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Abstract: To support the highly concurrent processing of transactions with low price at parallel 
and distributed database systems, Network Of Workstations(NOW) is utilized. All workstations 
cooperate to perform the jobs submitted by database applications. Each job consists of several 
transactions and these transactions are executed on NOW. Each transaction sent to NOW is 
allocated to a certain workstation by the coordinator running at a workstation. In this paper, we 

present a Distributed-Transaction Coordinator (DTC). In DTC, the cost to finish transactions 
is collected automatically and each transaction is assigned to an appropriate site based on the 
collected information. 
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 1. Introduction 

 1.1 Network Of Workstations (NOW) 
     & Distributed-Transaction Coordi-

      nator 

 NOW 12) is a group of workstations connected via 
a network, and it is expected to act as a parallel ma-
chine with lower price, via utilizing the commodities 
CPU, disk, memory, and network. NOW is utilized 

in many kinds of application including distributed 
database server. 

 A distributed database server receives many 
transactions issued by the application jobs submit-
ted by users. Each transaction is executed at one of 

workstations. Among these workstations of NOW, 
a workstation is assigned to coordinate the transac-
tions. The program running on the workstation for 
coordinating is called as Transaction Coordinator 

(TC). 
 For example in Fig.1, the workstation WS4 is the 

TC workstation of the NOW. Transaction TO, Tl, 
T2, T3..... are sent to WS4. And TO is forwarded to 
WS3; Tl, T3 are sent to WSn; T2 is sent to WS2. 

 In this paper, we introduce a transaction coor-

dinator which is implemented in WAKASHI 2),13) 
WAKASHI is the lowest layer of an object database 
system named SHUSSEUO, which is developed by 
Kyushu University, Japan.

Fig.1 Network of Workstations
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 1.2 Distributed Shared Virtual Mem-

    ory (DSVM) & WAKASHI 
 To ease sharing the resources distributed on the 

workstations in NOW and to ease the distributed 

parallel programming, two main approaches were 
proposed. One is the Message Passing(MP) 9), and 
the other one is Distributed Shared Virtual Mern-
ory(DSVM) 3),4),5) The DSVM seems to provide 
more friendly user interface 7) . 

 WAKASHI is based on the DSVM technique and 
it provides transparent persistent storage facility for 

the object database applications. In WAKASHI, 
a DSVM space shared by distributed processes is 
called a heap. 

 In WAKASHI, a database can be composed of 

several independent heaps, as shown in Fig.2. To 
create a persistent DSVM space, we use two kinds of 
mapping mechanism. One is disk mapping support-
ed by UNIX OS11). The other is DSVM mapping



between the virtual memory spaces of two different 
sites. By the disk mapping, the data becomes per-
sistent. By the DSVM mapping, the virtual memo-
ry space is shared by the processes at different sites. 

 The functionality of each site to manage a heap in 

NOW is different. These sites are distinguished into 
two kinds, Primary Site and Mirror Site. There is 
only one Primary Site of a heap and several Mirror 
Sites. 

 • Primary site 

   If a heap in a site is created via disk mapping, 
   this site is called the primary site of this heap. 

   And the WAKASHI server in this site is called 

   primary server. Primary server performs the 
   following 3 tasks. 

   (1) Primary server is responsible to keep the 
   heap's data persistent. When a transaction 

   commits at other site, all of its updated pages 
   of this heap are sent back to the primary site 

   and the primary site writes the updated pages 

   back to the disk. 

   (2) Primary server also manages the global ac-
   cesses on this heap. If a site wants a lock on 
   a page and the lock is not retained locally, the 

   lock-request is forwarded to the primary site. 
   In this scene, the primary server is a global lock 

   monitor of the heap. 

   (3)As all of the updated pages are sent back 
   to the primary site, it always holds the latest 

   copies. So while another site wants to fetch a 

   latest copy, the primary site can satisfy the re-

   quest quite well. 
 • Mirror site 

   If a heap in a site is created via DSVM map-

   ping, this site is called mirror site of this heap. 
   And the WAKASHI server in this site is called 

   mirror server. A mirror server manages the lo-
   cal accesses. While there is an access-request 

   on a page which does not reside in the site, the 
   request for the page is forwarded to the primary 

   site by the mirror server. 
 In the rest of the paper, at section 2 we describe 

the cost that a WAKASHI transaction has to pay. 
In section 3 the transaction coordinator named as 

Distributed-Transaction Coordinator(DTC) is pre-
sented. The related work is introduced at section 4. 
Finally, the conclusion is given at section 5. 

 2. The cost paid by WAKASHI trans-
     actions 

 In WAKASHI each transaction is coordinated to 
a site. To which site is decided by considering the

cost of the transaction. The cost of a transaction 
which accesses a heap is mainly determined by two 
values, the number of pages read and the number 
of pages written. 

 In this section, we firstly introduce how to collect 
such values. Secondly, we give some cost factors. 
With these factors and the collected values, the to-
tal cost of a transaction is calculated. 

