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An Estimating Model for the Length of the Priority Queue in INN Search 

            Yaokai FENG* and Akifumi MAKINOUCHI** 

                        (Received December 13, 2002)

Abstract: Incremental Nearest Neighbor (INN) search has been widely used in spatial databases 
 and multimedia databases. R*-tree is still regarded as being among the best multi-dimensional 

indices. This paper presents an analytical model for estimating performance of the INN search 
algorithm on R*-tree. Our model focuses on the length of the priority queue, the total number of 
its members. In our model, the particularity on the number of entries in the root node and the 

possible difference of fanouts between the leaf nodes and the other nodes are taken into account. 
The theoretical analysis is verified by experiments. 
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 1. Introduction 
 Nearest Neighbor (NN) search is very important 

in Geographic Information Systems (GIS) as well as 
in Multimedia Applications. The Incremental NN 

(INN) search algorithm is very popular because it 
can be used whether the wanted number of nearest 
neighbor objects is known in advance or not. R*- 
tree is still regarded as being among the best multi-
dimensional indexes and is widely used in multi-
dimensional databases. Our analysis focuses on the 
length of the priority queue (which still not be an-
alyzed yet), which is important factors on perfor-
mance of the INN search algorithm. Note that, the 
length of the priority queue means the total number 
of its members, which is not related to the imple-
mentation of the priority queue. 

 2. Related Work 
Performance estimation of the INN search algo-

rithm is discussed briefly and tested in 1). However, 
there exist the following problems in their analysis. 
(1) The presented model is on the expected number 
of the accessed leaf nodes and the expected num-
ber of objects remaining in the priority queue. (2) 
The model is for 2-dimensional spaces only. And it 
can not be simply generalized to high-dimensional 
spaces. (3) The presented model is not verified by 
experiments. (4) The analysis is based on the fol-
lowing assumption: "on the average, half of the ob-

jects in the leaf nodes that intersect with the search 
region are inside the search region, while half are 
outside". We think this assumption is farfetched. 
Stefan Berchtold et al. present a cost model for NN
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search2) . However, as pointed out in the conclusion 

section of that paper, that cost model can be used 
only in the case that one NN object is reported and 
that model can not simply be generalized to an ar-
bitrary number of reported NN objects. 

 3. Performance Estimation of the INN 
    Search Algorithm 

 The priority queue is a very important data struc-
ture in the INN search algorithm and it is not long in 
low-dimensional spaces1). However, it becomes very 

long for large databases in high-dimensional spaces. 
The long priority queue means a large number of 
insertions and comparisons. Thus, it is very ex-

pensive to maintain, especially for memory-resident 
indexes. 

For simplicity, like some other works1)'3), we as-
sume that both data objects and the query points 
are uniformly distributed in the domain. Without 
loss of generality, as in other analytical works4)'5)'6), 

we assume that the data domain is a unit hyper-
cube and we think that, in this case, it is reasonable 
to assume that the R-tree nodes of the same height 
have cube-like MBRs roughly of the same size1)'3)'4) 

 Some symbols used in the analysis and their de-
scriptions are shown in Table 1. 

 Note that the level numbers are counted from the 
root level whose level number is zero. 

 Then, let us consider the appearance of the priori-
ty queue when the m-th neighbor object is dequeued 

(or say, obtained), which is shown in Fig.1. 
  The following propositions are proved in our 

paper7) . 

Proposition 1 
  At the moment when the m-th neighbor object is 

dequeued, the following equation must hold true.



Table 1 some symbols and their descriptions.

Fig.1 The abstract structure of the priority queue.

 Nh,dequeued  Nh,inter, 

where h refers to the level of R-tree and 0 < h < 

H —1. Nh,dequeued refers to the number of the nodes 
in level h that have already been dequeued from the 

priority queue. Nh,inter is the number of the nodes 
in level h that intersect with the search region. 

Proposition 2 

 When the m-th neighbor object is dequeued, the 
expected number of the nodes in level h that have 
been inserted and still remain in the priority queue, 
Nkie ft, is given by 

{fr - Nh,inter(if h = 1), Nh,le f t 
ji • iv h-1,inter Nh,inter (if h > 1). 

Proposition 3 
 For uniformly distributed query point, the prob-

ability of the query point being located in any node 
is the volume of this node.

