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Abstract: A linear time-invariant model can be described either by a parametric model or by 

a nonparametric model. Nonparametric models, for which a priori information is not necessary, 

are basically the response of the dynamical system such as impulse response model and frequency 

models. Parametric models, such as transfer function models, can be easily described by a small 

number of . In this paper aiming to take benefit from both types of models, we will use linear-

combination of basis fuctions in an impulse response using a few parameters. We will expand 

and generalize the Kautz functions as basis functions for dynamical system representations and 

we will consider estimation problem of transfer functions using Kautz function. And so we will 

present the influences of poles settings of Kautz function on the identification accuracy. 

Keywords: Kautz functions, Dynamical system, Identification

 1. Introduction 

 In order to build a model, we can use either 

parametric models such as state-space models, and 
transfer functions models or nonparametric ones 
such as impulse response model, and frequency 
models. As the power of computers increases con-
tinually, nonparametric models attracted much at-
tention recently. Impulse response models have ac-

tually an infinite number of unknown parameters, 
but these models have to be truncated appropriate-
ly in a finite length. However, finite order models 
still contain too many parameters, since in spite of 
improvements of computers, a high computation-

al burden is required for simulation. On the con-
trary, parametric models contain a smaller number 
of parameters. Unfortunately, an incorrect estimat-
ed model order can make the estimated model poor. 
Recently, a low order impulse response has been 

proposed using linear-combination of basis [5], [10]. 
The use of orthogonal basis functions for the Hilbert 
space of stable systems has a long history in the do-
main of modelling and identification of dynamical 
systems. The main part of this work dates back to 
the classical work by Lee [9] , which is summarized 
in Lee [11]. 
In this paper, we have chosen Kautz functions as 

basis functions and we will present the influences 

of poles settings on the identification accuracy. In 

section 2 we first present the statement of problem,

Table-1 Cnaracteristic of model identification 

Model System A priori Order of 

                  information estimation 

FIR non- xa large 

    parametricnumber 
Kautz non- A 1 > 2n 

        parametric 
TF paramatic0 2n
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and we formulate the Kautz function in Section 3. 

In section 4 we introduce an identification of expan-
sion coefficients. A simulation example in Section 5 
illustrates the identification method. 

 2. Statement of Problem 

 Given the fact that every stable system has a 
unique series expansion in terms of a pre-chosen 
basis, a model representation in terms of a finite-
length series expansion can serve as an approximate 
model, where the coefficients of the series expansion 
can be estimated from input-output data. 

A model of a linear stable time-invariant system 
with additive disturbance is given by: 

  y(t) = G°(q)u(t) + v(t), 

G°(q) _~9kq—k(1) 
k-1 

Where u(t) and y(t) are the input and output sig-
nals, respectively. Time shifts are represented by 
the delay operator q- u(t)= u(t - 1). And v(t) is 
a unit-variance, zero-mean white noise process. Let 

{ fi(z)}k=o,1,2,... be an orthonormal basis for the set



of  systems. Then there exists a unique series expan-

sion: 

00 

 G(z) _ Ewkfk(z),(2) 
k=1 

with {wk}k=1,2,... the unknown model parameters. 
A model of the system G(z) can be approximated 
by a finite-length series expansion: 

G(z) = Ewkfk(z)(3) 
k-1 

where the accuracy of the model will be essential-
ly dependent on the choice of basis functions fk(z). 
Note that the choice fk(z) = z-k corresponds to 

the use of so-called FIR (finite impulse response) 
models. The accuracy of the models is limited by 
the basis functions. 

 3. Kautz Function 

    The problem of orthogonalizing a set of contin-

uous time exponential functions has been elegant-
ly solved in [1]. The key idea is to determine the 
corresponding Laplace transforms, which have very 

simple structures. 

The sequence of functions {‘J/ (z)} is determined as 

follows: 

W2k-1(Z) = Cik) (1 — a(ik) z)F(k) (z)(4) 

 W2k(z) = C2k)(1 — a2k)z)F(k)(z)(5) 

where 

k-1 

fl (1 -/3jz)(1 -0 z) 
F(k)(z) _ --------------------------=1 

11(z - /3.i)(z - f3;) 
1=1 

 C,(k) _  (1 - iq)(1-r~/k2)(1  (1 + (alk))2)(1 +Nk/3) - 2a4k)(/3k + 130 

  C,2 (k) _  (1 — /3k)(1 — /3*2)(1 0k0 Z)  
(1 + (4))2)(1 + /3k/3k) — 24)(3k + /k)

(1 + alk)a2k))(1 + /3k/3k) 

(alk)+a2k))(/3k+/k) =0(6) 
Here 13 are complex numbers such that 1/3k1 < 1, 
and aik), a2k) are restricted by the condition (6). 
The functions {Tk(z)}k_1,2,... will be called the dis-
crete Kautz functions. Another special case is for 

