
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Analysis and Design of SHA-V and RIPEMD-V with
Variable Output-Length

Her, Yong-Sork
Department of Computer Science and Communication Engineering, Graduate School of Information
Science and Electrical Engineering, Kyushu University : Graduate Student

Sakurai, Koichi
Department of Computer Science and Communication Engineering, Faculty of Information Science
and Electrical Engineering, Kyushu University

https://doi.org/10.15017/1515810

出版情報：九州大学大学院システム情報科学紀要. 8 (1), pp.13-18, 2003-03-26. 九州大学大学院シス
テム情報科学研究院
バージョン：
権利関係：

Analysis and Design of SHA-V and RIPEMD-V with Variable Output-Length

 Yong-Sork HER* and Kouichi SAKURAI**

 (Received December 13, 2002)

Abstract: A hash function provides services of information security, authentication, integrity
and non-reputation in a branch of information security. Cryptographic hash functions had been
developed since MD4 was proposed by Rivest. U. S standard of a hash function is SHA-1 with
160 bits of output length. RIPEMD was designed in 1992 by den Boer and others under the
RIPE project. When we consider the improvement of computation ability and speed, it can be
difficult to guarantee the security of a hash function with 160 bits of output length. It is required
a hash function with variable output length that can take a suitable output length by systems.
HAVAL is the first hash function with variable output length , which was proposed by Zheng et
al. HAS-V based on HAVAL-1 was proposed by N. K. Park et al. In this paper, we design two
hash functions with variable output length, namely SHA-V and RIPEMD-V, based on SHA-1 and
RIPEMD-1, and analyze the security on two designed hash functions.

Keywords: Cryptographic hash function, SHA-1, RIPEMD-1, Authentication, Cryptography

 1. Introduction

 1.1 Background
 Hash functions 2) take a message as input with

an arbitrary and produce an output referred to as a
hash-code, hash-result, hash-value, or simply hash.
In 1990, Rivest proposed the cryptographic hash

 function MD4 17). MD4 has a 128-bit hash function
and consists of 3 rounds. Den Boer, Bosselaers4)
and Dobbertin 8) proposed an attack method on

the each round of MD4. So, it is undesirable to use
MD4. There are hash functions, MD-519), SHA-115),
RIPEMD-160 7) and so on. These hash functions
are called the customized hash functions based on
MD4. As computer technologies progress, the out-

put length of a hash value gradually grow for the
security of a hash function. It was known to be
desirable that output lengths of hash functions are
more longer than 160 bits.
Generally, three potential properties are listed for

an unkeyed hash function h with inputs x, x' and
outputs y, y'2) in cryptographic hash functions.
Preimage resistance: It is computationally infea-
sible to find any input which hashes to that output,
i.e., to find any preimage x' such that h(x') = y
when given any y for which a corresponding input

is not known.
Second preimage resistance: It is computation-
ally infeasible to find any second input which has the

* Department of Computer Science and Communication

Engineering, Graduate Student

** Department of Computer Science and Communication

Engineering

same output as any specified input, i.e., given x, to
find a 2nd-preimage x' # x such that h(x) = h(x').
Collision resistance: It is computationally infea-
sible to find any two distinct inputs x, x' which hash
to the same input, i.e., such that h(x) = h(x').

 1.2 Motivation
 Many application systems using computer and

network have been developed, and these systems re-
quire the high security. Almost hash functions have
only fixed output length. The length of the hash
value is an important factor directly connected to
the security of the hash function16>. But, the long
hash values drop off system speed and efficiency. To
take variable output-length via a single hash func-
tion, it is impotant technique in aspect of a hash
function. We can expect that hash functions be-
come a cost-effective and efficiency through the hash
function with variable output length.

 2. Algorithm techniques
 In this section, we explain the design technique

of a hash function. Almost all hash functions are
iterative processes which hash inputs of arbitrary
length by processing successive fixed-length blocks
of the input. The input X is padded to a multiple
of the block length and subsequently divided into
t blocks X1 through X. The hash function h can
then be described as follows :
Ho = IV ; Hi = f (Hi-1, Xi), h(X) = Ht
(Hi : the chaining variable between stage i - 1 and
stage i, f : Compression function of h)
Attack of Birthday paradox

The collisioin of a hash function can be found by the

birthday paradox. According to the attack of birth-
day paradox, it can find collision pairs through the

 operation of 2n/2 on the hash function with n bits

output length. So, the minimum output length is
128 bits. In our proposal hash functions, the mini-

mum output length is 128 bits. But, in general, it
was known to be deisrable that output lengths of
hash functions are more longer than 160 bits.
A collision free

Damagard10> proved that if a compression function

f is a collision free on a hash function h, it can
keep a collision free. Our proposal hash functions
are parallelizing hash functions for variable output
lengh.

