
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Ameliorated Algorithm to Maintain Discovered
Frequent Itemsets

Du, Xiaoping
Department of Intelligent Systems, Faculty of Information Science and Electrical Engineering,
Kyushu University

Makinouchi, Akifumi
Department of Intelligent Systems, Faculty of Information Science and Electrical Engineering,
Kyushu University

https://doi.org/10.15017/1515711

出版情報：九州大学大学院システム情報科学紀要. 6 (1), pp.19-24, 2001-03-26. 九州大学大学院シス
テム情報科学研究院
バージョン：
権利関係：

九州大学大学院

システム情報科学紀要

第6巻 第1号 平成13年3月

Research Reports on Information Science and

Electrical Engineering of Kyushu University

 Vol.6, No.1, March 2001

Ameliorated Algorithm to Maintain Discovered Frequent Itemsets

 Xiaoping DU* and Akifumi MAKINOUCHI*

 (Received December 15, 2000)

Abstract: It is an important task in data mining to maintain discovered frequent itemsets for
association rule mining. Because most time-consuming operation for mining association rules is
to find the frequent itemsets from the transaction database. And the database is always updated.
However, the algorithms proposed so far for the maintenance of discovered frequent itemsets can
only perform with a minimum support threshold which is the same as that of previous mining. If
the new result derived with such minimum support is unsatisfactory to a user, the maintaining

process may fail. In this paper we propose a new algorithm to maintain discovered frequent item-
sets. Our algorithm allows users to adjust the minimum support of maintaining process. And
it can be performed repeatedly with a different minimum support until the satisfying results are
obtained. We prove the efficiency of our algorithm by experiments with several synthetic trans-
action databases.

Keywords: Frequent itemset, Association rule, Data mining, Database, Algorithm

 1. Introduction

 Mining of association rules from transaction
databases was well known as an important prob-
lem in data mining. It consists of two subproblems,
including mining association rules from a transac-

tion database and maintaining the discovered as-
sociation rules when the transaction database was
updated.
 Mining association rules consists of two steps1).
The first is to find all frequent itemsets, which fre-

quently occur in a significant number of transactions
with respect to a threshold, called minimum sup-

port. The second is, with respect to another thresh-
old, called minimum confidence, to generate all the
association rules using the obtained frequent item-
sets. The most time-consuming operation of the

process is to find the frequent itemsets. Therefore,
the mining association rules and the maintenance
of discovered association rules focus on finding fre-

quent itemsets. In order to find out the frequent
itemsets from a database, many interesting and ef-
ficient algorithms were proposee'2),10),7),6> For the
maintenance of discovered frequent itemsets, there
have been several algorithms3),4),5),8),9>

 FUP (Fast Update)4) and FUP25) are two effi-
cient algorithms for maintaining the discovered fre-

quent itemsets. FUP is used in the case that some
new transaction data is added to a database. And
FUP2 is a generalization of the FUP algorithm, in-

cluding the cases of insertion into, deletion from and

modification of the original database. Only in the

insertion case, FUP2 is equivalent to FUP. The al-

gorithm DELIP)") (Difference Estimation for Large
Itemsets) t 1 was proposed to decide how often or
when the maintenance algorithm should be applied.
And the algorithm MLUp (Multi-Level association
rules Update)3) is used to solve the update problem

for multi-level frequent itemsets.
 All of the maintenance algorithms mentioned

above are only performed with a minimum support
which is the same as that in previous mining pro-
cess t2. However, if the new results are not satis-
factory with that minimum support, users have to

rerun the mining algorithms from scratch (is not the
maintenance algorithms) with a different minimum
support repeatedly until the satisfying results are
obtained. And the mining process has to be per-
formed from scratch in each time. In that way, the
maintenance cost may be massive.

