 21), (21, 22)}

 A track segment is described by Track,
connectivity of two segments by Connect ion and
the entire network, in Fig. 5, by Connections in
VDM-SL.

1. Connections = set of Connection
.1 inv cons == (forall mk_(sl,s2) in set cons k

 mk_(s2,s1) not in set cons) and

.2 card { s I mk_(s,-) in set cons} <= 2 and

card { s I mk_(-,^) in set cons} <= 2;

2. Connection = Track * Track

.1 inv mk_(s1,s2) _= s1 <> s2;

3. Track = token;

 (1) Connections Invariants
 1.1) The Connections relation is asymmetric.

1.2) A segment is connected with at most two
segments. 2.1) A segment is not connected to itself.

 4.1.2 Switch
 A switch is consisting of root, left branch and

right branch as in Fig. 5. For a switch, either it
is possible to derive from root to any branch or
from any branch to root. It is not possible to drive
from one branch to the other. A switch is specified
by Switch with three fields switch an identifier
of switch, root, and control. The control is a
mapping describing control of a switch, either in
left or right. For example, the formulas for switch
7, in Fig. 5, in the model topology are

switch = 7, root = (7, 8) and
control = {(15, 7) I-> <RIGHT>,(6, 7) I-> <LEFT>}

4. Switch :: switch : Track
root : Connection

 control : map Connection to SwControl
.1 inv sw =_ (sw.control <> {l->}) and
.2 (forall mk_(sl,s2) in set don sw.control k

((sw.control(mk_(sl,s2)) = <LEFT> _>
exists mk_(s3,s4) in set don sw.control &
$3 = sl and sw.control(mk_(s3,s4)) _ <RIGHT>) and
(sw.control(mk_(si,s2)) _ <RIGHT> _>
exists mk_(s3,s4) in set don sw.control &
s3 = si and sw.control(mk_(s3,s4)) _ <LEFT>)) or
((sw.control(mk_(sl,s2)) _ <LEFT> =>
exists mk_(s3,s4) in set don sw.control k

 s4 = s2 and sw.control(mk_(s3,s4)) = <RIGHT>) and
(sw.control(mk_(sl,s2)) _ <RIGHT> =>
exists mk_(s3,s4) in set don sw.control k
s4 = s2 and sw.control(mk_(s3,s4)) = <LEFT>)))and

.3 (forall mk_(sl,s2) in set don sw.control &
(sw.switch = sl or sw.switch = s2) and
(sw.switch=sw.root.#i or sw.switch = sw.root.#2));

5. SwControl = <LEFT> I <RIGHT>;

 (1) Invariants over Switch
 4.1) The control mapping is non-empty, i.e.,

switch has a control. 4.2) A switch has two branches
with one vertex in common. The control mapping
acts on both branches, i.e., switch control has only
two states. Both branches of the switch are either
outwards or towards from the switch. 4.3) The
ordered pairs defining root and both branches of
switch are related to the switch identifier.

 4.1.3 Railway Crossing
 Crossing is composed of two crossovers as in

Fig. 5. A train can not switch from one crossover to

the other, i.e., for a train, having entered a crossing
it is only possible to exit in one direction. Crossing
is specified by Crossing with three components
cross an identifier of crossing, cross1 and cross2
represent the crossovers . There is only one crossing
with identifier (10, 20), in Fig. 5. The formulas for
the crossing in the model topology are

cross = (10, 20), crossi = {(9, 10),(10, 11)} and
cross2 = {(19, 20), (20, 21)}

6. Crossing :: cross : Track * Track
crossi : set of Connection
cross2 : set of Connection

inv xng ==
.1 let mk_(sl,s2) = xng.cross in si <> s2 and
.2 (forall mk_(s3,s4) in set xng.crossl &