< Theorem >: Let F be a collision free func-
tion family mapping m bits to t(m) bits. Then,
there exists a collision free hash function family H
mapping arbitrary strings to t(m)-bit strings with

the following property : Let h be an instance in
H of size m. Put t = t(m). Then evaluating h

on input of length n can be done in O(1°((nt))t)
steps using n/2t processors. Generally, the com-
pression function of the proposed hash function sat-
isfied this theorm. Compression functions of SHA-V
and RIPEMD-V should be satisfied the upper the-
orem.

 3. Description of SHA-V
 We propose SHA-V based on SHA-1 and HAVAL.

The structure of SHA-V is two parallel lines, de-
noted as Left-line and Right-line, consisting of 80
steps each. The input length is 1024 bits, and the
output length is from 128 bits to 320 bits by 32-bit.
SHA-V has the most advantage of SHA-1. That is,
new messages is created in combination with input
message and step calculations. These new messages
provide the resistance against most of attacks that
search the collision resistance by the fabricating of
input messages. We explain the detailed description
of SHA-V in appendix A.

 3.1 Initial values
 The initial values of the chaining are used

in SHA-V are given in appendix A. SHA-
V is divided into two parallel lines: left-line
and right-line. The initial values of left line,
Ho (i), Hl (i) H2 (i) H3 (i), H4 (i), are the same SHA-
1, (Hi (i) : chaining variables). The initial values
of right line are based on HAS-V15). In order to
increase the output length, SHA-V has ten 32-bit
words.

 3.2 Constants
 The constants of left-line are based on SHA-1 ex-

cept the third constant. That is, the third constant
of SHA-1 is Oxca62c1d6 (230 10), but the third
constant of SHA-V is Oxa953fd4e (230 '). The
constants of right-line are based on HAS-V, but the
constant sequence is different from HAS-V. Also,
the constants of HAS-V consist of five 32 bits for 5
rounds. SHA-V consists of 4 rounds and the con-
stants of four 32 bits.

 3.3 Boolean functions
 The boolean functions to be used each step op-

erations are descriped in appendix A. The boolean
functions of left-line are based on SHA-1 and the
boolean functions of right-line have the reverse or-
der with left-line.

 3.4 Append padding bits
 The message words to be used in the compression

function are 32 words (or 1024 bits block). The
padding bits of SHA-V are based on SHA-1 and
HAS-V. The message is padded so that its length
is congruent to 952 modulo 1024. Padding is per-
formed by appending a single "1" bit and necessary
"0" bit to satisfy the above constraints. The remain-
ing 72 bits, in order to be a multiple of 1024 bits,
are filled by appending the desired length of the
hash-code represented in bytes.

 3.5 Output tailoring
 In order to create the output length with vari-

ables, the hash-code is computed as appendix A.
The output length is 128 + 32(t — 3). The charac-
ter of SHA-V is fairly to be computed in each line.
For the computation speed, it uses only shift and
addition operation. The arrange of output length is
from 128 bits to 320 bits by 32-bit. For example,
in order to create the 128-bit output, it adds to the
each two by two in 10 chaining variables as Table 1.
In the case of 320-bit hash-code, the output length
is the same which is given as the contents of the 10
chaining variables concatenated, i.e.
Ho(i) II Hi (i) II H2(i) II H3(i)11114(i) 111-15(i) IIIIs(i)

 H7(0111-18 (i)11 Hs (i), (Hj (i): chaining variables).

 4. Description of RIPEMD-V

RIPEMD3) was designed in 1992 by den Boer and
others under the European RACE Integrity Primi-
tives Evaluation (RIPE) project2> 3). RIPEMD has
the strong resistance on known attacks of MD4; its

compression function has two parallel computation
lines of three 16 step rounds. The output lengths
of RIPEMD hash functions are 128, 160, 256 and

320-bit; RIPEMD-128, RIPEMD-160, RIPEMD-
256 and RIPEMD-320, namely RIPEMD-family.

