
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Applying Design Patterns to Redesigning of an
Existing Software and its Evaluation

Masuda, Gou
Department of Computer Science and Communication Engineering, Graduate School of Information
Science and Electrical Engineering, Kyushu University : Graduate Student

Sakamoto, Norihiro
Department of Medical Informatics, Kyushu University Hospital

Ushijima, Kazuo
Department of Computer Science and Communication Engineering, Graduate School of Information
Science and Electrical Engineering, Kyushu University

https://doi.org/10.15017/1508398

出版情報：九州大学大学院システム情報科学紀要. 4 (2), pp.113-118, 1999-09-24. 九州大学大学院シ
ステム情報科学研究院
バージョン：
権利関係：

九州大学大学院

システム情報科学研究科報告

第4巻 第2号'F成ll年9月

Research Reports on Information Science and

Electrical Engineering of Kyushu University

 Vol.4, No.2, September 1999

Applying Design Patterns to Redesigning of an Existing Software

 and its Evaluation

 Gou MASUDA*, Norihiro SAKAMOTO** and Kazuo USHIJIMA***

 (Received June 21, 1999)

Abstract: Since design patterns are now well known as one of the most effective techniques for an
object-oriented software design and implementation, a lot of programs have been developed using
design patterns. However, there has been few researches on quantitative evaluation of the effec-
tiveness of applying design patterns to software development. In this paper, we describe a case
study on redesigning of an existing decision tree learning system which is a data mining tools based
on machine learning technology. Moreover we aim to quantitatively evaluate the effectiveness of
applying design patterns to the redesigning. The C&K metrics suite is used for the evaluation.
We collect C&K metrics values for two releases of the decision tree learning system. One is a

prototype release designed without using design patterns while the other redesigned using design
patterns. We conduct the Mann-Whitny U-test, one of the nonparametric statistics for testing
hypotheses about whether two sample values differ. As a result, we find significant differences
between the C&K metrics values of the two releases. Finally we discuss the relationship between
the design patterns and the C&K metrics suite. The result of the discussion suggests that new

metrics should be devised for the evaluation of the effectiveness of applying design patterns.

Keywords: Object-oriented design, Design patterns, Object-oriented software metrics

 1. Introduction

 Software developments have become increasingly

large, diverse and complex in recent years. Extend-

ing the life-span of such software has become a chal-

lenging problem. Object-oriented technology offers

one solution. Improvement of the modularity and

readability of software helps us to understand the

structure of the software and to maintain, modify

and extend it. Well-defined object-oriented designs

make software flexible and extensible. However,

achieving well-defined object-oriented designs is a

skilled task that requires both time and experience.

 Design patterns') present one solution to this

problem. They are a good collection of success-
ful object-oriented designs which appear repeatedly

and have worked well as solutions to past design

problems. Since the design patterns are based on
the designs succeeded in the past, applying design

patterns to redesigning of existing software provides
a good foresight of the flexibility and future ex-

tensibility of them. A large number of researchers

have reported results of applying design patterns to

* Department of Computer Science and Communication

Engineering, Graduate Student

** Department of Medical Informatics, Kyushu University

Hospital

* * * Department of Computer Science and Communication

Engineering

object-oriented software designs12),18),19) However
only a small amount of work on evaluation of the

quantitative effectiveness has been reported. In this
paper, we aim to redesign an existing software using
design patterns and aim to evaluate a quantitative
effectiveness of them.

 The remainder of this paper is organized as
follows. Section 2 describes a case study on
redesigning of an existing decision tree learning

system3),14),16),17) using design patterns. Section 3
experimentally evaluates the quantitative effective-
ness of applying design patterns to redesigning of
object-oriented software using the C&K metrics6).
The C&K metrics suite is one of the most popular

object-oriented software metrics proposed by Chi-
damber and Kemerer. Section 4 discusses the rela-
tionship between C&K metrics and design patterns
in detail. Section 5 concludes this paper.

