
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

The Design and Implementation of an Advanced
Knowledge-based Process Scheduler

Suranauwarat, Sukanya
Department of Computer Science and Communication Engineering, Graduate School of Information
Science and Electrical Engineering, Kyushu University : Graduate Student

Taniguchi, Hideo
Department of Computer Science and Communication Engineering, Faculty of Information Science
and Electrical Engineering, Kyushu University

https://doi.org/10.15017/1515712

出版情報：九州大学大学院システム情報科学紀要. 6 (1), pp.25-30, 2001-03-26. 九州大学大学院シス
テム情報科学研究院
バージョン：
権利関係：

九州.大学大学院

システム情報科学紀要

第6巻 第1り ・ 平成13年3月

Research Reports on Information Science and

Electrical Engineering of Kyushu University

 Vol.6, No.1, March 2001

The Design and Implementation of an Advanced Knowledge-based

 Process Scheduler

 Sukanya SURANAUWARAT* and Hideo TANIGUCHI **

 (Received December 7, 2000)

Abstract: Conventional process schedulers in operating systems divide a machine's CPU re-
source among processes using a fixed scheduling policy, in which the utilization of a computer
system (e.g., a real-time or a timesharing system) is a major concern rather than content or be-
havior of a process. As a result, the CPU resource is likely to be used in an inefficient manner,
or the processing time of a process might be extended unnecessarily. In this paper, we therefore

propose a process' behavior-based scheduler that delays process switching in order to allow the
object process to continue its execution even though its timeslice has already expired, when it
is predicted from an advanced knowledge called PFS (Program Flow Sequence) that the object

process needs a little bit more CPU time before it voluntarily relinquishes the CPU. This allows
the processing time or the process switching cost of the object process to be reduced.

Keywords: Process scheduler, WWW server, Response time, Behavior, Content, Predict

 1. Introduction

 Conventional process schedulers divide a ma-
chine's CPU resource among processes using a fixed
scheduling policy, based on the utilization of a com-

puter system such as a real-time or a timeshar-
ing system. A real-time system's scheduling pol-

icy must be able to analyze or handle data faster
than they come in and it must also respond to time
events. A timesharing system's scheduling policy is
to provide good response to interactive users. It is
an historical artifact from a time when many users

with interactive and batch computing requirements
shared a single CPU resource, and it is still used
in most workstation operating systems. Real-time
systems' scheduling policies 1)-3) are usually only
available in real-time operating systems, and not in
more general purpose operating systems, like work-

station operating systems. However, the advent of
multimedia applications on PCs and workstations
has called for new scheduling paradigms to support
real-time in systems with conventional timesharing
schedulers. One approach to do this is to schedule
based on proportion and/or period 4),5). A different

approach is based on hierarchical scheduling with
several scheduling classes and with each application
being assigned to one of these classes for the entire
duration of its execution 6);').

* Department of Computer Science and Communication

Engineering, Graduate Student

** Department of Computer Science and Communication

Engineering

 Since the control over the allocation of the CPU
resource is based on the utilization of a computer
system, none of the above approaches is trying to

schedule based on content or behavior of a process.
As a consequence, in some cases, this can hinder an
effective use of the CPU resource or can extend the

processing time of a process unnecessarily. For ex-
ample, in a timesharing system, each process is as-
signed a time interval, called its quantum, or times-

lice, which it is allowed to run. If the process is
still running at the end of its timeslice, the CPU is

preempted and given to the next waiting process no
matter how much more CPU time the process needs.
Thus, a process that needs just a little bit more
CPU time will also need to wait until its next times-
lice. Because of this, the processing time and the

process switching cost increase unnecessarily. For
example, when a process uses up its timeslice just
before it initiates an I/O operation, it will volun-
tarily relinquishes the CPU (i.e., the process blocks
itself pending the completion of the I/O operation)
immediately after the beginning of its next times-

lice. If we had predicted the behavior of the process
and delayed process switching according to the pre-
dicted behavior allowing the process to continue its
execution until it initiated an I/O operation, then
the extra costs mentioned above would have been
avoided.

 Therefore, we proposed a scheduling idea called
POS (Program Oriented Schedule)8). The idea of
POS is by increasing an operating system's ability
to alter the execution behavior of a program accord-

ing to the behavior of the corresponding process
 in the previous execution(s), an operating system

could optnmze the execution behavior of the pro-
gram allowing user requirements (e.g., performance
enhancement) to be satisfied. By applying this idea
to the process scheduler, we can solve the problem
mentioned above and also run processes more effec-
tively.