 2.1 The way to collect the cost values 
 In WAKASHI, we use the implicit page lock 

mechanism to synchronize the transactions. Before 
a transaction begins, all the pages of the heaps are 
protected. When the transaction wants to access a 
protected page, a pagefault occurs and is trapped 
by the pagefault handler of the process in which 
the transaction runs. The information of the page-
fault tells the type of the operation, read or update. 
According to the type, page lock request is sent to 
the page server. At the same time, the number of 
read(written) pages of the heap is increased by 1. 
When the transaction is to commit, such informa-
tion of each heap is gathered. 

 2.2 The cost factors 
 In WAKASHI, there are mainly 3 kinds of cost 

factor. 
 • Disk I/O Factor  (f2O): 

   Each heap exists in the virtual memory space at 
   either the primary site or a mirror site. So there 

   are swapping-in or swapping-out between main 
   memory and the disk of the site. In WAKASHI, 

   there are two kinds of operation incurring disk 
   I/O. (1) When a page is accessed and the page 
   doesn't reside in the memory, the page has to 

   be read from disk into memory. (2) When a 
   page is written, there is a disk I/O needed for 

   writing the updated page from memory to disk. 
   We use theZOto represent the cost caused by 

   disk I/O. 
 • Data Transfer Factor(fdt): 

   When a page is read at a mirror site where the 

   page doesn't reside, the page is fed from the 
   primary site. In WAKASHI, the page's transfer 

   induces the network communication cost. We 
   call such cost as data transfer cost and use fdt 
   to represent it. 

 • Remote Control Message Factor (frct): 

   In order to synchronize concurrent transac-
    tions, some control messages are necessary. 

   Among these message, some messages have to 
   be exchanged between the different sites. We



Fig.2 Database Structure in WAKASHI

   call the cost for exchanging the message as 
   remote control message cost and use  f„t to 

   present it. 
 As measured in current WAKASHI, these three 

cost factors are found to satisfy the following for-
mulas roughly. 

frct = 15 X fio(1) 

 fdt = 60 X frct(2) 

Using these three basic cost factors, we can formu-
late the following four more complex cost factors. 

  1. The cost factor fpr of a page_read_access at 
the primary site: 

.fpr = .fio(3) 

 2. The cost factor f pw of a page write access at 
the primary site: 

fpw=2X fio(4) 

In WAKASHI, before a page is written, the page 
must be read from disk to memory. Writing the up-
dated page back to the disk includes another disk 
I/O. 

  3. The cost factor fmr of a page_read_access at 
a mirror site: 

fmr = 2 X .fio + fdt + 2 X frct(5) 

 As shown in Fig.3, when a page is read at a mir-
ror site, firstly, a remote_page_read request is sent 
to the primary site. If the request is granted, the

Fig.3 Read a page at mirror site

page is loaded from the disk and transfered to the 
mirror site. Finally, the primary site sends an OK 

message to the mirror site. When the mirror site 
receives the page, the page is written to the disk. 
As the result, two disk I/Os, one data transfer and 
two remote messages are necessary. 

  4. The cost factor fmw of a page_write_acces s at 

a mirror site: 

fmw = 4 X fio + 2 x fdt + 4 x frct;(6) 

 As shown in Fig.4, before a page is written at a 

mirror site, the page is read at first. So the cost for a 

page read access at a mirror site is necessary. Addi-
tionally a remote page_write, and an OK message 
are necessary to grant the write lock from the pri-

mary site. When the transaction is to commit, the 
updated page has to be transfered back to the pri-
mary site. When the primary site receives the page, 
writing the updated page back into the disk implies



Fig.4 Write a page at a mirror site

a disk I/O. As the result, four disk I/Os, two data 
transfers and four remote messages are necessary. 

 When transaction t is scheduled to be executed 
at site s, the total cost for execution of t is summed 
up as follows. 

 n,i  s 
(E (fmr X Nri + fmw X Nwi)) 

i=0 

+(fpr x Nrs + fpw X Nws)(7) 

Here Nrx is the number of the pages read at heap x 
and Nwx is the number of the pages written at the 
same heap. 

 3. Distributed-Transaction Coordina-
   tor (DTC) 

 In DTC, a transaction is scheduled to be execut-
ed at the workstation where the cost of executing it 
is less than the cost of executing it at other work-
stations. 

 In DTC, there are 4 modules, Transac-
tion Pool(TP), Cost Information Manager(CIM), 
Database Distribution Manager(DDM) and Trans-
action Scheduler (TS). At each site of NOW, there 
are several Execute Element(EE)s and DTC com-
municates with these EEs via the communication 
interface. 
 The structure of the DTC is shown in Fig.5. 

  In the following sections, before the introduction 
of the structures of TP, DDM, CIM, and the algo-
rithm of TC, EE is described at first. 

