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Abstract: This paper applies a quasi-ARMAX modeling technique, recently presented in the 
literature, to a process control framework. The use of this quasi-ARMAX modeling technique in 
nonlinear model predictive control (NMPC) formulations applied to simple nonlinear process con-
trol examples is investigated. The quasi-ARMAX predictor can be interpreted as a neuro-fuzzy 

predictor, and this neuro-fuzzy predictor is computationally straightforward and has showed ex-
cellent prediction capabilities. The predictor is thus well suited for NMPC purposes. Furthermore, 
the parameters of the neuro-fuzzy model can be argued to have explicit meaning, thus making the 

procedure of tuning the NMPC system more transparent when using the neuro-fuzzy predictor. 

Keywords: Model predictive control, Nonlinear control, Neuro fuzzy models, Nonlinear identifi-
cation

 1. Introduction 

 Model predictive control (MPC) has received a 
strong position when it comes to industrially imple-
mented advanced control methodologies, especially 
in refinery and petrochemical fields1)2 . One main 
reason for this is the intuitive way MPC incorpo-
rates the process model in the controller design, 

thus e.g. making it straightforward to take con-
straints into account at the design stage. 

 In many problems relevant in the process con-
trol field today, the plant under control shows a 
strongly non-linear behavior. As a means to han-
dle this, non-linear MPC (NMPC) is an often used 

method. NMPC, simply put, is model predictive 
control, where a non-linear process model is used 
for prediction purposes, as opposed to a linear mod-
el for basic MPC. See e.g. Camacho and Bordons3> 
for an overview of MPC, and Henson') and Rawl-

ings et al.5> for a focus on NMPC. 
 One main difficulty with non-linear MPC is that 

the non-linear models needed often are complex and 

give rise to computationally burdensome optimiza-
tion problems. Since MPC requires the solution of 
an optimization problem on-line in every sampling 
instant, the computational simplicity is crucial. 

  This paper lists several non-linear process models 

used in recent literature for NMPC purposes, use-
ful as an indicator of the research activity in the 
field. A new contribution of this paper is adapt-
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ing a quasi-ARMAX modeling technique, recently 

presented in the literature6)7), for non-linear MPC 
purposes. The idea of the quasi-ARMAX modeling 
scheme is to incorporate a group of certain non-
linear non-parametric models (NNMs) into a lin-

ear ARMAX structure. The investigated predictor 
can thus be seen as a linear predictor network con-
sisting of a global linear predictor and several lo-
cal linear predictors with interpolation. The quasi-
ARMAX predictor can in such a way be interpreted 
as a neuro-fuzzy predictor') . The neuro-fuzzy pre-

dictor is computationally straightforward and has 
showed excellent prediction capabilities. In Hu et 
al.(1998)6) and Hu et al. (1999)7), the predictor 
is presented mainly from the perspective of system 
identification. In this paper, we apply the predic-
tor in a nonlinear process control framework. More 
specifically, we illustrate how the predictor can be 

used in a NMPC concept, and illustrate preliminary 
control results. 

  Furthermore, non-linear MPC control strategies 
are often difficult to interpret and understand, thus 
making the choice of tuning-parameters a quite ad 
hoc procedure. The parameters of the neuro-fuzzy 
model can be argued to have explicit meaning7), 

thus making the procedure of tuning the NMPC sys-
tem more transparent when using the neuro-fuzzy 

predictor. 

 2. Nonlinear Model Predictive Con-
    trol 

  Nonlinear model predictive control is an open-

loop optimal control sequence calculation where the 
main characteristics of the controller are') 
• Explicit use of a nonlinear model to predict the



process output at future time instants (a horizon). 
 Calculation of a control sequence minimizing an 

open-loop objective function. 
 Receding strategy so that at each instant the hori-

zon is displaced  towards the future, which involves 
the application of the first control signal of the se-

quence calculated at each step. 
The problem formulation for non-linear MPC can 
briefly be summarized according to the following. 

