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Abstract

We present constructive a priori error estimates for H2
0 -projection into a space

of polynomials on a one-dimensional interval. Here, “constructive” indicates
that we can obtain the error bounds in which all constants are explicitly given
or are represented in a numerically computable form. Using the properties
of Legendre polynomials, we consider a method by which to determine these
constants to be as small as possible. Using the proposed technique, the
optimal constant could be enclosed in a very narrow interval with results
verification. Furthermore, constructive error estimates for finite element H2

0 -
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1. Introduction

In the present paper, we consider the smallest constant C in a priori error
estimates of the form∥∥u − P 2u

∥∥
H2

0 (Λ)
≤ C |u|H4(Λ) , ∀u ∈ H2

0 (Λ) ∩ H4(Λ), (1)

where P 2 is an H2
0 -projection on a one-dimensional interval Λ, and ‖ · ‖H2

0 (Λ)

and | · |H4(Λ) are the norm in H2
0 and the seminorm in H4, respectively. The

purpose of the present study is to find the upper and lower bounds of optimal
constants in the above estimates. These constants not only play an important
role in theoretically verifying the solutions of differential equations (e.g. [8, 2,
6]), but also contribute to highly reliable computing in numerical simulation
using the finite element method or the spectral method. In general, C should
be made as small as possible.

In the case of the H1
0 -projection, for approximation spaces with linear and

quadratic polynomials, the optimal constants can be theoretically determined
as 1

π
and 1

2π
, respectively (see [7, 5]). Such a constant can also be computed

for higher-order polynomials (see [4]), although it is not optimal.
For the H2

0 -projection, Schultz obtained constructive a priori error esti-
mates based on piecewise cubic interpolation (see [7]), which is not optimal.

In the present paper, we propose a method that is an extension and im-
provement of the technique presented in [4] to obtain a constant very close to
the optimal constant with guaranteed accuracy. Note that the proposed tech-
nique improves Schultz’s result and can also be applied to obtain the optimal
constants in the case of higher-order polynomials. Furthermore, using the
present results, it will be possible to realize more efficient computations in the
numerical verification of solutions related to fourth-order elliptic problems,
such as those described in [2, 6, 9].

2. Legendre polynomials

Let Λ = (a, b), (a < b ∈ R) be a one-dimensional interval. The Legendre
polynomials on Λ are defined as a complete orthogonal system in L2(Λ), for
an arbitrary non-negative integer n,

Pn(x) :=
(−1)n

n! |Λ|n
(

d

dx

)n

(b − x)n(x − a)n, (2)
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where |Λ| := b − a. Furthermore, Pn has the following properties ([1]):

d

dx
((b − x)(x − a)P ′

n(x)) + n(n + 1)Pn(x) = 0, ∀n ≥ 0, (3)

(Pm, Pn)L2(Λ) =
|Λ|

2n + 1
δm,n, ∀m,n ≥ 0, (4)

(2n + 1)Pn =
|Λ|
2

(
P ′

n+1 − P ′
n−1

)
, ∀n ≥ 1, (5)

Pn(a) = (−1)n, Pn(b) = 1, ∀n ≥ 0, (6)

where (Pm, Pn)L2(Λ) denotes the L2 inner product on Λ and δm,n denotes
Kronecker’s δ.

Lemma 2.1. For any u ∈ H1(Λ) and integer n ≥ 1, we have

(u, Pn)L2(Λ) =
|Λ|

2(2n + 1)

(
(u′, Pn−1)L2(Λ) − (u′, Pn+1)L2(Λ)

)
. (7)

Proof : From (5) and (6)

(u, Pn)L2(Λ) =

(
u,

|Λ|
2(2n + 1)

(
P ′

n+1 − P ′
n−1

))
L2(Λ)

=
|Λ|

2(2n + 1)
u(b)

(
Pn+1(b) − Pn−1(b)

)
− |Λ|

2(2n + 1)
u(a)

(
Pn+1(a) − Pn−1(a)

)
− |Λ|

2(2n + 1)

(
(u′, Pn+1 − Pn−1)L2(Λ)

)
=

|Λ|
2(2n + 1)

(
(u′, Pn−1)L2(Λ) − (u′, Pn+1)L2(Λ)

)
,

which implies (7). ¤

3. Error estimates for H2
0 -projection on a one-dimensional interval

Let H2
0 (Λ) be a function space on Λ defined as

H2
0 (Λ) ≡

{
u ∈ H2(Λ) ; u(a) = u(b) = u′(a) = u′(b) = 0

}
with associated inner product

(u, v)H2
0 (Λ) := (u′′, v′′)L2(Λ) .

