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Formalizing Moving Block Railway Interlocking System for Directed Network 
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                            (Received June 13, 2003)

Abstract: The safety and complexity of Railway Interlocking System (RIS) requires the use 
of advanced methodologies. Formal methods increase quality and provide highest confidence 

 in this area. In this paper, safety analysis of moving  block RIS is presented. The system is 
decomposed into four components, i.e., network topology, network state, controls and trains. The 
formal analysis of the components is presented after further decomposition. Finally, the safety 
requirements, no collision and no derailing, are defined abstractly and then refined by integrating 
with the notion of moving block. The railway network is modeled using directed graph. Formal 
specification is described in VDM-SL. 

Keywords: Formal methods, Graph theory, Railway Interlocking System, Directed network, 
Moving block, Safety analysis, VDM-SL

 1. Introduction 

 Railway Interlocking System (RIS) is a safety 
critical system, so there is a need to ensure that 
the system prevents dangerous situations 7) Formal 
methods, because of tool support, increase quality 
and provide highest confidence in this area 6). 
Primarily, the task of RIS is preventing trains from 
collisions and derailing. There are two existing 
technologies, fixed block and moving block, for RIS. 
Because of some disadvantages in fixed block RIS, 
the moving block RIS is getting important. 

 Most of the researchers have their publications 
on fixed block RIS while this research is for moving 
block RIS with a different approach. The work 2) 
of A. Simpson is close to ours but he uses Z, CSP 
and FDR2, and his work is the starting point in this 
area. Hansen 7) uses VDM 12) to model concepts of 
railway topology, and safety analysis is presented 
but again his work is for fixed block interlocking. 
A. E. Haxthausen 1) described elegant formal 
representation of a distributed railway control using 
RAISE, the system described therein is not, in a 
strict sense, a moving block interlocking. Some 
work of interest is also reported 4),8),5) 

Our previous work 9),10) was for bi-directional 
railway network while this work is for directed 
network. This work is one step forward to develop 
an abstract model for dynamic topology, i.e., a 
topology in which at some parts one way movement 
while at other parts both way movement of train 
is possible and direction of any track segment in 
topology can also be changed if required. 

 There are three main objectives to be achieved 
in the paper: (i) applying formal methods in RIS,
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Fig.1 Approach to Construct Formal Model.

(ii) integration of formal and informal approaches 
and (iii) safety analysis preventing collisions and 
derailing, and allowing normal trains movements. 

 Figure 1 shows our approach. The system 
consists of network topology, network state, controls 
and trains. The formal analysis of the components 
is presented after the further decomposition. In 
our topology, it is supposed that if a train can 
move from one track segment to another it can 
not move in the opposite direction and as a result 
the topology is a directed graph. That is why 
ordered pairs are used to represent the connectivity 
of track segments. In the model topology, a track 
segment is represented by node and the connectivity 
of two track segments shows the permission for a 
train to move from one track segment to the other. 
The state space of the components is analyzed. 
The controls which are responsible for observing 
trains and network state are formalized. Finally, 
the components are composed to define the formal 
model for the whole system. 

 The abstract safety properties, no collision and 
no derailing, are formalized. It is supposed that 
there will be no collision if there is one train at 
a network component. Further, the direction of 
train and switch control must be same preventing 
derailing. In the refinement, consistency between 
the moving block and directed topology is analyzed.



 Fig.3  Moving  Block  Interlocking  System.

It is assumed that the system will be safe if the 
moving block respects the state of network. The 
formal specification is described in VDM-SL 12). 

 In section 2, an introduction to RIS is given. 
In section 3, real topology is transformed to 
model topology. In section 4, formal model is 

presented. Safety properties are formalized in 
section 5. Conclusion and future work are discussed 
in section 6. 

 2. Railway Interlocking Systems 

 2.1 Fixed Block Interlocking 
 In fixed block RIS, the railway network is divided 

into fixed blocks which are separated by signals as 
shown in Fig. 2. At one time, only one train can 
move in a block and can enter into a block only if 
the next is clear. For example, in Fig. 2, the train 
ti can enter block b2 only when train t2 has cleared 
the block 63. This means that there is always a 
distance of more than one block between two trains. 