 2. A Case Study --- Applying Design
 Patterns to Redesigning of a Deci-

 sion Tree Learning System

 2.1 Decision Tree Learning System
Decision tree learning systems construct a classi-

fier from given cases as a form of decision tree. The

systems are required to have great flexibility and
extensibility in the context of KDD(Knowledge Dis-
covery in Databases)7). KDD aims to automatically
analyze large real world databases and extract nov-

 el, useful and interesting knowledge from the data.
Decision tree learning systems are one of the data
mining methods applied in the KDD process.

 A number of heuristic methods and strategies

have been proposed for efficiency and accuracy in
decision tree learning. In general there is no single
best method or strategy for all knowledge discovery

tasks. Users therefore have to select an appropriate
method for their specific task. However there are no
clear theoretical metrics for selecting an appropriate
method under a given circumstance. Consequently
users have to apply a range of methods to their own
data and compare results to determine which pro-

vides the best fit. Moreover, users often have to
modify or extend these methods. In existing deci-
sion tree learning systems this is a difficult task be-
cause current systems emphasize neither flexibility
nor extensibility. Because of this general require-

ment that decision tree learning systems be flexible
and extensible, we redesign an existing decision tree
learning systems using design patterns.

 2.2 Design Patterns

 Design patterns provide one solution for design-
ing reusable object-oriented software. Each pattern
systematically names, explains and evaluates an im-

portant and recurring design in object-oriented soft-
ware designs. Design patterns have the following
advantages:

 • The patterns provide reusable, well-defined

 object-oriented designs.
 • The patterns define the responsibilities and re-

 lationships among objects in a design problem.

 They represent good documentation of the soft-
 ware easing comprehension and future mainte-

 nance.
 • Each pattern name constitutes a vocabulary

 for designers to describe design problems and
 solutions.

 2.3 Redesign using Design Patterns
 2.3.1 Hot-spot based approach

 We redesign an existing decision tree learning sys-

tem developed by our research group using object-
oriented technology"). The following approach is
employed in redesigning the system.

 First, we identify the parts of the system which
we expected to require future modification or ex-

tension. We use hot-spot15> to represent such parts
of the system. In the book 15), hot-spot is used in
the context of an application framework. We use
this term to refer to the parts of the system that

we expect to be modified or extended. We examine
several decision tree learning systems') '14),16),17) and
several methods for decision tree learning4),10),16 in
order to identify the hot-spots of the system.

 Once we identify the hot-spots, we choose appro-
priate design patterns which can be applied to each
hot-spot. When choosing design patterns, we care-
fully consider their applicability and consequences
described in each design pattern.

 2.3.2 Hot-spots of the system
 In this study we identify the following eight hot-

spots of the system.

(1) "Data set creation" handling: A variety of
data sources such as relational databases and for-
matted text files are anticipated in the practical
application. The system needs to support various
ways to create a data set.

(2) "Attribute type" handling: The system
needs to support any types of attributes in addition
to the ordinary continuous and discrete attribute.

(3) "Decision tree structure" handling: A de-
cision tree forms a hierarchical structure. The sys-
tem needs to deal with the elements in a decision
tree uniformly without making any distinction be-
tween primitive elements and groups of elements.

(4) "Test method" handling: The system needs
to support any kind of test that can be applied to
any type of attribute.
(5) "Test selection method" handling: The
system needs to handle various methods or criteria
and make them exchangeable without affecting the
rest of the system.

(6) "Noise data handling method" handling:
The system needs to support a variety of noise data
handling methods.

(7) "Decision tree pruning method" han-
dling: The system needs to handle various tree

pruning methods and make them exchangeable
without affecting the rest of the system.

(8) "Decision tree evaluation method" han-
dling: Induced decision tree need to be evaluated

from various points of view. The system needs to

provide such a variety of evaluation methods.
 2.3.3 Applying design patterns

 We decide design patterns that we apply to each
hot-spot described above. In coming to this decision

we consider the requirements for each hot-spot and
the applicability and consequences of the selected
design patterns. We give a solution and the con-
sequences for only the hot-spot (1) as an example

of how we solve the requirements using design pat-
terns. In 12), we have described our solutions and

Fig.1 Application of the Builder and Template Method patterns to the data set construction.

the consequences for all the hot-spots.