 To the best of our knowledge, very little work

has been done on the maintenance of discovered fre-

quent itemsets that allow a user, according to the
already existed results, to adjust the minimum sup-

port. In this paper, we propose an algorithm AFUP

(Ameliorated FUP) to maintain the discovered fre-
quent itemsets when some new transaction data is
added to a database. AFUP not only can be per-
formed with the same minimum support but also

* Department of Intelligent System

t1 In some paper, the frequent itemset is also called the
large itemset.

t2 In MLUp algorithm, though the minimum supports at
different level may not be equal, they must be the same as
that of in the mining process at the same level.

with a different (bigger or smaller) minimum sup-
port efficiently. AFUP cuts down the cost of the
maintaining process by using two kinds of useful
information. One is the already existed frequent
itemsets and another is meta-results during the
maintaining process.

 2. Problem Description
 2.1 Mining association rules

 Let Z={ii, i2, ...in} be a set of items. Let D be
a transaction database, a set of transactions. Each
transaction T is a subset of the iternset I. A trans-
action T contains an itemset X if and only if X C T.
The support-count of X in D, Xs') is the number of
transactions that contain X in D, and the support
of X in D is the percentage of transactions in D
which contains X.

 An association rule is an implication of the form
X=Y, where XCI,YCZ and XflY=0. The
rule X = Y has support s in D if s% of transac-
tions in D contain both X and Y. The rule X Y
holds in D with confidence c if c% of transactions
in D that contain X also contain Y.

 For a pair of a minimum support (minsup) and
a minimum confidence (minconf) given by a user,
the task of mining association rules is to find all the
association rules whose support is no less than the
minsup and whose confidence is also no less than the
minconf. An itemset is frequent in D if its support
is no less than the minsup.

 Here, we assume that the satisfactory frequent
itemsets in D are obtained with smin. And we
called the mining process in D with smin a final
mining process.

 2.2 Maintaining process
 After some new transaction data A (called an

increment database) is added into the original
database D, all support-counts of itemsets may
change. We use UD to denote the updated database
D U A. The maintenance of discovered frequent
itemsets is to find out the satisfactory frequent
itemsets to a user in UD. There are, potentially,
three selections for a new minimum support Si in
the first maintaining process, based on the user's
estimation for the increment database. Those se-
lections are si = snzjn, si > smin and Si < smin.

 If the obtained frequent itemsets in the first main-
taining process are unsatisfactory, the minimum
support must be changed again and the maintain-
ing process is repeated (called repeated maintaining
process) until the obtained frequent itemsets are sat-

isfactory to the user. We use sn to represent the
minimum support which is used in the n-th main-
taining process. For sn(n > 1) there are only two

potential selections relative to s,,,_1, 5,,, > sn_i and
sn < sn_ 1. The selection of sn = sn_ i is insignifi-
cant because such maintaining process is the equiv-
alent of the last maintaining process with sn_1.

 We call an itemset containing k items a k-itemset.
Let Fk denote the set of all the frequent k-itemsets
in D with smin, and F41 denote the set of frequent
k-itemsets in UD with sn.

 3. Related Works

 In this section, in order to help motivate our ap-

proach formulations, we briefly introduce the algo-
rithm FUP4), which is related to our work.

 FUP is a fast algorithm for maintenance of discov-
ered frequent itemsets when some transaction data
A is added to the original database D. FUP finds
new frequent itemsets in UD with srnin. It includes

several passes over the databases, and it scans A
and D individually in each pass. FUP reuses the
already existed frequent itemsets to reduce the num-
ber of candidate itemsets when D is scanned.

 In pass k, FUP creates the set of candidate k-
itemsets Ck using apriori-gen(Fj_1)2), where 11;,_1

 is a set of frequent (k — 1)-itemsets in UD obtained
in previous pass. Then it scans A to compute ,the
support-counts of candidates in Ck. After A is
scanned, the support-counts of all itemsets belonging
to Ck fl Fk in UD are obtained. Here Fk is the set
of already existed frequent k-itemsets in D. For the
rest of candidates which belong to Ck — Fk, FUP
omits useless itemsets from them according to fol-
lowing strategy.