 In this paper, we proposed a POS idea-based pro-
cess scheduler that alters the execution behavior
of a program by controlling the timing of process
switching, in order to reduce the processing time
and the process switching cost. To be more pre-
cise, it delays process switching in order to allow
the corresponding process to continue its execution
even though its timeslice has already expired, when
it is predicted from an advanced knowledge called
PFS (Program Flow Sequence) that the correspond-
ing process needs a little bit more CPU time be-
fore it voluntarily relinquishes the CPU. The PFS
of each program is created based on the behavior
of its corresponding process at the end of the first
execution, and it is used whenever the program is
executed from then on. It also adjusted based on
the feedback obtained from each execution. We also
present the experimental validation of our scheduler
by using a test program with regard to the length of
time to delay process switching and the processing
tune.

 2. The Design of Scheduler
 A POS idea-based scheduler can be divided in two

parts: the logger and the process controller. When
a program is executed, if its PFS does not exist then
the logger will record the execution behavior of the
corresponding process and used it to create the PFS.
If its PFS exists then the process controller will use
the PFS to alter the execution behavior of the cor-
responding process of the program. In this paper,
we discuss only the programs that consist of a sin-
gle process in which the mutual relation between
processes in the same program is not a concern.

 Figure 1 is a simple example used to identify how
our scheduler works and how it improves the per-
formance. In Fig. 1, process A and process B need
respectively 3.4 s (seconds) and 2.1 s of CPU time to
complete their jobs. Both processes have the same
priority and a timeslice of 1 s. Figure 1(a) and
(b) show the processing times of process A and pro-
cess B when using a conventional timesharing sched-
uler and when using our scheduler respectively. In
Fig. 1(a), the processing times of process A and

Fig.1 A scheduling example using our scheduler.

process B are 5.5 s and 4.1 s respectively, while in
Fig. 1(b), based on the PFS that process B needs
only 0.1 s more CPU time to complete its job, the
scheduler delays process switching by 0.1 s to al-
low process B to complete its job. Delaying process
switching causes the processing time of process B to
be reduced to 3.1 s while that of process A is still
the same as in Fig. 1(a). Moreover, the number of
process switches decreases from 6 to 4.

 The following sections discuss the parts of our
scheduler in more detail.

 2.1 The Logger
 When a program is executed, if its PFS does not

exist then a log about the corresponding process is
collected recording the information necessary to cre-
ate PFS. A log (shown in Fig. 2(a)) is a sequence of
entries describing time, process identifier and pro-
cess state. This information is recorded at dispatch
time (i.e., when deciding which process to run next).
Note that there are many process states, but we will
focus only on run, ready and wait states. A process
is said to be running in the run state if it is cur-
rently using the CPU. A process is said to be ready
in the ready state if it could use the CPU if it were
available. A process is said to be blocked in the wait
state if it is waiting for some event to happen (such
as an I/O completion event, for example) before it
can proceed.

 Next, PFS is created by using the log mentioned

Fig.2 The image of a log and a PFS.

above. A PFS (shown in Fig. 2(b)) is composed
of the program name and a sequence of its process
information, i.e., a sequence of entries describing

process state and time spent. We will refer to each
time spent in run state as a CPU time of PFS (Tp).

 2.2 The Process Controller
 When a program is executed, if its PFS exists,

then the PFS is used to alter the execution behav-
ior of the corresponding process in order to reduce
the processing time and the process switching cost.

That is, the PFS is used to control the timing of

process switching (e.g., early process switching or
delayed process switching) of the corresponding pro-
cess. In this paper, we discuss only delayed process
switching.

 Supposed C, is the current time and Cs is the
time that a process starts using the CPU for each
allocated portion of CPU; Te is the expected CPU
time a process would use from CS until it volun-
tarily relinquishes the CPU (each Te is determined
based on each CPU time of PFS (Tp)) and T , is the
maximum time to delay process switching, called
the maximum dispatch delay time. When a process

is running at the end of its timeslice, the decision
about whether the process switching should be de-
layed or not is determined as follows.

 (1) If Te — (C, — Cs) < T„, then the process is
 allowed to continue using the CPU.

 (2) If Te— (Cc— Cs) > Tm, then the next waiting
 process is dispatched.

