九州大学学術情報リポジトリ Kyushu University Institutional Repository

直流磁界中における高温超電導バルクの二次元力基 礎実験

吉田, 欣二郎 九州大学大学院システム情報科学研究科電気電子システム工学専攻

松田, 茂雄 九州大学大学院システム情報科学研究科電気電子システム工学専攻 : 修士課程

松本,洋和

九州大学大学院システム情報科学研究科電気電子システム工学専攻 : 修士課程

https://doi.org/10.15017/1515674

出版情報:九州大学大学院システム情報科学紀要.5(1), pp.119-123, 2000-03-24. 九州大学大学院シ ステム情報科学研究院 バージョン: 権利関係:

直流磁界中における高温超電導バルクの二次元力基礎実験

吉田欣二郎*・松 田 茂 雄**・松 本 洋 和**

A Basic Experiment on Two-Dimensional Force of **HTSC-Bulk in DC Magnetic-Field**

Kinjiro YOSHIDA, Shigeo MATSUDA and Hirokazu MATSUMOTO

(Received December 10, 1999)

Abstract: High temperature superconducting (HTSC) bulk can levitate stably on a track which consists of permanent magnets of the same polarity. This is because HTSC-bulk has a pinning force which keeps from vertical displacement due to the weight. We have proposed a new LSM theory which is based on an idea of considering the pinning force as synchronizing force in using armature travelling-magnetic-field instead of permanent magnets. However, the lift force enough to levitate the vehicle on the ground has not been produced, so that basic experiments to verify the theory have succeeded on the water by the help of simple HTSC-bulk ships. We had to study on a sufficiently large lift-force exerted between pinned HTSC-bulk and travelling-magnetic-field. This paper presents a basic experiment on two-dimensional force produced in HTSC-bulk in DC magnetic-field and that two different modes of repulsion and attraction are caused dependently on relative strength between pinning and external magnetic fields. Especially, two-dimensional force in repulsive mode is found to have stable region limited by peak values of levitation force. The largest levitation force among the peak velues obtained in the experiments is 20 newtons which is five times heavier than a weight of the HTSC-bulk magnet.

Keywords: HTSC-bulk, Pinning force, DC magnetic-field, Two-dimensional force, Levitation force

1. ŧ えが き

高温超電導体(HTSC)を用いた磁気浮上車は,推進方 向に沿って同極の永久磁石を敷設した軌道上で磁束ピン 止め効果により、安定浮上することが知られている¹⁾.し かし、永久磁石軌道方式は極めてコスト高で実用的では なく、しかも、全く別の推進装置が必要である.

筆者らの一人は、これまで HTSC バルクを利用した磁 気浮上車システムについて,磁束ピン止め力を同期化力 として利用する新しい LSM の原理に基づき,エアコア 三相電機子巻線軌道²⁾ (ME03) および鉄心電機子巻線軌 道³⁾ (ME02)上で、車両に搭載した HTSC バルクを励磁 し,磁束ピン止めを行い,LSMの原理を実現して,安定 に案内走行させることに成功してきた。しかし、これま での走行実験では浮上に必要な力が得られず,水の浮力 を利用したが、新たな浮上方式を開発する必要があった。

本論文は,初期励磁を行ってピン止めされた HTSC バ ルクが直流磁界中で受ける電磁力を実験により測定し, HTSC バルクに働く二次元電磁力の基礎特性について

2. 某 礎 実 験

2.1実験の概略

実験において、試料となる HTSC バルク(YBaCuO) は直径48mm,幅24mmの円柱形のものを用い,冷却用容 器,および液体窒素を含めた全体(以下,HTSCバルク磁 石)の重量は430g である.

実験に用いた電磁石は当研究室が所有する、ギャップ の断面が円形のものを用いた. Fig.1 は実験に用いた電 磁石の概略図であり、図に示すように座標系を採って実

* 電気電子システム工学専攻

平成11年12月10日 受付

** 電気電子システム工学専攻修士課程

検討したものである.

Fig. 1 Schematic diagram of electromagnet and xyzcoordinate system

験を行った. Fig. 2 は B_{ex} =0.2T としたときの電磁石の 発生する磁束密度の分布を測定したものである。この図 より,円形電磁石の原点から y=90mm までの領域では 均一な磁界が発生しているが、半径90mm以上で増加し 始め,端部磁界は急激に変化していることが判る.特に, 磁石内径(120mm)近傍の磁束密度 Byと Bz(特に強く 塗った部分は)パルス的な変化を示す。

(Bex)iは、磁束ピン止めを行うための初期励磁を行う 際に印加する直流磁界であり、Bex は磁束ピン止めされ た HTSC バルクに対して印加する磁界を表している.

