
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Design and Implementation of Transaction
Coordinator at Network Of Workstations
Environment

Jin, Taiyong
Department of Intelligent Systems, Kyushu University : Graduate Student

Kaneko, Kunihiko
Department of Intelligent Systems, Graduate School of Information Science and Electrical
Engineering, Kyushu University

Makinouchi, Akifumi
Department of Intelligent Systems, Graduate School of Information Science and Electrical
Engineering, Kyushu University

https://doi.org/10.15017/1515681

出版情報：九州大学大学院システム情報科学紀要. 5 (2), pp.173-178, 2000-09-26. 九州大学大学院シ
ステム情報科学研究院
バージョン：
権利関係：

九州大学大学院

システム情報科学紀要

第5巻 第2号 平成12年9月

Research Reports on Information Science and

Electrical Engineering of Kyushu University

 Vol.5, No.2, September 2000

Design and Implementation of Transaction Coordinator at Network Of

 Workstations Environment

 Taiyong JIN* , Kunihiko KANEKO** and Akifumi MAKINOUCHI**

 (Received June 16, 2000)

Abstract: To support the highly concurrent processing of transactions with low price at parallel
and distributed database systems, Network Of Workstations(NOW) is utilized. All workstations
cooperate to perform the jobs submitted by database applications. Each job consists of several
transactions and these transactions are executed on NOW. Each transaction sent to NOW is
allocated to a certain workstation by the coordinator running at a workstation. In this paper, we

present a Distributed-Transaction Coordinator (DTC). In DTC, the cost to finish transactions
is collected automatically and each transaction is assigned to an appropriate site based on the
collected information.

Keywords: Distributed shared virtual memory, Network of workstations, Parallel transaction

process, Memory coherence, Object database system

 1. Introduction

 1.1 Network Of Workstations (NOW)
 & Distributed-Transaction Coordi-

 nator

 NOW 12) is a group of workstations connected via
a network, and it is expected to act as a parallel ma-
chine with lower price, via utilizing the commodities
CPU, disk, memory, and network. NOW is utilized

in many kinds of application including distributed
database server.

 A distributed database server receives many
transactions issued by the application jobs submit-
ted by users. Each transaction is executed at one of

workstations. Among these workstations of NOW,
a workstation is assigned to coordinate the transac-
tions. The program running on the workstation for
coordinating is called as Transaction Coordinator

(TC).
 For example in Fig.1, the workstation WS4 is the

TC workstation of the NOW. Transaction TO, Tl,
T2, T3..... are sent to WS4. And TO is forwarded to
WS3; Tl, T3 are sent to WSn; T2 is sent to WS2.

 In this paper, we introduce a transaction coor-

dinator which is implemented in WAKASHI 2),13)
WAKASHI is the lowest layer of an object database
system named SHUSSEUO, which is developed by
Kyushu University, Japan.

Fig.1 Network of Workstations

* Department of Intelligent Systems, Graduate Student

** Department of Intelligent Systems

 1.2 Distributed Shared Virtual Mem-

 ory (DSVM) & WAKASHI
 To ease sharing the resources distributed on the

workstations in NOW and to ease the distributed

parallel programming, two main approaches were
proposed. One is the Message Passing(MP) 9), and
the other one is Distributed Shared Virtual Mern-
ory(DSVM) 3),4),5) The DSVM seems to provide
more friendly user interface 7) .

 WAKASHI is based on the DSVM technique and
it provides transparent persistent storage facility for

the object database applications. In WAKASHI,
a DSVM space shared by distributed processes is
called a heap.

 In WAKASHI, a database can be composed of

several independent heaps, as shown in Fig.2. To
create a persistent DSVM space, we use two kinds of
mapping mechanism. One is disk mapping support-
ed by UNIX OS11). The other is DSVM mapping

between the virtual memory spaces of two different
sites. By the disk mapping, the data becomes per-
sistent. By the DSVM mapping, the virtual memo-
ry space is shared by the processes at different sites.

 The functionality of each site to manage a heap in

NOW is different. These sites are distinguished into
two kinds, Primary Site and Mirror Site. There is
only one Primary Site of a heap and several Mirror
Sites.

 • Primary site

 If a heap in a site is created via disk mapping,
 this site is called the primary site of this heap.

 And the WAKASHI server in this site is called

 primary server. Primary server performs the
 following 3 tasks.

 (1) Primary server is responsible to keep the
 heap's data persistent. When a transaction

 commits at other site, all of its updated pages
 of this heap are sent back to the primary site

 and the primary site writes the updated pages

 back to the disk.

