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Abstract

3D geometry measurement in the real world is one of the most significant tasks in

research fields such as robotics, computer graphics, and computer vision. Time-of-

flight ranging is one of the most efficient range measurement technologies which can

provide accurate 3D geometric information stably without being affected by lighting

conditions. Time-of-flight range sensors basically emit light/laser toward a target ob-

ject, and calculate a distance between the sensor and the target based on a round-trip

time of the emitted light/laser. Due to the measurement principle, time-of-flight based

range measurement has several important advantages. Its collinearity of illumination

and observation leads avoiding shadow effects and providing accurate contour in the

range image. In addition, complex image processing, such as extracting visual features

and finding matching points among input images on which stereo triangulation relies,

is not required to obtain range data. Moreover, since time-of-flight sensors achieve

the accurate ranging by actively emitting light/laser to the scene, they are less subject

to lighting conditions which means they can perform even in nighttimes. These char-

acteristics enable time-of-flight sensors to work stably even in outdoor environments,

and they have been widely used for various applications such as remote control of a

rescue robot in a hazardous environment or 3D modeling for digital archives of cultural

heritages.

For further accurate modeling and understanding of the 3D world, this dissertation

addresses on enhancing the functionality of 3D modeling witha time-of-flight laser

scanner utilizing attributes of the laser reflectivity. A noteworthy characteristic of

laser scanner is that they obtains a power of the reflected laser (reflectivity) as a side-

product of the range data. Laser reflectivity indicates an intensity on the surface of
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target objects under a single-frequency light source, and a reflectance image, which is

a collection of laser reflectance depicted as a grayscale image, contains rich appear-

ance information about the target object. Therefore, laser scanners perform range and

intensity measurements for each point simultaneously, and geometric and appearance

information principally aligned together is available requiring no calibration setting

which is generally essential for a range and image sensor combination.

We take advantage of the benefits of the laser reflectivity and develop novel tech-

niques that enhance the functionality of laser scanners. This dissertation actually ad-

dressed four different issues: Range image smoothing using trilateral filter, Range

image completion with belief propagation, Manual/Automatic colorization for 3D ge-

ometric models, and Texture synthesis for hole-free texture mapping. A variety of

simulations and experiments demonstrated the validity of the proposed algorithms.
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1
Introduction

1.1 Human vision versus robot vision

Five senses - Sight, Touch, Taste, Smell, and Hearing - play essential roles in daily life

allowing us to monitor our bodies and interact with the external environment. Com-

pared with the other senses, we significantly rely on visual perception. Visual percep-

tion provides us with a wealth of optical information of objects in the world around us,

such as their material properties and three dimensional (3D) shapes. This enables us

to safely perform interaction with surrounding environments such as activities of daily
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2 Introduction

living (ADL) including walking around, handling objects, driving a car and so on.

While these activities are easy tasks for us, it is quite difficult for robots to mimic

human behaviors observing surrounding environments with vision sensors. Here, we

have a rethink on ”what humans and robots see” in order to discuss the difference

between our eyes and robot vision.

Human eye plays an important role as our window to the world allowing us to see

objects. The most important components of human eye would be a lens and a retina:

The lens concentrates light rays reflected off an object onto the retina, and the retina

transforms the light into neurological signals that a brain can interprets. Finally, the

neurological signals are formed as an image of the object by the brain. That is a simple

human vision mechanisms that take place in a human eye.

In order to create an artificial eye, an enormous amount of research has been done,

and a variety of vision sensors has been available recently. The most basic and standard

examples of the vision sensors would be a digital camera. A digital camera typically

consists of a lens and a CCD/CMOS image sensor, and it captures a scene by con-

centrating incident light onto the CCD/CMOS image sensor with the lens. The image

sensor has an array of millions of tiny photosites, and is able to convert the incident

light hitting the photosites array into intensity signals. This mechanism is analogous

to that of human vision. Although the resolution of a digital camera generally has

limitations depending on the physical structure of the image sensor, the resolution of

state-of-the-art digital cameras is reaching hundreds of mega pixel and achieving suf-

ficient quality compared with human eye’s resolution [5].

Now, we have well-developed artificial vision sensors. So the question is ”whether

robot vision that has the same ability to our eyes has been developed using these vision

sensors? - Not yet.”

Take a look around the room that you’re currently in. You may see your phone,

personal computer, bag, or so on, and at the same time, you may notice you naturally

recognize these objects and imagine their geometric structures. Our vision system

enables us to perform a wide variety of tasks that need object recognition and handling,
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and the human vision is based on highly sophisticated 3D perception. Humans are able

to see the spatial relationship among objects in a scene capturing different views from

each eye and combining the information based on binocular stereo principal, and this

enables us to perceive the 3D world. On the other hand, a digital camera allows us to

capture a high-resolution two-dimensional (2D) image of a scene, however, in order to

perform tasks such as grasping objects and walking without collision, raw information

derived from a 2D image is not sufficient.

On the other hand, a digital camera allows us to capture a high-resolution two-

dimensional (2D) image of a scene, however, in order to perform tasks such as grasping

objects and walking without collision, raw information derived from camera images

is not sufficient. As demonstrated intrompe l’oeil art works, recovering 3D shape

from a single 2D image is generally an ill-posed problem. In other words, an object

has different appearances from different viewpoints due to its 3D geometry, and 3D

perception is essential for understanding a surrounding environment correctly.

Measuring 3D geometric information of a scene is one of the most essential issue

in many research fields. During last decade, a variety of 3D measurement sensors

has been developed and today leaving the laboratory to perform everyday tasks, at the

same time, a lot of researches have been done on 3D modeling and reconstruction. An

introduction to 3D measurement is given in the following section including reviews of

major 3D measurement technologies.

1.2 3D geometry measurement

3D geometry measurement in the real world is one of the most significant tasks in

research fields such as robotics, computer graphics, and computer vision. For exam-

ple, acquiring accurate 3D geometric maps in unknown scenes is indispensable for

many robotics applications including mobile robot localization and navigation or ob-

ject recognition and manipulation. Augmented reality (AR), which enriches the real

world overlaying 3D models and digital information on video sequences, as well needs
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Figure 1.1:3D reconstruction results in ”Building Rome in a Day”[1]

3D geometric information in a scene so that it could appropriately represent interac-

tions such as collision and occlusion among the virtual 3D models and real objects

in the scene. Precise and dense 3D geometric measurement itself is also an essential

technology to create virtual 3D models of cultural heritages such as famous buildings

and art works for digital archive and museum. Known examples of such application

include ”Building Rome in a Day”[1]. In this project, Agarwal et al. worked on a

problem of reconstructing the entire Rome city based on the enormous amount of im-

ages collected from Flickr.com. They developed a parallel distributed system that was

able to find corresponding points among these massive images quickly and to compute

3D structure (point clouds) of the city using the bundle adjustment in a day (Fig.1.1).

As much attention has been attracted to above-mentioned applications, range mea-

surement technology has been developed rapidly throughout the years, and a variety of

techniques/devices has been developed. Basically range sensing denotes a technique

that measures the distance from the sensor position toward a certain point sampled

from an object’s surface in a scene. According to the type of device/methodology,

range sensing techniques fall into several different categories. This chapter discusses

the characteristics of some 3D measurement techniques and explore the literature of

developments throughout the years in some depth.
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1.2.1 Stereo triangulation

An digital camera captures a 2D image of a scene where 3D world is projected onto

the 2D image plane through the aperture of the camera. In order to determine a posi-

tion of a certain point in 3D space, stereo triangulation solves an inverse problem of

this 3D-2D projection based on two or more images like our vision system. Given a

pair of images, binocular stereo provides a fundamental solution to this problem in the

simplest geometrical case where the images are on the same plane. In addition, when

the relative pose and position between these images are not available, it is necessary

to determine the extrinsic parameters simultaneously. This problem is called ”Simul-

taneous Localization and Mapping (SLAM)” in robotics[6], ”Structure from Motion

(SfM)” in computer vision[7], and a number of studies has addressed 3D reconstruc-

tion exploiting these techniques. Here, the triangulation principle underlying stereo

vision is introduced, and we also discuss characteristics of passive/active stereo 3D

reconstruction approaches.

Passive stereo with two/multiple camera images

Binocular stereo is a typical passive range sensing technique that simulates the human

visual system for 3D perception. Every visible 3D point of the scene surface is re-

stricted to a ray which passes through the camera center and its projection on the 2D

image. Given a pair of images taken from different viewpoints, binocular stereo de-

tects the 3D location of each visible point by determining an intersection of two rays

from the camera centers based on triangulation. Assuming a position of a 3D point

is estimated correctly, it should have the same color for its 2D projections to stereo

images. Therefore, the main problem to be solved in binocular stereo is finding cor-

responding pixel pairs in two stereo images based on visual cues. Since triangulation

crucially depends on the corresponding pairs, ambiguous correspondences may lead

to inconsistent interpretation of the target scene and result in poor 3D reconstruction

quality. Much attention has been attracted to the ”stereo correspondence problem”,
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Figure 1.2:Binocular stereo principle

and an enormous work has been done to achieve high-accuracy 3D measurement over

recent decades.

As explained above, since a position of a visible 3D point is located on a ray which

passes a viewpoint and its projection onto the 2D image plane, the stereo correspon-

dence search is also restricted to an epipolar line which denotes the ray projected onto

the second view. Stereo correspondences are established by finding the most similar

pixel- or area-pairs along the epioplar lines based on visual cues, and a variety of de-

scriptor can be used for it[8][9][10]. The most typical method to measure similarity

for a pixel pair would be the sum of squared differences (SSD). This method eval-

uates the similarity of a pixel pair in stereo images by calculating color differences

around the pixels, and detects a correspondence along a epipolar line which minimizes

SSD(Fig.1.2).

On the other hand, since binocular stereo basically assumes that every scene ele-

ment is visible and appears to be similar to both cameras, scene elements which are

visible to only one of them or whose appearances look different according to viewpoint

pose a challenge to the stereo matching problem. For the difficulty of binocular stereo,
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the use of multiple camera images gives a solution. The original idea was introduced as

”multiple-baseline stereo” that improves the stereo matching reliability by integrating

a correspondence search result of each binocular stereo pair[11]. Binocular stereo gen-

erally determines a corresponding pair for each pixel calculating the similarity scores

along a epipolar line, however, the corresponding pixel cannot be determined uniquely

when several pixels have the same minimum score. To deal with this problem, Oku-

tomi et. al.[11] sums up SSDs of binocular stereo pairs with different baselines. This

approach allows us to reduce the stereo matching ambiguity and avoid mismatches by

finding a minimum of the sum of SSDs (SSSD) which is supposed to be a global min-

imum. Defining a SSSD and determining its minimum for each pixel in a reference

image, it provides a high-quality depth map.