See e.g. Henson') for details. 
 The process model is assumed to have the form 

of a non-linear discrete-time input-output mapping, 
e.g. 

y(k) = 0P(k))(1) 

cp(k) _ [y(k — 1), ..., y(k — n), 
u(k — d), ..., u(k — m — d + 1)]T 

 The open-loop optimization problem which is 
solved in every sampling instant can be formulat-
ed as 

minJ 
u(k1k:),u(k+1)1k:),...u(k+Nr„.-1 k) 

  where J = 0[Y (k + Nyl k)] + 
N„-1 

E L[y(k + j 1 k), u(k + j 1 k), Du(k + j l k)] (2) 
—o 

Where Nu is used to denote the control horizon and 
NN, denotes the prediction horizon. 

 We thus have a generally expressed loss function 
consisting of (quite arbitrary) functions of the pre-
dicted outputs and future control actions as well 
as the successive change in the inputs. Often the 
loss function is specified as a quadratic loss func-
tion such that 

_ [y(k + Ny l k) — Ys (k)]T Q 

    [y(k + N1 l k) — ys (k)](3) 

 L = [y(k +j1 k) — ys(k)]T Q[y(k +j1 k) — ys(k)] 
    +[u(k + j 1 k) — us (k)]T R[u(k + j 1 k) — us (k)] 

+[ou(k+jlk)]TS[Du(k+jlk)] (4) 

Where ys (k) and us (k) are steady-state targets for y 
and u, and Q, R and S are weighting matrices. The 
predicted outputs are obtained from the non-linear 
process model, equation (1). 

 The capability to handle constraints is consid-
ered one of the main motivations to use (nonlinear) 
MPC. The non-linear optimization problem formu-

lated in equation (2) is in the case of constraints 

present solved subject to the input inequality con-
straints 

umin < u(k + j1 k) < Urraax, 0 < j < Nu — 1 (5) 

Dumin < Du(k + j I k) < Dumax, 0 < j < Nu — 1 

and the output inequality constraints 

ymin < y(k + jI k) < yrnax, 1 < j < Ny (6) 

 For the case with a linear time-invariant process 
model, a quadratic loss function and in the absence 
of constraints, an analytical solution to the opti-

mization problem can be found. 
 If there are constraints present, and the con-

straints are convex, the optimization problem is 
convex and can easily be solved8 . When the 
model is non-linear and non-convex constraints are 

present, a non-convex optimization problem must 
be solved iteratively at every sampling time. This 
is the most common case for non-linear MPC. 

 If no analytical solution can be found, a numeri-
cal optimization method has to be used. One could 

address the solution of nonlinear optimization prob-
lems for the purpose of model predictive control for 
example through successive linearization of model 
equations, sequential model solution and optimi-
sation, and simultaneous model solution and opti-
mization. 
 Successive linearization of model equations corre-

sponds to the use of the current operating point to 
linearize the (non-linear) model before each calcu-
lation of the control action of the NMPC controller. 
Different approaches can be taken in an attempt 
to reduce the error caused by this linearization. 
For example, in quadratic dynamic matrix control 

(QDMC) the process model is linearized once for the 
entire trajectory and in non-linear quadratic matrix 
control (NLQDMC), the process model is linearized 
iteratively in each control interval9). Sequential 
model solution and optimization in turn use a 

standard NLP solver to compute the manipulated 
inputs, and an ODE solver is used to integrate the 
non-linear model equations. This is performed iter-
atively until sufficient accuracy is achieved. Simul-
taneous model solution and optimization requires 
that the process model equations are discretized as 

orthogonal collocation of finite elements10), in or-
der to solve the nonlinear program. Successive (or



sequential) quadratic programming (SQP) is con-
sidered the method of choice for solving non-linear 
programs. A good treatment of relevant optimiza-
tion methods is offered in e.g. Gopal and  Biegler11 

 3. Quasi-Armax Modeling 
 A key issue to address when designing a NMPC 

controller is the choice of process model, i.e. the 
structure of the (non-linear) process model to be 
used. Here we can roughly divide the area into two 
(or three) kinds of models. Firstly there are models 
based on fundamental relationships and secondly 
there are models based on empirical data. The third 
kind of model would be one combining fundamental 
and empirical modeling techniques (which usually 
is referred to as a hybrid model) . 