 Early in 1995, Dobbertie found that the reduced
versions of RIPEMD, where the first or the last
round of the compression function is omitted, are
not collision-free. When we design RIPEMD-V, we

should be considered this point. RIPEMD-V con-
sistS of two parallel lines, denoted as left-line and
right-line, consists of 80 steps by each line. Each
line is composed of 5 rounds, where each round con-
sists of 16 steps, and maintains 5 words of chaining

variables, total of 10 chaining variables for the en-
tire compression function.

 4.1 Initial values

 The initiall values are divided into two paral-
lel lines like SHA-V: left-line and right-line. Al-
most cryptographic hash functions with long output
length have a parallel structure exclusive of SHA-

384 and SHA-512. SHA-384 and 512 have the initial
values of 384 and 512-bit. RIPEMD-V uses ten 32-
bit words like RIPEMD-320.

 4.2 Constants

 The constants consist of parallel structure and ten
32-bit words as appendix B. When we compare with
the constants of SHA-V, it is increased two 32-bit
words in RIPEMD-V. It means to be increased the
step operations. RIPEMD-V uses ten 32-bit words.

 4.3 Boolean functions
 RIPEMD-family uses five (four) boolean func-

tions without being changed these boolean functions
because RIPEMD-family has a parallel structure.

The boolean functions of RIPEMD-V are used as
the reverse order of RIPEMD-320 in each line.

 4.4 Shifts and selection of message

 word
 In appendix B, we introduce shifts and selection

of message word.

 4.5 Append padding bits and length

The message words to be used in the compres-
sion function are 32 words (or a 1024 bits block).
The message is padded so that its length is congru-
ent to 952 modulo 1024. Padding is performed by

appending a single "1" bit and necessary "0" bits
to satisfy the above constraints. The remaining 72

bits are filled by appending the desired length of the
hash-code represented in bytes. In RIPEMD-V, the
calculation method of variable output length Table
1 is same like SHA-V.

 5. Estimations of HAS-V, SHA-V and
 RIPEMD-V

In this paper, we analyze HAS-V16), SHA-V and
RIPEMD-V through step computations.

 5.1 Endianess
 Basic structures of compression functions of HAS-

V, SHA-V and RIPEMD-V are two parallel lines,
and input messages are 1024 bits, too. HAS-V and
RIPEMD-V favor `little-endian' architecture such
like MD4-family, whereas SHA-V favors 'big-endian'
architecture such like SHA-family. In the result of
implementation, both methods can be unified for
fairness. Because little-endian architecture is suit-
able to the pentium processors, and big-endian ar-
chitecture is suitable to the SUN system.

 5.2 Step operations and comparison of
 speed

 The step operation of HAS-V consists of 3 addi-
tions, 2 circular shifts and a boolean function. The
boolean function consists of 4 unit operations and a
single step operation consists of 9 unit operations.
The total number of unit operations for generating
the extra messages is

2(lines) x 5(rounds) x 4(messages)x
 3(unit operations) = 120(unit operations).

Therefore, the number of unit operations to hash
1024 -bit block is given as follows16).

 1(block) x 200(steps) x 9(step operations) + 120
 (message expansion) = 1920(unit operations).

In the case of RIPEMD-V, the total number of unit
operation to hash 1024 bit block is given below.

 1(block) x 160(steps) x 9(step operations)
 = 1440(unit operations).

In the case of SHA-V, step operations of SHA-V
consist of 80 steps each line, a single step opera-
tion consists of 10 unit operations.1024 bits block is
given as follows.

 1(block) x 160(steps) x 10(step operations) =
 1600(unit operations).

HAS-V is about 25% more operation than
RIPEMD-V, and SHA-V is about 10% faster than
HAS-V. Also, RIPEMD-V is about 10% faster that
SHA-V. These values are not practical value not the
computation value.

Table 1 The calculation methods of a variable output-length.

 6. Comparison of a cryptographic hash
 function with same output-length

 6.1 The hash functions with 160 bits
 output-length

 We compare SHA-1 to SHA-V(160 bits) and
RIPEMD-160 to RIPEMD-V(160 bits) with 160
bits of output length. Table 2 shows features
of SHA-1, SHA-V(160 bits), RIPEMD-160 and

 RIPEMD-V(160 bits).
A Number of computation and speed
The step operation of SHA-1 consists of 4 addi-
tions, 1 circular shifts and a boolean function. The
boolean function consists of 3 unit operations, and
the step operations consist of 80 steps. That is,

 1(block) x 80(steps) x 10(step operations)
 = 800(unit operations).