First, we define the following set of functions
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Definition 3.1. For any integer n ≥ 4, an n-th order polynomial φn on Λ
is defined as

φn(x) =
(−1)n

√
2n − 3

(n − 2)! |Λ|n−3/2

(
d

dx

)n−4

(b − x)n−2(x − a)n−2. (8)

Then, we have

Theorem 3.2. The set of functions {φn}n≥4 ⊂ H2
0 (Λ) is a complete or-

thonormal system in H2
0 (Λ).

Proof : First, we show the orthogonality. From (8) we have, for arbitrary
n ≥ 2,

φ′′
n+2(x) =

√
2n + 1

|Λ|
(−1)n

n! |Λ|n
(

d

dx

)n

(b − x)n(x − a)n

=

√
2n + 1

|Λ|
Pn(x).

Hence, for any m, n ≥ 2, by using the property given in (4), it holds that

(φm+2, φn+2)H2
0 (Λ) =

(
φ′′

m+2, φ
′′
n+2

)
L2(Λ)

=

(√
2m + 1

|Λ|
Pm,

√
2n + 1

|Λ|
Pn

)
L2(Λ)

=

√
(2m + 1)(2n + 1)

|Λ|
(Pm, Pn)L2(Λ)

= δm,n,

which implies that {φn}n≥4 is an orthonormal system in H2
0 (Λ).

Next, we prove the completeness. For an element u ∈ H2
0 (Λ), suppose

that (u, φn+2)H2
0 (Λ) = 0 for all n ≥ 2. Then, we have

(u, φn+2)H2
0 (Λ) =

√
2n + 1

|Λ|
(u′′, Pn)L2(Λ) , ∀n ≥ 2.

Namely,
(u′′, Pn)L2(Λ) = 0, ∀n ≥ 2.
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Moreover, by u ∈ H2
0 (Λ) we have the following equalities:

(u′′, P0)L2(Λ) = u′(b) − u′(a) = 0,

(u′′, P1)L2(Λ) = − 2

|Λ|
(u′, P0)L2(Λ) = − 2

|Λ|
(
u(b) − u(a)

)
= 0.

Since {Pn}n≥0 is a complete orthogonal system in L2(Λ), it holds that u′′ = 0
in L2(Λ). Thus, we have u = 0 in H2

0 (Λ), which proves the completeness of
{φn}n≥4. ¤

Definition 3.3 (H2
0 -projection). For an integer N ≥ 4, we define the

finite-dimensional subspace SN of H2
0 (Λ) by SN ≡ span4≤n≤N φn. Then, we

define the H2
0 -projection P 2

N from H2
0 (Λ) into SN by(

u − P 2
Nu, vN

)
H2

0 (Λ)
= 0, ∀vN ∈ SN . (9)

We also set S3 = {0} and P 2
3 ≡ 0.

Now, we have the following basic constructive error estimates for the
H2

0 -projection of a function u with H4-regularity.

Theorem 3.4. For an arbitrary integer N ≥ 3, there exists a constant
C̃(|Λ| , N) > 0 such that∥∥u − P 2

Nu
∥∥

H2
0 (Λ)

≤ C̃(|Λ| , N) |u|H4(Λ) , ∀u ∈ H2
0 (Λ) ∩ H4(Λ), (10)

where

C̃(|Λ| , N) =



√
3
(

|Λ|
2

)2
1√

2N−5(2N−3)
√

2N−1
, if N = 3,

√
3
(

|Λ|
2

)2 √
10N−3

(2N−3)
√

(2N−1)(2N+1)(2N+3)
, if 4 ≤ N ≤ 38,

3
√

2
(

|Λ|
2

)2
1√

(2N−1)(2N+1)(2N+5)(2N+7)
, if 39 ≤ N.

Here, the H4 seminorm is defined as |u|H4(Λ) ≡ ||u′′′′||L2(Λ).

Proof : From Theorem 3.2, any u ∈ H2
0 (Λ) ∩ H4(Λ) can be expanded by

{φn}. That is,

u =
∞∑

n=4

anφn (11)

with an = (u, φn)H2
0 (Λ) . (12)
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As a result of the orthogonality of {φn} in H2
0 (Λ), the H2

0 -projection coincides
with the truncation up to N . Hence, we have

P 2
Nu =

N∑
n=4

anφn.

