
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Comparison between Genetic Network Programming
and Genetic Programming Using Evolution of
Ant's Behaviors

Hirasawa, Kotaro
Department of Electrical and Electronic Systems Engineering, Faculty of Information Science
and Electrical Engineering, Kyushu University

Okubo, Masafumi
Department of Electrical and Electronic Systems Engineering, Graduate School of Information
Science and Electrical Engineering, Kyushu University : Graduate Student

Hu, Jinglu
Department of Electrical and Electronic Systems Engineering, Faculty of Information Science
and Electrical Engineering, Kyushu University

https://doi.org/10.15017/1515713

出版情報：九州大学大学院システム情報科学紀要. 6 (1), pp.31-37, 2001-03-26. 九州大学大学院シス
テム情報科学研究院
バージョン：
権利関係：



九州大学大学院

システム情報科学紀要

第6巻 第1号'r成13年3月

Research Reports on Information Science and 

Electrical Engineering of Kyushu University 

                   Vol.6, No.1, March 2001

Comparison between Genetic Network Programming and Genetic 

       Programming Using Evolution of Ant's Behaviors 

    Kotaro  HIRASAWA*  , Masafumi OKUBO** and Jinglu HU* 

                     (Received December 20, 2000)

Abstract: Recently, many methods of evolutionary computation such as Genetic Algorithm(GA) 
and Genetic Programming(GP) have been developed as a basic tool for modeling and optimiz-
ing the complex systems. Generally speaking, GA has the genome of string structure, while the 

genome in GP is the tree structure. Therefore, GP is suitable to construct the complicated pro-
grams, which can be applied to many real world problems. But, GP is sometimes difficult to 
search for a solution because of its bloat and introns. In this paper, a new evolutionary method 
named Genetic Network Programming(GNP), whose genome is network structure is proposed to 
overcome the low searching efficiency of GP and is applied to the problem on the evolution of 
behaviors of ants in order to study the effectiveness of GNP. In addition, the comparison of the 

performances between GNP and GP is carried out in simulations on ants behaviors. 
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 1. Introduction 

 There have been many difficult problems to solve 
in our society when we want to deal with complex 
systems, such that the number of parameters of 
the problems is large, the environments defining the 

problems are changing, systems can't be identified 
accurately and also the space for searching a solu-
tion is enormous. In theses cases, we can rely on the 
leaning and evolutionary mechanisms of living sys-
tems in order to solve the above problems, because 
living systems have found the abundant ecosystems 
where they interact with each other by symbiotic 

relations and co-evolve into intelligent creatures us-
ing the mechanisms of development, learning and 
evolution. 
 Typical computational methods based on the 

adaptive evolutionary mechanisms of living sys-
tems are Genetic Algorithm(GA)1) and Genetic 

Programming(GP)2). GA has the genome of string 
structure, while the genome in GP is the tree struc-
ture. Therefore GP can be applied successfully to 
many real problems where complicated programs 
are to be construced to solve the problems. But, 

it is generally said that GP is sometimes difficult to 
search for an optimum solution because the search-
ing space of solutions becomes enormous due to its 
bloat and introns, that is, searching efficiency of GP
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is not so high in some cases. In addition, although 
it is possible to set the past information in the tree 
structure of GP, a priori knowledge is needed about 
to what extent the past information should be giv-
en. 

 In this paper, a new evolutionary computa-

tional method named Genetic Network Program-
ming(GNP), whose genome structure is networks, 
is proposed to overcome the problems of GP. In ad-
dition to that, the comparison of the performances 
between GNP and GP is given by applying GNP to 
the problems on the evolution of behaviors of ants. 

 There have been also proposed Evolutionary 
Programming(EP)3) and Parallel Algorithm Discov-
ery and Orchestration(PADO)4) which use network 
structures as their genome. EP has been developed 
to solve sequence prediction problems defined on the 
finite alphabet, and its structure is fundamentally 

finite automaton. Therefore, transition functions 
for all inputs to all states of the automaton should 
be defined in advance, in other words, the struc-
ture of EP becomes complicated when the number 
of its inputs and states is large.On the other hand, 

GNP is possible to construct problem oriented com-

pact genome networks, because in GNP, too many 
transition functions need not be installed due to the 
fact that an appropriate number of problem orient-
ed judgement nodes and processing nodes are set in 
the network. 