 (2) Primary server also manages the global ac-
 cesses on this heap. If a site wants a lock on
 a page and the lock is not retained locally, the

 lock-request is forwarded to the primary site.
 In this scene, the primary server is a global lock

 monitor of the heap.

 (3)As all of the updated pages are sent back
 to the primary site, it always holds the latest

 copies. So while another site wants to fetch a

 latest copy, the primary site can satisfy the re-

 quest quite well.
 • Mirror site

 If a heap in a site is created via DSVM map-

 ping, this site is called mirror site of this heap.
 And the WAKASHI server in this site is called

 mirror server. A mirror server manages the lo-
 cal accesses. While there is an access-request

 on a page which does not reside in the site, the
 request for the page is forwarded to the primary

 site by the mirror server.
 In the rest of the paper, at section 2 we describe

the cost that a WAKASHI transaction has to pay.
In section 3 the transaction coordinator named as

Distributed-Transaction Coordinator(DTC) is pre-
sented. The related work is introduced at section 4.
Finally, the conclusion is given at section 5.

 2. The cost paid by WAKASHI trans-
 actions

 In WAKASHI each transaction is coordinated to
a site. To which site is decided by considering the

cost of the transaction. The cost of a transaction
which accesses a heap is mainly determined by two
values, the number of pages read and the number
of pages written.

 In this section, we firstly introduce how to collect
such values. Secondly, we give some cost factors.
With these factors and the collected values, the to-
tal cost of a transaction is calculated.

 2.1 The way to collect the cost values
 In WAKASHI, we use the implicit page lock

mechanism to synchronize the transactions. Before
a transaction begins, all the pages of the heaps are
protected. When the transaction wants to access a
protected page, a pagefault occurs and is trapped
by the pagefault handler of the process in which
the transaction runs. The information of the page-
fault tells the type of the operation, read or update.
According to the type, page lock request is sent to
the page server. At the same time, the number of
read(written) pages of the heap is increased by 1.
When the transaction is to commit, such informa-
tion of each heap is gathered.

 2.2 The cost factors
 In WAKASHI, there are mainly 3 kinds of cost

factor.
 • Disk I/O Factor (f2O):

 Each heap exists in the virtual memory space at
 either the primary site or a mirror site. So there

 are swapping-in or swapping-out between main
 memory and the disk of the site. In WAKASHI,

 there are two kinds of operation incurring disk
 I/O. (1) When a page is accessed and the page
 doesn't reside in the memory, the page has to

 be read from disk into memory. (2) When a
 page is written, there is a disk I/O needed for

 writing the updated page from memory to disk.
 We use theZOto represent the cost caused by

 disk I/O.
 • Data Transfer Factor(fdt):

 When a page is read at a mirror site where the

 page doesn't reside, the page is fed from the
 primary site. In WAKASHI, the page's transfer

 induces the network communication cost. We
 call such cost as data transfer cost and use fdt
 to represent it.

 • Remote Control Message Factor (frct):

 In order to synchronize concurrent transac-
 tions, some control messages are necessary.

 Among these message, some messages have to
 be exchanged between the different sites. We

Fig.2 Database Structure in WAKASHI

 call the cost for exchanging the message as
 remote control message cost and use f„t to

 present it.
 As measured in current WAKASHI, these three

cost factors are found to satisfy the following for-
mulas roughly.

frct = 15 X fio(1)

 fdt = 60 X frct(2)

Using these three basic cost factors, we can formu-
late the following four more complex cost factors.

 1. The cost factor fpr of a page_read_access at
the primary site:

.fpr = .fio(3)

 2. The cost factor f pw of a page write access at
the primary site:

fpw=2X fio(4)

In WAKASHI, before a page is written, the page
must be read from disk to memory. Writing the up-
dated page back to the disk includes another disk
I/O.

 3. The cost factor fmr of a page_read_access at
a mirror site:

fmr = 2 X .fio + fdt + 2 X frct(5)

 As shown in Fig.3, when a page is read at a mir-
ror site, firstly, a remote_page_read request is sent
to the primary site. If the request is granted, the

Fig.3 Read a page at mirror site

page is loaded from the disk and transfered to the
mirror site. Finally, the primary site sends an OK

message to the mirror site. When the mirror site
receives the page, the page is written to the disk.
As the result, two disk I/Os, one data transfer and
two remote messages are necessary.