Therefore, the Parseval equality implies the following:

∥∥u − P 2
Nu

∥∥2

H2
0 (Λ)

=

∥∥∥∥∥
∞∑

n=N+1

anφn

∥∥∥∥∥
2

H2
0 (Λ)

=
∞∑

n=N+1

a2
n. (13)

On the other hand, since {Pn} is a complete orthogonal system in L2(Λ),
u′′′′ ∈ L2(Λ) can also be expanded as

u′′′′ =
∞∑

n=0

bn
Pn

‖Pn‖L2(Λ)

(14)

with bn =

(
u′′′′,

Pn

‖Pn‖L2(Λ)

)
L2(Λ)

. (15)

Taking into account that Pn/ ‖Pn‖L2(Λ) is a complete orthonormal system in

L2(Λ), by the Parseval equality, we have

|u|2H4(Λ) = ‖u′′′′‖2
L2(Λ) =

∞∑
n=0

b2
n. (16)
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Now, for any integer n ≥ 4, observe that by using Lemma 2.1

an = (u, φn)H2
0 (Λ)

= (u′′, φ′′
n)L2(Λ)

=
√

2n − 3 |Λ|−1/2 (u′′, Pn−2)L2(Λ)

=
|Λ|1/2

2
√

2n − 3
(u′′′, Pn−3 − Pn−1)L2(Λ)

=
|Λ|1/2

2
√

2n − 3

|Λ|
2(2n − 5)

(u′′′′, Pn−4 − Pn−2)L2(Λ) −
|Λ|1/2

2
√

2n − 3

|Λ|
2(2n − 1)

(u′′′′, Pn−2 − Pn)L2(Λ)

=
|Λ|3/2

4

1

(2n − 5)
√

2n − 3
(u′′′′, Pn−4)L2(Λ) −

|Λ|3/2

4

2
√

2n − 3

(2n − 5)(2n − 1)
(u′′′′, Pn−2)L2(Λ)

+
|Λ|3/2

4

1√
2n − 3(2n − 1)

(u′′′′, Pn)L2(Λ)

=:

(
|Λ|
2

)2 (
αn−4bn−4 − βn−2bn−2 + γnbn

)
. (17)

Here, αn, βn, and γn are defined, respectively, as follows:

αn−4 =
‖Pn−4‖L2(Λ)√

|Λ|(2n − 5)
√

2n − 3
=

1√
2n − 7(2n − 5)

√
2n − 3

,

namely, αn =
1√

2n + 1(2n + 3)
√

2n + 5
, (18)

βn−2 =
2
√

2n − 3 ‖Pn−2‖L2(Λ)√
|Λ|(2n − 5)(2n − 1)

=
2

(2n − 5)(2n − 1)
,

namely, βn =
2

(2n − 1)(2n + 3)
, (19)

γn =
‖Pn‖L2(Λ)√

|Λ|
√

2n − 3(2n − 1)
=

1√
2n − 3(2n − 1)

√
2n + 1

. (20)

Note that αn, βn, and γn ≈ O(n−2) and are monotonically decreasing se-
quences in n. Then, we obtain the following estimates for each term of the
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final equality in (13)

a2
n =

(
|Λ|
2

)4 (
αn−4bn−4 − βn−2bn−2 + γnbn

)2

=

(
|Λ|
2

)4 (
α2

n−4b
2
n−4 + β2

n−2b
2
n−2 + γ2

nb
2
n

− 2αn−4bn−4βn−2bn−2 − 2βn−2bn−2γnbn + 2αn−4bn−4γnbn

)
≤ 3

(
|Λ|
2

)4 (
α2

n−4b
2
n−4 + β2

n−2b
2
n−2 + γ2

nb
2
n

)
.

Therefore, from (13), we have the estimates

∥∥u − P 2
Nu

∥∥2

H2
0 (Λ)

=
∞∑

n=N+1

a2
n

≤ 3

(
|Λ|
2

)4 ∞∑
n=N+1

(
α2

n−4b
2
n−4 + β2

n−2b
2
n−2 + γ2

nb
2
n

)
= 3

(
|Λ|
2

)4
(

α2
N−3b

2
N−3 + α2

N−2b
2
N−2 +

(
α2

N−1 + β2
N−1

)
b2
N−1

+
(
α2

N + β2
N

)
b2
N +

∞∑
n=N+1

(
α2

n + β2
n + γ2

n

)
b2
n

)

≤ 3

(
|Λ|
2

)4

max
{
α2

N−3, α2
N−1 + β2

N−1, α2
N+1 + β2

N+1 + γ2
N+1

} ∞∑
n=N−3

b2
n

≤ 3

(
|Λ|
2

)4

max
{
α2

N−3, α2
N−1 + β2

N−1, α2
N+1 + β2

N+1 + γ2
N+1

}
|u|2H4(Λ)

=: C̃(|Λ| , N)2 |u|2H4(Λ) .