 (1) "Data set creation" handling
Requirement:

 • Create a data set independent of the data

 source.

Solutions: In order to encapsulate the creation pro-

cess of a data set, we apply the Builder pattern

to data set creation. The Builder pattern sepa-

rates the construction of a complex object from its

representation. Fig. 1 illustrates how the Builder

pattern is applied to this hot-spot. In this case,
class Translator behaves as a Director object. It

constructs a data set object gradually using inter-

faces defined in class DataSetBuilder. A concrete

DataSetBuilder is the only one which knows the in-

ternal structure of the data set. This allows the

different representation of the data set.

 Next, we apply the Template Method pattern

in order to deal with data set creation from the dif-

ferent data sources. The Template Method pat-

tern is composed of an AbstractClass and several

ConcreteClasses. The AbstractClass has a template

method that describes the skeleton of an algorithm.

The ConcreteClasses implement the hook methods

that describe the variable parts of the algorithm de-

pending on the situation. The class Translator in
Fig. 1 has a template method, constructDataSet :

which defines a skeleton of an algorithm for the da-

ta set translation operation from each data source.

The createAttributeCollection method is one of

the hook methods which defines a translation oper-

ation dependent on a particular data source.

 The class TranslatorOnFile which supports data

creation from ASCII text files has a DataFilePars-

er object in order to parse the data files. We apply

the Strategy pattern in order to deal with a variety

of file formats. This pattern encapsulates the algo-

rithms and makes them interchangeable. In this

case the Strategy pattern encapsulates a parsing

algorithm for a data file in a particular format.

Consequences:

 • The Builder pattern makes it possible to

 change the internal representation of a data set

 object.
 • The Template Method pattern allows reuse

 of the skeleton of the data creation algorithm.

 All the developer has to do on changing the

 data source is describe the minimum required

 hook methods.
 • The Strategy pattern offers a way to inter-

 change a variety of file parsing algorithm.

 We implemented a decision tree learning system

with the class design described above. We used

Smalltalk for a programming language. The fact

it is a pure object-oriented programming language

allowed us to reflect the design using patterns di-

rectly in the implementation. We applied a total

number of 15 patterns to the hot-spots and used

over 80 classes in order to implement the system.

Table 1 summarizes each hot-spot and the design

patterns applied to that.

 3. Evaluation of Applying Design Pat-

 terns

 In this section we quantitatively evaluate the ef-

fectiveness of applying design patterns from the

point of view of the complexity of software. The
C&K metrics suite is used for the evaluation. It de-

fines six metrics for object-oriented design. It has

been used in various application domains and its

effectiveness has been proven2)'9).

 Table 1 Design patterns applied to each hot-spot

 Hot-spotDesign patterns

 (1) "Data set creation" handlingBuilder, Template Method, Strategy

(2) "Attribute type" handlingFactory Method, Abstract Factory
(3) "Decision tree structure" handlingComposite, Visitor, Abstract Factory
(4) "Test method" handlingCommand

(5) "Test selection method" handlingTemplate Method
(6) "Noise data handling method" handling Strategy, Abstract Factory
(7) "Decision tree pruning method" handling Visitor, Template Method

(8) "Decision tree evaluation method" handling Strategy

Weighted Methods per Class(WMC) is de-
fined as the sum of the complexities of all methods of
a class. The larger the WMC value for a class, the
more complicated and expensive it is to maintain
the class. In the C&K metrics, the complexity of a
method is not defined specifically in order to allow
for the most general application of this metric. In
this study, we adopt the approach described in 1).
That is, the complexity of a method is defined as
the ratio of the weight of the method to 128 bytes,
which is the standard weight of a method given in 1).
"Weight of a method" is defined as the byte size of