,3k = 13. For this case one can take: 

       (k)1 +00*(k)       a
1-+13*,a2— 0 

and thus 

             - W2k-1(z)= z2b(cZ(1--------------------zb) c 
           -cz2+b(c - 1)z + 1k-1 

             z2 + b(c - 1)z - c 

         = K2k-1(z)Gb(z)k 

   2k(Z)_\/(1 — c2)(1 — b2)  Z2 -i-b(c -1)z-c 

            —CZ2+b(c— 1)z+1k-1 

z2+ b(c -1)z-c 

      = K2k(z)Gb(z)k 

<1, 1cI<1 

where 

-V1-c2(z-b) 
K2k-1(z) — Z2 + b(c - 1)z - c 

          ~(1 - c2)(1 - b2)  K2k(z) = z2 + b(c - 1)z - c 

-cz2 + b(c - 1)z + 1  
GE,(z) = z2 + b(c - 1)z - c 

and b = (13 + /3*)/(1 + 3 3*), c = -/313*. Since 
aland a2k) are not unique, several other sets of 
{'k(z)} are possible. 
Let us denote 

Vk(z) = K2k-1(z) Gb(Z)k          K
2k (z) 

— c2 z — b 
Gb(z)k 

z2 + b(c - 1)z - c  - b2



Fig.1 Kautz network for discrete model

 ZT =  [zto, • • • , zN], YT = [y(t0), ... , y(N)] 

Then, the least squares estimate of 6 minimizes the 

loss function is such as: 

     1  J = —E (y(t) — zt 0)2 
t=to 

                         (10) 
  =  (y — Z9)T (y — Z6)(11) 

The solution of this quadratic optimization problem 
is:

 4. Identification of expansion coeffi-

    cients 

 Using Kautz function a practical parameter iden-
tification method for linear time-invariant systems 
is introduced. System identification deals with the 

problem of finding an estimate of G(z) from ob-
servations of {y(t), u(t)}t_1...N. The identification 

problem simplifies to a linear regression estimation 
problem if the model is linear-in-the-parameters, 
and can be represented by: 

G(z) = Ewkfk(z)(7) 
k=1 

where { fk(z)} is a set of given basis functions 
and {wk} are the unknown model parameters. If 

 [f;_i()]corresponds to {Vk(z)}, we call this  (z) 
model a Kautz model. The least squares method 
can now be applied to estimate the model parame-
ters 

OT = (w1 , w2, ... , wn) •(8) 

The input/output relation can be written in the lin-
ear regression form 

y(t) = zt 9•(9) 

where 

zt = [u1(t), u2(t), - • • , u„(t)] 

uk(t) = fk(z)u(t), 
Let

BN = (ZT Z)-1ZTy(12) 

where 

       1 ZT Z =N zt zt 
                t=to 

                         (13) 

ZTY =  E zty(t)•(14) 
                t=to 

The value of to depends on how the effects of un-

known initial conditions are treated. For large N, 

the effects of to will be negligible. 

 5. Simulation Example 

 We give a simple example to illustrate the advan-

tage of using Kautz models for second order reso-

nant systems. Consider a continuous time transfer 

function 

_1 G° (s) 
s2 + 0.2s + 1(15) 

with resonant frequency coo = 1 [rad/s] and damping 
 = 0.1. This system is sampled using a zero-order 

hold with sampling period T = 0.5. Two input sig-
nals are generated white noise signal and colored 
noise signal. The colored noise is determined by: 

  sin(t) + 0.5sin(1.5t) + 1.5sin(3t) + 0.3sin(4.5t)+ 
 0.3sin(5t) + 0.2sin(7t) + 2.5sin(7.5t) + 5sin(10.5t) 

Figure 2 is shows the slided pole using Kautz model.

Table-2 Correspondence, in terms of selection of input 
      and slided pole 

   Input FIR Kautz 1 Kautz 2 

   White Fig3. FigS. Fig7. 
   noise (n=100) (n=7) (n=7)  
   colored Fig4. Fig6. Fig8. 
   noise (n=100) (n=7) (n=7)



 Figure2. Pole of Kautz model 

o : Actual pole x : Slided pole Figure4. FIR model (n=100)

Figure3. FIR model (n=100) Figure5. Kautz model (n=7)

 6. Conclusion 

 In this paper we considered an estimation method 
of transfer function G(z) using basis functions  ex-

pansion. If a colored noise is used as an input signal, 
the output of a FIR model is more disturbed than 

the output of a Kautz model. And a Kautz model 
needs a priori information on two parameters, but 
even if no accurate a priori information is availble, 
the output of the Kautz model remains good.
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