SHA-V (160-bit) consists of 4 additions, 1 circular
shift and a boolean function. The Boolean functions
consist of 3 unit operations of 2 lines and the step
operations consist of 80 steps of 2 lines.

 1(block) x 160(steps) x 10(step operations)+
5(autput message expansion)
= 1605(unit operations).

RIPEMD-160 consists of 2 circular shifts, 4 addi-
tions and a boolean function. Boolean function con-
sists of 3 unit operations.

2(blocks) x 160(steps) x 9(step operations)
 = 2880(unit operations).

The step operations of RIPEMD-V(160 bits) are
same with RIPEMD-160, but message block is one
because the message size is 1024-bit. That is,

1(block) x 160(steps) x 9(step operations)
 = 1440(unit operations).

Therefore, when we compare with step operations,
we can know that SHA-1 is faster than others.

 6.2 The hash functions with 256-bit

 output-length
 In this section, we compare SHA-256 to SHA-

V(256 bits) and RIPEMD-256 to RIPEMD-V(256
bits) with 256 bits of output length. Table 3 shows
features of SHA-256, SHA-V(256 bits), RIPEMD-
256 and RIPEMD-V(256 bits).
A Number of computation and speed
The step operation of SHA-256 consists of 7 addi-
tions and 2 summations, and the step operations
consist of 64 steps. That is

 1(block) x 64(steps) x 15(step operations)
 = 960(unit operations).

SHA-V (256 bits) consists of 4 additions, 1 circu-
lar shift and a boolean function. Boolean functions
consist of 3 unit operations of 2 lines and the step
operations consist of 80 steps of 2 lines.

 1(block) x 160(steps) x 10(step operations)+
 16(output message expansion)

 = 1616(unit operations).
RIPEMD-256 consists of 2 circular shifts, 4 addi-
tions and a boolean function. Boolean function con-
sists of 3 unit operations.

2(blocks) x 128(steps) x 9(step operations)
= 2304(unit operations) .

The step operations of RIPEMD-V(160 bits) are
same with RIPEMD-160, but message block is one
because the message size is 1024 bits. That is,

1(block) x 160(steps) x 9(stepoperations)
= 1440(unit operations).

When we compare with step operations, we can
know that SHA-256 is faster than others.

 7. Conclusions
 We proposed two hash functions with variable

output length. We can select output length by pro-
grams. Therefore, we can expect a lot of the prac-
tice. In the future, we must verify more security

Table 2 Features of SHA-1, SHA-V (160 bits), RIPEMD-160 and RIPEMD-V (160 bits).

test of SHA-V/RIPEMD-V and speed test in the
hardware/software.

 Acknowledgements
The first author has been supported by the Grant-in-Aid for

 Creative Scientific Research No.14GS0218 (Research on Sys-
tem LSI Design Methodology for Social Infrastructure, Head
of Researchers : Prof. Hiroto Yasuura, System LSI Research
center, Kyushu University) of the Ministry of Education, Sci-
ence, Sports and Culture(MEXT) from 2002 to 2006. He is
grateful for their support.

 References
 1) A.Bosselaers, R.Govaerts and J.Vandewalle "SHA:

 A Design for Parallel Architecture?" Advances in
 Cryptology-Eurocrypt'97, pp348-362, 1997.

 2) A.J.Menzs, P.C.Van Oorshot and S.A.Vanstone "Hand-
 book of Applied Cryptography" CRC Press, 1997.

 3) Antoon Bosselaers "The Hash Function RIPEMD 160"
http://www.esat.kuleuven.ac.be/ bosselae

 4) B.den Boer and A.Bosselaers "An attack on the last two
rounds of MD." Advances in Cryptology-Crypto'91,

 LNCS576, Springer-Verlag, pp 194-203, 1992.
 5) C.H. Lim, N.K.Park, E.J. Lee, P.J.Lee "The proposal

 of the new hash function possible to select the output
 length" preprint, 1997 (Korean).

