
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Comparison between Genetic Network Programming
and Genetic Programming Using Evolution of
Ant's Behaviors

Hirasawa, Kotaro
Department of Electrical and Electronic Systems Engineering, Faculty of Information Science
and Electrical Engineering, Kyushu University

Okubo, Masafumi
Department of Electrical and Electronic Systems Engineering, Graduate School of Information
Science and Electrical Engineering, Kyushu University : Graduate Student

Hu, Jinglu
Department of Electrical and Electronic Systems Engineering, Faculty of Information Science
and Electrical Engineering, Kyushu University

https://doi.org/10.15017/1515713

出版情報：九州大学大学院システム情報科学紀要. 6 (1), pp.31-37, 2001-03-26. 九州大学大学院シス
テム情報科学研究院
バージョン：
権利関係：

九州大学大学院

システム情報科学紀要

第6巻 第1号'r成13年3月

Research Reports on Information Science and

Electrical Engineering of Kyushu University

 Vol.6, No.1, March 2001

Comparison between Genetic Network Programming and Genetic

 Programming Using Evolution of Ant's Behaviors

 Kotaro HIRASAWA* , Masafumi OKUBO** and Jinglu HU*

 (Received December 20, 2000)

Abstract: Recently, many methods of evolutionary computation such as Genetic Algorithm(GA)
and Genetic Programming(GP) have been developed as a basic tool for modeling and optimiz-
ing the complex systems. Generally speaking, GA has the genome of string structure, while the

genome in GP is the tree structure. Therefore, GP is suitable to construct the complicated pro-
grams, which can be applied to many real world problems. But, GP is sometimes difficult to
search for a solution because of its bloat and introns. In this paper, a new evolutionary method
named Genetic Network Programming(GNP), whose genome is network structure is proposed to
overcome the low searching efficiency of GP and is applied to the problem on the evolution of
behaviors of ants in order to study the effectiveness of GNP. In addition, the comparison of the

performances between GNP and GP is carried out in simulations on ants behaviors.

Keywords: Genetic algorithm, Genetic programming, Evolutionary computation, Artificial life

 1. Introduction

 There have been many difficult problems to solve
in our society when we want to deal with complex
systems, such that the number of parameters of
the problems is large, the environments defining the

problems are changing, systems can't be identified
accurately and also the space for searching a solu-
tion is enormous. In theses cases, we can rely on the
leaning and evolutionary mechanisms of living sys-
tems in order to solve the above problems, because
living systems have found the abundant ecosystems
where they interact with each other by symbiotic

relations and co-evolve into intelligent creatures us-
ing the mechanisms of development, learning and
evolution.
 Typical computational methods based on the

adaptive evolutionary mechanisms of living sys-
tems are Genetic Algorithm(GA)1) and Genetic

Programming(GP)2). GA has the genome of string
structure, while the genome in GP is the tree struc-
ture. Therefore GP can be applied successfully to
many real problems where complicated programs
are to be construced to solve the problems. But,

it is generally said that GP is sometimes difficult to
search for an optimum solution because the search-
ing space of solutions becomes enormous due to its
bloat and introns, that is, searching efficiency of GP

* Department of Electrical and Electronic Systems

Engineering

** Department of Electrical and Electronic Systems Engi-

neering, Graduate Student

is not so high in some cases. In addition, although
it is possible to set the past information in the tree
structure of GP, a priori knowledge is needed about
to what extent the past information should be giv-
en.

 In this paper, a new evolutionary computa-

tional method named Genetic Network Program-
ming(GNP), whose genome structure is networks,
is proposed to overcome the problems of GP. In ad-
dition to that, the comparison of the performances
between GNP and GP is given by applying GNP to
the problems on the evolution of behaviors of ants.

 There have been also proposed Evolutionary
Programming(EP)3) and Parallel Algorithm Discov-
ery and Orchestration(PADO)4) which use network
structures as their genome. EP has been developed
to solve sequence prediction problems defined on the
finite alphabet, and its structure is fundamentally

finite automaton. Therefore, transition functions
for all inputs to all states of the automaton should
be defined in advance, in other words, the struc-
ture of EP becomes complicated when the number
of its inputs and states is large.On the other hand,

GNP is possible to construct problem oriented com-

pact genome networks, because in GNP, too many
transition functions need not be installed due to the
fact that an appropriate number of problem orient-
ed judgement nodes and processing nodes are set in
the network.