Finally, estimating the terms operated on by max{· · · } in the above expres-
sion, we obtain for N = 3 then α2

N−1 + β2
N−1 ≤ α2

N−3 and α2
N+1 + β2

N+1 +
γ2

N+1 ≤ α2
N−3, which implies the following:

C̃(|Λ| , N) =
√

3

(
|Λ|
2

)2
1√

2N − 5(2N − 3)
√

2N − 1
,

for 4 ≤ N ≤ 38. Thus, α2
N−3 ≤ α2

N−1 + β2
N−1 and α2

N+1 + β2
N+1 + γ2

N+1 ≤

8



α2
N−1 + β2

N−1, which implies the following:

C̃(|Λ| , N) =
√

3

(
|Λ|
2

)2 √
10N − 3

(2N − 3)
√

(2N − 1)(2N + 1)(2N + 3)
,

for 39 ≤ N then α2
N−3 ≤ α2

N+1 +β2
N+1 +γ2

N+1 and α2
N+1 +β2

N+1 +γ2
N+1, which

implies

C̃(|Λ| , N) = 3
√

2

(
|Λ|
2

)2
1√

(2N − 1)(2N + 1)(2N + 5)(2N + 7)

Thus, we have the desired result. ¤
Based on the estimates in Theorem 3.4, we can obtain a smaller constant

by using a method similar to that described in [4].

Lemma 3.5. Let an, bn ∈ R be as given in the proof of Theorem 3.4. In
addition, let αn, βn, γn be positive numbers defined by (18), (19), and (20),
respectively. Then, for any integers N ≥ 3 and M ≥ N + 5, there exists a
constant σN,M > 0 such that

M∑
n=N+1

a2
n ≤

(
|Λ|
2

)4

σN,M

M∑
n=N−3

b2
n, (21)

where σN,M := max{c1(N), c2(N), c3(N), d1(M), d2(M)} and ci(N), di(M)
are defined as follows:

c1(N) = α2
N−3 + αN−3βN−1 + αN−3γN+1,

c2(N) = αN−3βN−1 + α2
N−1 + β2

N−1 + αN−1βN+1 + βN−1γN+1 + αN−1γN+3,

c3(N) = αN−3γN+1 + αN−1βN+1 + βN−1γN+1

+ α2
N+1 + β2

N+1 + γ2
N+1 + αN+1βN+3 + βN+1γN+3 + αN+1γN+5,

d1(M) = αM−7γM−3 + αM−5βM−3 + βM−5γM−3 + β2
M−3 + γ2

M−3 + βM−3γM−1,

d2(M) = αM−5γM−1 + βM−3γM−1 + γ2
M−1.

Proof : Setting ~b ≡ (bN−3, bN−2, · · · , bM)T ∈ RM−N+4 and taking (17) into
account, reveals that there exists a symmetric and positive definite matrix A
satisfying

M∑
n=N+1

a2
n =

(
|Λ|
2

)4 M∑
n=N+1

(
αn−4bn−4 − βn−2bn−2 + γnbn

)2
(22)

=

(
|Λ|
2

)4

~bT A~b.
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Here, A =
(
Aij

)
1≤i,j≤M−N+4

can be explicitly written as

A =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

α2
N−3
0 α2

N−2 symmetry

−αN−3βN−1 0 α2
N−1 + β2

N−1
0 −αN−2βN 0 α2

N + β2
N

αN−3γN+1 0 −αN−1βN+1 − βN−1γN+1 0 α2
N+1 + β2

N+1 + γ2
N+1

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

αM−7γM−3 0 −αM−5βM−3 − βM−5γM−3 0 β2
M−3 + γ2

M−3
αM−6γM−2 0 −αM−4βM−2 − βM−4γM−2 0 β2

M−2 + γ2
M−2

0 αM−5γM−1 0 −βM−3γM−1 0 γ2
M−10 0 αM−4γM 0 −βM−2γM 0 γ2

M

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

The symmetry and positivity of A are clearly followed by the property of the
quadratic form (22). Using Gerschgorin’s theorem, the maximum eigenvalue
of A is bounded by

max σ(A) ≤ max
1≤j≤M−N+4

M−N+4∑
i=1

|Aij| =: σN,M ,

where σ(A) denotes the set of eigenvalues of A.
Moreover, from the monotonically decreasing property of αn, βn, and γn

in n, we have

σN,M = max
{
α2

N−3 + αN−3βN−1 + αN−3γN+1,

αN−3βN−1 + α2
N−1 + β2

N−1 + αN−1βN+1 + βN−1γN+1 + αN−1γN+3,

αN−3γN+1 + αN−1βN+1 + βN−1γN+1 + α2
N+1 + β2

N+1 + γ2
N+1

+ αN+1βN+3 + βN+1γN+3 + αN+1γN+5,

αM−7γM−3 + αM−5βM−3 + βM−5γM−3 + β2
M−3 + γ2

M−3 + βM−3γM−1,

αM−5γM−1 + βM−3γM−1 + γ2
M−1

}
.