all objects included in the method.
Depth of the Inheritance Tree(DIT) is defined
as the maximum length from the node to the root of
the inheritance tree of a class. The larger the DIT
value for a class, the greater the number of variables
and methods it is likely to inherit, and therefore the
more difficult it is to predict its behavior.
Number Of Children(NOC) is defined as the
number of immediate subclasses. The larger the
NOC value for a class, the greater influence the class
has, and therefore the more testing of the methods
in the class likely to be required.
Coupling Between Objects(CBO)] is defined as
the number of classes to which a class is coupled vi-
a method or attribute use. The larger the number
of couplings, the higher the sensitivity to changes in
other parts of the design, and therefore maintenance
is more difficult.
Response For a Class(RFC) is defined as the
number of methods in the set of all methods that
can he invoked in response to a message sent to an
object of a class. The larger the number of RFC
value for a class, the greater the complexity of the
class, and therefore the more difficult maintenance.
Lack of COhesion in Methods(LCOM) is the
number of pairs of methods without shared instance
variables, minus the number of pairs of methods
with shared instance variables. The metric is set to
0 whenever the above subtraction is negative. Low

 Table 2 Results of C&K metrics

 Release 1Release 2
Metric -- Mi

nMedian Max Min Median Max

WMC 0.56 9.5330.56 0 3.75 44.59

DIT 11 51 2 5

NOC 00 30 0 5

CBO 01 80 2 20

RFC 228 830 19 143

LCOM 021 1870 1 1469

cohesion increases complexity, and therefore main-
tenance is more difficult.

 We collect the C&K metrics values from the de-
cision tree learning systems before redesigning (Re-
leasel) and after redesigning (Release2). We use

a metrics measurement tool developed by our re-
search group. It is based on OOM1) which is a met-
rics measurement tool for Smalltalk. The results of
collecting the metrics values appear in Table 2.

 In order to ascertain whether the results have sta-

tistically significant difference, that is, whether the
design patterns affect the metrics values, we con-
duct a two-tailed Mann-Whitney U test with sig-
nificance at the 5% levels. It is one of the non-

parametric statistics for testing hypotheses whether
two samples differ. The result of this statistical test
shows that 5% significant differences exist in WMC
and RFC. It may be not enough to discuss general-
ities of the effectiveness of applying design patterns
from only this case study. However we believe that

we can show a quantitative evidence of the effec-
tiveness that redesigning using design patterns im-

proves the complexity of the software.

 4. Discussion

 4.1 Analysis on Relationship between
 Design Patterns and C&K Metrics
 The experimental evaluation described in Section

3.2 shows statistically significant differences are ob-
served in metrics values of WMC and RFC. However
the experiment also shows that specific design pat-
terns tend to make a particular metric value worse.

For example, the max values of RFC and WMC in

Release2 are higher than those in Releasel though
statistical differences are observed. We therefore
analyze the measurement of individual metrics and
the relationship between design patterns and C&K
metrics in detail. In this paper we give only the
analysis on WMC, CBO, RFC and LCOM. Com-

plete analysis was described in 13).
 4.1.1 Analysis on WMC

 Some design patterns make object granularity
small. In particular, class ConcreteCommand in
the Command patterns, class ConcreteStrategy in

the Strategy pattern and class ConcreteFactory in
the Factory Method pattern tend to become a
small class with a low WMC value. Since we applied
these design patterns to a large number of places,
the statistical difference was observed between the

two releases.
 Further analysis on WMC shows that the WMC

values for the classes which play a central role
tend to be high. Class DTLSDecisionTreeManager

(WMC=44.59) is one of the example. It corre-
sponds to class ConcreteMediator in the Mediator

pattern. The Mediator pattern makes coupling be-
tween colleagues loose. However on the other hand,
it centralizes control in class ConcreteMediator. As
a result, the complexity of class ConcreteMediator

increases.
 4.1.2 Analysis on CBO

 The following tendency on CBO value was found
in our experiment: class ConcreteBuilder in the
Builder pattern, class ConcreteCreator in the Fac-

tory Method pattern, class ConcreteFactory in
the Abstract Factory pattern and class Mediator
in the Mediator pattern have high CBO value. In
the creational patterns such as Builder, Factory
Method and Abstract Factory, objects taking

the responsibility for object creation need to know
the class name of products. Because of this, those
classes tend to have high CBO values. Since design

patterns indicate which classes have such respon-
sibility for object creation, it is not so difficult to

maintain those classes, contrary to C&K's predic-
tions. Furthermore, the class playing a central role
in the application such as class Mediator in the Me-
diator pattern need to know about other colleague

classes. The CBO value therefore tends to be high.
 4.1.3 Analysis on RFC

 The RFC value of a class tends to be high if
the class invokes a large number of methods of
other classes. As in the case of the WMC met-
ric and CBO metric, class DTLSDecisionTreeMan-

ager (RFC=143), (which is correspondent to class
ConcreteMediator in the Mediator pattern), have
high RFC values. We believe the reason is that the