 2.2 Moving Block Interlocking 
 In reality, the safe distance between two trains 

is the distance needed for a train to come to a 
complete stop which is much less than the length 
of a fixed block. The idea of moving block is based 
on this concept, i.e., keeping only safe distances 
between trains. Instead of cutting piece of railway 
line into fixed blocks, train's position and some 
distance in front of it becomes the moving block 
in which no other train can enter. For example, 
intersection of moving blocks of trains t2 and t3 is 
always empty for safe operation of the trains as in 
Fig. 3, which are observed by a computer based 
control system. 

 3. Model in Graph Theory 

 3.1 Real Topology 
 Real topology is composed of track segments as in 

Fig. 4. A track segment is switch if it is related with 
three track segments otherwise a linear segment. 
Railway crossing is composed of two linear segments 
having a certain relation. It is supposed without 
loss of reality that segment is small enough. Due 
to this assumption, for simplicity of the model, it is

Fig.5 Model Topology.

always possible to decompose a network in such a 
way that no two switches or crossings are connected 
physically. Moreover, it is assumed that a switch or 
a crossing is not at the end of topology. 

 3.2 Model Topology 
 A track segment in real topology is represented 

by a node in model topology in Fig. 5. The 
connectivity of track segment sl with track segment 
s2 means that a train can move from sl to s2 directly 
and is denoted by (sl, s2). 

 4. Formal Model 

 Formal model consists of network topology, 
network state, trains and controls. A brief informal 
description of definitions is given following the 
formal analysis of the components. 

 4.1 Directed Network Topology 
 First, the formal specification of connections, 

switches and crossings is described. And then, we 
composed these components to define the model 
topology. 
 4.1.1 Connections 

 Connections is defined by a relation on the track 
segments of directed topology. The interpretation of 
the relation is that each pair of track segments in the 
relation is physically connected. The Connections 
relation is modeled by a graph in Fig. 5. This graph 
is defined by 

Connections = {(4, 5), (5, 6), (6, 7), (7, 8), 
(8, 9), (9, 10), (10, 11), (11, 12), (13, 14), 
(14, 15), (15, 7), (14, 16), (16, 17), (17, 18), 
(18, 19), (19, 20), (20, 21), (21, 22)} 

 A track segment is described by Track, 
connectivity of two segments by Connect ion and 
the entire network, in Fig. 5, by Connections in 
VDM-SL. 

1. Connections = set of Connection 
.1 inv cons == (forall mk_(sl,s2) in set cons k



 mk_(s2,s1) not in set cons) and 

.2 card { s I mk_(s,-) in set cons} <= 2 and 

card { s I mk_(-,^) in set cons} <= 2; 

2. Connection = Track * Track 

.1 inv mk_(s1,s2) _= s1 <> s2; 

3. Track = token; 

 (1) Connections Invariants 
  1.1) The Connections relation is asymmetric. 

1.2) A segment is connected with at most two 
segments. 2.1) A segment is not connected to itself. 

 4.1.2 Switch 
 A switch is consisting of root, left branch and 

right branch as in Fig. 5. For a switch, either it 
is possible to derive from root to any branch or 
from any branch to root. It is not possible to drive 
from one branch to the other. A switch is specified 
by Switch with three fields switch an identifier 
of switch, root, and control. The control is a 
mapping describing control of a switch, either in 
left or right. For example, the formulas for switch 
7, in Fig. 5, in the model topology are 

switch = 7, root = (7, 8) and 
control = {(15, 7) I-> <RIGHT>,(6, 7) I-> <LEFT>} 

4. Switch :: switch : Track 
root : Connection 

    control : map Connection to SwControl 
.1 inv sw =_ (sw.control <> {l->}) and 
.2 (forall mk_(sl,s2) in set don sw.control k 