Proposition 4 

 The probability of the search region intersecting 

with any node of level h, P - h,inter sect is given by 

       (d_i)d  7 = Edd.N/Tri  
  hi                F(i/2 + 1) MI 

2=0 

Ph,intersect = min{T, 1}. 

 Now, two new propositions and their proofs is 

given. 

Proposition 5 
When the rn-th neighbor object is dequeued, the 

expected number of objects that still remain in the 

priority queue, Nobject, is given by 

Nobject = ft ' Nlea f ,dequeued m, 

where Nlea f ,dequeued refers to the number of the leaf 
nodes that have been dequeued. 

Proof: 
Since Nlea f ,dequeued leaf nodes have been de-

queued, all the ft. Nlea f,dequeued objects in these leaf 
nodes have been inserted in the queue. Note that 
m objects have been dequeued. Thus, the number 
of remaining objects is ft • Nlea f ,dequeued rn. 0 

Proposition 6 
The expected number of nodes in level h that in-

tersect with the search region, Nh,inter, can be given 
by 

Nh,inter = nh, • Ph,inter sect,(1) 

where P - h,intersect is estimated by Proposition 5 and 
nh can be given by Equation (3). 

 Proof: 
To calculate Nh,inter we have to sum P - h,inter sect 

for every node in this level. Because the objects 
and the query point are uniformly distributed, all 
the nodes in this level have the same probability of 
intersecting with the search region. Thus, Nh,inter 
can be given by multiplying P - h,inter sect with the 
number of nodes in this level, n h. 0 

 3.1 Estimating dm 
See Fig.2. The shadow hyper-sphere is called Ra-

tioSphere whose center is q and volume is m/n. Its



 radius is denoted as 6m.  Considering the volume of 
the whole space is 1 and all the objects are uniform-
ly distributed, the expected number of the objects 

in the RatioSphere should be m. In this study, 6m 
is used as dm.

Fig.2 Estimation of dm.

Let Volregion be the volume of the RatioSphere. 
According to the knowledge of geometry, the vol-
ume of the RatioSphere, Volregion, is given by 

~.d                         d  V
Olregion= ------------          F(d/2 + 1) Sm, 

F(x + 1) = x • r(x), F(1) = 1, F(1/2) = \Fr. 

Considering V olregion = n and 6m is used as dm 
in this study, dm can be estimated by 

 dm_dmr(d/2 + 1)(2)           T • 

 3.2 Side Length of Each Node at Level 
h (i.e., Uh) 

It is clear that the number of nodes at level h, nh, 
can be given by 

nh = fr fh-1 (h > 1).(3) 

  Let ShareSpace(w) refer to the average space 
share of w NN objects in the whole space. Its vol-
ume should be w/n since the objects are uniformly 
distributed and the volume of the whole space is 1. 
The number of objects in each node of level h is

n/nh. Thus, the corresponding space share of each 
node at level h is ShareSpace(n/nh). Its volume, 
Volshare , is 

n 1   V 
olshare = — n = — • 

     nh nh 

Like the analysis in Section 3.1, Volshare is used 
to estimate the volume of each node at level h. If 
Equation (3) is substituted, then 0 h can be given 
by  

d ----------l(4)  ~h= .ff   h-1•4 

               r 

 Considering the number of the objects in each leaf 
node is fl, in the same way, at can be given by 

at _ d fc (5) 

 3.3 Expected Length of the Queue 
 Using the priority queue is a distinctive fea-

ture of the INN search algorithm and the priority 

queue is not long in low-dimensional spaces. How-
ever, according to our investigations, the priority 

queue may be very long for large databases in high-
dimensional spaces. It is clear that maintaining a 
very-long sorted queue means a large number of 
comparisons and insertions. Thus, the length of 

the priority queue is an important factor on per-
formance of the INN search algorithm (see the dis-
cussion at the beginning of this section). However, 
analyzing on the length of the priority queue has not 
been done yet. Our model for estimating the length 

of the priority queue is presented in this subsection. 
  Let us see Fig.1 again. Obviously, after the m-th 

neighbor object is dequeued, 

L(q) = Nobject + Nnode,(6) 

where Nobject and Nnode refer to the number of ob-

jects and the number of nodes that still remain in 
the queue when the m-th neighbor object is de-

queued, respectively. First, Nobject is estimated. 
  According to Proposition 5, the probability of 

the search region intersecting with any leaf node, 
Pi ,intersect, can be given by



 d „ 
                      Nr7r-i  Ti=E(7)-------------- •di 
               F(i/2 + 1) rn(7) 

        i=0 

 Pl,intersect  =  min{  717  1} 

where at can be given by Equation (5). 
 According to Proposition 1 and Equation (1), 

the number of leaf nodes that have been dequeued, 
Nleatdequeued) can be given by 