直流均一磁界中での磁界方向力 F_zの測定 2.2実験方法 2.2.1

Fig.3は実験装置の概略図である。まず、HTSCバル クを座標系の原点に、電磁石の磁界方向 z 軸と HTSC

y (mm)

60

90

120

0.0 4

0

30

 $z \,(\mathrm{mm})$ 0

150

Fig. 2 Flux density distribution within gap of Electromagnet

Fig. 3 z-directed magnetic force measurement in DC magnetic-field

バルクの中心軸とが一致するように補助台で固定する. 次に、電磁石によって (Bex)_i=0.5T の均一な直流磁界を 印加しつつ、液体窒素で冷却しながら磁束のピン止めを 行った。

磁束ピン止め後,電磁石による外部印加磁界 Bex を 0.1から0.6T まで0.1T 刻みで印加し, HTSC バルクの 位置を z 方向に 2 mm 毎に14mm まで変化させたとき, HTSC バルクに働く z 方向の電磁力 Fz をフォースメー タによって測定し、測定値 Fz' は容器と補助台との間の 摩擦力 F_µを含むので,摩擦力 F_µを測定し,補正を行っ て HTSC バルクに実際に働く電磁力 F_z を求めた.

2.2.2 実験結果

Fig. 4 にピン止め磁界 (*B*_{ex})_i=0.5T の場合の電磁力 Fzのz方向依存性を示す。実験ではそれぞれ3回ずつ測 定し、その平均値から得られる特性を最小二乗法によっ て多項式近似している.Fz は基本的に正の値であり,変 位の方向(ギャップを縮める方向)への力,すなわち吸引 力である.しかも、 F_z はz方向変位と共に放物線的に増 大する傾向を示す。これは永久磁石が鉄に対して示す性 質に類似している.

Fig. 5 はピン止め磁界 $(B_{ex})_i = 0.5 \text{T}$ の場合の F_z と Ber の関係を, HTSC バルクの位置 z=4, 8, 12mm につ いて示したものである。 F_z はピン止め磁界 $(B_{ex})_i$ と外 部印加磁界 Bex の差が大きくなるにつれて電磁力も大 きくなる。特に Fig. 4(b)から、 $(B_{ex})_i = B_{ex}$ のとき、 HTSCバルクにはほとんど電磁力は働かないことが判

(a) Experimental results for $B_{ex}=0.1, 0.2, 0.3T$

Fig. 4 z-dependence of the z-directed magnetic force under the condition $(B_{ex})_i = 0.5T$

Fig. 5 B_{ex} -dependence of the z-directed magnetic force under the condition $(B_{ex})_i = 0.5$ T

る.これは,理論計算結果とも一致する⁴⁾.また,実験の 再現性についても確認できた.

2.3 直流磁界中での磁界に垂直な方向力 F_yの 測定

2.3.1 実験方法

Fig.6 は実験装置の概略図である.磁束のピン止めは, 前節 2.2.1 と同様な方法で行った.磁束ピン止め後,磁束 ピン止め磁界 (B_{ex})_i と同方向の外部印加磁界 B_{ex} に対 して HTSC バルクを原点から y 軸に沿って移動させ, HTSC バルクの位置に対する y 方向の電磁力 F_y を測 定した.

2.3.2 実験結果

(a) $B_{ex} \leq (B_{ex})_i$ のとき

Fig. 7 はピン止め磁界 $(B_{ex})_i = 0.5$ T,外部印加磁界 $B_{ex} = 0.1 \sim 0.5$ T における HTSC バルク磁石の位置 y と 電磁力 F_y との関係を示したものである.実験は $y \ge 0$ の 領域について F_y の測定を行い,**Fig.** 7 では原点対称の 性質により、y < 0の領域まで拡張している.