Approaches mentioned earlier addressed only stereo correspondence problem for

the simplest geometrical case where stereo image planes are parallel or the case input

images are rectified beforehand using the extrinsic parameters[12]. When we actually

estimate 3D shape of a scene using multiple images taken from different viewpoints or

an image sequence taken from a moving camera, calibration or camera tracking must

be performed as well in order to obtain the camera position and pose for each image.

The approach that reconstructs a 3D scene and estimates viewpoints simultane-

ously from an image sequence is known as ”Structure from Motion (SfM)” and ”Si-

multaneous Localization and Mapping (SLAM)”. The key idea is as follows: Given a

set of images of a target scene, reconstruct the 3D geometry along with camera param-

eters according to correspondences among the multi-viewpoint images. It is generally

decomposed into two tasks: Correspondence determination and 3D structure/Camera

parameter estimation. In the former step, point-to-point correspondences among a set

of images taken from multiple viewpoints are determined based on photometry con-

straints. Robust descriptors such as SIFT[8] and SURF[9] are often used to describe

each salient point in the images, and the point-to-point correspondences are build based

on feature matching. The latter step estimates the scene geometry and camera motions

according to the correspondences using Singular Value Decomposition (SVD), Direct
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Linear Transformation (DLT), or bundle adjustment. In recent approaches, bundle ad-

justment is mainly used for the latter step due to its capability of accurate parameter

estimation[13].

Active stereo with structured light

Passive stereo is capable of measuring a dense depth map when the target object is

well-textured, however, it is difficult to determine corresponding stereo pairs for ob-

jects with low-texture due to the visual ambiguity. In addition, it is subject to lighting

conditions and that sometimes makes difficult to find correspondences in stereo im-

ages. In contrast, active stereo allows us to avoid the ambiguous correspondences by

replacing one of the cameras with a controlled illumination device. It basically projects

structured light patterns onto the scene in order to generate virtual textures, and mea-

sures depth values based on the reflection captured with a digital camera via the same

principle as passive binocular stereo.

So far, a variety of illumination patterns has been proposed such as line/stripe[14],

grid[15], sinusoid[16], and random dots[17]. For example, a pair of a slit laser and a

rotating mirror can be used for sequential scanning of an object’s surface. The slit laser

projected in a certain direction strikes the surface and is observed in a camera image.

According to the stereo principle, bright pixels indicate intersections of the projection

rays and camera rays, and disparities can be easily calculated by finding corresponding

stereo pairs from the bright pixels in a camera image.

While the active stereo provides accurate 3D models avoiding the ambiguous cor-

respondences, it has several drawbacks: First, it is difficult to find corresponding pairs

for specular or black surfaces where the projected illumination does not reflect in the

camera direction and cannot be observed in a camera image. In addition, the active

stereo needs more time compared to the passive binocular stereo for projecting illumi-

nation patterns.
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Figure 1.3:Time-of-flight pulse propagation time measurement principle

1.2.2 Time-of-flight ranging

Time-of-flight(ToF) range measurement technology is used in active optical sensors

such as laser scanners and ToF cameras. The basic principle can be summarized as

follows: First, light/laser is emitted from an optical unit toward a target object, and

returns to a receivers in the time-of-flight sensor after traveling to the target’s surface

and reflecting on it. Second, a distance between the sensor and the target is calculated

based on a time difference between light/laser emission time and reception time.

In general, there are three time-of-flight principles: Pulse propagation time mea-

surement, Continuous wave modulation, and Range gated imaging.

Pulse propagation time measurement

This ranging method measures the time of flight directly: Emitting short-pulsed light

toward a target object and estimating the distanced to the object based on the velocity

of light c and the propagation timeκ from the light emission to reception as follows

(Fig.1.3).

d =
1
2

cκ (1.1)
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Continuous wave modulation

A depth value is obtained by calculating the phase shift based on the cross-correlation

C(τ) of emitted wave signals(t), whose period isT, and reflected signalr(t) by the

scene. Exploiting a sinusoidal signal as incident signals(t), reflected signalr(t) and

the cross-correlationC(τ) is calculated as follows[2]:

s(t) = cos(ωt) (1.2)

r(t) = α cos(ωt +φ)+β (1.3)

C(τ) = r(t)⊗s(t) = lim
T→∞

∫ T/2

−T/2
r(t)s(t + τ)dt (1.4)

=
α
2

cos(ωτ +φ)+β (1.5)

whereω denotes the modulation frequency,α is an amplitude of the reflected

signal,β is an offset due to the ambient illumination, andφ is the phase offset relating

to the distance.

It can be demodulated utilizing the correlationC(τ) sampled with four different

phase offsets (τi = i · 2
π , i = 0, ...,3). Based on these four correlation values, the ampli-

tudeα, offsetβ , and phase offsetφ can be obtained as follows (Fig.1.4):

α =
1
2

√
(C(τ3)−C(τ1))2+(C(τ0)−C(τ2))2 (1.6)

β =
1
4

3

∑
i=0

C(τi) (1.7)

φ = arctan

(
C(τ3)−C(τ1)

C(τ0)−C(τ2)

)
(1.8)

Finally, the distanced is calculated according to the phase offsetφ .

d =
1

4πω
cφ (1.9)
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Figure 1.4:Time-of-flight continuous wave modulation principle [2]

Range gated imaging

Fast gating with a shutter in front of the image sensor enables us to measure 3D infor-

mation. The concept of this technique is based on projecting ”light wall” which has a

certain width and moves along the field of view. When the light wall is reflected by a

scene, it gets distorted according to the target shape and returns to the sensor carrying

an imprint of the target.

The 3D structure can be extracted from the deformed light wall using a built-in

shutter in front of the image sensor that blocks incoming light. The shutter opens for

the same periodTpulse/gate as the light wall emission, and each receptor on the image

sensor may collect the incoming light with a short delayTdelay during the gate time

Tpulse/gate. The pixel intensityIcollected, which denotes the amount of collected light

by a receptor, is in inverse proportion to the distance. The distanced is calculated ac-

cording to the ratio ofIcollectedandIblocked, which denotes the amount of light blocked

by the shutter, as follows (Fig.1.5):

d =
1
2

cTpulse/gate
Iblocked

Icollected+ Iblocked
(1.10)
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Figure 1.5:Time-of-flight range gated imaging principle [3]

1.3 Time-of-flight laser scanner and laser reflectivity

Due to the measurement principle, time-of-flight based range measurement has several

important advantages. Its collinearity of illumination and observation leads avoiding

shadow effects and providing accurate contour in the range image. In addition, com-

plex image processing, such as extracting visual features and finding matching points

among input images on which stereo triangulation relies, is not required to obtain

range data. Moreover, since time-of-flight sensors achieve the accurate ranging by ac-

tively emitting light/laser to the scene, they are less subject to lighting conditions which

means they can perform even in nighttimes. These characteristics enable time-of-flight

sensors, especiallylaser scanners, to work stably even in outdoor environments, and
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they have been widely used for various applications such as remote control of a rescue

robot in a hazardous environment[18] or 3D modeling for digital archives of cultural

heritages[4].

As explained above,a laser scanner, one of time-of-flight sensors based on pulse

propagation time measurement, obtains range data by emitting a laser pulse toward a

target object and measuring a round-trip time of the laser pulse. This measurement

principle enables laser scanners to stably offer high-precision scanning abilities even

in a large environment. In addition, a noteworthy characteristic of laser scanner is that

they obtains a power of the reflected laser (reflectivity) as a side-product of the range

data. Laser reflectivity indicates an intensity on the surface of target objects under a

single-frequency light source, and a reflectance image, which is a collection of laser

reflectance depicted as a grayscale image, contains rich appearance information about

the target object. Therefore, laser scanners perform range and intensity measurements

for each point simultaneously, and geometric and appearance information principally

aligned together is available requiring no calibration setting which is generally essen-

tial for a range and image sensor combination.

A laser scanner can be regarded as a single-frequency point light source, and a re-

flectance image represents diffuse reflection under a point light illumination observed

from the sensor position itself. Here, we describe how light reflects and how a re-

flectance image is captured. Basically the following two factors determine the radiance

reflected by a certain point of the scene surface.

• The amount of illumination falling on a surface of the scene

• The amount of the incident illumination reflected by the surface point

To represent the relationship between the incident and reflected light, Bidirectional

Reflectance Distribution Function (BRDF) can be used. BRDF of a surface pointp,

denotedfp, is defined as the ration of outgoing radianceLp,o and incident irradiance

Ep at p as follows:
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fp(ωi ,ωo) =
dLp,o(ωo)

dEp(ωi)
(1.11)

whereωi ∈ Ω denotes a solid angle oriented at an anglei. RadiancedLp,i and

irradiancedEp have the following relationship by definition.

∫
Ω

dEp(ωi) =
∫

Ω
dLp,i(ωi)cosθidωi (1.12)

⇐⇒ dEp(ωi)dS = dLp,i(ωi)(dScosθi)dωi (1.13)

Based on Eqs. (1.11) and (1.13), the outgoing radianceLp,o is formulated as fol-

lows:

Lp,o =
∫

Ω
dLp,o(ωi ,ωo) (1.14)

=
∫

Ω
fp(ωi ,ωo)dEp(ωi) (1.15)

=
∫

Ω
fp(ωi ,ωo)Lp,i(ωi)cosθidωi (1.16)

Assuming the Lambertian reflectance model where the surface luminance is

isotropic, the BRDF is simply a constant asfp = ρ . In addition, considering recti-

linear propagation of laser and light decay with distancer, a reflectance valueRp,o is

represented as follows:

Rp,o =
1
r2

∫
Ω

ρLp,i(ωi)cosθidωi (1.17)

=
ρLcosθi

r2 (1.18)

whereL denotes the power of emitted laser form a laser scanner, andρ denotes

diffusion coefficient of target object’s surface. According to Eq. (1.18), a reflectance
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image is composed of by the following elements:

• Power of emitted laser pulse

• Reflectance property of the surface of the target object

• Relative angle between the incident laser pulse and the surface normal

It is also considered to be affected by sensor specific characteristics. Shinozaki et

al. formulated the lase reflectance including the variation in sensitivity of a sensor unit

k(r) as follows[19]:

Rp,o = k(r)
ρLcosθi

r2 (1.19)

1.4 Aim

Time-of-flight laser scanner is one of the most efficient range sensors which can pro-

vide accurate 3D range information stably without being affected by disturbance light.