((sw.control(mk_(sl,s2)) = <LEFT> _> 
exists mk_(s3,s4) in set don sw.control & 
$3 = sl and sw.control(mk_(s3,s4)) _ <RIGHT>) and 
(sw.control(mk_(si,s2)) _ <RIGHT> _> 
exists mk_(s3,s4) in set don sw.control & 
s3 = si and sw.control(mk_(s3,s4)) _ <LEFT>)) or 
((sw.control(mk_(sl,s2)) _ <LEFT> => 
exists mk_(s3,s4) in set don sw.control k 

 s4 = s2 and sw.control(mk_(s3,s4)) = <RIGHT>) and 
(sw.control(mk_(sl,s2)) _ <RIGHT> => 
exists mk_(s3,s4) in set don sw.control k 
s4 = s2 and sw.control(mk_(s3,s4)) = <LEFT>)))and 

.3 (forall mk_(sl,s2) in set don sw.control & 
(sw.switch = sl or sw.switch = s2) and 
(sw.switch=sw.root.#i or sw.switch = sw.root.#2)); 

5. SwControl = <LEFT> I <RIGHT>; 

 (1) Invariants over Switch 
 4.1) The control mapping is non-empty, i.e., 

switch has a control. 4.2) A switch has two branches 
with one vertex in common. The control mapping 
acts on both branches, i.e., switch control has only 
two states. Both branches of the switch are either 
outwards or towards from the switch. 4.3) The 
ordered pairs defining root and both branches of 
switch are related to the switch identifier. 

 4.1.3 Railway Crossing 
 Crossing is composed of two crossovers as in 

Fig. 5. A train can not switch from one crossover to

the other, i.e., for a train, having entered a crossing 
it is only possible to exit in one direction. Crossing 
is specified by Crossing with three components 
cross an identifier of crossing, cross1 and cross2 
represent the crossovers . There is only one crossing 
with identifier (10, 20), in Fig. 5. The formulas for 
the crossing in the model topology are 

cross = (10, 20), crossi = {(9, 10),(10, 11)} and 
cross2 = {(19, 20), (20, 21)} 

6. Crossing :: cross : Track * Track 
crossi : set of Connection 
cross2 : set of Connection 

inv xng == 
.1 let mk_(sl,s2) = xng.cross in si <> s2 and 
.2 (forall mk_(s3,s4) in set xng.crossl & 

(s1 = s3 or si = s4) and s2 <> s3 and s2 <> s4 and 
forall mk_(s5,s6) in set xng.cross2 & 
(s2 = s5 or s2 = s6) and sl <> s5 and si <> s6) or 
(forall mk_(s3,s4) in set xng.cross2 k 
(si = s3 or sl = s4) and s2 <> s3 and s2 <> s4 and 
forall mk_(s5,s6) in set xng.crossl & 
(s2 = s5 or s2 = s6) and sl <> s5 and sl <> s6)and 

.3 let crs = xng.crossi union xng.cross2 in 
card {s I mk_(s,s') in set crs & s'= si } = 1 and 
card {s I mk_(s',^) in set crs k s'= Si } = 1 and 
card {s I mk_(s,s') in set crs & s'= s2 } = 1 and 
card {s I mk_(s',^) in set crs & s'= s2 } = 1; 

 (1) Invariants over Railway Crossing 
 6.1) The track segments of crossing identifier are 

different. 6.2) Crossing identifier is an ordered pair 
of two track segments, one is related with cross1 
and the other related with cross2. The track 
segment related with any one of the crossover has 
no relation with the other. 6.3) A track segment of 
crossing identifier is connected to and from a track 
segment. It proves that the segments of crossing 
identifier are not at the end of topology. 

 4.1.4 Topology 
 The network topology is composed of three 

components connections, switches and crossings. 
Well defined-ness properties showing relationships 
between the components of the topology are 
formalized as invariants in our model, which are not 
presented here because of the lack of space. 

7. Topology :: connections : Connections 
   switches : set of Switch 

crossings : set of Crossing 
inv top == ... 

 4.2 Network State 
 Network state is described briefly to be used in 

the safety analysis. The TrackState is composed of 
three components. The first one describes state of 
the component. Second one represents identifiers of 
trains occupying it. The last one describes control 
of the component (if switch) either in left or right. 
It is supposed that if the track segment identifying 
switch is occupied then the track segment connected



to the identifier is also occupied. 