図において、 $B_{ex} \leq (B_{ex})_i$ の場合には HTSC バルク磁 石に働く電磁力 F_y は電磁石に対する吸引力のみであり F_y の大きさは、 B_{ex} が大きいほど大きくなっていること が判る。 $B_{ex}=0.5$ T のグラフが途中できれているのは力 が実験に用いたフォースメータの測定範囲を超えたため であり、更に大きな F_y が期待できる。また、HTSC バル

Fig. 6 y-directed magnetic force measurement in DC magnetic-field

Fig. 7 y-dependence of the y-directed magnetic force under the condition $(B_{ex})_i = 0.5$ T

ク磁石の自重(4.2N)と F_y とが釣り合う点でHTSCバ ルク磁石は浮上するが、 F_y が最も小さくなる B_{ex} =0.1T の場合においても、y < 0でHTSCバルク磁石を浮上さ せるのに十分な電磁力が得られていることが判る.

Fig. 2の電磁石の発生する磁束密度分布と Fig. 7の グラフを比較すると、HTSC バルクに均一な直流磁界が 印加される領域ではほとんど F_y は働かないが、HTSC バルクの一部が磁界の不均一な領域に差し掛かると F_y が発生し始めることが判る.

以上のように $B_{ex} \leq (B_{ex})_i$ の条件での F_y を測定し, HTSC バルク磁石を y 方向に関して安定浮上させるこ とができた.

(b) $B_{ex} \leq (B_{ex})_i \ge B_{ex} > (B_{ex})_i \ge \mathcal{O}$ 違い

 $B_{ex} \leq (B_{ex})_i \geq B_{ex} > (B_{ex})_i \geq \sigma$ 違いを比べるために Fig. 8 に $(B_{ex})_i = 0.2$ T, $B_{ex} = 0.10$, 0.20, 0.25T のとき の位置 y と電磁力 $F_y \geq \sigma$ 関係を示す.

Fig. 8 において $(B_{ex})_i = 0.2$ T, $B_{ex} = 0.2$ 5T のグラフは $B_{ex} \leq (B_{ex})_i$ の条件下では見られない,電磁石とHTSC バルク磁石との反発力が発生していることが判る.また, $B_{ex} \leq (B_{ex})_i$ の条件の基では, B_{ex} が大きくなるほど,吸 引力は大きくなる.しかし, B_{ex} を大きくしていき, B_{ex} > $(B_{ex})_i$ となる $B_{ex} = 0.25$ T においては $B_{ex} = 0.20$ T の グラフと比べて吸引力が減少していることが判る.

(c) $B_{ex} > (B_{ex})_i$ のとき

Fig. 9 はピン止め磁界 $(B_{ex})_i=0.2$ T, $B_{ex}=0.3$, 0.4, 0.5, 0.6T の場合における HTSC バルクの位置 y と電磁 力 F_y との関係を示したものである.

Fig. 8 y-dependence of the y-directed magnetic force under the condition $(B_{ex})_i=0.2$ T, $B_{ex}=0.15$, 0.20, 0.25T

この図において、 $B_{ex} > (B_{ex})_i$ では B_{ex} が大きくなる と、HTSCバルクの電磁石に対する吸引力の最大値が小 さくなることが確認できる。しかしながら、それ以上に 電磁石に対する反発力の最大値は増大している。

このように、 $B_{ex} > (B_{ex})_i$ の条件下では y の値によっ て、吸引力と反発力が働くため、 $B_{ex} \leq (B_{ex})_i$ の場合と異 なり、HTSC バルクの浮上位置は二箇所存在する. つま り、y > 0 では HTSC バルク磁石の自重と電磁石間の反 発力とが釣り合う点で浮上し、y < 0 では HTSC バルク 磁石の自重と電磁石間の吸引力とが釣り合う点で浮上す る.しかも、HTSC バルク磁石が浮上位置から変位して も、HTSC バルク磁石と電磁石との間には HTSC バル ク磁石を浮上位置に固定しようとする電磁力が働くため、 y 方向に関して、安定に浮上する. この HTSC バルクを 浮上位置に固定しようとする電磁力が働く安定浮上領域 を **Fig. 9** において網掛けで示している.この安定浮上領 域は B_{ex} が大きくなるほどその領域の範囲も広くなっ ていることが判る.

Fig. 10は **Fig. 9**(a)の $(B_{ex})_i = 0.2$ T, $B_{ex} = 0.3$ T の場 合における HTSC バルクの浮上位置 A 点,及び B 点を 図示したものである.

