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Abstract: Conventional process schedulers in operating systems divide a  machine's CPU re-
source among processes using a fixed scheduling policy, in which the utilization of a computer 
system (e.g., a real-time or a timesharing system) is a major concern rather than content or be-
havior of a process. As a result, the CPU resource is likely to be used in an inefficient manner, 
or the processing time of a process might be extended unnecessarily. In this paper, we therefore 

propose a process' behavior-based scheduler that delays process switching in order to allow the 
object process to continue its execution even though its timeslice has already expired, when it 
is predicted from an advanced knowledge called PFS (Program Flow Sequence) that the object 

process needs a little bit more CPU time before it voluntarily relinquishes the CPU. This allows 
the processing time or the process switching cost of the object process to be reduced. 
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 1. Introduction 

  Conventional process schedulers divide a ma-
chine's CPU resource among processes using a fixed 
scheduling policy, based on the utilization of a com-

puter system such as a real-time or a timeshar-
ing system. A real-time system's scheduling pol-

icy must be able to analyze or handle data faster 
than they come in and it must also respond to time 
events. A timesharing system's scheduling policy is 
to provide good response to interactive users. It is 
an historical artifact from a time when many users 

with interactive and batch computing requirements 
shared a single CPU resource, and it is still used 
in most workstation operating systems. Real-time 
systems' scheduling policies 1)-3) are usually only 
available in real-time operating systems, and not in 
more general purpose operating systems, like work-

station operating systems. However, the advent of 
multimedia applications on PCs and workstations 
has called for new scheduling paradigms to support 
real-time in systems with conventional timesharing 
schedulers. One approach to do this is to schedule 
based on proportion and/or period 4),5). A different 

approach is based on hierarchical scheduling with 
several scheduling classes and with each application 
being assigned to one of these classes for the entire 
duration of its execution 6);').
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 Since the control over the allocation of the CPU 
resource is based on the utilization of a computer 
system, none of the above approaches is trying to 

schedule based on content or behavior of a process. 
As a consequence, in some cases, this can hinder an 
effective use of the CPU resource or can extend the 

processing time of a process unnecessarily. For ex-
ample, in a timesharing system, each process is as-
signed a time interval, called its quantum, or times-

lice, which it is allowed to run. If the process is 
still running at the end of its timeslice, the CPU is 

preempted and given to the next waiting process no 
matter how much more CPU time the process needs. 
Thus, a process that needs just a little bit more 
CPU time will also need to wait until its next times-
lice. Because of this, the processing time and the 

process switching cost increase unnecessarily. For 
example, when a process uses up its timeslice just 
before it initiates an I/O operation, it will volun-
tarily relinquishes the CPU (i.e., the process blocks 
itself pending the completion of the I/O operation) 
immediately after the beginning of its next times-

lice. If we had predicted the behavior of the process 
and delayed process switching according to the pre-
dicted behavior allowing the process to continue its 
execution until it initiated an I/O operation, then 
the extra costs mentioned above would have been 
avoided. 

 Therefore, we proposed a scheduling idea called 
POS (Program Oriented Schedule)8). The idea of 
POS is by increasing an operating system's ability 
to alter the execution behavior of a program accord-



ing to the behavior of the corresponding process 
 in the previous execution(s), an operating system 

could optnmze the execution behavior of the pro-
gram allowing user requirements (e.g., performance 
enhancement) to be satisfied. By applying this idea 
to the process scheduler, we can solve the problem 
mentioned above and also run processes more effec-
tively. 

 In this paper, we proposed a POS idea-based pro-
cess scheduler that alters the execution behavior 
of a program by controlling the timing of process 
switching, in order to reduce the processing time 
and the process switching cost. To be more pre-
cise, it delays process switching in order to allow 
the corresponding process to continue its execution 
even though its timeslice has already expired, when 
it is predicted from an advanced knowledge called 
PFS (Program Flow Sequence) that the correspond-
ing process needs a little bit more CPU time be-
fore it voluntarily relinquishes the CPU. The PFS 
of each program is created based on the behavior 
of its corresponding process at the end of the first 
execution, and it is used whenever the program is 
executed from then on. It also adjusted based on 
the feedback obtained from each execution. We also 
present the experimental validation of our scheduler 
by using a test program with regard to the length of 
time to delay process switching and the processing 
tune. 

