
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

An Estimating Model for the Length of the
Priority Queue in INN Search

Feng, Yaokai
Department of Intelligent Systems, Graduate School of Information Science and Electrical
Engineering, Kyushu University : Graduate Student

Makinouchi, Akifumi
Department of Intelligent Systems, Faculty of Information Science and Electrical Engineering,
Kyushu University

https://doi.org/10.15017/1515806

出版情報：九州大学大学院システム情報科学紀要. 8 (1), pp.1-6, 2003-03-26. 九州大学大学院システ
ム情報科学研究院
バージョン：
権利関係：

An Estimating Model for the Length of the Priority Queue in INN Search

 Yaokai FENG* and Akifumi MAKINOUCHI**

 (Received December 13, 2002)

Abstract: Incremental Nearest Neighbor (INN) search has been widely used in spatial databases
 and multimedia databases. R*-tree is still regarded as being among the best multi-dimensional

indices. This paper presents an analytical model for estimating performance of the INN search
algorithm on R*-tree. Our model focuses on the length of the priority queue, the total number of
its members. In our model, the particularity on the number of entries in the root node and the

possible difference of fanouts between the leaf nodes and the other nodes are taken into account.
The theoretical analysis is verified by experiments.

Keywords: Multidimensional index, Nearest neighbor search, Estimating model

 1. Introduction
 Nearest Neighbor (NN) search is very important

in Geographic Information Systems (GIS) as well as
in Multimedia Applications. The Incremental NN

(INN) search algorithm is very popular because it
can be used whether the wanted number of nearest
neighbor objects is known in advance or not. R*-
tree is still regarded as being among the best multi-
dimensional indexes and is widely used in multi-
dimensional databases. Our analysis focuses on the
length of the priority queue (which still not be an-
alyzed yet), which is important factors on perfor-
mance of the INN search algorithm. Note that, the
length of the priority queue means the total number
of its members, which is not related to the imple-
mentation of the priority queue.

 2. Related Work
Performance estimation of the INN search algo-

rithm is discussed briefly and tested in 1). However,
there exist the following problems in their analysis.
(1) The presented model is on the expected number
of the accessed leaf nodes and the expected num-
ber of objects remaining in the priority queue. (2)
The model is for 2-dimensional spaces only. And it
can not be simply generalized to high-dimensional
spaces. (3) The presented model is not verified by
experiments. (4) The analysis is based on the fol-
lowing assumption: "on the average, half of the ob-

jects in the leaf nodes that intersect with the search
region are inside the search region, while half are
outside". We think this assumption is farfetched.
Stefan Berchtold et al. present a cost model for NN

* Department of Intelligent Systems, Graduate Student

** Department of Intelligent Systems

search2) . However, as pointed out in the conclusion

section of that paper, that cost model can be used
only in the case that one NN object is reported and
that model can not simply be generalized to an ar-
bitrary number of reported NN objects.

 3. Performance Estimation of the INN
 Search Algorithm

 The priority queue is a very important data struc-
ture in the INN search algorithm and it is not long in
low-dimensional spaces1). However, it becomes very

long for large databases in high-dimensional spaces.
The long priority queue means a large number of
insertions and comparisons. Thus, it is very ex-

pensive to maintain, especially for memory-resident
indexes.

For simplicity, like some other works1)'3), we as-
sume that both data objects and the query points
are uniformly distributed in the domain. Without
loss of generality, as in other analytical works4)'5)'6),

we assume that the data domain is a unit hyper-
cube and we think that, in this case, it is reasonable
to assume that the R-tree nodes of the same height
have cube-like MBRs roughly of the same size1)'3)'4)

 Some symbols used in the analysis and their de-
scriptions are shown in Table 1.

 Note that the level numbers are counted from the
root level whose level number is zero.

 Then, let us consider the appearance of the priori-
ty queue when the m-th neighbor object is dequeued

(or say, obtained), which is shown in Fig.1.
 The following propositions are proved in our

paper7) .

Proposition 1
 At the moment when the m-th neighbor object is

dequeued, the following equation must hold true.

Table 1 some symbols and their descriptions.

Fig.1 The abstract structure of the priority queue.

 Nh,dequeued Nh,inter,

where h refers to the level of R-tree and 0 < h <

H —1. Nh,dequeued refers to the number of the nodes
in level h that have already been dequeued from the

priority queue. Nh,inter is the number of the nodes
in level h that intersect with the search region.

Proposition 2

 When the m-th neighbor object is dequeued, the
expected number of the nodes in level h that have
been inserted and still remain in the priority queue,
Nkie ft, is given by

{fr - Nh,inter(if h = 1), Nh,le f t
ji • iv h-1,inter Nh,inter (if h > 1).