Thus, we obtain

M∑
n=N+1

a2
n =

(
|Λ|
2

)4

~bT A~b ≤
(
|Λ|
2

)4

σN,M

∣∣∣~b∣∣∣2 =

(
|Λ|
2

)4

σN,M

M∑
n=N−3

b2
n,

which proves the lemma. ¤
The following theorem gives alternative estimates to that given in Theo-

rem 3.4, which enables better estimates of each constant to be obtained.
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Theorem 3.6. For each integer N ≥ 3, there exists a constant C0(|Λ| , N) >
0 such that∥∥u − P 2

Nu
∥∥

H2
0 (Λ)

≤ C0(|Λ| , N) |u|H4(Λ) , ∀u ∈ H2
0 (Λ) ∩ H4(Λ), (23)

where

C0(|Λ| , N) =



(
|Λ|
2

)2 √
c1(N), if N = 3,(

|Λ|
2

)2 √
c2(N), if 4 ≤ N ≤ 19,(

|Λ|
2

)2 √
c3(N), if 20 ≤ N,

where ci(N) are the constants given in Lemma 3.5.
Moreover, ci(N) are explicitly written as

c1(N) =
1

(2N − 5)(2N − 3)2(2N − 1)
+

2√
2N − 5(2N − 3)2

√
2N − 1(2N + 1)

+
1√

2N − 5(2N − 3)(2N − 1)(2N + 1)
√

2N + 3
,

c2(N) =
2√

2N − 5(2N − 3)2
√

2N − 1(2N + 1)
+

4
(2N − 3)

√
2N − 1(2N + 1)

√
2N + 3(2N + 5)

+
1√

2N − 1(2N + 1)(2N + 3)(2N + 5)
√

2N + 7
+

10N − 3
(2N − 3)2(2N − 1)(2N + 1)(2N + 3)

,

c3(N) =
1√

2N − 5(2N − 3)(2N − 1)(2N + 1)
√

2N + 3
+

4
(2N − 3)

√
2N − 1(2N + 1)

√
2N + 3(2N + 5)

+
6

(2N − 1)(2N + 1)(2N + 5)(2N + 7)
+

4
(2N + 1)

√
2N + 3(2N + 5)

√
2N + 7(2N + 9)

+
1√

2N + 3(2N + 5)(2N + 7)(2N + 9)
√

2N + 11
.

Proof : For any M ≥ N + 5, using Lemma 3.5 and arguments similar to
those presented in the proof of Theorem 3.4, we have

∥∥u − P 2
Nu

∥∥2

H2
0 (Λ)

=
M∑

n=N+1

a2
n +

∞∑
n=M+1

a2
n

≤
(
|Λ|
2

)4

σN,M

M∑
n=N−3

b2
n + C̃(|Λ| ,M)2

∞∑
n=M−3

b2
n

≤

((
|Λ|
2

)4

σN,M + C̃(|Λ| ,M)2

)
|u|2H4(Λ) .

11



For arbitrary ε > 0, there exists an M such that C̃(|Λ| ,M)2 < ε and di(M) <
cj(N), (i = 1, 2, j = 1, 2, 3). We now fix such an M . Then, we have σN,M =
max{c1(N), c2(N), c3(N)}. From the definition of ci(N) in Lemma 3.5, it is
easily seen that

N = 3 =⇒ c2(N) < c1(N), c3(N) < c1(N),

4 ≤ N ≤ 19 =⇒ c1(N) < c2(N), c3(N) < c2(N),

20 ≤ N =⇒ c1(N) < c3(N), c2(N) < c3(N).

Hence, setting

C0(|Λ| , N) ≡



(
|Λ|
2

)2 √
c1(N), if N = 3,(

|Λ|
2

)2 √
c2(N), if 4 ≤ N ≤ 19,(

|Λ|
2

)2 √
c3(N), if 20 ≤ N,

we have ‖u − P 2
Nu‖2

H2
0 (Λ) ≤

(
C0(|Λ| , N)2 + ε

)
|u|2H4(Λ). Since ε is an arbitrary

positive number, it holds that∥∥u − P 2
Nu

∥∥
H2

0 (Λ)
≤ C0(|Λ| , N) |u|H4(Λ) .