 8. NetState = map Track to TrackState; 

9. TrackState:: trackState : State 
occupiedBy : [set of Trainld] 
swControl : [SwControl]; 

10. State = <OCCUPIED> I <CLEAR>: 
11. Trainld = token; 

 4.3 Trains 
Trains is a mapping from TrainId to MBlock 

(moving block). From Fig. 5, an example of moving 
block of a train is given: {(13, 14), (14, 15), 
(15, 7), (7, 8), (8, 9)}. 

12. Trains = map Trainld to MBlock; 

13. MBlock = set of Connection 
.1 inv mb == mb <> {} and 
.2 forall mk_(s1,s2) in set mb & 

exists mk_(s3,s4) in set mb & si = s4 or s2 = s3; 
4.3.1 Invariants over Train 

  13.1) Moving block is non-empty because train 
occupies some track segments, even at rest. 13.2) 
Elements in moving block are related. 

 4.4 Controls 
 Controls are computer based systems observing 

trains and network state. Controls is a mapping 
from control identifier to Control. The Control is 
composed of tracks, states and trains. 

14. Controls map Controlld to Control; 
15. Controlld = token; 

16. Control :: tracks : set of Track 
     states : map Track to State 

     trains : Trains 
inv cont =_ ... 

 4.5 Railway Interlocking System (RIS) 
 Finally, we formalize RIS which is composed of 

Topology, NetState, Trains and Controls. We 
have defined the invariants over the system which 
are not presented here because our main objective 
is to give the safety analysis of the system. 

17. RlSystem :: topology : Topology 
netState : NetState 

    trains : Trains 
     controls : Controls 

inv ris == ... 

 5. Safety Requirements Analysis 

 The abstract safety requirements, no collision and 
no derailing, are given with the formal definitions. 
The safety requirements are refined by introducing 
the notion of moving block of a train.

Fig.6 Abstract Definitions of Collisions and Derailing.

 5.1 Abstract Safety Properties 
 The definitions of collisions and derailing, in the 

model, are illustrated in Fig. 6. It is assumed that 
there will be a collision if there are two trains at a 
track segment or crossing as in Fig. 6 (a) and (b), 
respectively. If train does not respect the state of a 
switch control, it will cause derailing as in Fig. 6 
(c). The abstract safety properties can be stated as 

  • Two trains can not reside on the same segment. 
  • There must be one train at one crossing. 

 • A train must respect the state of a switch. 
 The safety function IsSafe is composed of 

NoCollision and NoDerailing functions. The 
function NoCollision formalizes the first two 
properties preventing collision and NoDerailing 
specifies the last one property preventing derailing. 

IsSafe : Topology * NetState -> bool 
IsSafe(top, us) __ 
NoCollision(top, ns) and NoDerailing(top, us); 
The function NoCollision is formalized assuming 

that there must be one train at one component 
(track segment or crossing). 

NoCollision : Topology * NetState -> bool 
NoCollision(top, ns) == 

OneTrainlTrack(top, ns) and OneTrain1Xng(top, us); 
 5.1.1 Formal Definition of Property 1 

 In this property, it is stated that the number of 
trains on a segment must not be greater than one. 

OneTrainiTrack : Topology * NetState -> bool 
OneTrainlTrack(top, ns) __ 
forall mk_(s1, s2) in set top.connections & 
card (ns(s1).occupiedBy) <= 1 and 
card (ns(s2).occupiedBy) <= 1 ; 

 5.1.2 Formal Definition of Property 2 
 In the function below, it is stated that the sum of 

the number of trains moving on the track segments 
of a crossing should not be greater than one. 

OneTrainiXng : Topology * NetState -> bool 
OneTrainlXng(top, ns) 

 forall xng in set top.crossings & 
(card ns(xng.cross.#1).occupiedBy + 

 card ns(xng.cross.#2).occupiedBy) <= 1; 
 5.1.3 Formal Definition of Property 3 

In below, it is stated that if any branch of a switch 
is occupied then control of the switch must be in 
that branch. 