 With main focus on empirical non-linear models, 
one decision to make is the selection of suitable 
model form. The types of discrete-time non-linear 
models utilized for NMPC in the recent literature 
include e.g. 
- Hammerstein and Wiener models') 
- Volterra models13> 14) 
- Polynomial ARMAX'5) 
- Artificial neural networks'6)9) 
- Fuzzy logic models17>8 
A Hammerstein model consists of a static non-
linearity followed by a linear dynamical system, 
whereas a Wiener model has the order reversed, 
i.e. the linear dynamics are followed by a stat-
ic non-linearity. Concerning neural network or 
fuzzy logic models, several different structures can 
come in question. Arahal et al.16) use a multilay-
er perceptron-based model, and a model based on 
RBF (radial basis function) networks whereas Ro-
hani et al.9) mainly focus on a recurrent neural net-
work and on a feed-forward neural network based 
model. Concerning the fuzzy models, both Fish-
er et al.17) and Sousa et al.') mainly focus on the 
Takagi-Sukeno fuzzy model. 

 Here, we shall look at a quasi-ARMAX (or neuro-
fuzzy) modeling scheme as a model to be used for in 
the NMPC formulation. We formulate the problem 
as a general non-linear, time-invariant system 

 y(t) = g(cp(t)) + v(t)(7) 
y)(t) = [y(t — 1), ... y(t — n), 

u(t — d), ... , u(t — m — d + 1)]T 
v(t) = e(t) + cie(t — 1) + ... + cpe(t — p) 

where y(t) is the output at discrete time-intervals, 
u(t) is the input, v(t) is a disturbance, d(t) is white

noise, d is the time delay, (p(t) is the regression vec-
tor and g is a non-linear function. 

 A hybrid quasi-ARMAX model can be described 
according to the following. Perform a Taylor ex-

pansion of the nonlinear function g, and use two 
coefficient vectors according to 

 y(t) = g(0) + g'(0)cp(t) + 1
(pT (t)g"(0)(P(t) + .. . 

    0 = g/(0)T_ [al...a„b1...bm]T 

09t = (2(PT (t)g"(0) +...)T 
      = [Dal,t ... Aa,1.,t Obl,t . . . Ab,rz,t1T 

(where g(0) is ignored for the sake of simplicity.) 
The system can thus be expressed as a combined 
structure 

 y(t) _ (t)(9 + O9t) + v(t) (8) 

 The parameters (A0t) can be approximated') as 

Aaz,t = fzGp(t)), i = 1, ... , n 
Obj ,t = fj+rt(cp(t)), j = 1, ... , m 

where 

fz (,P(t)) = Wii Nf (pj YP(t))(9) 
=1 

 where Nf(pj, (p(t)) are fuzzy basis functions, wzj 
are the coordinate parameters and pj are the scale 
and position parameter vectors. 

                 Al
k=1,u (xk (t)) N

=Lk  (10) 
           Ej(Ai. liiA (xk(t))) 

  We use A as the minimum operator, r = 
dim(0(t)), L is the number of fuzzy rules, xk(t) are 

the elements of O(t) , and/IA, is the membership 

function of fuzzy set A. p AJ.may be a Gaussian 
function defined by 

p,j (xk(t)) = exp[-1(xk(t)--------------jxk)2] (11) 

2



 In this case, the  parameter vector is defined by 

p = {y7i, z ... xi i]T, j = 1,...,L (12) 

 Our model can then be reformulated as a com-

bined structure 

 y(t) _ c,oT (t)9 + v(t) + E cPT (t)Cj N (p1, cP(t)) 
.?=1 

where S2.j _ [w11 ... wrj ] . 
 Or, alternatively, the system can be expressed as 

a linear regression structure; 

 y(t) - (PNL(t)e + c(t)(13) 

where 

_ [OTW11... WrLC1 ... CAT 

NL (t) = [YPT (t)~PT (t) ® (PNf (t) 
e(t-1)...e(t,—p)]T 

CPNf (t) [Nf (1) , SP(t)), .7 = 2, ... , L] 

       0 = [ai ... a7 bl • .. bm] 

Kronecker production is indicated by ® . This gives 

us an implementable algorithm, where the parame-

ters O can be evaluated using e.g. a recursive least 

squares algorithm. This is the form of the algorithm 

implemented in the simulations below. This form is 

also usable for adaptive control. 