Proposition 3
 For uniformly distributed query point, the prob-

ability of the query point being located in any node
is the volume of this node.

Proposition 4

 The probability of the search region intersecting

with any node of level h, P - h,inter sect is given by

 (d_i)d 7 = Edd.N/Tri
 hi F(i/2 + 1) MI

2=0

Ph,intersect = min{T, 1}.

 Now, two new propositions and their proofs is

given.

Proposition 5
When the rn-th neighbor object is dequeued, the

expected number of objects that still remain in the

priority queue, Nobject, is given by

Nobject = ft ' Nlea f ,dequeued m,

where Nlea f ,dequeued refers to the number of the leaf
nodes that have been dequeued.

Proof:
Since Nlea f ,dequeued leaf nodes have been de-

queued, all the ft. Nlea f,dequeued objects in these leaf
nodes have been inserted in the queue. Note that
m objects have been dequeued. Thus, the number
of remaining objects is ft • Nlea f ,dequeued rn. 0

Proposition 6
The expected number of nodes in level h that in-

tersect with the search region, Nh,inter, can be given
by

Nh,inter = nh, • Ph,inter sect,(1)

where P - h,intersect is estimated by Proposition 5 and
nh can be given by Equation (3).

 Proof:
To calculate Nh,inter we have to sum P - h,inter sect

for every node in this level. Because the objects
and the query point are uniformly distributed, all
the nodes in this level have the same probability of
intersecting with the search region. Thus, Nh,inter
can be given by multiplying P - h,inter sect with the
number of nodes in this level, n h. 0

 3.1 Estimating dm
See Fig.2. The shadow hyper-sphere is called Ra-

tioSphere whose center is q and volume is m/n. Its

 radius is denoted as 6m. Considering the volume of
the whole space is 1 and all the objects are uniform-
ly distributed, the expected number of the objects

in the RatioSphere should be m. In this study, 6m
is used as dm.

Fig.2 Estimation of dm.

Let Volregion be the volume of the RatioSphere.
According to the knowledge of geometry, the vol-
ume of the RatioSphere, Volregion, is given by

~.d d V
Olregion= ------------ F(d/2 + 1) Sm,

F(x + 1) = x • r(x), F(1) = 1, F(1/2) = \Fr.

Considering V olregion = n and 6m is used as dm
in this study, dm can be estimated by

 dm_dmr(d/2 + 1)(2) T •

 3.2 Side Length of Each Node at Level
h (i.e., Uh)

It is clear that the number of nodes at level h, nh,
can be given by

nh = fr fh-1 (h > 1).(3)

 Let ShareSpace(w) refer to the average space
share of w NN objects in the whole space. Its vol-
ume should be w/n since the objects are uniformly
distributed and the volume of the whole space is 1.
The number of objects in each node of level h is

n/nh. Thus, the corresponding space share of each
node at level h is ShareSpace(n/nh). Its volume,
Volshare , is

n 1 V
olshare = — n = — •

 nh nh

Like the analysis in Section 3.1, Volshare is used
to estimate the volume of each node at level h. If
Equation (3) is substituted, then 0 h can be given
by

d ----------l(4) ~h= .ff h-1•4

 r

 Considering the number of the objects in each leaf
node is fl, in the same way, at can be given by

at _ d fc (5)

 3.3 Expected Length of the Queue
 Using the priority queue is a distinctive fea-

ture of the INN search algorithm and the priority

queue is not long in low-dimensional spaces. How-
ever, according to our investigations, the priority

queue may be very long for large databases in high-
dimensional spaces. It is clear that maintaining a
very-long sorted queue means a large number of
comparisons and insertions. Thus, the length of

the priority queue is an important factor on per-
formance of the INN search algorithm (see the dis-
cussion at the beginning of this section). However,
analyzing on the length of the priority queue has not
been done yet. Our model for estimating the length

of the priority queue is presented in this subsection.
 Let us see Fig.1 again. Obviously, after the m-th

neighbor object is dequeued,

L(q) = Nobject + Nnode,(6)

where Nobject and Nnode refer to the number of ob-

jects and the number of nodes that still remain in
the queue when the m-th neighbor object is de-

queued, respectively. First, Nobject is estimated.
 According to Proposition 5, the probability of

the search region intersecting with any leaf node,
Pi ,intersect, can be given by

 d „
 Nr7r-i Ti=E(7)-------------- •di
 F(i/2 + 1) rn(7)

 i=0

 Pl,intersect = min{ 717 1}

where at can be given by Equation (5).
 According to Proposition 1 and Equation (1),

the number of leaf nodes that have been dequeued,
Nleatdequeued) can be given by

Nleaf,dequeued
= Nlea tinter

(8) = NUMlea f • Pl,intersect
 = l. • Pl,intersect,

where Niect f ,inter refers to the number of leaf nodes
that intersect with the search region. Pi .,intersect Can
be given by Equation (7). Nurniea-is fthe expected
number of the leaf nodes.