According to this, when a process is running at the
end of its timeslice, if the expected CPU time the

process would use from now until it voluntarily re-
linquishes the CPU is smaller than the maximum

dispatch delay time (T„), then we allow the process
to continue using the CPU instead of dispatching
the next waiting process. We note that setting the
Tm arbitrarily will cause the management of pro-
cess switching to become complex, so we enforce the
rule that Tm, must be a multiple of timeslot where
timeslot is the minimum unit of time that process
switching can be delayed.

 Since the execution behavior of a program is not
always the same every time the program is executed

(i.e., it varies little by little whenever the program
is executed), PFS needs to be able to adjust itself

to changes. However, adjusting PFS to the latest
change is dangerous when the corresponding pro-
cess runs abnormally. So we adjust each CPU time
of PFS (Tp) slightly by multiplying the difference
between the CPU time that a corresponding process

actually spends before it voluntarily relinquishes the
CPU and Tp with a constant (called an increase or
a decrease scaling factor) as shown in the following.

 (1) If Tp = (C, — Cs), then the adjustment is not
 needed.

 (2) If Tp < (C(.—CS), then Tr, should be increased
 by using the following formula:

Tp = Tp + {(Cc — Cs) — Tp} x (x/100), (1)
 where x is an increase scaling factor (%).

 (3) If Tp > (C(, — C5), then Tp should be reduced
 by using the following formula:

 Tp = Tp — {TE, — (cc — Cs)} x (y/100), (2)

 where y is a decrease scaling factor (%).
According to this, throughout the execution, when-
ever a process voluntarily relinquishes the CPU

(e.g., when the process blocks itself pending the
completion of the I/O operation in the wait state), if
Tp is smaller or greater than the CPU time that the

process actually spends before it voluntarily relin-
quishes the CPU, then Tp is increased or decreased
slightly by using an increase or a decrease scaling
factor.

 3. Implementation

 This section describes the implementation of the

logger and the process controller in detail.

 3.1 The Logger
 The main work of the logger is to create a log and

a PFS. A log (shown in Fig. 3) is implemented as
an array of structures containing information about

time (clock), process identifier (pid) and process
state (p_state). A PFS (shown in Fig. 3) is imple-

mented as an array of structures containing infor-
mation about process state (p_state) and time spent

(Tp). In order to identify the PFS of each program,
the program name is attached to the top of the ar-
ray. Figure 3 shows how to use the log to create a

PFS and it is described in detail below.
 How to create a log: when a program is exe-

cuted, if its PFS does not exist then the information
necessary to create the PFS is recorded in the log
at every dispatch until the corresponding process
terminates. That is,

 • when the corresponding process is the current

 running process, the information about time,

 process identifier and process state from now
 (i.e., ready or wait state) is entered into the log
 via a pointer giving the current position. Then,

 the pointer is incremented to the next log entry

 and the next waiting process is dispatched.

Fig.3 The diagram of how to use the log to create a

 PFS.

Fig.4 The diagram of how to schedule a process based

on PFS.

 • when the corresponding process is the next
 waiting process, the information about time,

 process identifier and process state from now
 (i.e., run state) is entered in the log via a

 pointer giving the current position. Then, this
 pointer is incremented to the next log entry and
 the corresponding process is dispatched.

Note that the addresses of the log entry when the

process starts execution and when it finishes execu-
tion are respectively referred to as the start and the
end positions. And the data between these two po-
sitions are used for creating the PFS of the program.

 How to create a PFS: at the end of the execu-

tion, space for the PFS of the program is allocated
and the data for each PFS entry is then created from
the log between the start and the end positions.
When there is more than one process in the system,
it is necessary to determine which process(es) corre-
spond to which program. By using this information,

the data for the process(es) which correspond to the

program name is taken from the log. Note that for
our scheduler only the time spent in run state and
in wait state have useful information, since the time
spent in ready state depends on the number of the

processes waiting for the CPU to become available
in the ready queue and has no bearing on future ex-
ecution behavior. Therefore, we consider the series

of log entries in which their p_state element record-
ing the consecutive switching between run state and
ready state, as one PFS entry whose p_state element
is run state and Tp element is the summation of the
times spent in run state in that series, and it is cal-

culated using the following formula where C, is a

clock i element in the log entries in that series.