  The investigated predictor can be seen as a learn-

ing network based predictor interpreted as a linear 

predictor network consisting of a global linear pre-
dictor and several local linear predictors with inter-

polation. This predictor should thus be well suited 
for control purposes in e.g. process control, when 

the plant in question has to run at several differ-

ent operating points. Furthermore, the predictor is 

computationally efficient, thus making it exception-

ally well suited for use in NMPC, where the compu-

tational simplicity is crucial, since a non-linear opti-

mization problem has to be solved in every sampling 

instant. 

 4. Quasi-Armax NMPC 

  The predictor presented above has, for control 

purposes, only been illustrated using a one-step a-
head predictive controller?>, often referred to as a

myopic controller. 

 The myopic controller can be seen as the most 

simple case of model predictive control, i.e. the case 

with a prediction horizon and the control horizon = 

1. It can quickly be illustrated according to the 

following. Choose a controller which minimizes the 

cost function 

   J = 2(y(k + 1) - yr(k + 1))2 +2u(k)2' 
 where A is a tuning factor. Substitute y(k + 1) 

with its prediction y(k + 1), where the prediction is 

given by the model used. 
 We look at the example used inn, where the sys-

tem under control is given by 

  y(k) = G(z-1)z(k),(14) 
0.7z-1 - 0.68z-2  G(

z-1) = ------------------------ 
             1 - 1.72z-1 + 0.74z-2 

 where z(k) is a nonlinear function of u(k) given 
by 

        u(k) - 1.75, u(k) > 2 
 z(k) = 0.0625sign(u(k))u(k)2, lu(k)i < 2 (15) 

        u(k) + 1.75, u(k) < -2 

  which behaves like a dead zone. Assume that a 
linear ARX-model is used to model the system 

 y(k + 1) = -aiy(k) - a2y(k - 1) 
         +biu(k) + b2u(k - 1) 
        = 1.72y(k) - 0.74y(k - 1) 

+0.7u(k) - 0.68u(k - 1) 

  Taking the derivative of the loss function J with 
respect to u(k) and equaling it to zero gives an an-

alytical expression for the control action 

          bi 
 u(k) = b2

+---------)[aiy(k) + a2y(k - 1) 
      -b2u(k- 1) + yi.(k + 1)] (16) 

  The myopic controller, although useful for illus-
trative reasons due to its simplicity, is not prac-
tically very useful for process control applications. 
A myopic controller e.g. requires the system to be 
minimum-phase and its I/O delay exactly known. 
This is a severely limiting assumption, especially in 
process control. 

  For the full NMPC case, we will minimize a cost 
function given by



 N,, 

 J(NI,N, _  E a(j)[Y(t+jlt) -yr(t+j)]2 
j=Ni 
                     Nu 

          +~A(j)[u(t+j - 1)12 (17) 
j=1 

 In our example the weights are chosen as a = 1 
and A = constant. Further, in our example we 

choose N1 = 1, Ny = 3 (the prediction horizon) 
and Nu = 3 (the control horizon). Also we use the 
change of the control input instead of the control 
input itself, in order to smoothen the control input. 
In process control, the smoothness of the control ac-
tion is often of significance, in order to e.g. reduce 
wear on actuators. 

3 
 J(k) _ E(y(k +.7) - yr(k +i))2 

j=1 
3 

+ AAu(k +j - 1)2(18) 
j=1 

 For the example above (given by equation 14 and 
15) we can identify a quasi-ARMAX model with 
e.g. 5 parameters in the global model, and 18 lo-
cal models, active in different regions of the input 

space. The identification is performed with a re-
cursive least squares algorithm, and the identified 
model output compares to the actual process out-

put and to the output of an identified linear model 
as shown in Fig.l. 