The aim of this dissertation is to enhance the functionality of time-of-flight laser scan-

ners for further accurate modeling and understanding of the 3D world.

In order to model an object with high realism, not only geometry but also appear-

ance (texture) information is essential. The 3D geometric model and texture image

are generally captured by different sensors, such as a laser scanner and a digital cam-

era, respectively. Therefore, strict calibration between these sensors is indispensable

to assign color information to the surface of the 3D geometric model, however, even

small alignment errors cause unsatisfactory gaps between the geometric model and the

assigned texture.

On the other hand, as discussed above, laser scanners can provide a power of the

reflected laser as a side-product of the range data. A reflectance image, which is a

collection of laser reflectivity depicted as a grayscale image, indicates intensity on the

surface of a target object. Additionally, a unique reflectance value is determined for
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each pixel in the corresponding range image. Thus, laser scanners are able to measure

geometric and appearance information principally aligned together.

Despite of the advantage of the modality, few relevant works have exploited the at-

tribute of laser reflectivity. As rare examples where the reflectance information is used,

Kurazume et al.[20] and Inomata et al.[21] developed high-accuracy texture mapping

techniques by estimating relative pose and position between reflectance and camera

images. Shinozaki et al.[19] proposed a high-quality texturing technique by correcting

input camera images focusing on that the diffuse component of the scanned 3D model

can be extracted from the reflectance image. These studies provided efficient align-

ment or color correction approaches for texture mapping using reflectance images,

however, they were no more than mediating the 3D model and input texture images

through laser reflectivity.

As discussed in the previous section, since a reflectance image is composed of

several elements such as incident angle, distance, and diffuse component, much in-

formation can be extracted from it which cannot be seen in the corresponding range

image. Focusing on the attribute of the laser reflectivity, this dissertation develops up a

new research area of 3D modeling with a laser scanner bycomplementarily exploiting

range and reflectance information.

1.5 Contributions

Time-of-flight laser scanners provide accurate 3D geometric information stably with-

out being affected by lighting condition, and play important roles in a variety of re-

search fields. In recent years, high-precision three-dimensional laser scanners, such

as RIEGL VZ-400 (RIEGL GmbH), Leica Scan Station 2 (Leica Geosystems AG),

and TOPCON GLS-1500 (TOPCON), have been widely used for landscape survey-

ing or digital 3D modeling. In addition, a low-cost, high-resolution laser measure-

ment systems using two-dimensional laser scanners (SICK LMS151 (SICK AG) and

HOKUYO TOP-URG (HOKUYO)) and a rotary table have been developed for 3D en-
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vironmental map building for mobile robot navigation[4]. These sensors can acquire

high-resolution and precise range data, however, they also have some drawbacks: Due

to the measurement principle, laser scanners often suffer from reflectance properties

of objects’ surfaces and range images acquired with laser scanners include noise and

holes. They also cannot capture color textures of the target objects.

The goal of this dissertation is to enhance functionality of time-of-flight laser

scanners for better 3D modeling, and enable them toreconstruct properly col-

ored/textured 3D models with little measurement error and no holesby utilizing

laser attribute. This dissertation consists of four main topics:

In Chapter2, a novel range image denoising technique exploiting the correspond-

ing reflectance image is proposed. While laser scanners are able to capture precise

range images, the range images are generally corrupted by noise because of the electri-

cal and mechanical disturbances or the surface reflectance properties of target objects.

To deal with this issues, a novel smoothing filter that refines deteriorated range images

taking laser reflectance into consideration is developed.

In Chapter3, we developed a completion technique which restores ”holes” in a

range image referring the corresponding reflectance image. Laser scanners sometimes

fail to measure range data because of specular reflection or weak reflectivity of the

laser pulse. This results in missing data that appears in the range image in the form

of ”holes”. In order to restore the deteriorated range image, we proposed a novel

range image completion technique in optimization framework with belief propagation

considering the continuity of range and reflectance data.

Inspired by image colorization, a novel 3D geometric colorization method is pro-

posed in Chapter4. The proposed method colorizes the reflectance image directly

using several color cues from an uncalibrated camera image taken in the same scene.

This enables us to give color information to 3D geometric models scanned with laser

scanners requiring no strict calibration which is essential for the conventional texture

mapping.

In Chapter5, a new texture synthesis technique for hole-free texture mapping is
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proposed. Texture mapping enables us to assign color images to the target geometric

data and to create a realistic virtual 3D model. However, in case that the positions of the

camera and the laser scanner are different, some texture-less regions (holes) may exist

on the object surface where the appearance information is missing due to the occlusion

or out-of-sight of the camera. Considering that completion order significantly affects

the quality of the synthesized image, the proposed technique completes the holes by

synthesizing texture according to structural information extracted from corresponding

reflectivity.



2
Range Image Smoothing using

Trilateral Filter

Acquiring 3D geometric information in the real world is indispensable for many appli-

cations in robotics, computer graphics, and computer vision. Typical examples include

mobile robot localization, augmented reality, human-computer interaction, gaming,

and so on. Over the last decades, time-of-flight laser scanners, that are capable of

measuring accurate 3D geometric information stably without being affected by light-

ing condition, have been playing important roles for application such as landscape

surveying and cultural heritages of famous buildings/art works. However, the range

19
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images captured with laser scanners often suffer from noise due to the reflectance

property of objects’ surfaces or electrical and mechanical disturbances. For example,

one sigma accuracy of RIEGL VZ-400 (RIEGL GmbH) is 3mm per 100 meters, thus

a flat surface is measured as a slightly uneven plate. Therefore, denoising techniques

for range images taken by laser scanners still remains as a critical problem.

Several approaches can be used to denoise range images captured by range sensors:

1. Averaging a series of range images of the same scene (temporal smoothing),

2. Applying spatial smoothing filters, such as Gaussian filter (spatial smoothing),

[22],[23],[24],[25],[26]

3. Combining range data with other information, such as texture or bright-

ness[27],[28],[29],[30]

Temporal smoothing is an intuitive and fundamental technique for denoising a

range image and is widely used in high-precision laser scanners. However, this process

must be performed for each measured point (pixel) during the measurement, and the

processing time is proportional to the number of images for averaging.

On the other hand, spatial smoothing can be applied off-line and is applicable to

not only measured points but also structured meshes. In this technique, range values of

adjacent points (pixels in a range image or vertexes in structured meshes) are spatially

convolved by applying a spatial convolution filter, such as a median filter or a Gaussian

filter.

In this chapter, we develop a new denoising technique, which can be categorized

into the third category mentioned above by focusing on the laser reflectivity. When

we measure range data with laser scanners, the laser reflectivity which indicates the

strength of the reflected light can be obtained as a by-product of range data. Note that

all of the pixels in the range image have corresponding reflectance values. In other

words, the range image and the reflectance image are precisely and fundamentally

aligned.
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Using the reflectance image, we propose a new smoothing technique using the

trilateral filter and the laser reflectivity. In the proposed method, the trilateral filter

is applied for not only a range image but also the corresponding reflectance image.

By taking account of the properties of range and reflectance images, the proposed

method can smooth a range image while preserving geometric features such as jump

and roof edges. Adelsberger et al.[31] proposed a similar denoising technique for low-

resolution infrared time-of-flight sensors (SwissRanger, MESA-Imaging). However,

detailed discussion for the performance has not been presented.

In Section2.1, an overview of the previous approaches will be presented. In Sec-

tion 2.2, we will describe the algorithm of the proposed denoising technique for range

images using reflectance images, that is, range image smoothing by the trilateral filter.

In Section2.3, simulations and experiments using laser scanners will be reported for

the purpose of verifying the performance of the proposed technique.

2.1 Related work

Smoothing techniques for range images are classified into two categories: pixel-

based or point-based techniques [26],[27],[32],[33],[29],[30] and mesh-based tech-

niques [23],[24],[25],[28]. Raw range data acquired by range sensors is composed

of a group of 3D points called a point-cloud. Pixel or point-based methods denoise

the range image or the point-cloud directly without taking the continuity of pixels into

account explicitly. On the other hand, mesh-based methods are applied to structured

meshes, such as triangular patches, by considering the continuity of the vertexes in the

structured meshes.

For the case in which a high-resolution gray-scale image and a low resolution range

image are simultaneously captured from a range sensor, Diebel et al.[27] proposed a

technique for estimating high-resolution range images by considering the Markov Ran-

dom Field in high- and low-resolution range images and adjusting smoothing parame-

ters according to the gradient of the high-resolution gray-scale image. Crabb et al.[34]
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and Chan et al.[32] also proposed an up-sampling technique using the joint bilateral

filter[35]. Bohme et al.[28] proposed a denoising technique for range images using the

shape-from-shading technique[36]. They introduced an energy function consisting of

the difference of the observed laser reflectance and its estimation based on the Lamber-

tian reflectance model and the continuity of the range and reflectance images. Then,

the energy function is minimized by the non-linear conjugate gradient method so that

the noise in the range image is suppressed. Using measured range information and the

normal directions from photometric stereo, Nehab et al.[29] and Okatani et al.[30] pro-

posed denoising techniques for reconstructing 3D geometric models precisely. Nehab

et al.[29] refines the bias in the measured normal direction at first, and then optimizes

the 3D model so that the estimated normal direction fits the 3D model. Okatani et

al.[30] estimates the shape of an object by integrating the surface normal and 3D data

in probabilistic framework.

On the other hand, several techniques based on the bilateral filter [37], which

was developed as an edge-preserving filter for gray-scale images, have been pro-

posed[24],[25],[26],[38]. Fleishman et al.[25] proposed a 3D edge preserving filter

by applying the bilateral filter for the distance from a point to its adjacent points pro-

jected on a tangential plane (tangential component) and the distance from the adjacent

points to the tangential plane (normal component). Jones et al.[24] proposed a sim-

ilar technique using triangular meshes instead of tangential planes. However, these

smoothing techniques are applied after converting the point-cloud to the meshes and

it is difficult to obtain the normal vectors stably from meshes that contain a great deal

of noise. Moreover, in some cases, the construction of structured meshes from a noisy

point-cloud is not a simple and trivial problem.

Miropolsky[26] proposed a geometric bilateral filter, which uses the distances from

the adjacent points and the difference of normal directions for each point in the point-

cloud. However, a stable solution of normal vectors from a noisy point-cloud has not

yet been found.