 A k-itemset X belonging to Ck — Fk can become a
frequent itemset in UD only if X ° > 0 X
here X° is the support-count of X in A, and 1A1 is
the number of transactions in A.

 After the candidate itemsets in Ck are reduced
further, FUP scans D to update the support-counts
for all the remaining candidates in Ck—Fk. Finally,
a set FF , which contains all the frequent k-itemsets
in UD, is obtained from Fk and Ck. The main-

taining process can't terminates until FF becomes
empty.

 4. AFUP Algorithm

 FUP algorithm can only be performed with smin

no matter whether the obtained result is satisfying

or not. We propose a new algorithm AFUP giv-

en in Fig. 1 to overcome this shortcoming. AFUP

includes two parts. The part 1 is used in the first

maintaining process, and the part 2 is used in the
repeated maintaining processes.

1) n: n-th maintaining process
2) sn: the minsup used in the n-th maintaining process
3) D: the original transaction database
4) A: the increment transaction database
5) if(n=1)then do begin/*Part 1, refer to Section 4.1*/
6) F1 ={all frequent 1-itemsets in D U A with sl};
7) for(k = 2; Fk_ 1 � 0; k + +) do begin
8) Ck =apriori gen(Fk-1);
9) decomposes Ck to Pk, Rk and Qk;
10) prunes useless itemsets in Pk, Rk and Qk;
11) scans A to compute X'sA in Pk, Rk and Qk;
12) prunes useless itemsets in Rk and Qk;
13) scans D to compute XD in Rk and Qk;
14) ={XIX E Pk U Rk U Qk, X,s > I UD I x 81%};

 /* XS=XD-l-X° and IUDI=IDI+IoI */
15) end
16) else /*Part 2: n > 1, refer to Section 4.2*/
17) if(sn < sn_i) then do begin
18) Fi ={all frequent 1-itemsets in D U A with sn};
19) for(k = 2; Fk_1 � 0; k + +) do begin
20) Ck =apriori-gen(Fkl 1);
21) decomposes Ck to Pk, Rk and Qk;
22) prunes useless itemsets in Rk and Qk;
23) scans A to compute in Rk and Qk;
24) prunes useless itemsets in Rk and Qk;
25) scans D to compute XD in Rk and Qk;
26) Fkt={XIX E Pk U Rk U Qk, Xs > IUDI x sn%};
27) end
28) end
29) end

 Fig.1 AFUP Algorithm.

 The part 1 of AFUP algorithm is performed on-

ly once, but the part 2 can be performed repeat-

edly until the satisfying frequent itemsets are ob-

tained. In each part, the framework of AFUP is

similar to that of FUP algorithm. AFUP includes

several passes over 0 and D. In pass k, it finds

out the frequent k-itemsets in UD. It stop when

no frequent k-itemsets are found. AFUP algorithm

is differ from FUP in that the different minimum

support can be handled. Our goal is to reduce the

number of itemsets which the support-counts must

be computed to improve the performance for find-

ing frequent itemsets in UD. We explain the first

and the repeated maintaining process individually

in follows.

 4.1 The first maintaining process

 In the first maintaining process, there are three

alternatives to select the minimum support sl, i.e.,

S1=Smin, Si > smin and si < srnin, We call them

the same, the enlargement and the lessening thresh-

old cases, respectively. We explain the lessening

threshold case in following, and then represent the

other two cases.

 The lessening threshold case In the pass 1,

we scans 0 and D to determine all the new frequent

1-itemsets Fl in UD according to s1. A subsequent
pass, we say pass k, consists of seven steps (lines
8-14 in Fig. 1).

 In step 1, we generate Ck by apriro-gen(F,_1)2
which the same as FUP. In step 2, we decompose

Ck into three disjoint subsets Pk, Rk and Qk ac-
cording to the three cases that the itemsets in Ck
must be, possibly are, or could never be the
frequent itemsets relative to si in D (not in UD),
respectively.
 Due to Si < s.,imin, the itemsets in Fk, which de-

rived in the final mining process with Smin, are also
frequent itemsets in D relative to s1. Thus, we as-
sign the itemsets in Ck n Fk to Pk.