Nleaf,dequeued 
= Nlea tinter 

(8) = NUMlea f • Pl,intersect 
   = l. • Pl,intersect, 

where Niect f ,inter refers to the number of leaf nodes 
that intersect with the search region. Pi .,intersect Can 
be given by Equation (7). Nurniea-is                          fthe expected 
number of the leaf nodes. 

 According to Proposition 3 and Equation (8), 
Nobject in Equation (6) can be estimated by 

  Nobject 
= ft X Nleatdequeued — m(9) 
= n Pl,intersect m. 

 We can understand Equation (9) as follows. 
When the m-th neighbor object is dequeued from 
the queue, Niea f ,dequeued leaf nodes have already 
been dequeued and all of their objects (the total 
number is fi X Nleaf,dequeued) are inserted in the 
queue. m means the number of objects that have 
already dequeued. 

 Then, let us estimate Nnode in Equation (6). 
See Fig.1 again. Proposition 2 and Equation (1) 
present the calculating method for N 11,1e f t. If we 
sum Nh,left for each level except the root level, the 
expected number of the nodes left in the priority 
queue when the m-th neighbor object is dequeued, 
Nnode, can be given by 

H —1 
Nnode = E Nh,le f t(10) 

h=1 

where Nh,le f t can be given by Proposition 2. 
 By substituting Equation (10), Equation (9) and 

the other corresponding equations in Equation (6),

the length (the number of members) of the priority 

queue when the m-th neighbor object is obtained 
can be estimated by 

 L(q) = 
H-1 

ENh,left+ 
   h=1 

• 

 mindM* •"(dI2 + 1) •' c} 
               r(i/2 + 1) i=0 

—M, 
  where 

f r Nh,inter (if h = 1) N
h,left = f • Nh-1 ,inter Nh,inter (if h> 1); 

   Nh,inter = 
                             '71 • di • Ud—i  fr fh-1 min {E (d)  m h 1} 

 d i r(i/2 + 1) 
                    i=0  

 mV v      = r (co+di) ; 

 a h = d (--------1 ) 
                fr.fh—i • 

3.4 Discussion of fr, f, h and H 
 fr, ft and H in the above estimating equations 

are discussed here. 
Let Fi and F1 denote the maximum number of en-

tries in each non-leaf node and the maximum num-
ber of entries in each leaf node, respectively. When 
one R*-tree is built, there are two possibilities that 
F1 = 2 * Fi (for point objects) and F1 = Fi. Here 
the two cases are discussed separately. 

3.4.1 Case ofFi = 2* Fi 
 According to the analysis made by C. Faloutsos 

and I. Kame15), the average node utilization of all 
nodes in R*-tree is 70%. Clearly, 

n = (0.7 * Fi)(11-1) • fi 
= (0.7 * F2)(11-1) • (0.7 * F1) 
= 2 * (0.7 * Fi)H. 

H = 1-109(o.7*Fo(n12)] •(11) 

where F, is given by user and it decides the size of 
each node. 

 The number of entries in the root node has its 
specific characteristics. Anyway, the number of the 
non-root nodes far exceed that of the root node (on-
ly one root node). Thus, we can think the average



node utilization of the non-root nodes is also 70%. 
That is, 

 fi  =0.7*Fi fl =0.7*Fl =2* fi• 

 It is clear that 

 n = fr f(H-2) j1 = 2Jr f(H-1). 

 •12 fr= 
2f1)•() 

Now, we prove that fr calculated by Equation 

(12) meets the necessary condition. That is, 1 < 
fr < Fi. 

According to Equation (11), log ft (n/2) < 
H < log f; (n/2) + 1. Then it becomes easy to 
prove 1 < fr < Fi, which is omitted because of the 
limitation of space. 