NoDerailing : Topology * NetState -> bool 
NoDerailing(top, ns) ==



 Fig.7 Definitions of Collisions and Derailing.

 forall sw in set top.switches & 
forall mk_(s1,s2) in set dom sw.control k 
(ns(sl).trackState = <OCCUPIED> and 
ns(s2).trackState = <OCCUPIED>) => 
sw.control(mk_(si,s2)) = ns(sw.switch).swControl; 

 5.2 Refinement of Safety Properties 
 Since we are modeling RIS for moving block 

interlocking that is why the above safety properties 
are refined by applying it in the notion of moving 
block of a train as in Fig. 7. The stepwise 
refinement of the properties is restated as 

 • Intersection of moving blocks of two different 
   trains must be empty preventing collision. 

 • Moving blocks of two different trains can not 
   contain the same crossing. 

 • Train's direction (can be deduced from moving 
   block) and switch control must be consistent. 

 In the refinement of properties, it is also stated 
that the moving block of a train must be consistent 
with directed topology. The safety function 
IsSafeR is refinement of the function IsSafe. 

IsSafeR : RlSystem -> bool 
IsSafeR(ris) _= forall cn in set rng ris.controls & 
NoCollisionR(cn, ris.topology, ris.netState) and 
forall sw in set ris.topology.switches k 

 NoDerailR(cn.trains, sw, ris.netState); 

NoCollisionR : Control * Topology * NetState -> bool 
NoCollisionR(cont, top, ns) __ 
OneTrain1TrackR(cont, top) and 
forall xng in set top.crossings & 
OneTrainixngR(cont, xng, ns); 

 5.2.1 Refinement of Property 1 
 The function OneTrainlTrackR is composed of 

two auxiliary functions. The first InterOfMBEmpt 
states that the intersection of moving blocks of two 
different trains is always empty. In the second 
function, TrackDirOk, it is stated that the moving 
block of a train and the topology must be consistent. 

OneTrainiTrackR : Control * Topology -> bool 
OneTrainiTrackR(cont, top) __ 
InterOfMBEmpt(cont.trains) and 
TrackDirOk(cont.trains, top); 

InterOfMBEmpt : Trains -> bool 
InterOfMBEmpt(trains) __ 
forall ti, t2 in set don trains & 
ti <> t2 => forall mk_(s1,s2) in set trains(t1) fi 
forall mk_(s3,s4) in set trains(t2) & 
{sl,s2} inter {s3,s4} = {};

TrackDirOk : Trains * Topology -> bool 
TrackDirOk(trains, top) == 
forall t in set dom trains & 
forall mk_(s1,s2) in set trains(t) & 
mk_(sl,s2) in set top.connections ; 

 5.2.2 Refinement of Property 2 
 In the function OneTrainlXngR, we state that if 

a crossing is in the occupied state then it can be 
contained in the moving block of only one train. 

OneTrainlXngR: Control * Crossing * NetState -> bool 
OneTrainlXngR(ct, xng, ns) == 
forall tl, t2 in set don ct.trains & tl <> t2 => 
((ns(xng.cross.#1).trackState = <OCCUPIED> and 
ns(xng.cross.#2).trackState = <OCCUPIED>) => 
OneTrainAtXng(xng, ct.trains(t1), ct.trains(t2))); 

In function OneTrainAtXng, it is stated that 

there must be only one train at one crossing. The 
function TrainAt1X describes that the train, which 

is occupying the crossing, can occupy only one 
crossover of that crossing. 

OneTrainAtXng : Crossing * MBlock * MBlock -> bool 
OneTrainAtXng(xng, mbl, mb2) == 
let xngA = xng.crossi union xng.cross2 in 
(xngA inter mbl <> {} _> (xngA inter mb2 = {} and 
TrainAtlX(xng, mb1))) and 
(xngA inter mb2 <> {} _> (xngA inter mbi = {} and 
TrainAt1X(xng, mb2))) 

TrainAt1X : Crossing * MBlock -> bool 
TrainAt1X(xng, mb) __ 

(xng.crossl inter nib <> {} => 
xng.cross2 inter nib = {}) and 
(xng.cross2 inter nib <> {} _> 
xng.crossi inter nib = (1); 

 5.2.3 Refinement of Property 3 

 In the function NoDerailR, it is stated that if the 
track segment of a switch is in the occupied state 

then the switch can be included in the moving block 
of only one train. And, no other train can occupy 

the switch. Further, the switch control and train 
direction must be consistent. 