 According to Proposition 3 and Equation (8),
Nobject in Equation (6) can be estimated by

 Nobject
= ft X Nleatdequeued — m(9)
= n Pl,intersect m.

 We can understand Equation (9) as follows.
When the m-th neighbor object is dequeued from
the queue, Niea f ,dequeued leaf nodes have already
been dequeued and all of their objects (the total
number is fi X Nleaf,dequeued) are inserted in the
queue. m means the number of objects that have
already dequeued.

 Then, let us estimate Nnode in Equation (6).
See Fig.1 again. Proposition 2 and Equation (1)
present the calculating method for N 11,1e f t. If we
sum Nh,left for each level except the root level, the
expected number of the nodes left in the priority
queue when the m-th neighbor object is dequeued,
Nnode, can be given by

H —1
Nnode = E Nh,le f t(10)

h=1

where Nh,le f t can be given by Proposition 2.
 By substituting Equation (10), Equation (9) and

the other corresponding equations in Equation (6),

the length (the number of members) of the priority

queue when the m-th neighbor object is obtained
can be estimated by

 L(q) =
H-1

ENh,left+
 h=1

•

 mindM* •"(dI2 + 1) •' c}
 r(i/2 + 1) i=0

—M,
 where

f r Nh,inter (if h = 1) N
h,left = f • Nh-1 ,inter Nh,inter (if h> 1);

 Nh,inter =
 '71 • di • Ud—i fr fh-1 min {E (d) m h 1}

 d i r(i/2 + 1)
 i=0

 mV v = r (co+di) ;

 a h = d (--------1)
 fr.fh—i •

3.4 Discussion of fr, f, h and H
 fr, ft and H in the above estimating equations

are discussed here.
Let Fi and F1 denote the maximum number of en-

tries in each non-leaf node and the maximum num-
ber of entries in each leaf node, respectively. When
one R*-tree is built, there are two possibilities that
F1 = 2 * Fi (for point objects) and F1 = Fi. Here
the two cases are discussed separately.

3.4.1 Case ofFi = 2* Fi
 According to the analysis made by C. Faloutsos

and I. Kame15), the average node utilization of all
nodes in R*-tree is 70%. Clearly,

n = (0.7 * Fi)(11-1) • fi
= (0.7 * F2)(11-1) • (0.7 * F1)
= 2 * (0.7 * Fi)H.

H = 1-109(o.7*Fo(n12)] •(11)

where F, is given by user and it decides the size of
each node.

 The number of entries in the root node has its
specific characteristics. Anyway, the number of the
non-root nodes far exceed that of the root node (on-
ly one root node). Thus, we can think the average

node utilization of the non-root nodes is also 70%.
That is,

 fi =0.7*Fi fl =0.7*Fl =2* fi•

 It is clear that

 n = fr f(H-2) j1 = 2Jr f(H-1).

 •12 fr=
2f1)•()

Now, we prove that fr calculated by Equation

(12) meets the necessary condition. That is, 1 <
fr < Fi.

According to Equation (11), log ft (n/2) <
H < log f; (n/2) + 1. Then it becomes easy to
prove 1 < fr < Fi, which is omitted because of the
limitation of space.

3.4.2 Case of F1= Fi (say F)
 In the same way as the former case, fr, fi, fi and

H can be given by

 f1=fi= 0.7 * F. H = Ilogf, (n)1 •fr=f(H-1)•

 2

 Note that the above formulas in this chapter are
based on the average case and not absolute ones.
However, we are interested in the average case, and
exceptional cases do not harm the generality.

 4. Experimental Evaluation

 Using uniformly distributed points we verified our
estimating model.

 4.1 Evaluation with Different d

 Since the analysis in this chapter is based on the
average case, the results are the average values of
100 random trials.

 Note that only the results of the case that F1 =
2 * Fi (see Section 3.4) is presented in this chapter.

Fi is denoted as Fanout in this section. Anyway,
according to our study in the other case (F1 = Fi),
the tendency of performance and the error rate of
our model do not change much.

 Table 2 shows the calculated results and their

experimental counterparts. Without loss of gener-
ality, we let m be 40 and n be 40,000. From Table
2, the following observations can be obtained.

Table 2 Evaluation as d increases (n=40,000, m=40).