 6) H.Dobbertin "RIPEMD with two-round compress
 function is not collision-free" Journal of Cryptology,

 to appear; announced at rump session, Eurocrypt'95.
7) H.Dobbertin, A. Bosselaers, B. Preneel "RIPEMD-

 160 : A strengened Version of RIPEMD" Fast Soft-
 ware Encryption, LNCS 1039, Springer-Verlag, pp71-

 82, 1996.
8) H.Dobbertin "Cryptanalysis of MD4" Fast Soft-

 ware Encryption, LNCS 1039, Springer-Verlag, pp53-
 69, 1996.

9) H.Kuwakado, H. Tanaka "New Algorithm for Find-

 ing Preimage in a Reduced Version of the MD4 Com-

 pression Function " IEICE TRANS, Fundamentals,
 Vol.E83-A, No.1, Jan,2000.

10) I.B.Damagard "A Design Principle for Hash Func-
 tions" CRYPT'89, LNCS 435, pp416-427, 1990

11) J.Nakajima, M.Matsui "Performance Analysis and
 Parallel Implementation of Dedicated Hash Functions"

EUROCRYPT 2002, LNCS 2332, pp165-180, 2002.
12) M.J.B.Robshaw "On Recent Results for MD2, MD4,

 MD5 " April, 1996.
13) National Security Research Institute "Descriptions

of SHA-256, SHA-384, and SHA-512" NIST 2001.
http://csrc.nist.gov/cryptval/shs.html

14) NIST "Descriptions of SHA256, 384 and SHA-512"
 http://csrc.nist.gov/cryptval/shs.html, 2001

15) NIST "Secure Hash Standard" FIPS PUB180-1, May,
 1993.

16) N.K.Park, J.H.Hwang, P.J.Lee "HAS-V : A New Hash
 Function with Variable Output Length" SAC2000,

LNCS2012, Springer-Verlag, pp.202-216, 2001.
17) P.Sarkar, P,J, Schellenberg "A Parallelizable Design

Principle for Cryptography Hash Functions" In-
 docrypt 2001, LNCS 2247, pp40-49, 2001.

18) R.Rivest "The MD4 Message Digest Algorithm" Ad-
 vances in Cryptology-Crypto'90, LNCS 537, Springer-

 Verlag, pp303-311, 1991.
19) Telecommunication Technology Association "Hash

Function Standard - Part 2 : Hash Function Algorithm
 Standard (HAS-160) " TTA, KO-12.0011/R1, Dec

 2000.
20) Y.Zheng, J.Pieprzyk and J.Sebbery "HAVAL-

 A - One-Way Hashing Algorithm with Variable
Length of Output" Advances in Cryptography-

 AUSCRYPT'92,LNCS718, Springer-Verlag, pp83-104,
 1993.

Appendix

A. Pseudo-code of SHA-V

Initial values
- Left line

• = 67452301, h(ii) = efcdab89, = 98badcfe,

h 10325476, h c3d2e1f0
- Right line

h 8796a5b4, h 4b5a6978, h Of le2d3c,

h a0b1c2d3, h9(i) 68794e5f

Constants
- Left line

K[0] = 5a827999, K[1] = 6ed9ebal,

K[2] = 8f lbbcdc, K[3] = a953f d4e
- Right line

K/ [0] = 7a6d76e9, [1] = 6d703ef3,

K' [2] = 5c4dd124, K' [3] = 50a28be6

Boolean functions
- Left line

Ft(x,y, z) = (x A y) V (-x A z) (0 <t < 19)

Ft(x,y,z) =xeyez (20<t<39) <t

Ft(x,y,z) = (x A y) V (x A z) V (y A z) (40 < t < 59)

Ft(x,y,z) =seyez (60 <t< 79)
- Right line

Gt(x,y,z) xeye)z (0 < t < 19)

Gt(x,y,z) = (x A y) V (x A z) V (y A z) (20 <t < 39)

Gt(x,y,z) =xeyez (40 <t < 59)

Gt(x,y, z) = (x A y) V (-ix A z) (60 < t < 79)

for i = 0 to t - 1 {

A = B = h(ii) , C =14i) , D = E = h(4i) ,
F = h(5i) , G = , H = hV) , I = h(8i), J =14i) 1
for t = 16 to 79 {