 3.1 Execute Element (EE) 
  Each EE has two kinds of functionality. 

  • Execute the transaction 

   Initially EE is blocked. When a transaction's 

   type and parameters are sent from DTC by 

   socket, the EE is activated to execute the trans-

    action. 

  • Collect the cost information and feed it back 

   to DTC

Fig.5 Structure of DTC

Fig.6 Relationship between the processing capability 

      and the number of the Execute Elements

   When EE finishes the transaction, the number 

   of page read locks and page write locks of each 

   heap are collected and sent back to DTC via a 

   RPC message. 

 Although the number of EEs at each site can be 

tuned dynamically by DTC, there is a limit of the 

number of EEs, because the resource of a site, such 

as CPU or memory, is limited. As shown in Fig.6, 

the site's processing capability rises when the num-

ber of EEs increases until t. While the number of 

EEs becomes over than t, the processing capability 

can not be improved. 

 3.2 Transaction Pool (TP) 
 When DTC receives a transaction, the informa-

tion of the transaction, such as type and parameters 

are stored in the Transaction Pool. When a trans-

action is coordinated, the information of the trans-

action is removed from TP. The structure of TP is 

a transaction list as shown in Fig.7.



Fig.7 Structure of Transaction Pool

Fig.8 Structure of DDM

 The transactions are retrieved one by one from 

the beginning of the list. And the transactions 

stored at the list are sorted in order of their cost 

values. In other words, the transactions with lower 

cost are allocated prior to the ones with higher cost. 

Consequently the transactions with lower cost are 

coordinated in advance. We found that it is a better 

way to keep the workload balance of the NOW. 

 3.3 Database Distribution Manager 

   (DDM) 
 The information of the database distribution, 

such as the location of each heap and its size, is 

stored in DDM. The structure of DDM is shown in 

Fig.8. 

 A main component of DDM is a table named as 

Database Distribution Information Table. An en-

try of this table stores the distribution information 

concerning a heap. 

 3.4 Cost Information Manager (CIM) 
 In any database application, the number of the 

transaction types is fixed and decided during de-

signing it. For each type of transaction, a vector <

Fig.9 Structure of CIM

ovo,  ovl, ...ovn > named as Cost Vector(CV) is used 
to describe the cost. Here n is the number of the 
heaps composing the application database. Each 
ovi is also composed of a vector < Nr, Nw >. Here 
Nr (Nw) is the number of the pages read(written) 
in heap i. 

 In DTC, the CVs of every type of transaction are 
stored in CIM. Its structure is shown in Fig.9. 

 Initially, the table is empty. Once a transaction 
commits, the cost information is sent to CIM and is 

stored in the corresponding entry. 

 3.5 Transaction Scheduler Algorithm 
 • When a beginning request of a transaction t 

   whose type is T arrives and there isn't any idle 

   EE, 

   (1) Get the cost information of type T. 
   (2) Insert the T and parameters to the TP. 

  • When a begin request of a transaction t whose 

   type is T arrives and there are some idle EEs, 

   (1) Get the cost information of type T. 
   (2) For each site s of the idle EEs, calculate the 

is total cost if t would be executed at site s. 

   (3) Schedule transaction t to be executed at site 
   k at which the total cost of t is the smallest. 

  • When transaction t commits, 

   (1)EE Sends the cost value of transaction t to 
  DTC 

   (2)When DTC receives such information from 
   an EE at site s, 

     (2.1) if the corresponding entry in CIM is 
   empty, 

      (2.1.1) register an entry to store the infor-
    mation. 

     (2.2) if the entry is not empty, average the 
   vector stored in CIM and newly-received one.



    (2.3) if the TP is not empty, get a transaction 
   whose cost of executing at site s is minimum 

   and schedule the transaction to site s. 

 4. Related Work 

 In order to keep the workload balanced in NOW 
or multicomputer systems, some process migration 

 models1)'6) are proposed. In these models, both mi-
gration policy and location policy are based on the 
cost of the running processes. The cost mainly con-
sists of CPU cost. And the life time of a process 
is used to describe the CPU cost. Disk I/O and 
network communication cost are not considered. 

 In our model, the life time of a transaction can 
not be used to represent the transaction cost, 
since some transactions may be blocked because of 
page lock conflicts. During the blocking period, the 
transaction doesn't spend CPU. Moreover, common 
database applications are I/O intensive. So we con-
sider the disk I/O and network communication cost 
as the cost of a transaction. 

 5. Conclusion 

 In this paper, we introduce the DTC which is 
implemented at WAKASHI, a distributed database 

platform based on Distributed Shared Virtual Mem-
ory environment. In DTC, the disk I/O and com-
munication cost are considered. It differs from oth-
er process migration based models. We give sev-
eral cost factors to describe the execution cost of 

a transaction accessing a distributed database in 
WAKASHI. The cost of each transaction is collect-
ed and stored automatically. Each transaction is 
scheduled to be executed at the site where its cost 
is minimum. The structure and algorithm of DTC 

are introduced. 
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