 The programs of PADO are also regarded as N

nodes in a derected graph, with as many as N arcs
are going from each node. E each node consists of

an action part and a branch-decision part. There
are also the following special nodes in a program
such as start node, stop node, and subprogram call-

ing nodes. Although the network of PADO is simi-
lar to that of GNP, PADO is oririnally designed to
construct the same static programs as GP, which
can be seen from the fact that PADO has a stop

 node, while GNP is mainly used to model dynam-
ic systems. In other words, GNP is a new evolu-

tionary method to construct a generalized descrete
event systems by combining program models, e.g.,

judgement and processing modules using evolution-
ary computation. In this paper, the main parts are
devoted to the comparison between GNP and GP.

 The paper is organized as follows. In Section 2,

GA and GP are briefly described. GNP is presented
in Section 3. As a numerical example, simmulations
of the evolution of behaviors of ants are carried out
in Section 4. Section 5 is devoted to the conclusions.

 2. Conventional Evolutionary Compu-
 tation

 2.1 Genetic Algorithm
 Genetic Algorithm(GA) was originally developed

from the middle of 1960's to the beginning of 1970's
by J. Holland in order to study the adaptive mech-
anisms of nature and develop an artificial model of
evolution. GA is an important predecessor of ge-

netic programming, from which the latter derived
its name. GAs have proved useful in a wide variety
of real world problems.

 The original GA has two main characteristics : it
uses a fixed length binary representation and makes
heavy use of crossover. The simple representation
of individuals as fixed length strings of zeros and

ones (Fig. 1) is used as the encoding of the prob-
lem. The commonest form of crossover is called
one point crossover. Two parents individuals of
the same length are aligned with each other and
a crossover point is chosen at random between any
of their component positions. The tails of the two

individuals from this point onward are switched, re-
sulting in two new offspring. Another key ingredi-
ent to GAs is selection mechanism. This mechanism
contains one of the basic principles of evolutionary
computation selection -more individuals than the
best one have a chance to reproduce.

 But, recently it has become known that as the

genome of GA is fixed length string, it is hard for
GA to obtain appropriate computer programs usu-
ally changing their size and form depending on the

problems.

Fig. 1 : Problem representation in the binary

 string of a GA.

 2.2 Genetic Programming

 Two researchers, Cramer5) and Koza2 suggested

that a tree structure should be used as the program

representation in a genome to overcome the prob-

lems of GA. Koza, however, was the first to recog-

nize the importance of the method and demonstrate

its feasibility for automatic programming in gener-

al. In his 1989 paper, he provided evidence in the

form of several problems from five different areas.

 Today there exists a large set of different genetic

programming techniques which can be classified by
many criteria, such as abstracting mechanisms, use

of memory, genetic operators employed, and more.

The tree type genome of typical GP is shown in Fig.

2. GP consists of one root node and plural number

of non-terminal nodes and ternimal nodes, where

non terminal nodes are used as functions such as

arithmetic function, Boolean function, conditional

statements and so on. On the other hand, terminal

nodes are comprised of the inputs to the GP pro-

gram or used for the particular processing which
depends on the problems concerned.

Fig. 2 : Problem representation in the tree of a

 GP.

 When GP is used to generate the behavior se-

quences of the dynamic agents, their sequences can

be obtained by processing each node starting from

the root node.

 The following genetic operators shown in Fig. 3

are usually used in GP. The first one is to swap the

selected subtrees between the two parents, the sec-

 and one is to select a point in the tree randomly and

replacing the existing subtree at that point with a

new randomly generated subtree, and the last one

is to permute arguments of a node.

 3. Genetic Network Programming

 3.1 Basic Structure of GNP

 As was stated before, the genome of GNP has

network structure which consists of two kinds of

nodes, i.e., judgement nodes and processing nodes

as shown in Fig. 4.

Judgement nodes and processing nodes corre-

spond to non terminal nodes and terminal nodes

in GP, respectively. In addition, time delays can be

set in and between the nodes. Time delay di denotes

the processing time in node i, while time delay dij

means the time period from the end of the process-

ing of node i to the beginning of the processing of

node j. Time delays are installed in GNP so that it

can model the dynamic discrete event systems more

easily than GP.

 In other words, GNP is proposed to model the

generalized discrete event systems by evolving the
network genome. Furthermore, the genome network

of GNP has more problem oriented architectures

than that of general automatons in a sense that

judgement nodes in GNP are designed to suit to
the problems concerned more specically.

Fig. 3 : Various genetic operators in GP

 GP evolve a population of programs in parallel.

The driving force of this simulated evolution is some

form of fitness-based selection. Fitness -based se-

lection determines which programs are selected for

further improvements. The GP problem represen-

tation is, theoretically, a superset of the represen-

tations of all other machine learning systems. This

systems from both its variable length structure and

its freedom of choice of functions and terminals. G-

P's enormous freedom of representation is a mixed

blessing. With such a huge search space, an algo-

rithm might have to search for a long time.