While these methods can be considered as a simple extension of the bilateral filter
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for a gray-scale image to a range image, the technique proposed herein uses a re-

flectance image whose pixels correspond one-to-one to those of a range image for de-

noising the range image. Note that although we assume that the range and reflectance

images have the same resolution, the proposed method can be applied to images having

different resolutions using the joint bilateral filter[35]. On the other hand, similar de-

noising techniques for camera images that extend the bilateral filter to other domains

have been proposed[39][40][41][42]. Eisemann et al.[39] and Petschnigg et al.[40]

proposed flash photography techniques. In their techniques, an image, which was

taken under dark illumination and suffers from noise or blur, is reconstructed using

itself and another image taken in the same position with flash light. Focusing on the

fact that the flash image has better high-frequency information than the no-flash image,

they proposed Cross-bilateral filter and Joint bilateral filter respectively. These filters

had edge-preserving weighting functions based on the differences of pixel intensities

in the flash image in order to obtain the detail shapes. Benett et al.[41] and Weber

et al.[42] proposed similar bilateral filtering techniques for each image in a video and

animation. They extended the bilateral filter to time domain and denoised each image

utilizing the information of adjacent frames.

2.2 Range Image Smoothing using Trilateral Filter

In this section, we propose a new technique for smoothing a range image using the

trilateral filter and a reflectance image. As mentioned above, conventional smoothing

techniques for range data are mainly applied for a range image directly. On the other

hand, we focus on a reflectance image that is acquired as a by-product of the range

image for most time-of-flight laser scanners. By taking the properties of both range

and reflectance images into account, the proposed technique can suppress noise in the

range image while preserving geometric features such as jump and roof edges.

In the following sections, we introduce the conventional bilateral filter, and then

the proposed trilateral filter using a reflectance image is described in detail.
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2.2.1 Bilateral filter

The bilateral filter[37] is an edge-preserving smoothing filter that extends the Gaussian

filter so that not only the spatial relation but also the variation of the pixel intensity is

considered. In the Gaussian filter, it is assumed that adjacent pixels may have similar

intensities, and a weighted sum of neighbor pixels defined by a Gaussian distribution

is calculated for each pixel as follows:

gi =
∑ j∈Si

wx(xi ,x j) f j

∑ j∈Si
wx(xi ,x j)

(2.1)

wx(xi ,x j) =
1√

2πσx
e
−

|xi−xj |2

2σx2 (2.2)

wherexi is the location of pixeli, gi is a smoothed intensity value of a pixeli, and f j

is the original intensity value of a pixelj, which is a neighborSi of a pixel i. Here,

wx(xi ,x j) is the weight function determined by a Gaussian function with a variance of

σ2
x , and|xi −x j | is the two-dimensional spatial distance (L2 distance) between pixelsi

and j.

Compared with the Gaussian filter, the bilateral filter takes the variation of the pixel

intensities into consideration for image smoothing. More precisely, the bilateral filter

determines a weight of each neighbor pixel according to not only the two-dimensional

spatial relation but also the similarity of the intensity, as follows:

gi =
∑ j∈Si

wx(xi ,x j)wf ( fi , f j) f j

∑ j∈Si
wx(xi ,x j)wf ( fi , f j)

(2.3)

wf ( fi , f j) =
1√

2πσ f
e
−

| fi− f j |2

2σ f
2

(2.4)

wherewf ( fi , f j) is the weight function for the intensity determined by a Gaussian

function with a variance ofσ2
f , and| fi − f j | is the difference in intensity of pixelsi and

j. Since the bilateral filter takes the difference in intensity into account, it is possible

to preserve abrupt changes in range images, such as jump edges, which are blurred by
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Gaussian filter.

2.2.2 Trilateral filter

Bilateral filter is effective to suppress noises in range images while preserving their ge-

ometric features. However, as shown in Fig.2.1(a), although abrupt changes of range

values, such as jump edges, are easily detected in a range image, moderate changes,

such as roof edges, are quite difficult to detect. Miropolsky[26] introduced the direc-

tional variation of normal vectors in order to emphasize these moderate changes in

the range image. However, if we see the reflectance image shown in Fig.2.1(b), these

moderate changes are clearly detected in the reflectance image.

(a) Range image

(b) Intensity image

Roof edge

Jump edge

Roof edge

Jump edge

Figure 2.1:Jump and roof edges in range and reflectance images

Based on the above consideration, we propose a new filter that uses reflectance and

range images simultaneously for smoothing a range image, as follows:

gi =
∑ j wx(xi ,x j)wf ( fi , f j)wd(di ,d j) fi
∑ j wx(xi ,x j)wf ( fi , f j)wd(di ,d j)

(2.5)
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wx(xi ,x j) =
1√

2πσx
e
−

|xi−xj |2

2σx2 (2.6)

wf ( fi , f j) =
1√

2πσ f
e
−

| fi− f j |2

2σ f
2

(2.7)

wd(di ,d j) =
1√

2πσd
e
−

|di−dj |2

2σd
2 (2.8)

wherefi anddi are the range and reflectance values in pixeli, andwx(xi ,x j), wf ( fi , f j),

andwd(di ,d j) are Gaussian functions in the two-dimensional spatial, range, and re-

flectance domains with variances ofσ2
x , σ2

f , andσ2
d , respectively.

The filter given by Eq. (2.5) takes into account three kinds of information in range

and reflectance images for smoothing a range image. In other words, it is an extension

of the conventional bilateral filter that takes the variation of the laser reflectivity into

consideration for range image smoothing. Thanks to a variety of properties in range

and reflectance information, the proposed trilateral filter enables not only jump edges

but also roof edges to be preserved in a range image, and the trilateral filter is expected

to have higher performance for edge preservation than the simple extension of the

bilateral filter to a range image.

Consequently, the proposed smoothing technique for a range image is summarized

as follows.

1. Acquire range and reflectance information by a time-of-flight range sensor.

2. Create range and reflectance images in which the values of each pixel in range

and reflectance images are proportional to the range and reflectance values.

3. Apply the trilateral filter given by Eq. (2.5) using range and reflectance images

and obtain a smoothed range image.

4. Construct a 3D model consisting of meshes from the smoothed range image.
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2.3 Results

This section introduces the results of the range image smoothing experiments using

simulated and actual range images. We conducted experiments with various parame-

ters selected manually, and determined parameters used for the following experiments.

2.3.1 Simulation using a synthesized image

First, we performed simulation experiments using the synthesized image shown in

Fig.2.2, which is a scene of a square box having sides of 1 meter in a room. Since a

reflectance image indicates an appearance of a target object under a single-frequency

light source, the gray-scale image (Fig.2.2(a)) is synthesized as an alternative to it by

placing a point light source at the same position as a virtual viewpoint. We added

random noise of 1 % of a range value of each pixel in the range image.

(a) Grayscale image (b) Range image

Figure 2.2:Synthesized images used in the simulation experiment

Figure2.3shows the denoising results obtained using the Gaussian filter, the bilat-

eral filter, and the trilateral filter, respectively. Table2.1shows the RMS errors of the

range images after applying these filters.

In this experiment, the kernel size of each filter is 9× 9 pixels, and the ranges

of the range data and the reflectance data are 13,293 to 17,128[mm] and 0 to 255,

respectively. The variances are set asσx= 4.0,σ f = 0.4, andσd = 6 for the normalized

range image. Computational times to apply these filters to the range image whose size

is 640×480 pixels with Intel Xeon (2.50GHz) were 202ms for Gaussian filter, 580ms
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(a) 1% noise in depth values (b) Gaussian filter

(c) Bilateral filter (d) Trilateral filter

Figure 2.3:Denoised images by Gaussian filter, bilateral filter and trilateral filter

for bilateral filter, and 824ms for trilateral filter.

As shown in Table2.1, the RMS error of the proposed trilateral filter is the small-

est, and it is verified to have high performance for range image smoothing and edge

preservation.

Additionally, assuming the reflectance image also contained noise, we carried out

another experiment using a synthesized reflectance image created by adding 1 % ran-

dom noise to Fig.2.2(a). In this experiment, we adopted the following three methods

and compared their performances.

1. Merely apply the proposed trilateral filter to the range image with the noisy

reflectance image.

2. Apply Gaussina filter to the noisy reflectance image, and then denoise the range
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RMS [mm]
Original image 45.8
Gaussian filter 17.8
Bilateral filter 14.1
Trilateral filter (proposed) 11.7

Table 2.1:RMS error for range image smoothing

image with the smoothed reflectance image.

3. Apply bilateral filter to the noisy reflectance image, and then denoise the range

image with the smoothed reflectance image.

Table2.2 shows the RMS error after applying each method. This demonstrates

that the proposed trilateral filter works well even with a noisy reflectance image, and

that applying smoothing filter to a noisy reflectance image beforehand enhances the

performance of the trilateral filter to some extent. Here, the kernel size and variances

of smoothing filters for the reflectance image are set as 11×11,σx = 4, andσ f = 7.

Table 2.2:RMS error (1% noise for range and reflectance images)

RMS [mm]
Original image 45.8
Trilateral filter without smoothing 20.5
Trilateral filter after applying Gaussian filter 19.4
Trilateral filter after applying bilateral filter 19.1

2.3.2 Experiments with a laser scanner

Next, we performed experiments using a 3D laser measurement robot CPS-V shown

in Fig.2.4[4]. Figure2.5 shows three experimental conditions: a simple environment

consisting mainly of roof edges (scene 1), a more complex environment in which a

human and other objects exist and a number of jump edges are observed (scene 2), and

a stone monument with a Kanji inscription which contains roof and jump edges (scene
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3). Figure2.6shows the range and reflectance images of these scenes captured by the

measurement robot. The robot enables the surrounding range data to be captured by

rotating the laser scanner (SICK, LMS151 or LMS200) by means of a rotary table.

The image sizes are 200× 721 pixels for scene 1 and 2, and 760× 1133 pixels for

scene 3. Figure2.6displays partial views of these range and reflectance images.

Parent robot

Child robot 2Child robot 1

Rotating table

2D Laser range finder 

Figure 2.4:Acquisition system of a panoramic range image[4]

Figure2.7shows the results for scene 1 (Fig.2.5(a)). In the experiment, we set the

kernel size of the filters to be 9× 9 pixels, and the ranges of the range data and the

reflectance data are 275 to 8,191 [mm] and 0 to 255, respectively. The variances are

σx = 0.8, σ f = 0.1, andσd = 7 for the normalized range image.