  The NMPC controller can then be implemented 

according to minimizing equation 18, where 

y(k + 1) = cpNL(k + 1)e

 (70NL(k + 1) = RPT (k 1) (pT(k + 1) 0 (PNf (k + 1)]T 
(pNf(k+1)=[Nf(p.,(P(k+1),j=1,...,L] 

(P(k + 1) = [y(k), ... y(k - n + 1), 
u(k-d+1),...,u(k-m-d+2)]T 

 and y(k + j), j = 2, 3 ... are calculated recursive-
ly. The minimization is performed at every sample 
instant, and only the first calculated control move 
(u(k)) is implemented. The parameter vector pi is 
kept fixed. Control results for the deterministic case 

are illustrated in Fig.2. 

 Another example, useful for demonstrating the 

principles of the proposed controller consists of a 

process working in a few distinct operating regions. 
In each region the process can be described by a

Fig.1 A comparison of identification results on system 
       in equation 14 - 15. Upper graph shows the cur-

       rent input sequence, lower graph shows filtered 

      errors of the linear model (solid, blue line) and of 
       the neuro-fuzzy model (dashed, green line). Mod-

      els have been identified through experiments with 
       a PRBS sequence, similar to the upper graph.

Fig.2 Set-point changes for NMPC control of process 

      given in equations 14 and 15. The model used 

      for control is identified according to Fig.1. The 

       tuning factor A = 0.2, and control and prediction 

       horizons are equal to 3.

linear model. Assume dynamics for three regions 
according to 

y(z-1)  0.0137z-1 + 0.0092z-2 
u(z-1) 1 - 1.1866z-1 + 0.3012z-2' y < -1 

y(z-1) _ 0.0274z-1 + 0.0184z-2 
u(z-1) 1 - 1.1866z-1 + 0.3012z-2' ly < 1 

y(z-1) _ 0.0548z-1 + 0.0368z-2 
u(z-1) 1 - 1.1866z-1 + 0.3012z-2y > 1 

i.e. the process gain changes with the operating re-

gion. The usefulness of the physical interpretation



Fig.3 Control of piecewise linear process with NMPC 

       controller. The controller works well in all re-

        gions.

Fig.4 Control of piecewise linear process with linear M-

      PC controller. The linear MPC cannot operate 

       smoothly in all three regions.

of the parameters can be demonstrated through this 

(oversimplified) example. Let the global model cor-
respond to the parameters in the region —1 < y < 1, 
and the neuro-fuzzy local models  consist of the 
difference between the global model and the mod-

el at the current operating region. The fuzzy basis 
functions are defined so as to correspond to each of 
the distinct operating regions. Control results with 
this controller (prediction and control horizon = 3, 
and a tuning factor equal to 0.05) gives the simulat-

ed set-point changes in Fig.3, and as comparison a 
linear MPC controller is shown in Fig.4. 

 5. Conclusion 

 The purpose of this paper is to relate the quasi-
ARMAX identification method to a thorough pro-

cess control framework, thus this paper presents 
the derivation and application of a nonlinear quasi-

ARMAX predictor to nonlinear model predictive 

control purposes. 

 The proposed controller shows good results, be-

ing able to combine good prediction capability with 

computational efficiency. The controller proposed 

should be well suited for use in the NMPC formu-

lation, since the identification algorithm is compu-

tationally more efficient than e.g. a neural network 

based model') . 

 Furthermore, the specific meaning of the parame-

ters makes the predictor well suited for NMPC con-

trol, since the model thus can be understood and 

analyzed based on fundamental properties of the 

process to be controlled. 
  Several issues are still open concerning this mod-

eling approach for use in NMPC applications. The 

robustness of the resulting control system seems 

promising, but a more rigorous evaluation should be 

performed. Furthermore, even though the param-
eters of the neuro-fuzzy model have explicit mean-

ings, the tuning of the controller as a whole is still a 

quite ad hoc procedure. Also here, more thorough 

investigations are needed. 
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