 The programs of PADO are also regarded as N 

nodes in a derected graph, with as many as N arcs 
are going from each node. E each node consists of



an action part and a branch-decision part. There 
are also the following special nodes in a program 
such as start node, stop node, and subprogram call-

ing nodes. Although the network of PADO is simi-
lar to that of GNP, PADO is oririnally designed to 
construct the same static programs as GP, which 
can be seen from the fact that PADO has a stop 

 node, while GNP is mainly used to model dynam-
ic systems. In other words, GNP is a new evolu-

tionary method to construct a generalized descrete 
event systems by combining program models, e.g., 

judgement and processing modules using evolution-
ary computation. In this paper, the main parts are 
devoted to the comparison between GNP and GP. 

  The paper is organized as follows. In Section 2, 

GA and GP are briefly described. GNP is presented 
in Section 3. As a numerical example, simmulations 
of the evolution of behaviors of ants are carried out 
in Section 4. Section 5 is devoted to the conclusions. 

 2. Conventional Evolutionary Compu-
    tation 

 2.1 Genetic Algorithm 
 Genetic Algorithm(GA) was originally developed 

from the middle of 1960's to the beginning of 1970's 
by J. Holland in order to study the adaptive mech-
anisms of nature and develop an artificial model of 
evolution. GA is an important predecessor of ge-

netic programming, from which the latter derived 
its name. GAs have proved useful in a wide variety 
of real world problems. 

  The original GA has two main characteristics : it 
uses a fixed length binary representation and makes 
heavy use of crossover. The simple representation 
of individuals as fixed length strings of zeros and 

ones (Fig. 1) is used as the encoding of the prob-
lem. The commonest form of crossover is called 
one point crossover. Two parents individuals of 
the same length are aligned with each other and 
a crossover point is chosen at random between any 
of their component positions. The tails of the two 

individuals from this point onward are switched, re-
sulting in two new offspring. Another key ingredi-
ent to GAs is selection mechanism. This mechanism 
contains one of the basic principles of evolutionary 
computation selection -more individuals than the 
best one have a chance to reproduce. 

  But, recently it has become known that as the 

genome of GA is fixed length string, it is hard for 
GA to obtain appropriate computer programs usu-
ally changing their size and form depending on the 

problems.

Fig. 1 : Problem representation in the binary 

            string of a GA.

 2.2 Genetic Programming 

 Two researchers, Cramer5) and Koza2 suggested 

that a tree structure should be used as the program 

representation in a genome to overcome the prob-

lems of GA. Koza, however, was the first to recog-

nize the importance of the method and demonstrate 

its feasibility for automatic programming in gener-

al. In his 1989 paper, he provided evidence in the 

form of several problems from five different areas. 

 Today there exists a large set of different genetic 

programming techniques which can be classified by 
many criteria, such as abstracting mechanisms, use 

of memory, genetic operators employed, and more. 

The tree type genome of typical GP is shown in Fig. 

2. GP consists of one root node and plural number 

of non-terminal nodes and ternimal nodes, where 

non terminal nodes are used as functions such as 

arithmetic function, Boolean function, conditional 

statements and so on. On the other hand, terminal 

nodes are comprised of the inputs to the GP pro-

gram or used for the particular processing which 
depends on the problems concerned.

Fig. 2 : Problem representation in the tree of a 

                   GP.

 When GP is used to generate the behavior se-

quences of the dynamic agents, their sequences can 

be obtained by processing each node starting from 

the root node. 

 The following genetic operators shown in Fig. 3 

are usually used in GP. The first one is to swap the 

selected subtrees between the two parents, the sec-



 and one is to select a point in the tree randomly and 

replacing the existing subtree at that point with a 

new randomly generated subtree, and the last one 

is to permute arguments of a node.

 3. Genetic Network Programming 

 3.1 Basic Structure of GNP 

 As was stated before, the genome of GNP has 

network structure which consists of two kinds of 

nodes, i.e., judgement nodes and processing nodes 

as shown in Fig. 4. 

Judgement nodes and processing nodes corre-

spond to non terminal nodes and terminal nodes 

in GP, respectively. In addition, time delays can be 

set in and between the nodes. Time delay di denotes 

the processing time in node i, while time delay dij 

means the time period from the end of the process-

ing of node i to the beginning of the processing of 

node j. Time delays are installed in GNP so that it 

can model the dynamic discrete event systems more 

easily than GP. 

 In other words, GNP is proposed to model the 

generalized discrete event systems by evolving the 
network genome. Furthermore, the genome network 

of GNP has more problem oriented architectures 

than that of general automatons in a sense that 

judgement nodes in GNP are designed to suit to 
the problems concerned more specically.