 We adopt a upper bound of the support-count

(upper bound in brief) for a itemset in Ck — Pk to
decide whether or not the itemset is the frequent
itemsets in D relative to si. Let bD and bX denote
the upper bound of the itemset X in D and A, re-
spectively. For any itemset X in Ck — Pk, we have
obtained the support-counts of its (k —1)-subsets in

0 and D,17.9° and YD in the preovious pass. Note
that, the fact that an itemset appears in a transac-
tion will necessarily leads all of its subsets to also ap-

pear in this transaction. So, bX <min{YD 1Y c X}
and bX <=min{/CA I c X }. According to the def-
inition of the frequent itemset, if bxD < D X s i %
then X in Ck — Pk could never be frequent in D rel-
ative to si. We assign such itemsets to Qt. Finally,
we obtain Rk=Ck — Pk — Qk.

 Example 1 We suppose D1=1000, I A 1 =200,
srnin=10% and s1=9%, F2 ={bc : 109 : 1 : 110, be :
103 : 6 : 109, b f : 99 : 11 : 110, ce : 102 : 10 :
112, c f : 101 : 15 : 116, e f : 89 : 20 : 109} and
F3={bce : 101 : x : x }. For convenience, we use
bc:109:1:110 as shorthand for the itemset {b, c} and
its support-count in D, A and UD, respectively. Be-
cause F3 is the set of frequent 3-itemsets in D, so
the support-counts in 0 and UD don't exist and we
note them as x .

 According to the assumption above, in the step
1 we get C3={bee, bcf, be f } and Pk={bce} since
bce e C3 n F3. The upper bound of {b, e, f} in
D is min{103,99,89}=89<1000x 9%=90, therefore
Qk={be f }. Final, Rk={bc f }.

 After Ck was decomposed into Pk, Rk and Qk, we

reduce the useless itemsets from Pk, Rk and Qk ac-
cording to the following methods, which are based
on the definition of frequent itemset and their upper

 bounds (line 10).
 If X E Pk and X,D+b° < IUD1 x s1%, X will

be deleted from Pk, which X sp is derived from Fk.

If X E Rk and bD+b° < IUD1 x s1%, X will be
deleted from Rk. If X E Qk and bX < 1A1 x s1%,
we can delete it from Qk since bX < x 81%o is
ture for all X E Qk.

 Example 2 Counting the example above, b, c, e
is deleted from Pk since {b, c, e}sp+b{b,c,e}=101+
min{1,6,10}=102<1200x9%=108. Since the up-
per bounds of {b, c, f} in Rk in D and A are
min{109,99,101}+min{1,11,15}=100<108, {b, c, f}
is deleted from Rk. Similarly, {b, e, f} is also pruned
from Qk because the upper bound of {b, e, f} in Qk
in A is min{6,11,20}=6<20x9%=18.

 Thus, before the database is scanned in pass k,
we have deleted some useless candidate itemsets.
Then, we scan A to compute the support-counts of
the itemsets in Pk, Rk and Qk in A (line 11). In the
end of scan, the itemsets in Pk have obtained the
support-counts in UD. We, then, use the support-
counts of all the itemsets X of Rk and Qk in A,
X° instead of bX in the methods of useless item-
sets above, to reduce the useless itemsets in Rk and

Qk again. Since X ° < b° , many itemsets in Rk
and Qk are pruned in this step (line 12).

 For the remaining itemsets in Rk and Qk, we com-
pute their support-counts in D by D scan (line 13).
Finally, in step 7 (line 14), the set of frequent k-
itemsets in UD with s1, Fk is obtained from Pk, Rk
and Qk according to (X f +X°)> I UDI x s1%.