(s1 = s3 or si = s4) and s2 <> s3 and s2 <> s4 and
forall mk_(s5,s6) in set xng.cross2 &
(s2 = s5 or s2 = s6) and sl <> s5 and si <> s6) or
(forall mk_(s3,s4) in set xng.cross2 k
(si = s3 or sl = s4) and s2 <> s3 and s2 <> s4 and
forall mk_(s5,s6) in set xng.crossl &
(s2 = s5 or s2 = s6) and sl <> s5 and sl <> s6)and

.3 let crs = xng.crossi union xng.cross2 in
card {s I mk_(s,s') in set crs & s'= si } = 1 and
card {s I mk_(s',^) in set crs k s'= Si } = 1 and
card {s I mk_(s,s') in set crs & s'= s2 } = 1 and
card {s I mk_(s',^) in set crs & s'= s2 } = 1;

 (1) Invariants over Railway Crossing
 6.1) The track segments of crossing identifier are

different. 6.2) Crossing identifier is an ordered pair
of two track segments, one is related with cross1
and the other related with cross2. The track
segment related with any one of the crossover has
no relation with the other. 6.3) A track segment of
crossing identifier is connected to and from a track
segment. It proves that the segments of crossing
identifier are not at the end of topology.

 4.1.4 Topology
 The network topology is composed of three

components connections, switches and crossings.
Well defined-ness properties showing relationships
between the components of the topology are
formalized as invariants in our model, which are not
presented here because of the lack of space.

7. Topology :: connections : Connections
 switches : set of Switch

crossings : set of Crossing
inv top == ...

 4.2 Network State
 Network state is described briefly to be used in

the safety analysis. The TrackState is composed of
three components. The first one describes state of
the component. Second one represents identifiers of
trains occupying it. The last one describes control
of the component (if switch) either in left or right.
It is supposed that if the track segment identifying
switch is occupied then the track segment connected

to the identifier is also occupied.

 8. NetState = map Track to TrackState;

9. TrackState:: trackState : State
occupiedBy : [set of Trainld]
swControl : [SwControl];

10. State = <OCCUPIED> I <CLEAR>:
11. Trainld = token;

 4.3 Trains
Trains is a mapping from TrainId to MBlock

(moving block). From Fig. 5, an example of moving
block of a train is given: {(13, 14), (14, 15),
(15, 7), (7, 8), (8, 9)}.

12. Trains = map Trainld to MBlock;

13. MBlock = set of Connection
.1 inv mb == mb <> {} and
.2 forall mk_(s1,s2) in set mb &

exists mk_(s3,s4) in set mb & si = s4 or s2 = s3;
4.3.1 Invariants over Train

 13.1) Moving block is non-empty because train
occupies some track segments, even at rest. 13.2)
Elements in moving block are related.

 4.4 Controls
 Controls are computer based systems observing

trains and network state. Controls is a mapping
from control identifier to Control. The Control is
composed of tracks, states and trains.

14. Controls map Controlld to Control;
15. Controlld = token;

16. Control :: tracks : set of Track
 states : map Track to State

 trains : Trains
inv cont =_ ...

 4.5 Railway Interlocking System (RIS)
 Finally, we formalize RIS which is composed of

Topology, NetState, Trains and Controls. We
have defined the invariants over the system which
are not presented here because our main objective
is to give the safety analysis of the system.

17. RlSystem :: topology : Topology
netState : NetState

 trains : Trains
 controls : Controls

inv ris == ...

 5. Safety Requirements Analysis

 The abstract safety requirements, no collision and
no derailing, are given with the formal definitions.
The safety requirements are refined by introducing
the notion of moving block of a train.

Fig.6 Abstract Definitions of Collisions and Derailing.

 5.1 Abstract Safety Properties
 The definitions of collisions and derailing, in the

model, are illustrated in Fig. 6. It is assumed that
there will be a collision if there are two trains at a
track segment or crossing as in Fig. 6 (a) and (b),
respectively. If train does not respect the state of a
switch control, it will cause derailing as in Fig. 6
(c). The abstract safety properties can be stated as

 • Two trains can not reside on the same segment.
 • There must be one train at one crossing.