 2. The Design of Scheduler 
 A POS idea-based scheduler can be divided in two 

parts: the logger and the process controller. When 
a program is executed, if its PFS does not exist then 
the logger will record the execution behavior of the 
corresponding process and used it to create the PFS. 
If its PFS exists then the process controller will use 
the PFS to alter the execution behavior of the cor-
responding process of the program. In this paper, 
we discuss only the programs that consist of a sin-
gle process in which the mutual relation between 
processes in the same program is not a concern. 

 Figure 1 is a simple example used to identify how 
our scheduler works and how it improves the per-
formance. In Fig. 1, process A and process B need 
respectively 3.4 s (seconds) and 2.1 s of CPU time to 
complete their jobs. Both processes have the same 
priority and a timeslice of 1 s. Figure 1(a) and 
(b) show the processing times of process A and pro-
cess B when using a conventional timesharing sched-
uler and when using our scheduler respectively. In 
Fig. 1(a), the processing times of process A and

Fig.1 A scheduling example using our scheduler.

process B are 5.5 s and 4.1 s respectively, while in 
Fig. 1(b), based on the PFS that process B needs 
only 0.1 s more CPU time to complete its job, the 
scheduler delays process switching by 0.1 s to al-
low process B to complete its job. Delaying process 
switching causes the processing time of process B to 
be reduced to 3.1 s while that of process A is still 
the same as in Fig. 1(a). Moreover, the number of 
process switches decreases from 6 to 4. 

 The following sections discuss the parts of our 
scheduler in more detail. 

 2.1 The Logger 
 When a program is executed, if its PFS does not 

exist then a log about the corresponding process is 
collected recording the information necessary to cre-
ate PFS. A log (shown in Fig. 2(a)) is a sequence of 
entries describing time, process identifier and pro-
cess state. This information is recorded at dispatch 
time (i.e., when deciding which process to run next). 
Note that there are many process states, but we will 
focus only on run, ready and wait states. A process 
is said to be running in the run state if it is cur-
rently using the CPU. A process is said to be ready 
in the ready state if it could use the CPU if it were 
available. A process is said to be blocked in the wait 
state if it is waiting for some event to happen (such 
as an I/O completion event, for example) before it 
can proceed. 

 Next, PFS is created by using the log mentioned

Fig.2 The image of a log and a PFS.



above. A PFS (shown in  Fig.  2(b)) is composed 
of the program name and a sequence of its process 
information, i.e., a sequence of entries describing 

process state and time spent. We will refer to each 
time spent in run state as a CPU time of PFS (Tp). 

 2.2 The Process Controller 
 When a program is executed, if its PFS exists, 

then the PFS is used to alter the execution behav-
ior of the corresponding process in order to reduce 
the processing time and the process switching cost. 

That is, the PFS is used to control the timing of 

process switching (e.g., early process switching or 
delayed process switching) of the corresponding pro-
cess. In this paper, we discuss only delayed process 
switching. 

  Supposed C, is the current time and Cs is the 
time that a process starts using the CPU for each 
allocated portion of CPU; Te is the expected CPU 
time a process would use from CS until it volun-
tarily relinquishes the CPU (each Te is determined 
based on each CPU time of PFS (Tp)) and T , is the 
maximum time to delay process switching, called 
the maximum dispatch delay time. When a process 

is running at the end of its timeslice, the decision 
about whether the process switching should be de-
layed or not is determined as follows. 

  (1) If Te — (C, — Cs) < T„, then the process is 
   allowed to continue using the CPU. 

  (2) If Te— (Cc— Cs) > Tm, then the next waiting 
   process is dispatched. 