Thus, explicit expressions of cj(N) yield the desired results. ¤
Now, we also obtain the following estimates, which further improve the

constant, by a computer-assisted approach.

Theorem 3.7. For any N ≥ 3 and M ≥ max{N + 5, 20}, there exists a
constant CM(|Λ| , N) > 0 such that∥∥u − P 2

Nu
∥∥

H2
0 (Λ)

≤ CM(|Λ| , N) |u|H4(Λ) , ∀u ∈ H2
0 (Λ) ∩ H4(Λ). (24)

Here,

CM(|Λ| , N) ≡
(
|Λ|
2

)2 √
max σ(A) + c3(M), (25)

where A is as defined in Lemma 3.5, and c3(M) is a constant given in Lemma
3.5.
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Proof : By the same argument in Theorem 3.6, using slightly different esti-
mates, we have, for arbitrary integer L ≥ M + 5,

∥∥u − P 2
Nu

∥∥2

H2
0 (Λ)

=
M∑

n=N+1

a2
n +

L∑
n=M+1

a2
n +

∞∑
n=L+1

a2
n

≤
(
|Λ|
2

)4

~bT A~b +

(
|Λ|
2

)4

σM,L

L∑
n=M−3

b2
n + C̃(|Λ| , L)2

∞∑
n=L−3

b2
n

≤

((
|Λ|
2

)4

max σ(A) +

(
|Λ|
2

)4

σM,L + C̃(|Λ| , L)2

)
|u|2H4(Λ) .

Here, we used the vector ~b and matrix A given in Lemma 3.5. For arbitrary
ε > 0, there exists an integer L such that C̃(|Λ| , L)2 < ε and di(L) <
cj(M), (i = 1, 2, j = 1, 2, 3). For such a fixed L, based on the assumption
that M ≥ 20, we have σM,L = c3(M). Therefore, we obtain

∥∥u − P 2
Nu

∥∥2

H2
0 (Λ)

≤

((
|Λ|
2

)4

max σ(A) +

(
|Λ|
2

)4

c3(M) + ε

)
|u|2H4(Λ) .

Since ε is arbitrary, the theorem is proven. ¤
Now, let C(|Λ| , N) denote the smallest constant satisfying the estimates

given by (10) in Theorem 3.4. Then, we have the following enclosure of the
optimal constant.

Theorem 3.8. Under the assumptions of Theorem 3.7, we have(
|Λ|
2

)2 √
max σ(A) ≤ C(|Λ| , N) ≤ CM(|Λ| , N). (26)

Proof : In the error estimates, we take a particular u ∈ H2
0 (Λ)∩H4(Λ) such

that ~b ≡ (bN−3, · · · bM) coincides with an eigenvector corresponding to the
maximum eigenvalue of the matrix A, as well as bn = 0,or other n. Then, we

13



have

∥∥u − P 2
Nu

∥∥2

H2
0 (Λ)

=
M∑

n=N+1

a2
n +

∞∑
n=M+1

a2
n

=

(
|Λ|
2

)4

max σ(A)
M∑

n=N−3

b2
n +

∞∑
n=M+1

a2
n

≥
(
|Λ|
2

)4

max σ(A)
M∑

n=N−3

b2
n

=

(
|Λ|
2

)4

max σ(A) |u|2H4(Λ) .

Therefore, the optimal constant C(|Λ| , N) satisfies

C(|Λ| , N) ≥
(
|Λ|
2

)2 √
max σ(A),

which proves the theorem.¤

Numerical Verification Results

In this subsection, we present the verified intervals that enclose the opti-
mal constant C(|Λ| , N) computed by expression given in Theorem 3.8. We
used the following environment for verified numerical computations.

Computer environment. CPU: Intel Core2 Quad Q6700, Memory:
DDR2 8GB, OS: Ubuntu Linux 7.10 AMD64, Compiler: Intel Fortran 10.1,
LAPACK: version 3.1.1, BLAS: Goto BLAS 1.26, Interval arithmetic: INTLIB
[3].