 • A train must respect the state of a switch.
 The safety function IsSafe is composed of

NoCollision and NoDerailing functions. The
function NoCollision formalizes the first two
properties preventing collision and NoDerailing
specifies the last one property preventing derailing.

IsSafe : Topology * NetState -> bool
IsSafe(top, us) __
NoCollision(top, ns) and NoDerailing(top, us);
The function NoCollision is formalized assuming

that there must be one train at one component
(track segment or crossing).

NoCollision : Topology * NetState -> bool
NoCollision(top, ns) ==

OneTrainlTrack(top, ns) and OneTrain1Xng(top, us);
 5.1.1 Formal Definition of Property 1

 In this property, it is stated that the number of
trains on a segment must not be greater than one.

OneTrainiTrack : Topology * NetState -> bool
OneTrainlTrack(top, ns) __
forall mk_(s1, s2) in set top.connections &
card (ns(s1).occupiedBy) <= 1 and
card (ns(s2).occupiedBy) <= 1 ;

 5.1.2 Formal Definition of Property 2
 In the function below, it is stated that the sum of

the number of trains moving on the track segments
of a crossing should not be greater than one.

OneTrainiXng : Topology * NetState -> bool
OneTrainlXng(top, ns)

 forall xng in set top.crossings &
(card ns(xng.cross.#1).occupiedBy +

 card ns(xng.cross.#2).occupiedBy) <= 1;
 5.1.3 Formal Definition of Property 3

In below, it is stated that if any branch of a switch
is occupied then control of the switch must be in
that branch.

NoDerailing : Topology * NetState -> bool
NoDerailing(top, ns) ==

 Fig.7 Definitions of Collisions and Derailing.

 forall sw in set top.switches &
forall mk_(s1,s2) in set dom sw.control k
(ns(sl).trackState = <OCCUPIED> and
ns(s2).trackState = <OCCUPIED>) =>
sw.control(mk_(si,s2)) = ns(sw.switch).swControl;

 5.2 Refinement of Safety Properties
 Since we are modeling RIS for moving block

interlocking that is why the above safety properties
are refined by applying it in the notion of moving
block of a train as in Fig. 7. The stepwise
refinement of the properties is restated as

 • Intersection of moving blocks of two different
 trains must be empty preventing collision.

 • Moving blocks of two different trains can not
 contain the same crossing.

 • Train's direction (can be deduced from moving
 block) and switch control must be consistent.

 In the refinement of properties, it is also stated
that the moving block of a train must be consistent
with directed topology. The safety function
IsSafeR is refinement of the function IsSafe.

IsSafeR : RlSystem -> bool
IsSafeR(ris) _= forall cn in set rng ris.controls &
NoCollisionR(cn, ris.topology, ris.netState) and
forall sw in set ris.topology.switches k

 NoDerailR(cn.trains, sw, ris.netState);

NoCollisionR : Control * Topology * NetState -> bool
NoCollisionR(cont, top, ns) __
OneTrain1TrackR(cont, top) and
forall xng in set top.crossings &
OneTrainixngR(cont, xng, ns);

 5.2.1 Refinement of Property 1
 The function OneTrainlTrackR is composed of

two auxiliary functions. The first InterOfMBEmpt
states that the intersection of moving blocks of two
different trains is always empty. In the second
function, TrackDirOk, it is stated that the moving
block of a train and the topology must be consistent.

OneTrainiTrackR : Control * Topology -> bool
OneTrainiTrackR(cont, top) __
InterOfMBEmpt(cont.trains) and
TrackDirOk(cont.trains, top);

InterOfMBEmpt : Trains -> bool
InterOfMBEmpt(trains) __
forall ti, t2 in set don trains &
ti <> t2 => forall mk_(s1,s2) in set trains(t1) fi
forall mk_(s3,s4) in set trains(t2) &
{sl,s2} inter {s3,s4} = {};

TrackDirOk : Trains * Topology -> bool
TrackDirOk(trains, top) ==
forall t in set dom trains &
forall mk_(s1,s2) in set trains(t) &
mk_(sl,s2) in set top.connections ;

 5.2.2 Refinement of Property 2
 In the function OneTrainlXngR, we state that if

a crossing is in the occupied state then it can be
contained in the moving block of only one train.