According to this, when a process is running at the 
end of its timeslice, if the expected CPU time the 

process would use from now until it voluntarily re-
linquishes the CPU is smaller than the maximum 

dispatch delay time (T„), then we allow the process 
to continue using the CPU instead of dispatching 
the next waiting process. We note that setting the 
Tm arbitrarily will cause the management of pro-
cess switching to become complex, so we enforce the 
rule that Tm, must be a multiple of timeslot where 
timeslot is the minimum unit of time that process 
switching can be delayed. 

  Since the execution behavior of a program is not 
always the same every time the program is executed 

(i.e., it varies little by little whenever the program 
is executed), PFS needs to be able to adjust itself 

to changes. However, adjusting PFS to the latest 
change is dangerous when the corresponding pro-
cess runs abnormally. So we adjust each CPU time 
of PFS (Tp) slightly by multiplying the difference 
between the CPU time that a corresponding process

actually spends before it voluntarily relinquishes the 
CPU and Tp with a constant (called an increase or 
a decrease scaling factor) as shown in the following. 

 (1) If Tp = (C, — Cs), then the adjustment is not 
    needed. 

 (2) If Tp < (C(.—CS), then Tr, should be increased 
   by using the following formula: 

Tp = Tp + {(Cc — Cs) — Tp} x (x/100), (1) 
   where x is an increase scaling factor (%). 

 (3) If Tp > (C(, — C5), then Tp should be reduced 
   by using the following formula: 

   Tp = Tp — {TE, — (cc — Cs)} x (y/100), (2) 

   where y is a decrease scaling factor (%). 
According to this, throughout the execution, when-
ever a process voluntarily relinquishes the CPU 

(e.g., when the process blocks itself pending the 
completion of the I/O operation in the wait state), if 
Tp is smaller or greater than the CPU time that the 

process actually spends before it voluntarily relin-
quishes the CPU, then Tp is increased or decreased 
slightly by using an increase or a decrease scaling 
factor. 

 3. Implementation 

  This section describes the implementation of the 

logger and the process controller in detail. 

 3.1 The Logger 
  The main work of the logger is to create a log and 

a PFS. A log (shown in Fig. 3) is implemented as 
an array of structures containing information about 

time (clock), process identifier (pid) and process 
state (p_state). A PFS (shown in Fig. 3) is imple-

mented as an array of structures containing infor-
mation about process state (p_state) and time spent 

(Tp). In order to identify the PFS of each program, 
the program name is attached to the top of the ar-
ray. Figure 3 shows how to use the log to create a 

PFS and it is described in detail below. 
  How to create a log: when a program is exe-

cuted, if its PFS does not exist then the information 
necessary to create the PFS is recorded in the log 
at every dispatch until the corresponding process 
terminates. That is, 

  • when the corresponding process is the current 

    running process, the information about time, 

    process identifier and process state from now 
    (i.e., ready or wait state) is entered into the log 
    via a pointer giving the current position. Then, 

    the pointer is incremented to the next log entry 

    and the next waiting process is dispatched.



Fig.3 The diagram of how to use the log to create a 

       PFS.

Fig.4 The  diagram of how to schedule a process based 

on PFS.

  • when the corresponding process is the next 
   waiting process, the information about time, 

   process identifier and process state from now 
   (i.e., run state) is entered in the log via a 

   pointer giving the current position. Then, this 
   pointer is incremented to the next log entry and 
   the corresponding process is dispatched. 

Note that the addresses of the log entry when the 

process starts execution and when it finishes execu-
tion are respectively referred to as the start and the 
end positions. And the data between these two po-
sitions are used for creating the PFS of the program. 