2.3.3 浮上位置での F_zの測定

前述のように、y方向に関しては HTSC バルク磁石を 十分に浮上できる電磁力が得られるが、 $B_{ex} \leq (B_{ex})_i$ と $B_{ex} > (B_{ex})_i$ とでは HTSC バルク磁石に働く電磁力の性 質が異なることが判った。次に y=0 での F_z の測定と同 様に $(B_{ex})_i = 0.2$ T の条件下でピン止めを行い、 $B_{ex} = 0.1$ T における浮上位置 (y = -114mm)、 $B_{ex} = 0.1$ ST におけ る浮上位置 (y = -118mm)、及び $B_{ex} = 0.3$ T における浮

Fig. 9 y-dependence of the y-directed magnetic force under the condition $(B_{ex})_i = 0.2$ T

上位置(*y*=127mm)での *F*_z を測定した. **Fig. 11** はその 測定結果である.

この図より, $B_{ex} \leq (B_{ex})_i$ の条件下では, HTSC バルク 磁石には電磁石表面に対する吸引力が働き, B_{ex} が小さ くなるほど,吸引力も大きくなっているのが判る.また,

Fig. 10 Bulk's position along the y-axis under the condition $(B_{ex})_i=0.2$ T, $B_{ex}=0.3$ T

Fig. 11 z-dependence of the z-directed magnetic force under the condition $(B_{ex})_i = 0.2$ T

 $B_{ex} > (B_{ex})_i$ では、HTSC バルク磁石には電磁石に対す る反発力が働き、HTSC バルク磁石の z 方向変位に対し て z=0 に固定するような復元力が得られ、z 方向変位が 大きくなるほど、復元力も大きくなっていることが判る。 図において、 $B_{ex}=0.3$ Tのグラフがz=10mmまでと なっている。これは F_z が反発力であるため、Fig. 3 に示 したガイド部が z>10mmで、HTSC バルク磁石の容器 と干渉するためであり、z>10mmでは、さらに大きな反 発力が期待できる。

Table 1 は $B_{ex} \leq (B_{ex})_i \geq B_{ex} > (B_{ex})_i$ の条件での二

 Table 1
 Stability characteristics of HTSC bulk in DC magnetic-field

Items	$B_{ex} \leq (B_{ex})_i$	$B_{ex} > (B_{ex})_i$
F_y along the y-axis (z=0)	Attraction force	Repulsion force (y>0) Attraction force (y<0)
F_z at levitation point	Attraction force	Repulsion force (Restoring force)
(*) Levitation Region	$-y_{max} < y < -y_{min} < 0$	$0 < y_{min} < y < y_{max}$ $-y_{max} < y < -y_{min} < 0$
Levitation Stability	Unstable $\left(\begin{array}{c} \text{Unstable} \\ \text{Stable for } y \text{-direction} \\ \text{Unstable for } z \text{-direction} \end{array} \right)$	Stable Stable for y-direction Stable for z-direction

(*) y_{min} and y_{max} are minimum and maximum positions of positive y within stable-state region, respectively.

次元力特性をまとめたものである.

3. む す び

今回の実験により、 $(B_{ex})_i$ と同方向の直流磁界 B_{ex} 中 でのピン止めされた HTSC バルクに働く電磁力の基本 特性を得ることができた。特に、 $B_{ex} \leq (B_{ex})_i \geq B_{ex} >$ $(B_{ex})_i \geq 0$ 条件の違いによって、 F_y の特性、および浮上 位置での F_z の特性が大きく異なるという大変興味深い 結果を明らかにした。 $B_{ex} > (B_{ex})_i$ の場合、特に $(B_{ex})_i =$ 0.2T、 $B_{ex} = 0.6$ Tの場合には、HTSC バルク磁石の自重 よりも約5倍大きい浮上力 F_y が復元(案内)力 F_z とと もに得られることを見出した。

今後はこの性質を利用した磁気浮上システムの開発を 進めていきたい.

- 村上雅人:「超電導体の電磁力を利用した応用」第5回電 磁力関連のダイナミックシンポジウム講演論文集基調講 演 pp. 9-14 (1993年6月)
- K. Yoshida, H. Takami, M. Kanehiro: "A Basic Study on HTSC-Bulk Air-Cored LSM" ICEM'98 Vol. 3, pp. 1089-1094 (1998)
- K. Yoshida, H. Takami, M. Kanehiro, S. Arima: "A New HTSC-BULK MOTOR" Advances in Superconductivity IX, Vol. 2, pp. 1369-1372 (1996)
- 4) 吉田・高見・松田:「軸対称三次元磁界中の高温超電導バ ルクの有限要素法による電磁力解析」平成11年電気学会全 国大会 No. 1360