Figure2.7(a) is a 3D model constructed from the original range image before ap-

plying smoothing filters. Several unexpected bumps appear on the surfaces of the walls

and objects due to the noise in the range image. Figures2.7(b), 2.7(c), and2.7(d) show

the images smoothed by the Gaussian filter, the bilateral filter, and the trilateral filter,

respectively. These figures show that the surfaces of the walls are smoothed by the

Gaussian filter and the bilateral filter. However, the edges of the box and the window

frame are blurred. On the other hand, the trilateral filter can smooth the surfaces of the

walls while preserving the edges of the box and the window frame.

Figure2.8displays comparison of a cross-sectional shape of the box in a 3D model
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(a) Scene 1 (b) Scene 2

(c) Scene 3

Figure 2.5:Experimental setup

illustrated in Fig.2.7(a) after applying each filter. While Gaussian filter and bilateral

filter over-smooth and blur the prominent structure, the proposed trilateral filter main-

tains the geometric structure suppressing the noise. Here, processing time of each filter

with Intel Xeon (2.50GHz) was 104ms for Gaussian filter, 276ms for bilateral filter,

and 414ms for trilateral filter.

Next, the results for scene 2 (Fig.2.5(b)) are shown in Fig.2.9. Figure2.10displays

an enlarged partial view of each result．Similar to the experimental results for the

scene 1, the Gaussian filter and the bilateral filter smooth the surfaces of the walls.

In particular, the bilateral filter preserves the jump edges, such as the shape of the

monitor, which is indicated by the arrow. However, the roof edges of walls, the face

of the person, and the ruck of the clothes are blurred. On the other hand, the trilateral
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filter smoothes the range image successfully while preserving the jump and roof edges

appropriately, as shown in Fig.2.9(d). In this experiment, we used the same parameters

as in scene 1.

Finally, the results for the scene 3 (Fig.2.5(c)) are shown in Fig.2.11. In this ex-

periment, we set the kernel size of the filters to be 9×9 pixels, and the ranges of the

range data and the reflectance data are 443 to 49,726 [mm] and 0 to 255, respectively.

The variances areσx = 3, σ f = 0.3, andσd = 13 for the normalized range image.

As shown in Fig.2.11(b), the bilateral filter blurs the edges of the characters while

smoothing the surfaces of the stone monument. Figure2.11(c) shows the result after

applying Bohme’s technique[28] that estimates a Lambertian reflection coefficient and

a normal direction on each part of the surface simultaneously by minimizing an energy

function. Since this technique utilizes the difference between reflectivity and a normal

direction in each pixel and their averages of its neighbor pixels as a smoothing term,

the obtained range image also fails to conserve the detailed geometric features as is the

case with the mean filter and the Gaussian filter. On the other hand, the trilateral filter

preserves the geometric features successfully suppressing noises in the range image,

as shown in Fig.2.11(d).

Computational times to apply these filters to the range image whose size is 640×

480 pixels with Intel Xeon (2.53GHz) were 347ms for Gaussian filter, 1361ms for

bilateral filter, 2574531ms for Bohme’s technique, and 1994ms for trilateral filter.
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Range image Reflectance image
(a) Scene 1

Range image Reflectance image
(b) Scene 2

Range image Reflectance image
(c) Scene 3

Figure 2.6:Range and reflectance images
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Cross section

(a) Original range image (b) Gaussian filter

(c) Bilateral filter (d) Trilateral filter

Figure 2.7:Experimental results for a simple environment
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Figure 2.8:Comparison of cross-section shape of the box
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(a) Original range image (b) Gaussian filter

(c) Bilateral filter (d) Trilateral filter

Figure 2.9:Experimental results for a complex environment
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(a) Original range image (b) Gaussian filter

(c) Bilateral filter (d) Trilateral filter

Figure 2.10:Objects on the table
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(a) Original range image

(b) Bilateral filter with range image

(c) Bohme’s method[28] with range and reflectance images

(d) Trilateral filter with range and reflectance images

Figure 2.11:Experimental results for a stone monument
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2.4 Conclusions

In this chapter, we proposed the trilateral filter for range image smoothing focusing

on the laser reflectivity. By taking into account the properties of range and reflectance

images, the proposed trilateral filter can suppress noises in range images while preserv-

ing geometric features such as jump and roof edges. We conducted experiments using

synthesized images and actual range images and verified that the proposed denoising

technique successfully suppress noises in range images.

Since the reflectance image is obtained as a by-product of range data, the proposed

method has several advantages. For example, no additional measurements or instru-

ments are required, and, unlike conventional camera images, the reflectance image is

not affected by lighting conditions. In addition, while a range image has the advan-

tage of detecting jump edges, a reflectance image is suitable for detecting roof edges.

Therefore, it is expected that the proposed technique has higher performance in edge

preservation than the techniques that use range or reflectance information only.

In the future, we will discuss the optimum parameters for the proposed technique

and perform quantitative evaluation for a variety of scenes.





3
Range Image Completion with Belief

Propagation

Time-of-flight laser scanners are capable of measuring highly accurate 3D range infor-

mation without being affected by disturbance light, and increasingly used for a variety

of applications in the fields of robotics, human-computer interaction, autonomous ve-

hicle, architecture, and so on. Laser scanners infer distances to scene surfaces from

themselves based on round-trip times of laser pulses emitted to the scene and reflected

off the surface. However, depending on the reflectance properties of objects’ surfaces,

laser scanners fail to measure range data due to specular reflection or weak reflectivity

41
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of the laser pulse. For example, metal surface with strong specular reflection or black

color cannot be measured by standard laser scanners, and the missing data appears in

the range images in the form of holes. Note that, in general, not only the range data

but also the reflectance data in those regions is lost.

In this chapter, we propose a new completion technique which restores holes in-

cluded in a range image utilizing a corresponding reflectance image and belief prop-

agation. Reflectance data tends to be more sensitive to geometric changes than range

data, and geometric features such as jump and roof edges can be observed more clearly

in a reflectance image. Focusing on the fact, we first restore a deteriorated reflectance

image with belief propagation in order to acquire a rough estimate of the appearance.

Then, we apply an extended belief propagation to a corresponding deteriorated range

image which weights belief messages among adjacent pixels according to continuities

of reflectance data in the restored reflectance image. This 2-step completion technique

enables us to restore deteriorated range images more appropriately than directly apply-

ing belief propagation to them.

The rest of this chapter is organized as follows. We first discuss the previous com-

pletion techniques in Section3.1. In Section3.2 we describe the detail algorithm of

proposed completion technique extending loopy belief propagation utilizing the laser

reflectivity. Section3.3 demonstrates the validity of the proposed technique carrying

out simulations and experiments. Finally, we conclude this chapter and mention the

future work in Section3.4.

3.1 Related work

For the case in which there are several holes in range data due to the occlusion or

specular/weak reflection, Kawai et al.[43] proposed a completion technique of the 3D

surfaces. They define an energy function based on the similarity of shapes, and select

the best match which minimizes the energy function to fill in the holes of 3D geometry.

Becker et al.[44] proposed a completion method using an additional color image of the
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same scene from a different viewpoint. The method first creates a lot of small 3D

structure patches with the texture from an input 3D geometric model and a texture

image aligned to it, and then restores holes in the 3D model by copying the best patch

in the set of patches to them. Assuming that regions which have similar textures tend

to have similar 3D structures, they select the best patch from the patch collection by

comparing texture patterns of patches in the collection and the adjacent area of the

hole. Xu et al.[45] also proposed a technique which estimates missing geometry by

learning association of surface normals to image patches in calibrated images.

On the other hand, several image completion techniques based on belief propa-

gation have been proposed[46],[47]. Pedro et al.[46] proposed an image completion

method which takes the continuity of pixels into account by applying belief propaga-

tion. Komodakis et al.[47] addressed exemplar-based image completion as a discrete

global optimization problem with belief propagation. They introduced the Priority-BP

that extends standard belief propagation for priority-based message scheduling and

dynamic label pruning, and that allowed them to avoid visual artifacts and produce

excellent completion results while reducing the computational cost of BP.

3.2 Range image completion utilizing 2-step belief

propagation

In the previous chapter, we proposed a range image smoothing technique using the

trilateral filter and a reflectance image. Although the smoothing technique is able to

suppress noises in a range image, a deteriorated range image that has missing parts

due to specular reflection or weak reflectivity of the laser pulse is difficult to recover

by merely applying the proposed smoothing filter. For restoring the ”holes” in a range

image, this chapter proposes an image completion technique using belief propagation

and a reflectance image.
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3.2.1 Loopy belief propagation

Let us consider a graphP consisting of multiple nodes connected by multiple arcs. We

assign labelfp to nodep so that the following energy function is minimized.

E( f ) = ∑
p∈P

Dp( fp)+ ∑
(p,q)∈N

W( fp, fq) (3.1)

whereDp( fp) is a cost term for assigning labelfp to nodep, andW( fp, fq) is a penalty

term if labelsfp and fq are assigned to nodesp andq, respectively. Here,N indicates

the neighbor nodes of nodep.

In the framework of belief propagation, the following messages are repeatedly ex-

changed between the adjacent nodes in order to determine the optimum labelfp that

minimizes the energy function:

mt
p→q( fq) = min

fp

(
Dp( fp)+W( fp, fq)+ ∑

s∈N(p)\q

mt−1
s→p( fp)

)
(3.2)

After T iterations, optimum labelf ∗q is determined so as to minimize the following

cost function:

bq( fq) = Dq( fq)+ ∑
p∈N(q)

mT
p→q( fq) (3.3)

3.2.2 2-step Belief propagation

We apply belief propagation to a deteriorated range image and repair it using a cor-

responding reflectance image. When we measure range data using a laser scanner, it

often occurs that part of the range image is lost due to saturation of the reflectivity by

specular reflection or a weak laser pulse reflected on a black surface. In most cases, not

only the range information but also the reflectance information in this region is lost.

The proposed completion technique for a range image consists of two steps. First,

we repair a reflectance image by belief propagation in Section3.2.1, because the re-

flectance image clearly contains roof and jump edges and the restoration of the re-
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flectance image is easier than the restoration of the range image. Then, we apply belief

propagation to the range image using the repaired reflectance image. In Section3.3,

this two-step algorithm is demonstrated to be able to inpaint the range image more

precisely than directly applying belief propagation to the range image.

Since belief propagation requires a huge memory and large calculation cost, range

and reflectance images are first converted to 256-level gray-scale images. Therefore,

the number of labels to be assigned is 256, as expressed by integers from 0 to 255.