 1. Performance of the INN algorithm degrades

exponentially as d increases.
 2. As dimensionality increases, the gap between

calculated result and tested result gets larger.
 3. If dimensionality reaches 10, the calculated

result of L(q) roughly reaches its limit, which is

n - m = 39960.
 4. When d increases from 10 to 12, the error rate

drops greatly. This is because the INN search tends
to access all the objects. Thus, both the calculat-
ed result and the tested result tend to the limit.
This also mathematically revealed the well-known

fact that performance of the NN search algorithm
on R-trees may become worse than sequential scan
in high-dimensional spaces.

 Also, our model is verified as the other two pa-
rameters (i.e., m and n) change. The result is not

presented in this paper because of the limitation of
space. Anyway, the following observations can be
obtained.
 1. The change of m has not much influence on ac-

 curacy of our model when m is relatively very
 small to n. Another observation is that perfor-

 mance of the INN search algorithm degrades as
 m increases. We think this is easy to under-

 stand.
 2. The error rate of our model tends to become

 smaller as the database becomes larger. We

 think this is because that larger databases of
 uniformly distributed points tend to meet well

 the assumptions in our analysis.

4.2 Evaluation with Different m

 The results are shown in Table 3, where d = 4,
n = 40,000 and M=20.

 From Table 3, we know that the change of m has
not much influence on accuracy of the model when
m is relatively very small to n. Another observation

is that performance of the INN search algorithm de-

grades as m increases, which is easy to understand.

 4.3 Evaluation with Different n
 The database cardinality changes from 200 to

200,000. The results are shown in Table 4, where

Table 3 Evaluation as m grows (d=4, n=40,000,

 M=20).

Table 4 Evaluation as cardinality increases (d=4,
 m=40, M=20).

From Table 4, we observe that

1. The error rate of the model tends to become
 smaller as the database becomes larger. I think

 this is because that larger databases of uniform-
 ly distributed points tend to meet well the as-

 sumptions in the analysis.
2. If n reaches 20000, the length of the priori-

 ty queue increase very slowly as n increases. I
 think this is because that there exist the follow-

 ing two contrary factors that counteract each

 other to some extent.

 (a) On the one hand, as n grows, the point
 density increases. Thus, the dm tends
 to become shorter and the volume of the

 search region becomes smaller.

 (b) On the other hand, as the point density
 increases, the node MBRs become smaller
 and density of nodes increases.

From all above results, we observe that the test-

ed results are generally close to the calculated re-
sults, which means that the actual performance of
the INN search for uniformly distributed objects is
mathematically verified. In other words, one could

use the model presented in this chapter to estimate

performance of INN search for uniformly distribut-

ed objects.

 5. Conclusion

 In this paper, we proposed a model for uniformly

distributed point data to mathematically analyze

performance of the INN search algorithm with m
(the number of neighbor objects reported finally),
n (database cardinality) and d (dimensionality) as

parameters, focusing on the length of the priority
queue, which has not been done yet by other works.
Using our model, dimensionality curse of the INN
search was mathematically revealed for an arbitrary
number of NN objects to be retrieved.

 References

 1) G.R. Hjaltason, H. Samet. "Distance Browsing in Spa-
 tial Database". ACM Transactions on Database Sys-
 tems, Vol. 24, No. 2, pages 265-318, June 1999.

 2) S. Berchtold, C. Bohm, D. A. Keim, HP. Kriegel.
 "A Cost Model For Nearest Neighbor Search in High-

 Dimensional Data Space". in Proceedings of PODS,
 pages 78-86, Tucson, Arizona, 1997.

 3) K. Kim, S. K. Cha, K. Kwon. "Optimizing Multidimen-
 sional Index Trees for Main Memory Access". In Pro-

 ceedings of ACM SIGMOD International Conference on
 Management of Data, pages 139-150, Santa Barbara,

 California, USA, 2001.
 4) A. Papadopoulos, Y. Manolopoulos. "Performance of

 Nearest Neighbor Queries in R-trees". In Proceedings
 of International Conference on Database Theory, pages

 394-408, Delphi, Greece, January 1997.
 5) C. Faloutsos, I. Kamel. "Beyond Uniformity and In-

 dependence: Analysis of R-trees Using the Concept
 of Fractal Dimension". In Proceedings of ACM PODS

 Symposium, pages 4-13, 1994.
 6) I. Kamel, C. Faloutsos. "On Packing R-trees". In Pro-

 ceedings of the 2nd International Conference on Infor-
 mation and Knowledge Management, pages 490-499,

 1993.
 7) Y. Feng and A. Makinouchi. "An Estimating Model for

 the Number of Node Accesses in NN Search". Research
 Reports on Information Science and Electrical Engi-

 neering of Kyushu University, Vol.7, No.2, pages 87-92,
 2002.