 The process doesn't stop until the obtained Fk
becomes an empty set. During the AFUP perform-

ing, the candidate itemsets after the pass 2 are

stored and searched in a hash-tree which the same

as in FUP. But in pass 2, AFUP adopts an array-

data-structure method proposed in 6) to decrease

the computation cost of pass 2. In addition, meth-

ods of reducing the database size used in FUP al-

gorithm are also used in AFUP. For details, please
refer to 4) .

 The same and the enlargement threshold

cases Based on the definition of frequent itemset,

the support of the itemsets in Fk must be great than

or equal to sm,in. In cases of Si > s-„„,,, all frequent

itemsets in D relative to s1 must be in Fk. That is

to say, the set Rk will be empty in these two cases.

Therefore, the part 1 of AFUP algorithm showed in

Fig. 1 is also applicable to these two cases directly.

 4.2 The repeated maintaining process

 When the user is not satisfied with the frequent

itemsets derived from the first maintaining process,

the maintaining process must be repeated continu-

ously until the satisfying frequent itemsets are ob-

tained. We assume it is the n-th (n >1) maintain-
ing process at present with the minimum support
sn. There are two alternatives to select sn, i.e.,
sn > s,,_ 1 and sn < sn_ 1. See in Section 2.2 for
detailed.
 During the n-th maintaining process, the itemsets
to be reused are derived in the (n - 1)-th maintain-
ing process. Due to all itemsets in FL-1 include the
support-counts in UD. So, in case of sn > sn-1,
we just obtain the frequent k-itemsets in UD from
F -1 directly but do not need to scan the databases
any more. It is very fast apparently. Therefore, we
don't include this case in Fig. 1.

 In case of sn < sn_1i similar to part 1, there are
also seven steps (lines 20-26) in pass k. The dissim-
ilarity between part 1 with part 2 is in step 3 (lines
10 and 22) and step 4 (lines 11 and 23). In step
3, we only prune the useless itemsets in Rk and Qk
but don't handle Pk any longer. And in step 4, we
only computes the support-counts of itemsets in Rk
and Qk by A scan. Because the support-counts of
itemsets in Pk in UD have known.

 5. Empirical Results

 In order to assess the performance of FMP and
AFUP algorithms, extensive experiments have been
conducted. And these experiments were compared
with Apriori and FUP. The experiments were per-
formed on a SUN workstation model 170E with a
UltraSPARC CPU, 128 MB of main memory and,
its OS is Solaris5.7. The databases used in our ex-
periments are synthetic data generated by the IBM
test data generator-1-3. We used the following param-
eters to generate the databases. Number of items
in the databases is 1000 and the average length of
transactions is 15. The number of maximal poten-
tially frequent itemsets is set as 1000 and the aver-
age length of such frequent itemsets is set as 4.

 The databases used in our environments are de-
noted by T15I4D1000x, which represents an up-
dated database UD in which the original database
D has 100 thousands of transactions (D100) and
the increment A has x thousands of transactions
(Ox). For the increment A, we generated a series
of databases A1, A10, A25, A50, A75 and A100 to

t3 http://www.almaden.ibm.com/as/quest/syndata.html.

conduct our experiments. To compare with the per-
formance of Apriori, we run Apriori on the updated
database UD, rather that on D and A separately.

 The minimum supports used in our experiments

are 1.75%, 1.5%, 1.25%, 1.0% 0.75% and 0.5%. We
explain the experiments for the first maintaining

process in Section 5.1. The repeated maintaining
process experiments are discussed in Section 5.2.

 5.1 First maintaining process experi-

 ments
 We store in advance separately the frequent item-

sets in the original database D relative to each min-
imum support above smirt • Then we add the six

increment databases mentioned above to D.
 Experiments with the same thresholds We

performed the same threshold experiments with
1.5%, 1.25%, 1.0% and 0.75%. When we perform
AFUP and FUP algorithms with each minimum
support, the already stored frequent itemsets rela-

tive to the same minimum support are reused.
 The experimental results show that AFUP is

faster than Apriori by factors ranging from 3 to
more than an order of magnitude. To compare with
FUP algorithm, AFUP is still faster than FUP al-

gorithm 2 to 3 times as well. We have given an ex-

perimental result in Fig. 2, in which the increment
database (A100) has the same size of the original
database (T1514D100).