Fig. 3 : Various genetic operators in GP

 GP evolve a population of programs in parallel. 

The driving force of this simulated evolution is some 

form of fitness-based selection. Fitness -based se-

lection determines which programs are selected for 

further improvements. The GP problem represen-

tation is, theoretically, a superset of the represen-

tations of all other machine learning systems. This 

systems from both its variable length structure and 

its freedom of choice of functions and terminals. G-

P's enormous freedom of representation is a mixed 

blessing. With such a huge search space, an algo-

rithm might have to search for a long time.

Fig. 4 : The genome structure of GNP

 3.2 Genetic Operators of GNP 
 The following genetic operators shown in Fig. 5 

are used in GNP. Mutation operators on only one in-
dividual. One type of mutation operator in network 
GNP selects a point in the network randomly and 

changes the connection of the node at that point 

(offspring resulting from changing connection), or 
replaces the existing node at that point with a new 
randomly generated node (offspring resulting from



changing node). Network-based crossover proceeds 
by the following. Choose two individuals as par-
ents, divide and select a subnetwork in each parent, 
and swap the selected subnetworks between the two 

parents. The resulting individuals are the children 

(offspring resulting from crossover).

(Offspring resulting from changing connection)

shows that the efficiency of collecting food by ants 

is increased by using the medium of pheromone. 

 The above behaviors of ants are modeled by GNP 

and GP and compared in order to demonstrate that 

GNP can model the ant's behavior more efficiently 

and  effectively than GP. 

 The exact simulation model is as follows : There 

are two spots where food is placed and one nest 

in an artificial field which is made of 32 x 32 torus 

boxes as shown in Fig. 6. The size of the food 

mountain is 3 x 3 x 8, therefore there exist a total 

of 144 pieces of food and the size of the nest is 3 x 3. 

The total number of ants is 20.

(Offspring resulting from changing node)

    (Offspring resulting from crossover) 

Fig. 5 : Various genetic operators in GNP

 After genetic operations, fitness-based selection 

determines which network genomes are selected for 

further improvements. 

 4. Simulations 

  Simulations are carried out in order to compare 

the evolutionary performances between GNP and 

GP and to show the effectiveness of GNP. 

 4.1 Simulation Conditions 

 Simulations of collecting food by ants are ex-

plained as follws. When an ant find food, the ant 

goes back to the nest dropping pheromone. Ants are 
likely to be attracted to the places where pheromone 

is. Pheromone is volatile. As a result as long as 

food exists, the pheromone road grows and finally 

it disappears according to the run out of food. This

Fig. 6 : The ant world

 The mission of ants is to bring as much food as 
possible to the nest within a fixed time period. The 
ant moves one box at one time step. Furthermore 
ants can get the following information : (1) the po-
sition of an ant itself in the field, (2) the direction to 
which an ant is moving (4 directions are possible), 

(3) the information about whether an ant has food 
or not. 

 The following four kinds of respective judgement 

nodes and processing nodes shown in Table 1 are 

used in GNP. 

 When pheromone is dropped, it is spreaded to 

3 x 3 boxes and disappears 10 time steps later, be-

cause of its volatility. 

 Fitness function is defined as the number of re-

maining food, that is, the number of food which 

could not be brought to the nest within 1000 time 

steps. Therefore the optimal value of fitness func-



 ton is zero. 

  Table 1 : Functions of judgement nodes and 

               processing nodes

For simplicity all the delay are set at one time step 

in GNP. 

 Average fitness values of the three kinds of meth-

ods mentioned before are shown in Fig. 7, changing 

the maximum depth of the tree in GP.

J/Pfunction 

J whether an ant is on a food box or not 

J whether an ant has food or not 
J if there is food on the next going box, 

      then an ant steps to the box 

J if there is pheromone on the next going 
       box, then an ant steps to the box 

  P step to the next box randomly 

  P step to the nest 

  P pick up food 
  P drop pheromone 

   J : judgement node , P : processing node

(Maximum depth of tree is 5)
 4.2 Simulation Results 

 The following three kinds of evolutionary compu-

tations are studied, i.e., GNP, GNP with GP type 

and GP. Here GNP with GP type is a kind of GN-

P that starts from the start node and returns to 

the start node again when it reaches the stop node. 

Therefore GNP with GP type is similar to PADO 

system. 

 4.2.1 Study of changing the maximum 

      depth of the tree in GP 

 In this subsection, we studied the effect of chang-

ing the maximum depth of the tree in GP. Simula-

tion conditions are shown in Table 2. 