NoDerailR : Trains * Switch * NetState -> bool 
NoDerailR(trains, sw, ns) __ 
forall ti, t2 in set don trains & ti <> t2 => 
(ns(sw.switch).trackState = <OCCUPIED> => 
OneTranlSw(sw, trains(tl), trains(t2), ns)); 

In the function OneTranlSw, it is stated that the 

switch can be contained in the moving block of only 
one train. Further, the switch control must be left 
appropriate for the train occupying the switch. 

OneTranlSw:Switch * MBlock * MBlock * NetState->bool 
OneTranlSw(sw, mbl, mb2, ns) __ 
let swA = {sw.root} union don sw.control in 
(swA inter mb1 <> {} => 
(swA inter mb2 = {} and SwControlOK(mbl,sw,ns)))and 
(swA inter mb2 <> {} => 
(swA inter mb1 = {} and SwControlOK(mb2,sw,ns))) ; 

 In the function below, it is stated that if any 
switch is in the moving block of a train then the 

control of switch and state of the control in that



Fig.8 Dynamic Topology.

switch must be consistent preventing derailing. 

 SwControlOK  :  MBlock  *  Switch  *  NetState  ->  bool 
SwControlOK(mb, sw, us) == 
forall mk_(sl,s2) in set dom sw.control & 
mk_(s1,s2) in set mb => 
sw.control(mk_(sl,s2)) = ns(sw.switch).swControl; 

 6. Conclusion 
 This paper is one step forward to develop 

an abstract model for dynamic topology, i.e., a 
topology in which at some parts one way while at 
other parts both way movement of train is possible 
and direction of any track segment in topology 
can also be changed, if required. For example in 
Fig. 8, on the track ABCDE both way movement 
is possible but at tracks EFGHB and AIJKD only 
one way movement of train is allowed. In the 

paper, moving block Railway Interlocking System 
(RIS) is formalized for directed topology and the 
consistency is observed in the model. We developed 
several models and this model is the result after 
the series of refinements. The applicability of the 
VDM-SL toolbox 11) has been evaluated for the 
formal analysis. 

 We are aware that giving a complete definition 
of safe RIS is not easy because of the complex 
interaction of its components. Although we have 
treated a part of the problem but our contribution 
is significant because the moving block RIS is an 
emerging technology and there does not exist much 
work in this area. Further, the moving block and 
the network topology can not be separated in real 
railways and, hence, we have treated the problem 
by integrating both the components. It is observed 
that directed topology has increased its complexity. 

 Although our work does not represent a real world 
problem but it is useful for researchers interested in 
formal methods and their applications, analyzing 
safety critical systems, etc. We believe that our 
model can also be useful for such systems having 
domain knowledge because of abstraction. 

 Our specification is based on the model in graph 
theory by which we have achieved the objective of 
integrating formal and informal approaches. But 
formalizing graph theory is not easy, since there has 
been little tradition of formalization in it due to the 
concreteness of the graphs 3). We also observed that 
the use of graph theory with VDM-SL increased the 

power of modeling in this research. 
 In future, this work for directed topology and our

previous work 9)''') for bi-directional topology will 
be analyzed to refine the model for the dynamic 
topology. Initially, we have taken some assumptions 
to make the model simple and as a result the model 
has some limitations which will be relaxed. We 
know that RIS is a distributed real time system, 
such aspects will also be analyzed. 

 The system is formalized using VDM-SL because 
it is a formal language used both at abstraction and 
detailed level. The use of VDM-SL tool-box has 
eased the model development, as we were able to 
check the specification and thereby could observe 
the consequences of our definitions. 
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