Tp = {C2 (ready) — Cn (run) }

4-{Cn(ready) — Cn_i (run)}
T {C„+2 (wait) — Cn+n (run) }

 3.2 The Process Controller
 The main work of the process controller is to

schedule based on PFS and to adjust an existing
PFS to changes. This can be implemented by divid-
ing into four phases: (1) when a process is created,
(2) when a process uses up its timeslice, (3) when
a process blocks itself, and (4) when a process ter-
minates. The following is describing each phase in
more detail. The diagram of how to schedule based
on PFS and the processing flowchart are shown in
Fig. 4 and Fig. 5 respectively.

 I. When a process is created,
 if the PFS of the program it run exists, then

 (1) its process identifier is stored in a ta-
 ble called the scheduling table and space

 for a table called current information ta-
 ble is allocated. A scheduling table (shown

 in Fig. 4) is an array of structures con-
 taining process identifier (pid) of the pro-
 cess which will be scheduled based on PFS
 and a pointer to its current information ta-

 ble. A current information table (shown in
 Fig. 4). is a structure containing the time

 a process starts using the CPU for each al-
 located portion of CPU (Cs), the expected

 CPU time a process would use from Cs un-
 til it voluntarily relinquishes the CPU (T,)

 and a pointer to the PFS entry (p f s_ ptr).

 (2) Next, each element of the current infor-
 mation table is initialized as below.

 • Cs 4-0,
 • p f s_ ptr the address of the first

 PFS entry whose p_state is run state,
 • Te f— Tr, which is accessed via

pfs_ptr.
 II. When a process uses up its timeslice,

 (1) the elements of the currrent information
 table, Te and Cs, are updated as below.

 • Te (Cc — Cs),
 • Cs+CeifTe<Tr,or

CsE-0 ifTe>T1
 where Tm is the maximum dispatch

 delay time.

 (2) Next, the process is scheduled according
 to the following rule.

 • If Te < 71„.„ then the process is al-
 lowed to continue using the CPU.

 • If Te > Tr,t, then the next waiting pro-

 cess is dispatched.
 Note that the next waiting process is also

 dispatched if Te < 0.
 III. When a process blocks itself,

 (1) the element of PFS entry, Tp, is adjusted
 according to the following rule.

 • IfTe—(Ce—Cs)=0,then
Tp Tp (no adjustment).

 • If Te — (C — Cs) < 0, then
Tp 4— Tp — {Te — (Ce — Cs)} x (x/100).

 • IfTe — (Cc — Cs) >0, then
Tp 4—Tp— IT, —(Ce—Cs)}x(y/100).

 (2) Each element of the current information
 table is updated as below.

 • Cs-0,
 • p f s_ ptr +-- the address of the next

 PFS entry whose p_ state is run state,
 • Te Tp which is accessed via

p f s_ ptr.
 IV. When a process terminates,

 (1) the element of PFS entry, Tp, is adjusted
 according to the following rule.

 • IfTe — (Cc — Cs) =0, then
Tp 4— Tp (no adjustment).

 • IfTe—(Ce—Cs)<0,then
Tp 4- Tp — {Te — (C„— Cs)} x (x/100).

 • IfTe — (Cc — Cs) >0, then
Tp E—Tp—{Te—(Ce—05)} x (y/100).

 (2) The current information table is free and
 its associated scheduling table entry is re-
 moved.

Note that when a process changes from ready state
to run state, if Cs = 0 then Cs

 4. Experimental Evaluation

 Our scheduler is implemented in BSD/OS 2.1.
The experiments were run on a 120 MHz Pentium
with 32 MB of memory, running our modified ver-
sion of BSD/OS 2.1. All our experiments were con-
ducted in single user mode with the preemption en-
abled. Also, timeslot and timeslice are 1 and 100
ms (milliseconds) respectively.

 We used a test program to evaluate the effective-
ness of our scheduler with regard to the overhead,
the relation between the length of the maximum

Fig.5 The processing flowchart.

dispatch delay time and the processing time.
 Our test program is the program that loops 20

times through work A and work B. Work A incre-
ments an integer variable by one for the amount of

time specified by the argument sent to the program.
Work B goes to sleep in the wait state for a fixed
time of 1 s. We will refer to the process of the test

program as the test process.

 4.1 Overhead
 This section presents the experimental results for

the overhead involved in our scheduler, i.e., the cost
involved in creating and storing PFS on memory
and the cost involved in scheduling based on PFS,
when running the test program.