Fig. 4 : The genome structure of GNP

 3.2 Genetic Operators of GNP
 The following genetic operators shown in Fig. 5

are used in GNP. Mutation operators on only one in-
dividual. One type of mutation operator in network
GNP selects a point in the network randomly and

changes the connection of the node at that point

(offspring resulting from changing connection), or
replaces the existing node at that point with a new
randomly generated node (offspring resulting from

changing node). Network-based crossover proceeds
by the following. Choose two individuals as par-
ents, divide and select a subnetwork in each parent,
and swap the selected subnetworks between the two

parents. The resulting individuals are the children

(offspring resulting from crossover).

(Offspring resulting from changing connection)

shows that the efficiency of collecting food by ants

is increased by using the medium of pheromone.

 The above behaviors of ants are modeled by GNP

and GP and compared in order to demonstrate that

GNP can model the ant's behavior more efficiently

and effectively than GP.

 The exact simulation model is as follows : There

are two spots where food is placed and one nest

in an artificial field which is made of 32 x 32 torus

boxes as shown in Fig. 6. The size of the food

mountain is 3 x 3 x 8, therefore there exist a total

of 144 pieces of food and the size of the nest is 3 x 3.

The total number of ants is 20.

(Offspring resulting from changing node)

 (Offspring resulting from crossover)

Fig. 5 : Various genetic operators in GNP

 After genetic operations, fitness-based selection

determines which network genomes are selected for

further improvements.

 4. Simulations

 Simulations are carried out in order to compare

the evolutionary performances between GNP and

GP and to show the effectiveness of GNP.

 4.1 Simulation Conditions

 Simulations of collecting food by ants are ex-

plained as follws. When an ant find food, the ant

goes back to the nest dropping pheromone. Ants are
likely to be attracted to the places where pheromone

is. Pheromone is volatile. As a result as long as

food exists, the pheromone road grows and finally

it disappears according to the run out of food. This

Fig. 6 : The ant world

 The mission of ants is to bring as much food as
possible to the nest within a fixed time period. The
ant moves one box at one time step. Furthermore
ants can get the following information : (1) the po-
sition of an ant itself in the field, (2) the direction to
which an ant is moving (4 directions are possible),

(3) the information about whether an ant has food
or not.

 The following four kinds of respective judgement

nodes and processing nodes shown in Table 1 are

used in GNP.

 When pheromone is dropped, it is spreaded to

3 x 3 boxes and disappears 10 time steps later, be-

cause of its volatility.

 Fitness function is defined as the number of re-

maining food, that is, the number of food which

could not be brought to the nest within 1000 time

steps. Therefore the optimal value of fitness func-

 ton is zero.

 Table 1 : Functions of judgement nodes and

 processing nodes

For simplicity all the delay are set at one time step

in GNP.

 Average fitness values of the three kinds of meth-

ods mentioned before are shown in Fig. 7, changing

the maximum depth of the tree in GP.

J/Pfunction

J whether an ant is on a food box or not

J whether an ant has food or not
J if there is food on the next going box,

 then an ant steps to the box

J if there is pheromone on the next going
 box, then an ant steps to the box

 P step to the next box randomly

 P step to the nest

 P pick up food
 P drop pheromone

 J : judgement node , P : processing node

(Maximum depth of tree is 5)
 4.2 Simulation Results

 The following three kinds of evolutionary compu-

tations are studied, i.e., GNP, GNP with GP type

and GP. Here GNP with GP type is a kind of GN-

P that starts from the start node and returns to

the start node again when it reaches the stop node.

Therefore GNP with GP type is similar to PADO

system.

 4.2.1 Study of changing the maximum

 depth of the tree in GP

 In this subsection, we studied the effect of chang-

ing the maximum depth of the tree in GP. Simula-

tion conditions are shown in Table 2.

Table 2 : Simulation conditions of changing the

 maximam depth of the tree in GP

(Maximum depth of tree is 8)

 itemI number

 the number of individuals 100

 the number of nodes 24

 connection changing rate 0.7

GNP node changing rate 0.1

 crossover rate 0.1

 crossover rate 0.5

GP mutation rate 0.05

 permutation tate 0.1

 The mutation rate and crossover rate etc. in Ta-

ble 2 is the optimum rate by which the minimum

fitnesses of GNP and GP are obtained, respectively.

 (Maximum depth of tree is 10)

Fig. 7 : Learning curves of ant's behavior
 changing the maximum depth of tree

 It is clarified from Fig. 7 that GNP is the best,

followed by GP, and GNP with GP type is the worst,

when the maximum depth of the tree in GP is five.

On the other hand, when the maximum depth is

eight or ten, the fitnesses of GNP with GP type

and GP are almost the same.

 From the above it is estimated that the efficiency

of searching for solutions in GP degenerates accord-

ing to the increase of the maximum depth of the

tree, because the searching space becomes huge due

to the bloat of GP.