ConcreteMediator tends to communicate with many
other colleague objects via message passing.

 Class DTLSTreePruningVisitor (RFC=71) and
class DTLSTreeGeneratingVisitor (RFC=54) also
have high RFC values. They are correspondent

to class ConcreteVistor in the Visitor pattern. In
the Visitor pattern, class ConcreteVisitor often in-
vokes methods defined in the ConcreteElement ob-

ject. The RFC value of class ConcreteVisitor tends
to be high as a result.

 4.1.4 Analysis on LCOM

 A high LCOM value indicates disparateness
in the functionality provided by the class.
Class DTLSDecisionTreeManager (LCOM=1469)
has high LCOM values. It is correspondent to class

ConcreteMediator in the Mediator pattern. Class
ConcreteMediator receives a lot of different requests
in place of its colleague objects. As a result, it has
various methods that are unrelated to each other.
The LCOM values therefore tend to be high.

 4.2 Future Directions of Devising Met-
 rics for Applying Design Patterns

 Our detailed analysis of individual measurements
on the C&K metrics revealed that particular de-

sign patterns tend to make the specific metric val-
ues worse. However as discussed above, worsening
metric values in some design patterns is due to the
characteristics of those design patterns. It therefore
does not necessarily mean that those design pat-

terns have disadvantages as object-oriented design.
Instead it suggests that several C&K metrics are not
appropriate measures of the quality of designs us-
ing design patterns. In this section we describe our
future directions of devising new metrics for evalu-

ating the effectiveness of applying design patterns.

(1) Modified C&K metrics: For some C&K met-
rics, we did not observe statistically significant dif-
ference in our evaluation. However it does not mean
that these metrics are completely useless to the eval-

uation of applying design patterns. We can there-
fore devise some modified C&K metrics in order to
better reflect the characteristics of design patterns.
For example, it is a modified CBO metric that does
not count couplings between objects which are part

of a collaboration. Some design patterns encap-
sulate coupling by using dynamically bound refer-
ences. Though using such design patterns increase
the number of coupling, it is not a bad design but

good one.

(2) Run-time metrics: Static metrics such as
C&K metrics can only capture the static aspects
of objects. We think it is important to capture the
dynamic aspects of objects in order to reflect the
characteristics of design patterns. Take the case of
the Flyweight pattern which uses sharing to sup-
port large numbers of fine-grained objects efficient-
ly. When applying the Flyweight pattern, sever-
al run-time aspects are important such as the to-
tal number of objects which are actually created.
By capturing the aspects using run-time metrics,
we can provide some useful guidelines that indicate
whether or not Flyweight pattern should be used
in a specific situation.
(3) Metrics for design process: The C&K met-
rics measure the quality of software product rather
than software design process. However the effective-
ness of applying design patterns is also involved in
the design process. For instance, using design pat-
terns makes it easy to get an appropriate solution
to a design problem. It therefore shortens the peri-
od of design process. However the software product
would be almost the same, no matter whether de-
sign patterns are applied or not. In this case metrics
for only the software product can not capture the ef-
fectiveness of applying design patterns in the design
process.