OneTrainlXngR: Control * Crossing * NetState -> bool
OneTrainlXngR(ct, xng, ns) ==
forall tl, t2 in set don ct.trains & tl <> t2 =>
((ns(xng.cross.#1).trackState = <OCCUPIED> and
ns(xng.cross.#2).trackState = <OCCUPIED>) =>
OneTrainAtXng(xng, ct.trains(t1), ct.trains(t2)));

In function OneTrainAtXng, it is stated that

there must be only one train at one crossing. The
function TrainAt1X describes that the train, which

is occupying the crossing, can occupy only one
crossover of that crossing.

OneTrainAtXng : Crossing * MBlock * MBlock -> bool
OneTrainAtXng(xng, mbl, mb2) ==
let xngA = xng.crossi union xng.cross2 in
(xngA inter mbl <> {} _> (xngA inter mb2 = {} and
TrainAtlX(xng, mb1))) and
(xngA inter mb2 <> {} _> (xngA inter mbi = {} and
TrainAt1X(xng, mb2)))

TrainAt1X : Crossing * MBlock -> bool
TrainAt1X(xng, mb) __

(xng.crossl inter nib <> {} =>
xng.cross2 inter nib = {}) and
(xng.cross2 inter nib <> {} _>
xng.crossi inter nib = (1);

 5.2.3 Refinement of Property 3

 In the function NoDerailR, it is stated that if the
track segment of a switch is in the occupied state

then the switch can be included in the moving block
of only one train. And, no other train can occupy

the switch. Further, the switch control and train
direction must be consistent.

NoDerailR : Trains * Switch * NetState -> bool
NoDerailR(trains, sw, ns) __
forall ti, t2 in set don trains & ti <> t2 =>
(ns(sw.switch).trackState = <OCCUPIED> =>
OneTranlSw(sw, trains(tl), trains(t2), ns));

In the function OneTranlSw, it is stated that the

switch can be contained in the moving block of only
one train. Further, the switch control must be left
appropriate for the train occupying the switch.

OneTranlSw:Switch * MBlock * MBlock * NetState->bool
OneTranlSw(sw, mbl, mb2, ns) __
let swA = {sw.root} union don sw.control in
(swA inter mb1 <> {} =>
(swA inter mb2 = {} and SwControlOK(mbl,sw,ns)))and
(swA inter mb2 <> {} =>
(swA inter mb1 = {} and SwControlOK(mb2,sw,ns))) ;

 In the function below, it is stated that if any
switch is in the moving block of a train then the

control of switch and state of the control in that

Fig.8 Dynamic Topology.

switch must be consistent preventing derailing.

 SwControlOK : MBlock * Switch * NetState -> bool
SwControlOK(mb, sw, us) ==
forall mk_(sl,s2) in set dom sw.control &
mk_(s1,s2) in set mb =>
sw.control(mk_(sl,s2)) = ns(sw.switch).swControl;

 6. Conclusion
 This paper is one step forward to develop

an abstract model for dynamic topology, i.e., a
topology in which at some parts one way while at
other parts both way movement of train is possible
and direction of any track segment in topology
can also be changed, if required. For example in
Fig. 8, on the track ABCDE both way movement
is possible but at tracks EFGHB and AIJKD only
one way movement of train is allowed. In the

paper, moving block Railway Interlocking System
(RIS) is formalized for directed topology and the
consistency is observed in the model. We developed
several models and this model is the result after
the series of refinements. The applicability of the
VDM-SL toolbox 11) has been evaluated for the
formal analysis.