W, = ROT Ll(Wt- 3 ED Wt-8 e Wt-14 e Wt--16); Left line
= ROT Ll(m _, ® W;-8 e M-14 e M-16); Right line

for t = 0 to 79

T ROTL5(a) -I- Ft (b, c, + e + Kt + Wt

e := d, d := c, c := ROT L3° (b), b := a,a := T

T' := ROTL5(f) + Gt(g,h,i)+ j + K't + W;

j := i 7i := h 7h := ROT L"(g) , g := f, f := T' }
14,i)+ = A, h+ B, f4i)+ = C, h+ = D, h+ = E,
h(5i) + = F, h+ = G,14i) + = H, 44 = I, h+ = J 1

 B. Pseudo-code of RIPEMD-V

Initial values

- Left line

•= 67452301, h(ii) = efedab89, = 98badcfe,

h3(i) = 10325476, h4(i) = c3d2e1f0
- Right line

h5(i) = 76542210, h6(i) = fedcba98, h 89abcdef,

14i) = 01234567, h9(i) = 3c2dleOf
Constants
- Left line

K[0] = 00000000, K[1] = 5a827999, K[2] = 6ed9ebal,

K[3] = 81 lbbcdc , K [41= a953fd4e

- Right line
K'[0] = 50a288e6,.K'[1] = 5c4dd124, K'[2] = 6d703ef3,
K'[3] = 7a6d76e9 Kt[4] = 00000000
Boolean functions
- Left line

fi(x,y,z) =x(DyEl)z (0 < j < 15)
fi(x,y,z) = (x A y) V (x A z) (16 < t < 31)
f (x , y , z) = (x A y) e z (32<t<47) <t
f(x,y,z) = (x A z) V (y A z) (48 < t < 63)
f(x,y,z) = x (y V z) (64 < t < 79)
- Right line

gi(x,y,z) = x (y V z) (0 < t < 15)
gj(xy, z) = A z) V (y A z) (16 < t < 31)
g(x,y,z) = A y) e z (32<t<47)

(x , y , z) = (x A y) V (x A z) (48 <t < 63)
gi (x , y, z) =xeyez(64<j< 79)
Amount for rotate left (rol)
r(j) = j(0 < t < 15)
r(16,...,31) = 7,4,13,1,10,6,15,3,12,0,9,5,2,14,11,8
r(32, .., 47) = 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12
r(48,...,63) = 1,9,11,10,0,8,12,4,13,3,7,15,14,5,6,2
r(64, ..., 79) = 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13
r/(0,...,15) = 5,14,7,0,9,2,11,4,13,6,15,8,1,10,3,12
r'(16, ..., 31) = 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1,2

= 15,5,1,3,7,14,6,9,11,8,12,2,10,0,4,13
r'(48, ..., 63) = 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14
r'(64, ..., 79) = 12,15,10, 4, 1, 5, 8, 7,6,2,13,14, 0,3, 9,11
Selection of message word
8(0,...,15) = 11,14,15,12,5,8,7,9,11,13,14,15,6,7,9,8
8(16,...,31) = 7,6,8,13,11,9,7,15,7,12,15,9,11,7,13,12
s(32,..,47) = 11,13,6,7,14,9,13,15,14,8,13,6,5,12,7,5

= 11,12,14,15,14,15,9,8,9,14,5,6,8,6,5,12
8(64, ..., 79) = 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6

= 8,9,9,11,13,15,15,5,7,7,8,11,14,14,12,6
s'(16,...,31) = 9,13,15,7,12,8,9,11,7,7,12,7,6,15,13,11
s' (32, ..., 47) = 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5
s'(48,...,63) = 15,5,8,11,14,14,6,14,6,9,12,9,12,5,15,8
s'(64,...,79) = 8,5,12,9,12,5,14,6,8,13,6,5,15,13,11,11
for i = 0,...,t - 1 {
A = h(oi) , B = h(ii) ,C = h(2i) , D = h(3i) , E = h(4i) ,
F = , G =14i) ,H = h.(7i) , I = 14,i) , J = /4i) ,}
for t = 0 to 79
T := rols(t)(A f t (t, B, C, D) + X dr (t)] + K (t)) + E
A := E, E := D, D rolio(C), C := B, B := T
T' = rols,(t)(F + gt (79 - t, G, H, I) + ft/MI K'(t)+ J

:= I, I := H, H := rolio(G), G := F, F := }
In case of 320 bits output :
hoei)+ = A, h(ii)+ = B, le+ = C, h+ = D,
NM+ = E,
h+ = F, + = G, h+ = H, 1-4i)+ = I,

+ = J }