 5. Conclusion
 In this paper we have described a case study on

redesigning of existing software using design pat-
terns. We have also tried making quantitative eval-
uation of effectiveness of applying design patterns.
Through this measurement and analysis, we are
convinced of the need to devise new object-oriented
metrics for evaluating the effectiveness of apply-
ing design patterns. For this purpose we presented
three directions of such new metrics. They are met-
rics for the goodness of applying design patterns
rather than ones for evaluation of effectiveness of
it. They can be used as a guideline for applying
design patterns in a specific circumstance. For ex-
ample, putting to proper use the patterns classified
into creational patterns of GoF book') is difficult
for developers who are unfamiliar with the design
patterns. We believe these metrics make a contri-
bution as a part of the guideline for use of design

patterns such as a system of patterns5) .

 References
1) Aoki, A. Smalltalk Idiom, SRC, 1997. (In Japanese)

2) Basili, V. R., Briand, L. and Melo, W. L. "A Validation
 of Object-Oriented Design Metrics as Quality Indicators,"

 Technical Report UMIACS-TR-95-40, Univ. of Maryland,
 1995.

3) Breiman, L., Friedman, J. H., Olshen, R. A. and Stone,

 C. J. "Classification and Regression Trees," Belmont, CA:
 Wadsworth, 1984.

4) Brodley, C. E. "Automatic Selection of Split Criterion
 during Tree Growing Based on Node Location," Proc. of

 the Twelfth International Machine Learning Conference,

 Tahoe Cith, CA, 1995.
5) Buschrnann, F., Meunier, R., Rohnert, H., Sommerlad,

 P. and Stal, M. Pattern-Oriented Software Architecture:

 A System of Patterns, John Wiley & Sons, Ltd, 1996.
6) Chidamber, S. R. and Kemerer, C. F. " A Metrics Suite

 for Object Oriented Design," IEEE Transactions on Soft-

 ware Engineering, Vol.20, No.6, pp.476-493, 1994.
7) Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P. and

 Uthurusamy, H. Advances in Knowledge discovery and

 data mining, AAAI/MIT Press, 1996.
8) Gamma, E., Helm, R., Johnson, R. and Vlissides, J.

 Design Patterns , Addison-Wesley Publishing Company,
 1995.

9) Harrison, R. and Nithi, R. "An Empirical Evaluation

 Of Object-Oriented Design Metrics," OOPSLA`96 Work-
 shop: 00 Product Metrics, 1996.

10) Ho, T. and Nguyen, T. "Evaluation of Attribute Selec-
 tion Measures in Decision Tree Induction," Proc. 9th Int.

 Conf. on IEA/AIE, pp. 413-418, 1996.

11) Masuda, G., Sakamoto, N. and Ushijima, K. "A Practi-
 cal Object-Oriented Concept Learning System in Clinical

 Medicine," Proc. 9th Int. Conf. on IEA/AIE, pp. 449-454,

 1996.
12) Masuda, G., Sakamoto, N. and Ushijima, K. "Apply-

 ing Design Patterns to Decision Tree Learning System,"

 Proc. of ACM SIGSOFT Sixth International Symposium
 on the Foundations of Software Engineering, pp. 111-120,

 1998.

13) Masuda, G., Sakamoto, N. and Ushijima, K. "Evalu-
 ation and Analysis of Applying Design Patterns," Pro-

 ceedings of International Workshop on the Principles of

 Software Evolution, pp. 135-139, 1999.
14) Murthy, S. K. and Kasif, S., and Salzberg S. "A Sys-

 tem for Induction of Oblique Decision Trees," Journal of

 Artificial Intelligence Research 2 1-32, 1994.
15) Pree, W. Design Patterns for Object-Oriented Software

 Development, ACM Press, 1995.
16) Quinlan, J.R. "Induction of Decision Trees," Machine

 Learning, 1, pp. 81-106, 1986.

17) Quinlan, J. R. C..5: Programs for Machine Learning,
 Morgan Kaufmann Publishers, San Mateo, CA, 1993.

18) Schmidt, D. C. and Stephenson, P. "Experience Us-

 ing Design Patterns to Evolve Communication Software
 Across Diverse OS Platforms," In Proc. of the 9th E-

 COOP, 1995.

19) Schmidt, D.C. "A Family of Design Patterns for Flexi-
 bly Configuring Network Services in Distributed System-

 s," In Proc. of the Int. Conf. on Configurable Distributed
 Systems, 1996.