 Fig.2 Experimental results with the same thresholds.

 There are two reasons for AFUP being faster than

Apriori algorithm. One is that the number of the

candidate itemsets in AFUP is a lot less than that

in Apriori algorithm when the original database is

scanned. For example, the number of candidate

itemsets in AFUP for T15I4D100A50 is only about

1% of in Apriori.

 The second reason is that FRM adopts an array-

data-structure') instead of the hash-tree used in

Apriori algorithm in the pass 2 to improve the per-

formance of this pass. This is also the main reason

that AFUP is faster than FUP algorithm. Accord-

ing to our experimental results, as compared with

FUP, the execution time of AFUP in the second

pass speeds up from five to eight times by using the

array-data-structure.

 Experiments with the enlargement thresh-

olds We perform our enlargement threshold exper-

iments with a minimum support s1 relative to sm,in

according to following table. For example, when

we perform with si=0.75%0, only the already stored

frequent itemsets relative to srnira=l.0% are reused.

smin 0.5% 0.75% 1.0% 1.25%
Si 0.75% 1.0% 1.25% 1.5%

 According to the characteristic of FUP algorithm,

FUP should directly apply to the maintaining pro-

cess in the case of enlarging the minimum support

without any modification.

 The experimental results demonstrate that

AFUP is faster than Apriori by more than an order

of magnitude for small increments database and 4

to 5 times for large increments database. As com-

pared with FUP algorithm, AFUP is also faster by
2-5 times. The reasons are similar to that in the

same threshold case. Since the minimum support

is enlarged, the frequent itemsets in the updated

database are almost contained in the already exist-

ed frequent itemsets. So, after the pass 2, AFUP

almost obtains the new frequent itemsets as long

as AFUP'scans the increment database but doesn't

scan the original database.

 Experiments with the lessening thresholds

In the experiments with lessening thresholds, the

pair of Smin and si used in our experiments are
shown in following table.

srnin 1.75% 1.5% 1.25% 1.0%

s 1 1.5% 1.25% 1.0% 0.75%

 Since FUP algorithm cannot run in this case di-

rectly, in order to compare AFUP with FUP, we

perform FUP with an empty original database and

a particular increment database, which is the up-

dated database.

 The experimental results show that AFUP is 2N3

times faster than Apriori algorithm and 2,,,4 times

faster than FUP algorithm because the performance

in pass 2 was improved by the array-data-structure

and the candidate itemsets in each pass except in

pass 1 were much decreased. For the FUP algo-
rithm, it cannot use any already existed frequent

itemsets in this case. Moreover, it also spends extra

overhead in the process of candidate itemset reduc-

tion. So it is also slower than Apriori.

 5.2 Repeated maintaining process ex-

 periments
 In the case of sn > srz_i, we obtain the new fre-

quent itemsets without database scan as discussed
in Section 4.2. It is very fast apparently. Therefore,

we don't discuss this case here.

 In the case of sr, < sr, , _ i , the minimum supports

s„ relative to sr,_i in our experiments are giv-

en in following table. The experiments for FUP

algorithm are also performed with an empty origi-

nal database and a particular increment database,

which is the updated database since the FUP al-

gorithm isn't also applied to this case directly. The
experimental results show that AFUP is faster than

Apriori about 2-,4 times and faster than FUP about

3-5 times..

sr, 1.5% 1.25% 1.0% 0.75%
sn_i 1.75% 1.5% 1.2% 1.0%

 6. Conclusions and Future Work

 In this paper, we discussed the problem of main-

tenance of discovered frequent itemsets for mining

association rules when some new data is added to a

original transaction database. In general, in order

to obtain satisfactory results to a user, the main-

tenance algorithm needs to be performed several

times with different minimum support thresholds.