 We are aware that giving a complete definition
of safe RIS is not easy because of the complex
interaction of its components. Although we have
treated a part of the problem but our contribution
is significant because the moving block RIS is an
emerging technology and there does not exist much
work in this area. Further, the moving block and
the network topology can not be separated in real
railways and, hence, we have treated the problem
by integrating both the components. It is observed
that directed topology has increased its complexity.

 Although our work does not represent a real world
problem but it is useful for researchers interested in
formal methods and their applications, analyzing
safety critical systems, etc. We believe that our
model can also be useful for such systems having
domain knowledge because of abstraction.

 Our specification is based on the model in graph
theory by which we have achieved the objective of
integrating formal and informal approaches. But
formalizing graph theory is not easy, since there has
been little tradition of formalization in it due to the
concreteness of the graphs 3). We also observed that
the use of graph theory with VDM-SL increased the

power of modeling in this research.
 In future, this work for directed topology and our

previous work 9)''') for bi-directional topology will
be analyzed to refine the model for the dynamic
topology. Initially, we have taken some assumptions
to make the model simple and as a result the model
has some limitations which will be relaxed. We
know that RIS is a distributed real time system,
such aspects will also be analyzed.

 The system is formalized using VDM-SL because
it is a formal language used both at abstraction and
detailed level. The use of VDM-SL tool-box has
eased the model development, as we were able to
check the specification and thereby could observe
the consequences of our definitions.

 Acknowledgments

 Zafar would like to give his sincere thanks to Dr.
Yoshinari Nomura, who helped for preparing this

paper.

 References
1) A.E. Haxthausen and J. Peleska, "Formal Development

 and Verification of a Distributed Railway Control
System," In Proc. 1st FMERaiI Seminar, June 1998.

 2) A. Simpson, "Towards the Mechanical Verification
 of Moving Block Signaling Systems," Technical

 Report CMS-TR-99-06, School of Computing and
 Mathematical Sciences, Oxford Brookes University,

 UK, 1999.
 3) C.T. Chou, "A Formal Theory of Undirected Graphs in

 Higher-Order Logic (HOL)," In Proc. 7th International
 Workshop on HOL, Theorem Proving and Its

 Application, LNCS 859, Springer-Verlag, 1994, pp.
 144-157.

 4) J.F. Groote, J.W.C. Koorn, and S.F.M. van
 Vlijmen, "The Safety Guaranteeing System at

 Station Hoorn-Kersenboogerd," In Proc. 10th IEEE
 Conference on Computer Assurance, (COMPASS'95),

 Gaitherburg, 1995.
 5) J. Hoenicke, "Specification of Radio Based Railway

 Crossing with the Combination of CSP, OZ and DC,"
http://www.i-u.de/fbt2001/fbt2001_docs
 /hoenicke.ps, June 2001.

 6) J.P. Bowen, M.G. Hinchey, "Seven More Myths of
 Formal Methods," IEEE Software, July 1995, pp. 34-41.

 7) K.M. Hansen, "Formalizing Railway Interlocking
 Systems," In FME Rail Workshop 2, Denmark, 1998.

 8) M.J. Morley, "Safety in Railway Signaling Data: A
 Behavioral Analysis," In Proc. 6th Annual Workshop

 on Higher Order Logic, Theorem Proving and Its
 Application, LNCS 780, Springer-Verlag, 1993.

 9) N.A. Zafar and K. Araki, "Safety Analysis in Route
 Allocation for Moving Block Railway Interlocking

 System," Proc. International Workshop on Informations
& Electrical Engineering, Korea, 2002, pp.190-195.

10) N.A. Zafar and K. Araki, "Modeling and Safety
 Analysis of Moving Block Railway Interlocking

 System," Proc. International Symposium on Future
 Software Technology, China, 2002.

11) The VDM-SL Tool Group, "Users Manual for the IFAD
 VDM-SL Tools," Technical Report IFAD-VDM-4, The

 Institute of Applied Computer Science, 1994.
12) The VDM-SL Tool Group, "The IFAD VDM-SL

 Language," Technical Report IFAD-VDM-1, The
 Institute of Applied Computer Science, 1994.