3.4.2 Case of F1= Fi (say F) 
  In the same way as the former case, fr, fi, fi and 

H can be given by 

 f1=fi= 0.7 * F. H = Ilogf, (n)1 •fr=f(H-1)• 

                                                              2 

  Note that the above formulas in this chapter are 
based on the average case and not absolute ones. 
However, we are interested in the average case, and 
exceptional cases do not harm the generality. 

 4. Experimental Evaluation 

  Using uniformly distributed points we verified our 
estimating model. 

 4.1 Evaluation with Different d 

  Since the analysis in this chapter is based on the 
average case, the results are the average values of 
100 random trials. 

  Note that only the results of the case that F1 = 
2 * Fi (see Section 3.4) is presented in this chapter. 

Fi is denoted as Fanout in this section. Anyway, 
according to our study in the other case (F1 = Fi), 
the tendency of performance and the error rate of 
our model do not change much. 

  Table 2 shows the calculated results and their 

experimental counterparts. Without loss of gener-
ality, we let m be 40 and n be 40,000. From Table 
2, the following observations can be obtained.

Table 2 Evaluation as d increases (n=40,000, m=40).

 1. Performance of the INN algorithm degrades 

exponentially as d increases. 
 2. As dimensionality increases, the gap between 

calculated result and tested result gets larger. 
 3. If dimensionality reaches 10, the calculated 

result of L(q) roughly reaches its limit, which is 

n - m = 39960. 
 4. When d increases from 10 to 12, the error rate 

drops greatly. This is because the INN search tends 
to access all the objects. Thus, both the calculat-
ed result and the tested result tend to the limit. 
This also mathematically revealed the well-known 

fact that performance of the NN search algorithm 
on R-trees may become worse than sequential scan 
in high-dimensional spaces. 

 Also, our model is verified as the other two pa-
rameters (i.e., m and n) change. The result is not 

presented in this paper because of the limitation of 
space. Anyway, the following observations can be 
obtained. 
  1. The change of m has not much influence on ac-

   curacy of our model when m is relatively very 
   small to n. Another observation is that perfor-

   mance of the INN search algorithm degrades as 
   m increases. We think this is easy to under-

    stand. 
  2. The error rate of our model tends to become 

   smaller as the database becomes larger. We 

   think this is because that larger databases of 
   uniformly distributed points tend to meet well 

   the assumptions in our analysis. 

4.2 Evaluation with Different m 

  The results are shown in Table 3, where d = 4, 
n = 40,000 and M=20. 

  From Table 3, we know that the change of m has 
not much influence on accuracy of the model when 
m is relatively very small to n. Another observation 

is that performance of the INN search algorithm de-

grades as m increases, which is easy to understand. 

 4.3 Evaluation with Different n 
  The database cardinality changes from 200 to 

200,000. The results are shown in Table 4, where



Table 3 Evaluation as m grows (d=4, n=40,000, 

      M=20).

Table 4 Evaluation as cardinality increases (d=4, 
      m=40, M=20).

From Table 4, we observe that 

1. The error rate of the model tends to become 
 smaller as the database becomes larger. I think 

 this is because that larger databases of uniform-
 ly distributed points tend to meet well the as-

 sumptions in the analysis. 
2. If n reaches 20000, the length of the priori-

 ty queue increase very slowly as n increases. I 
 think this is because that there exist the follow-

 ing two contrary factors that counteract each 

 other to some extent. 

   (a) On the one hand, as n grows, the point 
     density increases. Thus, the dm tends 
    to become shorter and the volume of the 

     search region becomes smaller. 

   (b) On the other hand, as the point density 
     increases, the node MBRs become smaller 
     and density of nodes increases. 

From all above results, we observe that the test-

ed results are generally close to the calculated re-
sults, which means that the actual performance of 
the INN search for uniformly distributed objects is 
mathematically verified. In other words, one could 

use the model presented in this chapter to estimate 

performance of INN search for uniformly distribut-

ed objects. 

 5. Conclusion 

 In this paper, we proposed a model for uniformly 

distributed point data to mathematically analyze 

performance of the INN search algorithm with m 
(the number of neighbor objects reported finally), 
n (database cardinality) and d (dimensionality) as 

parameters, focusing on the length of the priority 
queue, which has not been done yet by other works. 
Using our model, dimensionality curse of the INN 
search was mathematically revealed for an arbitrary 
number of NN objects to be retrieved. 
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