 (1) We did not notice a difference between the
 processing time when a PFS was created for
 the test process and when it was riot. There-

 fore, the overhead of logging the information of
 the test process and creating PFS is relatively

 small.

 (2) When the maximum dispatch delay time is
 zero, the processing time when the test pro-

 cess is scheduled by our scheduler is the same

 as when it is scheduled by a conventional time-

 sharing scheduler. Therefore, the overhead of

 scheduling based on PFS is small.
According to the above experimental results, the

overhead of our scheduler is small.

 4.2 The length of the Maximum Dis-

 patch Delay Time vs. The Process-
 ing Time

 We ran the test program with various arguments
specifying the amount of time for work A as 75,
125, 150 and 200 ms and found the relation be-
tween the length of the maximum dispatch delay
time and the processing time. In order to enable

process switching when a given timeslice expires,
throughout the experiment, the test program coex-
isted with the loop program, i.e., the program that
loops only work A. Figure 6 shows the experimen-
tal results plotted with the processing time on y-axis
normalized by the processing time when using a con-
ventional timesharing scheduler. This figure shows

that when the required CPU time is more than the
timeslice (100 ms) and its difference is smaller than
the maximum dispatch delay time, then the pro-
cessing time becomes shorter. For example, when
the required CPU time is 125 ins and the maxi-

mum dispatch delay time is 40 ms; as well as when
the required CPU time is 125 and 150 ms and the
maximum dispatch delay time is 70 ins, the pro-
cessing time becomes shorter. This verifies that our
scheduler works as expected, i.e., it delays process

switching as expected.

Fig.6 The relation between the length of the maximum
 dispatch delay time and the processing time (in

 case of the test program).

 5. Conclusions

 This paper proposed a process scheduler that con-

trols the sharing of the CPU resource based on be-

havior of a process. The special feature of our sched-

uler is that (1) when a program is executed for the
first time, it logs the behavior of the corresponding

process at dispatch and then creates an advanced

knowledge called PFS (Program Flow Sequence),

and (2) when the program is executed from then
on, it schedules the corresponding process by using
the PFS, i.e., it delays process switching in order
to allow the corresponding process to continue its
execution, when it is predicted from PFS that the
corresponding process needs a little bit more CPU

time before it voluntarily relinquishes the CPU. It
also adjusts PFS to changes based on the feedback
obtained from each execution.

 The cost involved in our scheduler is small. And
the experimental results with the test program show

that our scheduler delays process switching as ex-

pected and the processing time can be reduced by
using it.

 Some of our future work will include evaluating
the effectiveness of our scheduler with existing pro-

grams, and implementing early process switching.

 References

1) W. Shih, J. Liu, and C. Liu, "Modified Rate-monotonic
 Algorithm for Scheduling Periodic Jobs with Deferred

 Deadlines," IEEE Trans. Software Eng., 19(12):1171-
 1179, 1993.

2) A. Burns, K. Tindell, and A. Wellings, "Effective Anal-

 ysis for Engineering Real-time Fixed Priority Sched-
 ulers," IEEE Trans. Software Eng., 21(5):475--479,

 1995.

3) W. Feng and J. Liu, "Algorithms for Scheduling Real-
 time Tasks with Input Error and End-to-end Dead-

 lines," IEEE'Trans. Software Eng., 23(2):93-106, 1997.

4) C. Waldspurger and W. Weihl, "Stride Scheduling: De-
 terministic Proportional-share Resource Management,"

 Tech. Rep. MIT/LCS/TM-528, MIT laboratory for
 computers science, 1995.

5) M. Jones, D. Rosu, and M. Rosu, "CPU Reservations

 and Time Constraints: Efficient, Predictable Schedul-
 ing of Independent Activities," Proc. of the 16th ACM

 Symposium on Operating Systems Principles, pp.198-

 211, 1997.
6) B. Ford and S. Susarla, "CPU Inheritance Scheduling,"

 Proc. of the 2nd USENIX Symposium on Operating

 Systems Design and Implementation, pp.91-106, 1996.
7) P. Goyal, X. Guo, and H. Vin, "A Hierarchical CPU

 Scheduler for Multimedia Operating Systems," Proc.
 of the 2nd USENIX Symposium on Operating Systems

 Design and Implementation, pp.107-121, 1996.
8) H. Taniguchi, "POS: Program Oriented Schedule,"

 Proc. of the 1996 IPSJ Computer System Symposium,

pp.123 -130, 1996. (in Japanese)