We define the cost termDp( fp) for assigning labelfp to pixel p as

Dp( fp) = 0 (3.4)

for lost regions and

Dp( fp) =| fp−Lp | (3.5)

for other regions, whereLp is the original label of pixelp. In addition, we consider the

four-neighborq of pixel p and define the cost function for assigning labelsfp and fq

as

W( fp, fq) = g(rp, rq)( fp− fq)
2 (3.6)

whererp andrq are values of pixelsp andq in the reflectance image, andg(rp, rq) is a

gain term that indicates the effect of the reflectance image.

g(rp, rq) = αe−β (rp−rq)
2

(3.7)

Equation (3.6) indicates that the neighboring pixel which has a similar reflectance

value is preferentially selected to repair a lost pixel in the deteriorated range image. In

contrast, a pixel having a reflectance value that is changed discontinuously affects the

repair of the range image only slightly.
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3.3 Results

This section shows the results of experiments for range image completion by the pro-

posed belief propagation using simulated and actual range images. We conducted ex-

periments with various parameters selected manually, and determined parameters used

for the following experiments.

3.3.1 Range image completion experiments

Simulation using a synthesized image

We performed the simulation for evaluating the proposed range image completion

technique with belief propagation described in Section3.2. In the experiment, we

prepared deteriorated reflectance and range images which have small missing regions.

The size of the image is 320×240 pixels, and the size of the missing part is 20×20

pixels. In this experiment, we useα = 0.75 andβ = 1.0.

Figures3.1(a) and3.1(b) show the original and deteriorated range images, and

Figs.3.1(c) and3.1(d) show the deteriorated and repaired reflectance images. The

inpainted range images after applying belief propagation 30 times are shown in

Figs.3.1(e) and3.1(f). These images are repaired with and without the reflectance

image respectively, and their 3D mesh models are displayed in Fig.3.2. The RMS er-

rors for these repaired images are compared in Table3.1. From these results, the range

image completion is successfully carried out using the two-step algorithm with belief

propagation and the reflectance image.

Experiments with a laser scanner

Next, we performed the experiments using actual range and reflectance images taken

by the laser scanner on the CPS-V robots (Fig.2.4). In this experiment, we use

α = 0.75 andβ = 0.5. To emphasise the difference of the restoration results, we

prepared deteriorated range and reflectance images by manually cutting a part of scan
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(a) Original range image (b)Deteriorated range image

(c) Deteriorated reflectance image (d) Inpainted reflectance image

(e) Completion result with BP (f) Completion result with proposed method

Figure 3.1:Range image completion with Belief Propagation

data. Figure3.3 shows the 3D models restored by two techniques, that is, the simple

belief propagation for range images and the proposed two-step algorithm using laser

reflectivity. Missing parts are recovered appropriately by the proposed two-step algo-

rithm while the simple belief propagation produces discontinuities in the restored 3D

model. Each RMS error is shown in Table3.2. As shown in Table3.2, the RMS error
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Front view Side view
(a) Standard BP

Front view Side view
(b) Proposed method

Figure 3.2:Completed 3D mesh model

Table 3.1:RMS error for range image completion

RMS[mm]
Number of iteration Without reflectivity With reflectivity

12 36.24 29.01
20 30.15 14.16
30 28.99 10.68
40 29.47 10.47
50 29.44 10.64

of the proposed technique is the smallest, and the proposed technique is verified to

fill-in a hole in the range image successfully.
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(a) Original 3D mesh model with a missing region

(b) Standard BP (c) Proposed two-step algorithm

Figure 3.3:Experimental results for the performance evaluation

Table 3.2:RMS error in experimental results for the performance evaluation

RMS [mm]
Without reflectivity 7.68

With reflectivity (2step) 1.44



50 Range Image Completion with Belief Propagation

3.3.2 Range image smoothing and completion utilizing laser reflec-

tivity

Finally, we carried out an experiment to verify our smoothing and completion tech-

niques using actual range and reflectance images taken by the laser scanner(LMS511)

on the CPS-V robots (Fig.2.4). In this experiment, we set the kernel size of the filters

to be 9×9 pixels and the variances areσx = 3, σ f = 0.3, andσd = 9 for the trilateral

filter. We also useα = 0.75, β = 2.0 and iterationT = 100 for our two-step algo-

rithm. Figure3.4(a) is a 3D model constructed from the original range image. Several

unexpected bumps appear on the surfaces of the walls and objects due to the noise in

the range image. In addition, several holes can be seen due to specular or weak reflec-

tion. Figure3.4(b) and (c) show the 3D model restored by the two-step completion

algorithm, and the smoothed 3D model of it by the trilateral filter, respectively. The

two-step algorithm repairs the missing region appropriately by taking the continuity of

laser reflectivity into account. Moreover, the trilateral filter smooths the range image

successfully while preserving the geometric features such as jump and roof edges.
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(a) Original 3D mesh model

(b) The 3D mesh model after applying our two-step algorithm

(c) The 3D mesh model after applying our two-step algorithm and proposed trilateral filter

Figure 3.4:Experimental results for the performance evaluation of proposed smooth-
ing and completion techniques
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3.4 Conclusions

In this chapter, we proposed a novel range image completion technique using belief

propagation and laser reflectivity. By considering not only the adjacent range values

but also the continuity of the reflectance values, the proposed 2-step completion algo-

rithm enables us to recover deteriorated range images more appropriately than directly

applying belief propagation to them. We carried out experiments using synthesized

data and actual data obtained with a laser scanner respectively, and the results demon-

strated the validity of the proposed completion technique.

Currently, the parameters are adjusted manually by conducting experiments with

various parameters. Therefore, in the future, we will develop a method that deter-

mines optimum parameters automatically according to input data. Besides, we will

also improve the proposed technique so that it can restore more complicated geometric

structures.



4
Manual/Automatic Colorization for

3D Geometric Models

Three-dimensional geometric modeling of a real object using a laser scanner has been

used in many applications such as Virtual Reality (VR), digital archives of cultural

heritages[4], and remote control of a rescue robot in a hazardous environment[18].

Moreover, to display a 3D model with high realism, it is effective to add color and tex-

ture information to the surface and provide not only a geometry but also appearance

information. For instance, it is quite helpful to control a rescue robot in a dark and

hazardous environment appropriately if a colored 3D model around a rescue robot is

53
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displayed for an operator. Texture mapping[48], which maps a color image obtained

by a camera to a 3D geometric model, has been widely used for creating photo-realistic

models. However, since color images and the 3D geometric model are generally cap-

tured by different sensors, such as a digital camera and a laser scanner, respectively,

strict calibration between these sensors is essential to map color information precisely

on the 3D geometric model. Moreover, multiple color images are required to add sur-

face appearance to an entire or large-scale 3D model, and small registration errors or

changes in lighting conditions cause an unsatisfactory gap and discontinuity due to

human perception.

In this chapter, we propose a new technique using laser reflectivity to add color to

a 3D geometric model. A laser scanner obtains the range image of a target based on

the properties of the laser projected onto the surface. At the same time, the laser re-

flectivity, which represents the power of the reflected laser, is obtained as a by-product

of the distance value. Each pixel in the range image has a corresponding reflectance

value. In other words, the range image and the reflectance image are precisely aligned.

By taking advantage of the characteristics of the reflectance image, our proposed

technique achieves highly realistic 3D modeling with only a single color image. The

key scheme is to colorize the reflectance image based on its similarity with a color

image, then transfer the color information to the 3D geometric model. This chapter

presents some experimental results using a laser scanner, and quantitative evaluations

of the proposed technique by comparing it with texture mapping to demonstrate the

validity of the proposed technique.

Whereas previous methods have been developed to assign color information to 3D

models by projecting corresponding camera images, we proposes a novel coloriza-

tion technique for 3D geometric models. The major contribution of our approach is

to extend a conventional monochrome image colorization technique so that it can be

applied to range and reflectance images. To our best knowledge, no studies have ad-

dressed colorization for 3D geometric models scanned with laser scanners by utilizing

reflectance attribute except for the proposed method.
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The rest of this chapter is organized as follows. In Section4.1, an overview of

the previous approaches will be presented. In Section4.2, we will propose a new

colorization technique for a 3D geometric model using a reflectance image. In Section

4.3, we carry out some experiments using a laser scanner, and verify the performance

of the proposed technique.

4.1 Related work

Texture mapping[48], which is a fundamental technique for creating a photo-realistic

3D model, has been widely used in the field of computer vision. In some applications,

it maps a color image on a range image and creates a colored 3D model. Usually range

and color images are captured from different viewpoints by two independent sensors,

such as a laser scanner and a digital camera. Therefore, it is necessary to determine

the correspondence between range and color images in order to map color information

on the 3D geometric model precisely.

For aligning a 3D model and a color image, Yoshida et al.[49] proposed an align-

ment technique by assigning several matching points between range and color images

manually. Neugebauer et al.[50] proposed a similar technique that calculates suitable

camera parameters according to the interactive selection of corresponding points be-

tween 3D range data and a 2D color image.

In contrast, techniques that align range and color images automatically have been

developed by several researchers. Viola et al.[51] proposed a technique that utilizes

statistical characteristics of both images. Stamos et al.[52] also proposed a method that

extracts several planes from range data and edges in color images, and then calculates

the intersection lines of the planes and the edges. Some approaches that compare a 2D

image contour with a silhouette image of the 3D geometric model have been proposed.

Iwakiri et al.[53] proposed a real-time texturing method that aligns the color image and

the silhouette image of a 3D geometric model from a virtual camera. Lensch et al.[54]

also proposed a silhouette-based algorithm that determines the camera transformation
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based on an XOR-operation between the silhouette image of a 3D model and the color

image.

Registration techniques that exploit reflectance images have also been studied. The

reflectance image, obtained by most laser scanners as a by-product of the range im-

age, has a similar appearance to a color image. Therefore, some approaches make

use of reflectance images for registration between a 2D image and a 3D geometric

model for texture mapping. Boughorbal et al.[55] utilized the similarity between the

reflectance image and the intensity image based on theχ2-metric. Umeda et al.[56]

proposed a technique to determine relative relations between a range sensor and a

color sensor based on the gradient constraint between reflectance and color images.