 How to create a PFS: at the end of the execu-

tion, space for the PFS of the program is allocated 
and the data for each PFS entry is then created from 
the log between the start and the end positions. 
When there is more than one process in the system, 
it is necessary to determine which process(es) corre-
spond to which program. By using this information, 

the data for the process(es) which correspond to the 

program name is taken from the log. Note that for 
our scheduler only the time spent in run state and 
in wait state have useful information, since the time 
spent in ready state depends on the number of the 

processes waiting for the CPU to become available 
in the ready queue and has no bearing on future ex-
ecution behavior. Therefore, we consider the series 

of log entries in which their p_state element record-
ing the consecutive switching between run state and 
ready state, as one PFS entry whose p_state element 
is run state and Tp element is the summation of the 
times spent in run state in that series, and it is cal-

culated using the following formula where C, is a 

clock i element in the log entries in that series. 

Tp = {C2 (ready) — Cn (run) } 

4-{Cn(ready) — Cn_i (run)} 
T {C„+2 (wait) — Cn+n (run) } 

 3.2 The Process Controller 
 The main work of the process controller is to 

schedule based on PFS and to adjust an existing 
PFS to changes. This can be implemented by divid-
ing into four phases: (1) when a process is created, 
(2) when a process uses up its timeslice, (3) when 
a process blocks itself, and (4) when a process ter-
minates. The following is describing each phase in 
more detail. The diagram of how to schedule based 
on PFS and the processing flowchart are shown in 
Fig. 4 and Fig. 5 respectively. 

 I. When a process is created, 
   if the PFS of the program it run exists, then 

     (1) its process identifier is stored in a ta-
      ble called the scheduling table and space 

       for a table called current information ta-
       ble is allocated. A scheduling table (shown 

       in Fig. 4) is an array of structures con-
      taining process identifier (pid) of the pro-
      cess which will be scheduled based on PFS 
       and a pointer to its current information ta-

       ble. A current information table (shown in 
       Fig. 4). is a structure containing the time 

       a process starts using the CPU for each al-
      located portion of CPU (Cs), the expected 

       CPU time a process would use from Cs un-
      til it voluntarily relinquishes the CPU (T,) 

      and a pointer to the PFS entry (p f s_ ptr). 

     (2) Next, each element of the current infor-
       mation table is initialized as below. 

          • Cs 4-0, 
        • p f s_ ptr the address of the first 

           PFS entry whose p_state is run state, 
         • Te f— Tr, which is accessed via 

pfs_ptr. 
 II. When a process uses up its timeslice, 

     (1) the elements of the currrent information 
       table, Te and Cs, are updated as below. 

       • Te  (Cc — Cs ), 
         • Cs+CeifTe<Tr,or 

CsE-0 ifTe>T1 
          where Tm is the maximum dispatch



          delay time. 

     (2) Next, the process is scheduled according 
      to the following rule. 

         • If Te  < 71„.„ then the process is al-
          lowed to continue using the CPU. 

        • If Te > Tr,t, then the next waiting pro-

          cess is dispatched. 
      Note that the next waiting process is also 

      dispatched if Te < 0. 
 III. When a process blocks itself, 

     (1) the element of PFS entry, Tp, is adjusted 
       according to the following rule. 

         • IfTe—(Ce—Cs)=0,then 
Tp Tp (no adjustment). 

        • If Te — (C — Cs) < 0, then 
Tp 4— Tp — {Te — (Ce — Cs)} x (x/100). 

        • IfTe — (Cc — Cs) >0, then 
Tp 4—Tp— IT, —(Ce—Cs)}x(y/100). 

     (2) Each element of the current information 
       table is updated as below. 

         • Cs-0, 
         • p f s_ ptr +-- the address of the next 

          PFS entry whose p_ state is run state, 
        • Te Tp which is accessed via 

p f s_ ptr. 
 IV. When a process terminates, 

     (1) the element of PFS entry, Tp, is adjusted 
       according to the following rule. 

        • IfTe — (Cc — Cs) =0, then 
Tp 4— Tp (no adjustment). 

         • IfTe—(Ce—Cs)<0,then 
Tp 4- Tp — {Te — (C„— Cs)} x (x/100). 

        • IfTe — (Cc — Cs) >0, then 
Tp E—Tp—{Te—(Ce—05)} x (y/100). 