We proposed algorithm AFUP for the maintenance

of discovered frequent itemsets efficiently, which not

only reuse the already existed frequent itemsets but

also can be performed repeatedly with different min-

imum support thresholds until the satisfying results

are obtained. Our algorithms is based on reusing

efficiently the information of the already existed fre-

quent itemsets and the information obtained in the

previous pass to reduce the cost of finding new fre-

quent itemsets.
 We compared our algorithms to the existing well-

known algorithms, Apriori and or FUP algorithms.

We reported the results of our experiments with

synthetic data, including one original database and

six increment databases. The results showed that

our algorithms always outperform Apriori and FUP

algorithms no matter whether the size of the incre-

ment database is smaller than or equal to that of

the original database.

 An important perspective of future work is to ex-

tend this work to more general maintenance activ-

ities, including the cases of data addition, deletion

and modification. Moreover, since sizes of databases

become larger and larger, parallel maintaining pro-

cess of discovered rules is also an important research

task.

 Acknowledgments

 A part of this work is supported by the Grant-

in-Aid for Scientific Research (10308012) from the
Ministry of Education, Science, Sports and Culture

of Japan.

 References

 1) R. Agrawal, T. Imielinski, A. Swami: Mining Associa-
 tions between Sets of Items in Massive Databases. Proc.

 of the 1993 ACM SIGMOD, Washington, U.S.A., May,
 1993.

 2) R. Agrawal and R. Srikant: Fast Algorithms for Mining
 Association Rules. Proc. of 20th Int. Conf. on VLDB,
 Santiago, Chile, September, 1994.

 3) D.W. Cheung, V. Ng, and B.W. Tam: Maintenance of
 Discovered Knowledge: A Case in Multi-level Associa-

 tion Rules. Proc. of 2nd Int. Conf. on Knowledge Dis-
 covery and Data Mining, Portland, Oregon, August,

 1996.
 4) D.W. Cheung, J. Han, V. Ng', and C.Y. Wong: Main-

 tenance of Discovered Association Rules in Large
 Databases: An Incremental Updating Techniques.

 Proc. of 12th IEEE Int. Conf. on Data Engineering,
 New Orleans, Louisiana, U.S.A., March, 1996.

 5) D.W. Cheung, S.D. Lee, B. Kao: A General Incre-
 mental Technique for Updating Discovered Associa-

 tion Rules. Proc. Int. Conf. on Database Systems for
 Advanced Applications, Melbourne, Australia, April,

 1997.
 6) X. P. Du, K. Kaneko, A. Makinouchi: Fast Algorithm

 to Find Frequent Itemsets for Mining of Association
 Rules. Proc. of Int. Conf. on Information Society in the

21th Century: Emerging Technologies and new Chal-
 lenges(IS2000). Fukushima, Japan, November, 2000.

 7) Eui-Hong Han, George Karypis and Vipin Kumar:
 Scalable Parallel Data Mining foi Association Rules.

 IEEE Transactions on Knowledge and Data Engineer-
 ing, Vol. 12, No. 3, May/June, 2000.

 8) S.D. Lee and D.W. Cheung: Maintenance of Discov-
 ered Association Rules: When to update? Proc. of the

 1997 ACM-SIGMOD Workshop on Data Mining and
 Knowledge Discovery, Arizona, USA, May, 1997.

 9) S.D. Lee D.W. Cheung, and B. Kao: Is Sampling Use-
 ful in Data Mining? A Case in the Maintenance of

 Discovered Association Rules. Data Mining and Knowl-
 edge Discovery, Kluwer Academic Publishers, V2, I3,

 September, 1998.
10) A. Savasere, E. Omiecinski and S. Navathe: An Effi-

 cient Algorithm for Mining Association Rules in Large
 Databases. Proc. of 21th Int. Conf. on VLDB, Zurich,

 Switzerland, September, 1995.