 4. The cost factor fmw of a page_write_acces s at

a mirror site:

fmw = 4 X fio + 2 x fdt + 4 x frct;(6)

 As shown in Fig.4, before a page is written at a

mirror site, the page is read at first. So the cost for a

page read access at a mirror site is necessary. Addi-
tionally a remote page_write, and an OK message
are necessary to grant the write lock from the pri-

mary site. When the transaction is to commit, the
updated page has to be transfered back to the pri-
mary site. When the primary site receives the page,
writing the updated page back into the disk implies

Fig.4 Write a page at a mirror site

a disk I/O. As the result, four disk I/Os, two data
transfers and four remote messages are necessary.

 When transaction t is scheduled to be executed
at site s, the total cost for execution of t is summed
up as follows.

 n,i s
(E (fmr X Nri + fmw X Nwi))

i=0

+(fpr x Nrs + fpw X Nws)(7)

Here Nrx is the number of the pages read at heap x
and Nwx is the number of the pages written at the
same heap.

 3. Distributed-Transaction Coordina-
 tor (DTC)

 In DTC, a transaction is scheduled to be execut-
ed at the workstation where the cost of executing it
is less than the cost of executing it at other work-
stations.

 In DTC, there are 4 modules, Transac-
tion Pool(TP), Cost Information Manager(CIM),
Database Distribution Manager(DDM) and Trans-
action Scheduler (TS). At each site of NOW, there
are several Execute Element(EE)s and DTC com-
municates with these EEs via the communication
interface.
 The structure of the DTC is shown in Fig.5.

 In the following sections, before the introduction
of the structures of TP, DDM, CIM, and the algo-
rithm of TC, EE is described at first.

 3.1 Execute Element (EE)
 Each EE has two kinds of functionality.

 • Execute the transaction

 Initially EE is blocked. When a transaction's

 type and parameters are sent from DTC by

 socket, the EE is activated to execute the trans-

 action.

 • Collect the cost information and feed it back

 to DTC

Fig.5 Structure of DTC

Fig.6 Relationship between the processing capability

 and the number of the Execute Elements

 When EE finishes the transaction, the number

 of page read locks and page write locks of each

 heap are collected and sent back to DTC via a

 RPC message.

 Although the number of EEs at each site can be

tuned dynamically by DTC, there is a limit of the

number of EEs, because the resource of a site, such

as CPU or memory, is limited. As shown in Fig.6,

the site's processing capability rises when the num-

ber of EEs increases until t. While the number of

EEs becomes over than t, the processing capability

can not be improved.

 3.2 Transaction Pool (TP)
 When DTC receives a transaction, the informa-

tion of the transaction, such as type and parameters

are stored in the Transaction Pool. When a trans-

action is coordinated, the information of the trans-

action is removed from TP. The structure of TP is

a transaction list as shown in Fig.7.

Fig.7 Structure of Transaction Pool

Fig.8 Structure of DDM

 The transactions are retrieved one by one from

the beginning of the list. And the transactions

stored at the list are sorted in order of their cost

values. In other words, the transactions with lower

cost are allocated prior to the ones with higher cost.

Consequently the transactions with lower cost are

coordinated in advance. We found that it is a better

way to keep the workload balance of the NOW.

 3.3 Database Distribution Manager

 (DDM)
 The information of the database distribution,

such as the location of each heap and its size, is

stored in DDM. The structure of DDM is shown in

Fig.8.

 A main component of DDM is a table named as

Database Distribution Information Table. An en-

try of this table stores the distribution information

concerning a heap.

 3.4 Cost Information Manager (CIM)
 In any database application, the number of the

transaction types is fixed and decided during de-

signing it. For each type of transaction, a vector <

Fig.9 Structure of CIM

ovo, ovl, ...ovn > named as Cost Vector(CV) is used
to describe the cost. Here n is the number of the
heaps composing the application database. Each
ovi is also composed of a vector < Nr, Nw >. Here
Nr (Nw) is the number of the pages read(written)
in heap i.

 In DTC, the CVs of every type of transaction are
stored in CIM. Its structure is shown in Fig.9.

 Initially, the table is empty. Once a transaction
commits, the cost information is sent to CIM and is

stored in the corresponding entry.

 3.5 Transaction Scheduler Algorithm
 • When a beginning request of a transaction t

 whose type is T arrives and there isn't any idle

 EE,

 (1) Get the cost information of type T.
 (2) Insert the T and parameters to the TP.

 • When a begin request of a transaction t whose

 type is T arrives and there are some idle EEs,

 (1) Get the cost information of type T.
 (2) For each site s of the idle EEs, calculate the

is total cost if t would be executed at site s.

 (3) Schedule transaction t to be executed at site
 k at which the total cost of t is the smallest.