 Therefore it is concluded that GNP can be e-

volved more efficiently and more quickly than GP

irrespective of the maximum depth of the tree in

GP. This is because the number of nodes in GNP

does not change even after its genetic operations,

while in GP the tree has the probability to grow to

the maximum depth as mentioned before.

 4.2.2 Study of changing the number of in-

 dividuals

 In this subsection, the effect of changing the num-

ber of individuals was studied, where the maximum

depth of the tree in GP is set at eight. Simulation

conditions are the same as Table 2.

(In the case of GP)

(In the case of GP)

 (In the case of GP)

Fig. 9 : Learning curves of ant's behavior
 using 500 individuals

 (In the case of GNP)

Fig. 8 : Learning curves of ant's behavior
 using 20 individuals

 Figures, 8,9 show the maximum, minimum and

average fitnesses of GNP and GP with the number

of individuals being 20 and 500, respectively. The

upper part of the figures is about GP, while the re-

sults of GNP are shown in the lower part of the

figures.

 From Fig. 8, we can see that the searching for

the solutions using GNP is carried out more effi-

ciently than GP when the number of individuals is

relatively small 20. On the other hand, enen when

the individuals increase to relatively large 500, still

the seaching of GNP is carried out more efficiently

than GP, although the efficiency gap between GNP

and GP becomes small.

 Agreat number of individuals are generally used

in GP in order to obtain the optimal solution. But

it is clarified from Fig. 8 and Fig. 9 that GNP

can find the optimal solution easily in spite of the

small number of individuals.

 4.2.3 Study of changing the number of the

 nodes

 In this subsection, simulations for studying the ef-

fect of changing the number of nodes in GNP were

carried out with the number of individuals being

fixed at 100. Simulation conditions are the same as

Table 2.

 Fig. 10 shows the maximum, minimum and av-

erage fitnesses of GNP when the total number of

nodes is 8, i.e., one node per each function, and a

total of 24 nodes are used, i.e., three nodes per each

function, respectively.

(In the case of 8 nodes)

 (In the case of 24 nodes)

 Fig. 10 : Learning curves of ant's behavior
 when changing the number of nodes

 From Fig. 10, it is clarified that at least three
nodes per function are needed to obtain the optimal

solution. But, it is supposed two many nodes may
cause the low searching efficiency because of a huge

search space as in the case of GP bloat.

 5. Conclusion

 We proposed a new evolutionary computa-

tion algorithm named Genetic Network Program-
ming(GNP), where the genome employs network
structures in stead of tree structures in Genetic Pro-

gramming(GP), and compared the performance be-
tween GNP and GP using the evolution of behaviors

of ants.
 In addition, it was studied how GNP, Evolu-

tionary Programming(EP) and Parallel Algoritlrrn
Discovery and Orchestration(PADO) are differently
constructed and applied to real problems, although
they all have the same network genome structures.

 From simulations on ants behavios, it is clari-
fied that the average fitness of GNP is always bet-

ter than that of GP under various conditions, even
when there is not so much difference between the
two with respect to the optimum fitness.This is be-
cause the efficiency of searching for solutions in GN-
P is higher than that of GP due to the network

genome structures of GNP, which essentially pro-
hibit GNP from growing without limit.

 References

 1) J. H. Holland, "Adaptation in Natural and Artificial
Systems" , University of Michigan Press, 1975, MIT

 Press 1992
 2) J. Koza, "Genetic Programming, On the Programming

 of Computers by means of Natural Selection", MIT
 Press, 1992

 3) L. J. Fogel, A. J. Owens, arid M. J. Walsh, "Artificial
 Intelligence through Simulated Evolution", Wiley, 1966

 4) A. Teller and M. Ueloso, "PADO : Learning tree
 structured algorithms for orchestration into all object

 recognition I system" , Technical Report CMU-CS-95-
 101, 1995, Department of Computer Science, Carnegie

 Mellon University, Pittsburg, PA.
 5) N. L. Cramer, "A representation for the adaptive gen-

 eration of simple sequential programs", Proceedings of

 an International Conference on Genetic Algorithms and
 the Applications, pp. 183-187, 1985

 6) J. R. Koza, "Hirerarchical genetic algorithms operating
 on populations of computer programs", Proceedings of

 the Eleventh International Joint Conference on Artifi-
 cial Intelligence, IJCAI-89, Vol. 1, pp. 768-774, 1989

 7) H. Katagiri, K. Hirasawa and J. Hu, "Genetic Net-
 work Programming-Apprication to Intelligent Agents-" ,

 Proc. of IEEE International Conference on System,

 Man and Cybernetics, pp. 3829-3834, 2000