     (2) The current information table is free and 
       its associated scheduling table entry is re-
        moved. 

Note that when a process changes from ready state 
to run state, if Cs = 0 then Cs 

 4. Experimental Evaluation 

 Our scheduler is implemented in BSD/OS 2.1. 
The experiments were run on a 120 MHz Pentium 
with 32 MB of memory, running our modified ver-
sion of BSD/OS 2.1. All our experiments were con-
ducted in single user mode with the preemption en-
abled. Also, timeslot and timeslice are 1 and 100 
ms (milliseconds) respectively. 

 We used a test program to evaluate the effective-
ness of our scheduler with regard to the overhead, 
the relation between the length of the maximum

Fig.5 The processing flowchart.

dispatch delay time and the processing time. 
 Our test program is the program that loops 20 

times through work A and work B. Work A incre-
ments an integer variable by one for the amount of 

time specified by the argument sent to the program. 
Work B goes to sleep in the wait state for a fixed 
time of 1 s. We will refer to the process of the test 

program as the test process. 

 4.1 Overhead 
 This section presents the experimental results for 

the overhead involved in our scheduler, i.e., the cost 
involved in creating and storing PFS on memory 
and the cost involved in scheduling based on PFS, 
when running the test program. 

 (1) We did not notice a difference between the 
   processing time when a PFS was created for 
   the test process and when it was riot. There-

   fore, the overhead of logging the information of 
   the test process and creating PFS is relatively 

    small. 

 (2) When the maximum dispatch delay time is 
   zero, the processing time when the test pro-

   cess is scheduled by our scheduler is the same 

   as when it is scheduled by a conventional time-

   sharing scheduler. Therefore, the overhead of



 scheduling based on PFS is small. 
According to the above experimental results, the 

overhead of our scheduler is small. 

 4.2 The length of the Maximum Dis-

     patch Delay Time vs. The Process-
     ing Time 

 We ran the test program with various arguments 
specifying the amount of time for work A as 75, 
125, 150 and 200 ms and found the relation be-
tween the length of the maximum dispatch delay 
time and the processing time. In order to enable 

process switching when a given timeslice expires, 
throughout the experiment, the test program coex-
isted with the loop program, i.e., the program that 
loops only work A. Figure 6 shows the experimen-
tal results plotted with the processing time on y-axis 
normalized by the processing time when using a con-
ventional timesharing scheduler. This figure shows 

that when the required CPU time is more than the 
timeslice (100 ms) and its difference is smaller than 
the maximum dispatch delay time, then the pro-
cessing time becomes shorter. For example, when 
the required CPU time is 125 ins and the maxi-

mum dispatch delay time is 40 ms; as well as when 
the required CPU time is 125 and 150 ms and the 
maximum dispatch delay time is 70 ins, the pro-
cessing time becomes shorter. This verifies that our 
scheduler works as expected, i.e., it delays process 

switching as expected.

Fig.6 The relation between the length of the maximum 
      dispatch delay time and the processing time (in 

       case of the test program).

 5. Conclusions 

 This paper proposed a process scheduler that con-

trols the sharing of the CPU resource based on be-

havior of a process. The special feature of our sched-

uler is that (1) when a program is executed for the 
first time, it logs the behavior of the corresponding 

process at dispatch and then creates an advanced 

knowledge called PFS (Program Flow Sequence), 

and (2) when the program is executed from then 
on, it schedules the corresponding process by using 
the PFS, i.e., it delays process switching in order 
to allow the corresponding process to continue its 
execution, when it is predicted from PFS that the 
corresponding process needs a little bit more CPU 

time before it voluntarily relinquishes the CPU. It 
also adjusts PFS to changes based on the feedback 
obtained from each execution. 

 The cost involved in our scheduler is small. And 
the experimental results with the test program show 

that our scheduler delays process switching as ex-

pected and the processing time can be reduced by 
using it. 

 Some of our future work will include evaluating 
the effectiveness of our scheduler with existing pro-

grams, and implementing early process switching.
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