On the other hand, local features in both images are effective to estimate the corre-

spondence between reflectance and color images. Kurazume et al.[20] proposed a

calibration method for texture mapping that minimizes the error between edges ex-

tracted from reflectance and color images by using the robust M-estimator. Boehm

et al.[57] utilized the scale-invariant feature transform (SIFT) [8] to estimate extrinsic

parameters by matching them in reflectance and color images. Inomata et al.[21] pro-

posed a SIFT-based technique that calculates not only the extrinsic parameters but also

the intrinsic parameter and distortion of the camera lens simultaneously. This method

uses Soft-matching that retains correct matches while removing false matches between

reflectance and color images according to the similarity of the appearances based on

Bhattacharyya distance.

All the methods mentioned above assume that color images which correspond to

range images are captured. However, in some cases, it is difficult or almost impossible

to provide color images perfectly, for example, in dark and wide areas. The proposed

technique in this research gives a solution for providing a colored 3D model even in

these conditions.
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4.2 Colorization for 3D Geometric Models with Re-

flectance Images

In this section, we show our algorithm for adding color information to 3D geometric

models by applying the image colorization technique to reflectance images [58]. The

basic idea behind the proposed technique is as follows. Since reflectance and range

images are fundamentally and precisely aligned, we first colorize the reflectance image

by using its similarity with a color image, then transfer the color to the 3D geometric

model.

The proposed technique does not require precise calibration between the color and

range images. Such calibration is required for conventional texture mapping. Thus, the

gaps or discontinuities in appearance due to calibration errors can be avoided even if

several images must be registered on a model. Moreover, the appearance of the entire

surface of a model can be assigned from a partial view of the model if the appearance

does not change significantly or have a repetitive pattern in the entire model.

In the following sections, we introduce the details of the proposed technique: as-

signing color seed points in the reflectance image based on a local similarity between

the color and reflectance images, and colorizing the reflectance image based on the

seed points.

4.2.1 Image colorization

Image colorization is a technique for adding color to a monochrome image and has

been used in some specific applications, such as coloring monochrome movies or

creating color-coded images for electron photomicrograph or X-ray imaging. Since

adding color values to a monochrome image has no clearly defined procedure, the

current approaches attempt to estimate all colors based on clues given as seed points

manually[59][60][61] or automatically[62][63][64].

Yatziv et al.[60] proposed a fast image colorization technique using Dijkstra’s dis-
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tance[65]. This technique estimates the color at each pixel in a grayscale image by

calculating a weighted average of Dijkstra’s distances from each seed point which has

chromatic information. Dijkstra’s distance is computed considering changes in lumi-

nance in the monochrome image. If the change in luminance from the seed point is

small, the chromatic information at the seed point is mainly copied to the pixel. More

precisely, if the color is described in YCbCr color space, the color of each monochrome

pixel is estimated using Dijkstra’s distance as follows:

ci =
∑ j∈Ωc

w(i, j)c j

∑ j∈Ωc
w(i, j)

(4.1)

w(i, j) = r i j
−α (4.2)

r i j = min
n−1

∑
k=1

|Ypk+1 −Ypk|pk+1∈N(pk),p1=i,pn= j (4.3)

whereci is the estimated color value(CbCr) in pixeli, Ωc is a set of seed points

which have color information,r i j is Dijkstra’s distance from pixeli to pixel j, α is a

gain parameter that controls the effect of weighting functionw(i, j) based on Dijkstra’s

distance, andYpk andN(pk) are the intensity and the neighbor pixels of the pixelpk.

Equation (4.2) indicates that the seed point, which has a small Dijkstra’s distance

to the target pixel, is preferentially selected to colorize the monochrome pixel in the

grayscale image. In contrast, a seed point which has a Dijkstra’s path with large lumi-

nance change contributes little to the color estimation of the monochrome pixel.

4.2.2 Colorization of range image using reflectance image

Based on the image colorization technique described above, we propose a new col-

orization technique for a 3D geometric model utilizing a reflectance image and a color

image. The basic idea of the proposed technique is as follows; since reflectance and

range images are fundamentally and precisely aligned, we colorize the reflectance im-

age using its similarity with a color image at first, then transfer the color to the range



4.2 Colorization for 3D Geometric Models with Reflectance Images 59

image. In the following sections, we introduce our techniques, which determines cor-

respondences in reflectance and color images using HOG features[66].

Assignment of seed points in a reflectance image

We colorize a reflectance image obtained by a laser scanner based on Yatziv’s method

[60] shown in Section4.2.1. To colorize it, we first assign seed points that have chro-

matic information in the reflectance image. We adopt the following two approaches

for assigning seed points.

1. Manual assignment by human intervention

2. Automatic assignment by determining the corresponding regions between re-

flectance and color images

In the manual assignment, a 3D geometric model is colorized according to the human

instruction. Several seed points are selected manually in the reflectance image, and

color information in the color image is assigned to these seed points.

In order to assign color seed points automatically, Simple Linear Iterative Clus-

tering (SLIC) [67] and Histograms of Oriented Gradients (HOG) features [66] are

utilized. SLIC proposed by Achanta et al. [67] is a technique to divide an image

into small segments with similar size called “superpixels”. Each segment extracted

by SLIC holds pixels that have similar intensity or color. HOG is proposed by Dalal

et al. [66] for pedestrian detection in camera images. HOG is able to describe local

object appearances robustly according to the distribution of gradient orientation of the

intensity.

First, we divide the reflectance and color images into small segments with SLIC,

and then the local features are extracted by applying HOG to small regions around the

segments (Fig.4.1). Note that we apply Canny edge detection to the reflectance and

color images to compare the outlines of objects for HOG feature extraction. Finally,

based on the similarities of HOG features between the small regions in the reflectance
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0 160

SLIC HOG

Figure 4.1:Assignment of seed points by local features with SLIC and HOG

and color images, the correspondences of the regions in both images are determined.

Seed points in the reflectance image are chosen at the center of the segmented regions,

and the chromatic information is copied from the center of the corresponding regions

to the color image.

Here, in order to exclude mismatches between reflectance and color images as

much as possible, we adopt 2-step corresponding determination technique: First, we

find the most similar 5 corresponding points in a color image to each point in a re-

flectance image with a large HOG window to get global correspondence, and then se-

lect the suitable one from the 5 correspondences with a small HOG window which can

describe the appearances in detail. Here, we consistently defined the window size as

around 20% and 10% of input images for large and small HOG windows, respectively.

We also eliminate correspondences whose feature similarities are too low.

Colorization of reflectance image using range image

Based on the color seed points given by the method described above, the re-

flectance image can be colorized with conventional colorization techniques used for

monochrome images. These techniques are quite effective. However, it is sometimes

difficult to colorize a reflectance image properly because the reflectance values indi-

cate intensities on the surfaces of target objects under a single-frequency light source,

and the object boundaries in the reflectance image are rather indistinct due to the lack

of sufficient appearance information in comparison with the camera image.
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In contrast, a range image includes the structural edges of target objects as jump

edges that can be detected easily. Focusing on the fact that the range and reflectance

images are precisely aligned, we can use the jump edges in the range image as addi-

tional edges for colorization of the reflectance image.

Consequently, we developed a new colorization technique extending Yatziv’s

method [60] so that edges not only in the reflectance image but also in the range image

are considered simultaneously for colorization of the reflectance image.

To take these edges in the range image into account, we define a new energy func-

tion using a exponential function instead of Eq. (4.3) as follows (SeeA.1).

r i j = min
n−1

∑
k=1

|Ypk+1 −Ypk|e
|Dpk+1−Dpk|pk+1∈N(pk),p1=i,pn= j (4.4)

whereDpk is an intensity value at pixelpk in a range image. Dijkstra’s distance

is computed by considering the changes in intensity in the monochrome reflectance

image and the range image. If no clear edge exists along the path from a seed point to

a target pixel in both the reflectance and the range images, Dijkstra’s distance becomes

small and the chromatic information at the seed point affects the color estimation of

the target pixel significantly. In contrast, the seed point with large Dijkstra’s distance

due to jump edges in the reflectance and/or the range image slightly influences the

color estimation.

Proposed method

The proposed colorization techniques for a 3D geometric model are summarized as

follows. Note that the YCbCr color space is used in this research, however, the pro-

posed technique works in other color spaces such as YUV orlαβ .

Method 1 : Manual assignment of seed points

1. Acquire range and reflectance values and a color image by a laser scanner and a

digital camera, respectively.
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2. Create range and reflectance images in which gray values of each pixel are pro-

portional to the measured range and reflectance values.

3. Assign seed points in the reflectance image manually according to the corre-

spondence between the reflectance and the color images.

4. Apply the proposed colorization technique in Eqs. (4.1), (4.2), and (4.4) using

range and reflectance images, and obtain a colorized reflectance image. Lumi-

nance Y in the colorized reflectance image is determined by a reflectance value.

5. Transfer the color value of each pixel in the colorized reflectance image to the

corresponding range image and construct a colorized 3D model from the range

image.

Method 2 : Automatic assignment of seed points

To assign seed points automatically, we roughly determine the correspondence be-

tween reflectance and color images using HOG features. To do so, 3 in the method 1

is replaced as follows.

3. Divide reflectance and color images in small segments using SLIC, and deter-

mine the correspondence between segments according to HOG features. Then,

assign the color information to the center pixel of each segment in the reflectance

image from the corresponding region in the color image.

4.3 Experiments

4.3.1 Experiments with LIDAR

This section introduces the results of the colorization experiments. Range and re-

flectance images are obtained by the 3D laser measurement robot[4]. This robot

captures surrounding range and reflectance data by rotating the laser scanner (SICK,

LMS151) on a rotary table. Color images are taken by a digital camera (Fujifilm,
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(a) Scene 1 (b) Scene 2

(c) Scene 3

Figure 4.2:Experimental setup

FinePix S7000) by hand. In the experiments, the parameterα is set asα = 6, and the

number of superpixels is determined for each image experimentally so that we can get

small super pixels enough to describe the appearance pattern on target objects in it.

Range and reflectance images are quantized to 255 levels with the linear normalization

(SeeA.2).

Figure4.2 shows three experimental conditions: a simple environment with two

road cones of different colors (scene 1), a complex environment with a human and

other objects (a table and chairs) (scene 2), and a house made of red bricks (scene

3). Figure4.3shows the range and reflectance images of these scenes captured by the

measurement robot.