 • When transaction t commits,

 (1)EE Sends the cost value of transaction t to
 DTC

 (2)When DTC receives such information from
 an EE at site s,

 (2.1) if the corresponding entry in CIM is
 empty,

 (2.1.1) register an entry to store the infor-
 mation.

 (2.2) if the entry is not empty, average the
 vector stored in CIM and newly-received one.

 (2.3) if the TP is not empty, get a transaction
 whose cost of executing at site s is minimum

 and schedule the transaction to site s.

 4. Related Work

 In order to keep the workload balanced in NOW
or multicomputer systems, some process migration

 models1)'6) are proposed. In these models, both mi-
gration policy and location policy are based on the
cost of the running processes. The cost mainly con-
sists of CPU cost. And the life time of a process
is used to describe the CPU cost. Disk I/O and
network communication cost are not considered.

 In our model, the life time of a transaction can
not be used to represent the transaction cost,
since some transactions may be blocked because of
page lock conflicts. During the blocking period, the
transaction doesn't spend CPU. Moreover, common
database applications are I/O intensive. So we con-
sider the disk I/O and network communication cost
as the cost of a transaction.

 5. Conclusion

 In this paper, we introduce the DTC which is
implemented at WAKASHI, a distributed database

platform based on Distributed Shared Virtual Mem-
ory environment. In DTC, the disk I/O and com-
munication cost are considered. It differs from oth-
er process migration based models. We give sev-
eral cost factors to describe the execution cost of

a transaction accessing a distributed database in
WAKASHI. The cost of each transaction is collect-
ed and stored automatically. Each transaction is
scheduled to be executed at the site where its cost
is minimum. The structure and algorithm of DTC

are introduced.

 6. Acknowledgements

 This research is partially supported by the re-
search project on Advanced Databases of Scientif-

ic Research on Priority Area in Japan(Grant-No.
08244105) .

 References

1) M.Harchol-Balter, and A.B.Downey, "Exploiting Pro-
 cess Lifetime Distributions for Dynamic Load Balanc-

 ing", ACM Transaction on Computer Systems, Vol.15,
 No. 3, August 1997, pp. 253-285.

2) G.Bai, and A.Makinouchi, "WAKASHI/D: A Dis-
 tributed Paged-Object Server for Storage Management

 of New Generation Databases", Proc. of the Int'l Sym-

 posium on ADTI, Nara, 1994, pp.137-144.
3) B.N.Bershad and M.J.Zekauskas, "Midway: Shared

 memory parallel programming causal distributed
 shared memory", Proc. of the 11th International Con-

 ference on Distributed Computing Systems, October
 1991, pp.152-164.

4) B.Nitzberg and L.Virginia, "Distributed Shared Mem-
 ory: A Survey of Issues and Algorithms", ACM Com-

 puter. Surv. August 1991, pp.52-61.
5) J.B.Carter,J.K.Bennett and W. Zwaenepoel. "Imple-

 mentation and Performance of Munin", Proc. of the
 Thirteenth Symposium on Operating Systems Princi-

 ples, October 1991, pp.104-123.
6) F.Douglis and J.Ousterhout, "Transparent process mi-

 gration: Design alternatives and the sprite implemen-
 tation" Software, Pract. Exper. Vol.21, No.8, August

 1991, pp.757-785.
7) K.Li and P.Hudak. Memory coherence in shared virtu-

 al memory systems. ACM Transactions on Computer
 Systems, Vol.7, No.4, November 1989, pp.321-359.

8) K. Li and R.Schaefer, "A Hypercube shared virtual
 memory system for parallel computing", Proc. of the

 1988 International Conference on Parallel Processing,
 1989. pp.1022-1047

9) Message Passing Interface Forum, "MPI: A mes-
 sage passing interface standard", http://www.mpi-

 forum.org/docs/mpi-20-html/mpi2-report.html.
10)U.Ramachandran and M.J.A.Khalidi, "An Implemen-

 tation of Distributed Shared Memory", Software-
 Practice and Experience, Vol.21, No.5, 1991, pp.443-

 464.
11)Sun Microsystems, Inc. SunOS 5.2 Reference Manual,

 July 1993.
12)T.E.Anderson, D.E.Culler, D.A.Patterson and the

 NOW team, "A Case for NOW(Networks of Worksta-
 tions)", IEEE Micro. Feb.1995, pp.54-64.

13)G.Yu, K.Kaneko, G.Bai and A.Makinouchi, "Transac-
 tion management for a distributed object storage sys-

 tem WAKASHI — design, implementation and perfor-
 mance", Proc. of 12th ICDE, New Orleans, February

 1996, pp.496-509.