Table 1 shows the validated computational results of the lower bound
1
4

√
max σ(A) and upper bounds CM(|Λ| , N) |Λ|−2 = 1

4

√
max σ(A) + c3(M)

of the optimal constants C(|Λ| , N) |Λ|−2 for 3 ≤ N ≤ 32. Here, we use the
parameter M = N + 10, 000. The real numbers in each column in the table
are the lower and upper bounds of intervals given in abbreviated form. For
example, in case of N = 3, there exists an optimal constant C(|Λ| , 3) |Λ|−2

in the interval [ 0.04469616240857, 0.04469616240858 ]. We also have the
following L2 and H1

0 estimates.
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Table 1: Verification results of C(|Λ| , N) |Λ|−2.

N C(|Λ| , N) |Λ|−2 N C(|Λ| , N) |Λ|−2 N C(|Λ| , N) |Λ|−2

3 4.469616240858
7E-02 13 1.163453214824

0E-03 23 3.81172792989
0E-04

4 1.621459750824
3E-02 14 1.004658304064

0E-03 24 3.51027471941
31E-04

5 9.009588266473
2E-03 15 8.76928404535

1E-04 25 3.24374396293
83E-04

6 5.863042102223
1E-03 16 7.72558943254

49E-04 26 3.00689176801
789E-04

7 4.163846300849
7E-03 17 6.86114130197

2E-04 27 2.79542933457
45E-04

8 3.128902248240
38E-03 18 6.13665030966

0E-04 28 2.60582052765
52E-04

9 2.446716930445
39E-03 19 5.52311700468

2E-04 29 2.43512798592
79E-04

10 1.970991115689
6E-03 20 4.99874033201

194E-04 30 2.28089486651
37E-04

11 1.624868479891
88E-03 21 4.54686282496

88E-04 31 2.14105306863
48E-04

12 1.364545844269
6E-03 22 4.15457197406

397E-04 32 2.01385135036
20E-04

Theorem 3.9. Let CM(|Λ| , N) > 0 be the constant given in Theorem 3.7.
Then, it holds that∥∥u − P 2

Nu
∥∥

L2(Λ)
≤ CM(|Λ| , N)

∥∥u − P 2
Nu

∥∥
H2

0 (Λ)
, ∀u ∈ H2

0 (Λ), (27)∥∥u − P 2
Nu

∥∥
H1

0 (Λ)
≤

√
CM(|Λ| , N)

∥∥u − P 2
Nu

∥∥
H2

0 (Λ)
, ∀u ∈ H2

0 (Λ). (28)

Proof : The estimates given in (27) are obtained by applying Aubin-Nitsche’s
trick. Next, for arbitrary u ∈ H2

0 (Λ), using (27), observe that

∥∥u − P 2
Nu

∥∥2

H1
0 (Λ)

=

(
d

dx

(
u − P 2

Nu
)
,

d

dx

(
u − P 2

Nu
))

L2(Λ)

=

(
d2

dx2

(
u − P 2

Nu
)
, u − P 2

Nu

)
L2(Λ)

≤
∥∥u − P 2

Nu
∥∥

H2
0 (Λ)

∥∥u − P 2
Nu

∥∥
L2(Λ)

≤ CM(|Λ| , N)
∥∥u − P 2

Nu
∥∥2

H2
0 (Λ)

,

which implies (28). ¤
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4. Error estimates for the finite element method in the one-dimensional
case

In this section, applying Theorem 3.7 and Theorem 3.9, we derive the
constructive a priori error estimates for the finite element method on one-
dimensional intervals. Let Ω be a finite interval Ω = (ω0, ω1), (ω0 < ω1) on
R. Let ω0 = x0 < x1 < · · · < xk = ω1 be a mesh of Ω and set Ωi = (xi−1, xi).
In addition, we set hi ≡ |Ωi| = xi − xi−1 and h ≡ (h1, · · · , hk) ∈ Rk. For an
integer vector N = (N1, · · · , Nk) ∈ Zk with (Ni ≥ 3), let Sh,N be a finite-
dimensional subspace of H2(Ω) constituted of piecewise polynomials of degree
Ni on Ωi. Then, Sh,N is generated by two types of bases, namely, a piecewise
cubic Hermite polynomial whose support is two consecutive elements and a
function whose support is a single element corresponding to a polynomial of
degree ≥ 4 that satisfies (8).