Table 2 : Simulation conditions of changing the 

      maximam depth of the tree in GP

(Maximum depth of tree is 8)

      itemI number 

  the number of individuals 100  

    the number of nodes 24 

      connection changing rate 0.7 

GNP  node changing rate 0.1 

         crossover rate 0.1 

         crossover rate 0.5 

GP mutation rate 0.05 

        permutation tate 0.1

 The mutation rate and crossover rate etc. in Ta-

ble 2 is the optimum rate by which the minimum 

fitnesses of GNP and GP are obtained, respectively.

    (Maximum depth of tree is 10) 

Fig. 7 : Learning curves of ant's behavior 
     changing the maximum depth of tree



 It is clarified from Fig. 7 that GNP is the best, 

followed by GP, and GNP with GP type is the worst, 

when the  maximum depth of the tree in GP is five. 

On the other hand, when the maximum depth is 

eight or ten, the fitnesses of GNP with GP type 

and GP are almost the same. 

 From the above it is estimated that the efficiency 

of searching for solutions in GP degenerates accord-

ing to the increase of the maximum depth of the 

tree, because the searching space becomes huge due 

to the bloat of GP. 

 Therefore it is concluded that GNP can be e-

volved more efficiently and more quickly than GP 

irrespective of the maximum depth of the tree in 

GP. This is because the number of nodes in GNP 

does not change even after its genetic operations, 

while in GP the tree has the probability to grow to 

the maximum depth as mentioned before. 

 4.2.2 Study of changing the number of in-

       dividuals

 In this subsection, the effect of changing the num-

ber of individuals was studied, where the maximum 

depth of the tree in GP is set at eight. Simulation 

conditions are the same as Table 2.

(In the case of GP)

(In the case of GP)

        (In the case of GP) 

Fig. 9 : Learning curves of ant's behavior 
        using 500 individuals

        (In the case of GNP) 

Fig. 8 : Learning curves of ant's behavior 
        using 20 individuals

 Figures, 8,9 show the maximum, minimum and 

average fitnesses of GNP and GP with the number 

of individuals being 20 and 500, respectively. The 

upper part of the figures is about GP, while the re-

sults of GNP are shown in the lower part of the 

figures. 

 From Fig. 8, we can see that the searching for 

the solutions using GNP is carried out more effi-

ciently than GP when the number of individuals is 

relatively small 20. On the other hand, enen when 

the individuals increase to relatively large 500, still 

the seaching of GNP is carried out more efficiently 

than GP, although the efficiency gap between GNP 

and GP becomes small. 

 Agreat number of individuals are generally used 

in GP in order to obtain the optimal solution. But



it is clarified from Fig. 8 and Fig. 9 that GNP 

can find the optimal solution easily in spite of the 

small number of individuals. 

 4.2.3 Study of changing the number of the 

        nodes 

 In this subsection, simulations for studying the ef-

fect of changing the number of nodes in GNP were 

carried out with the number of individuals being 

fixed at 100. Simulation conditions are the  same as 

Table 2. 

  Fig. 10 shows the maximum, minimum and av-

erage fitnesses of GNP when the total number of 

nodes is 8, i.e., one node per each function, and a 

total of 24 nodes are used, i.e., three nodes per each 

function, respectively.

(In the case of 8 nodes)

          (In the case of 24 nodes) 

   Fig. 10 : Learning curves of ant's behavior 
        when changing the number of nodes 

 From Fig. 10, it is clarified that at least three 
nodes per function are needed to obtain the optimal

solution. But, it is supposed two many nodes may 
cause the low searching efficiency because of a huge 

search space as in the case of GP bloat. 

 5. Conclusion 

 We proposed a new evolutionary computa-

tion algorithm named Genetic Network Program-
ming(GNP), where the genome employs network 
structures in stead of tree structures in Genetic Pro-

gramming(GP), and compared the performance be-
tween GNP and GP using the evolution of behaviors 

of ants. 
 In addition, it was studied how GNP, Evolu-

tionary Programming(EP) and Parallel Algoritlrrn 
Discovery and Orchestration(PADO) are differently 
constructed and applied to real problems, although 
they all have the same network genome structures. 

  From simulations on ants behavios, it is clari-
fied that the average fitness of GNP is always bet-

ter than that of GP under various conditions, even 
when there is not so much difference between the 
two with respect to the optimum fitness.This is be-
cause the efficiency of searching for solutions in GN-
P is higher than that of GP due to the network 

genome structures of GNP, which essentially pro-
hibit GNP from growing without limit. 
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