Definition 4.1 (Hermite interpolation). Let Πh denote a cubic Hermite
interpolation from H2(Ω) to Sh,N . That is, for each u ∈ H2(Ω), Πhu ∈ Sh,N

satisfies

u(xi) = Πhu(xi),
du

dx
(xi) =

dΠhu

dx
(xi), ∀i = 0, · · · , k. (29)

Definition 4.2 (H2
0 -projection). Let P 2

h,N denote an H2
0 -projection from

H2
0 (Ω) to Sh,N . That is, for each u ∈ H2

0 (Ω), P 2
h,Nu ∈ Sh,N is defined as(

u − P 2
h,Nu, vh,N

)
H2

0 (Ω)
= 0, ∀vh,N ∈ Sh,N . (30)

It follows that the Definition 4.2 is well defined, because (·, ·)H2
0 (Ω) is a

bounded and coercive bilinear form on Sh,N , and Definition 4.2 ensures the
unique existence of P 2

h,Nu satisfying (30). Moreover, for each v ∈ H2(Ω) with

v|Ωi
∈ H2

0 (Ωi), we define PNi
v ∈ Sh,N such that supp PNi

v = Ωi and PNi
v|Ωi

is a polynomial of degree Ni on Ωi that satisfies (9) for Λ ≡ Ωi.

Theorem 4.3. Let CM(·, ·) denote the positive constant defined in Theo-
rem 3.7. Then, we have the following a priori error estimates for the H2

0 -
projection:∥∥u − P 2

h,Nu
∥∥

H2
0 (Ω)

≤ max
1≤i≤k

CM(hi, Ni) |u|H4(Ω) , ∀u ∈ H2
0 (Ω) ∩ H4(Ω).

(31)
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Proof : For each u ∈ H2
0 (Ω) ∩ H4(Ω), from (30), we have∥∥u − P 2

h,Nu
∥∥2

H2
0 (Ω)

=
(
u − P 2

h,Nu, u
)

H2
0 (Ω)

=

(
u − P 2

h,Nu, u − Πhu −
k∑

i=1

P 2
Ni

(u − Πhu)

)
H2

0 (Ω)

.

Therefore,

∥∥u − P 2
h,Nu

∥∥
H2

0 (Ω)
≤

∥∥∥∥∥u − Πhu −
k∑

i=1

P 2
Ni

(u − Πhu)

∥∥∥∥∥
H2

0 (Ω)

.

Setting ũ := u−Πhu, note that P 2
Ni

ũ is uniquely determined by the definition
of Πh. In addition, taking into account that the support of P 2

Ni
ũ coincides

with Ωi, we have∥∥∥∥∥ũ −
k∑

i=1

P 2
Ni

ũ

∥∥∥∥∥
2

H2
0 (Ω)

=
k∑

i=1

∥∥ũ − P 2
Ni

ũ
∥∥2

H2
0 (Ωi)

.

Thus, by Theorem 3.7, we have

k∑
i=1

∥∥ũ − P 2
Ni

ũ
∥∥2

H2
0 (Ωi)

≤
k∑

i=1

CM(hi, Ni)
2 |ũ|2H4(Ωi)

=
k∑

i=1

CM(hi, Ni)
2

∥∥∥∥∥
(

d

dx

)4 (
u − Πhu

)∥∥∥∥∥
2

L2(Ωi)

=
k∑

i=1

CM(hi, Ni)
2 ‖u′′′′‖2

L2(Ωi)

≤ max
1≤i≤k

CM(hi, Ni)
2 |u|2H4(Ω) .

Here, since (Πhu)′′′′ = 0, we obtain the estimates (31). ¤
We also have the following L2 and H1

0 error estimates.
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Theorem 4.4. Under the same assumption given in Theorem, the following
error estimates hold:∥∥u − P 2

h,Nu
∥∥

L2(Ω)
≤ max

1≤i≤k
CM(hi, Ni)

∥∥u − P 2
h,Nu

∥∥
H2

0 (Ω)
, ∀u ∈ H2

0 (Ω),

(32)∥∥u − P 2
h,Nu

∥∥
H1

0 (Ω)
≤ max

1≤i≤k

√
CM(hi, Ni)

∥∥u − P 2
h,Nu

∥∥
H2

0 (Ω)
, ∀u ∈ H2

0 (Ω).

(33)

Since the proof of Theorem 4.4 is similar to that of Theorem 3.9, it is not
presented in the present paper.

Remark 4.5. Theorems 4.3 and 4.4 indicate a refinement of the estimates
given in [7]. Namely, as shown in Table 1, the values of C(|Λ| , N) |Λ|−2

obtained in the present study are approximately half that of the constant in
the error estimates for the cubic Hermite interpolation (1/π2 ≈ 0.101321)
presented in [7]

Remark 4.6. For the two-dimensional case, several constructive error esti-
mates for H2

0 -projection on a rectangular domain are presented in [2], [6].
Since, in these studies, the error estimates are used for the one-dimensional
case, which error estimation can be improved by applying Theorem 4.3.
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