First, we assigned seed points to the reflectance images in Fig.4.3(b) manually

(Fig.4.4) and automatically (Fig.4.5). Note that only 10% correspondences are shown
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(a) Range image(Scene 1) (c) Range image(Scene 2) (e) Range image(Scene 3)

(b) Reflectance image(Scene 1) (d) Reflectance image(Scene 2) (f) Reflectance image(Scene 3)

Figure 4.3:Range and reflectance images in each scene

in Fig.4.5 for visibility. Figures 4.4(a) and4.5(b) show the seed points in the re-

flectance image in both methods. Colorized reflectance images are shown in Fig.4.4(b)

and Fig.4.5(c), respectively. Figure4.6(a) is the 3D mesh model constructed from the

range image shown in Fig.4.3(a). Figures4.6(b)(c) show the 3D mesh model colorized

by the method 1 (manual) and the method 2 (automatic), respectively. It is clear that

the proposed methods successfully add color information to the surface of the 3D ge-

ometric models without accurate pose estimation.

Next, we carried out the experiments using a reflectance image and a color image

taken in scene 2 (Fig.4.2(b)). Similar to the experiments in the scene 1, we assigned

seed points manually (Fig.4.7) or automatically (Fig.4.8). Figures4.7(a) and4.8(b)

show assigned seed points in both methods. Colorized reflectance images are shown

in Fig.4.7(b) and Fig.4.8(c), respectively. We also colorized Fig.4.8(b) by applying

Yatziv’s method[60] which doesn’t use range information, and the result is shown in
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(a)Seed points assigned manually (b)Colorization result

Figure 4.4:Proposed method 1 in scene 1 (manual)

(a)The correspondence between Fig.4.2(a) and Fig.4.3(b)

(b)Seed points assigned automatically (c)Colorization result

Figure 4.5:Proposed method 2 in scene 1 (automatic)

Fig.4.8(d). Figures4.8(c)(d) show that the proposed methods successfully prevent

these color seeds from spreading extremely by considering jump edges in a corre-

sponding range image. The colorized 3D model for scene 2 is shown in Fig.4.9. Fig-
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(a)Original 3D mesh model (b)Proposed method 1 (c)Proposed method 2

Figure 4.6:Colorized 3D geometric model in scene 1

ures4.9(a)-(c) are the 3D mesh model constructed from the range image (Fig.4.3(c)),

the 3D mesh model colorized by the method 1 (manual) , and the one colorized by

the method 2 (automatic), respectively. From these results, we verified that the pro-

posed methods are capable of creating colorized 3D geometric models in more com-

plex scene.

Finally, we carried out experiments in scene 3 (Fig.4.2(c)). In this experiment,

we colorized an entire 3D geometric model of a house made of red bricks with a par-

tial view of the house shown in Fig.4.2(c). The entire 3D geometric model is created

from four range and reflectance images shown in Figs.4.3(e)(f). Figure4.10 shows

colorized reflectance images using the method 1 manually, and the method 2 automat-

ically. The colorization results of the 3D geometric model (Fig.4.11(a)) in scene 3

are shown in Figs.4.11(b)(c). Note that while the manual assignment can give color

seed points to the regions which don’t appear in the picture if an operator assigns all

the correspondences, the automatic assignment maps color seeds only to objects with
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(a)Seed points assigned manually (b)Colorization result

Figure 4.7:Proposed method 1 in scene 2 (manual)

similar appearances in the picture, for instance, a house and trees. This causes color-

less regions in Fig.4.10(c). To overcome this problem, we can use multiple pictures

from different viewpoints and obtain additional color seed points by finding corre-

spondences among reflectance images and the pictures. Figure4.11(d) demonstrates

the colorization result using three color images taken from different viewpoints with

the proposed method 2, and you can see that the colorized regions increased. Conse-

quently, we successfully colorized the entire geometric model using a partial view of

the target house.
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(a) The correspondences between Fig.4.2(b) and Fig.4.3(d)

(b) Seed points given automatically (c) Colorization result

(d) Colorization result without range image[60]

Figure 4.8:Proposed method 2 in scene 2 (automatic)
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(a)Original 3D mesh model (b)Proposed method 1 (c)Proposed method 2

Figure 4.9:Colorized 3D geometric model in scene 2

(a) (b) (c)

Figure 4.10: Colorization of reflectance images from an only single picture.(a)
Original reflectance images. (b) Colorized reflectance images with proposed method 1
(manual). (c) Colorized reflectance images with proposed method 2 (automatic).
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(a)Original 3D mesh model

(b)Proposed method 1 (manual)

(c)Proposed method 2 (automatic)

(d)Proposed method 2 using three pictures taken from difference viewpoints

Figure 4.11:Colorization of the entire 3D geometric model
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4.3.2 Quantitative evaluation

We demonstrates the validity of the proposed colorization technique for photo-realistic

3D modeling in comparison with texture mapping. In this experiments, range and

reflectance images are acquired with the ShapeGrabber system (with scan head SG-

100 on a PLM300 linear displacement mechanism) and FARO Focus3D (FARO) and

as shown in Fig.4.12and Fig.4.16, respectively.

We first assign several color seed points manually with the human instruction (pro-

posed method 1, Fig.4.13(a) and Fig.4.17(a)), and automatically according to the cor-

respondence between the reflectance image and the color image with SLIC and HOG

features (proposed method 2, Fig.4.13(b)-(e) and Fig.4.17(b)(c)). Second, colorization

of the reflectance images is performed based on the color seed points. The colorization

results are shown in Fig.4.14(a)-(c) and Fig.4.18(a)-(c). Finally, the color informa-

tion in the colorized reflectance images is transferred to each corresponding 3D point

(Fig.4.15(a) and Fig.4.19(a)), and the colorized 3D models are constructed as shown

in Fig.4.15(b)(c) and Fig.4.19(b)-(d).

In an experiment with the cat model shown in Fig.4.12, we colorized the en-

tire model using the proposed methods. Note that we used only one texture image

(Fig.4.12(c)), and colorized the back side of a target object by assigning seed points

using a typical front side texture (Fig.4.13(d)(e)). These experimental results show that

the proposed methods successfully add color information to the surface of the 3D ge-

ometric models without accurate pose estimation from only a partial view of the target

object.

In another experiment with the building model shown in Fig.4.16, we demonstrate

the validity of the proposed colorization method by comparing it with the Yatziv’s

method. Fig.4.18(a)(b) show the colorization results using the proposed method and

the Yatziv’s method based on color seeds in Fig.4.17(a). Since the proposed method

can prevent color seeds from diffusing too much by detecting abrupt changes in geom-

etry, the buildings are colorized appropriately based on the seed points even when re-
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flectance values are quite similar between adjacent buildings. In contrast, the Yatziv’s

method allowed some color seeds to spread excessively and gave the colors over the

adjacent buildings (Fig.4.18(b)). The proposed method 2 also colorized most of the

building facades correctly, but some parts were assigned inappropriate colors due to

mismatches between the reflectance image and texture image. This experiment is

rather challenging since these images were taken from distant viewpoints and their

appearances are not similar in some regions. However, this result shows that we need

to improve the performance of the automatic color seed assignment even more.

Additionally, we created/measured texture-mapped 3D geometric models

(Fig.4.15(d)[21] and Fig.4.19(e)) to compare the performances between the proposed

method and texture mapping. In the comparison of Fig.4.15(b)(c) with Fig.4.15(d),

and Fig.4.19(b)(c) with Fig.4.19(e), the qualities of 3D models constructed by the

proposed methods are as good as those of texture mapping. We also carried out quan-

titative evaluations of the proposed methods. In YCbCr color space normalized 0 to

255, the differences of color values in the colorized reflectance images and the texture

images at each pixel are also calculated in Cb and Cr channels, and the root mean

square (RMS) errors between the texture image (Fig.4.15(d) and Fig.4.19(e)) and col-

orized reflectance images (Fig.4.15(b)(c) and Fig.4.19(b)-(d)) are shown in Table4.1

and Table4.2. Note that YCbCr space represents color as brightness and two different

color signals, and the RMS errors in Cb and Cr channels are affected slightly by the

change of brightness, such as the cast shadow in Fig.4.12(c). Since the RMS errors

are within 3.12% and 5.35% of the color ranges of the texture images respectively,

the proposed methods are as useful as conventional texture mapping techniques for

creating photo-realistic 3D models.
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(a) Range image (b) Reflectance image (c) Texture image

Figure 4.12:Range, reflectance, and texture images of a target cat model

Table 4.1:RMS errors in Cb and Cr color space (Cat model)
Cb and Cr ranges are 113-214 and 50-126 in Fig.4.16(c). RMS errors between the texture image

(Fig.4.15(d)) and colorized reflectance images (Fig.4.15(b)(c)) are computed by calculating the dif-

ferences of color values in the texture images and colorized reflectance images at each pixel.

RMS error Error percentage
Cb Cr Cb Cr

Proposed method 1front(Fig.4.15(b):upper) 2.57 2.68 2.54% 3.12%
back(Fig.4.15(b):lower) 2.16 2.46 2.14% 2.86%

Proposed method 2front(Fig.4.15(c):upper) 2.28 2.15 2.26% 2.50%
back(Fig.4.15(c):lower) 2.26 2.60 2.24% 3.02%

Table 4.2:RMS errors in Cb and Cr color space (Building model)
Cb and Cr ranges are 109-148 and 110-162 in Fig.4.19(d). RMS errors between the texture images

(Fig.4.19(d)) and colorized reflectance images (Fig.4.18(a)-(c)) are computed by calculating the differ-

ences of color values in the texture images and colorized reflectance images at each pixel.

RMS error Error percentage
Cb Cr Cb Cr

Proposed method 1 based on Fig.4.17(a) (Fig.4.18(a)) 1.79 2.78 4.59% 5.35%
Yatziv’s method based on Fig.4.17(a) (Fig.4.18(b)) 1.80 2.78 4.61% 5.35%
Proposed method 2 based on Fig.4.17(c) (Fig.4.18(c)) 2.06 2.74 5.28% 5.27%
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(a) (b) (c)

(d) (e)

Figure 4.13: Seed point assignment to the cat model.(a) Seed points applied
manually (Proposed method 1). (b) The correspondences between Fig.4.12(b) and
Fig.4.12(c). (c) Seed points applied automatically based on the correspondences (Pro-
posed method 2). (d) Seed point assignment for the back side using a typical front
side texture. We can assign proper seed points even when the back side texture images
are not available. (e) Seed points applied automatically using a typical pattern texture
(Proposed method 2).
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(a) (b) (c)

Figure 4.14: Colorization results of the cat model. (a), (b) and (c) are colorized
reflectance images based on Fig.4.13(a) (Proposed method 1) and Figs.4.13(c) and (e)
(Proposed method 2), respectively.
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(a) Original 3D model (b) Method 1 (c) Method 2 (d) Texture mapping

with only Fig.4.12(c) with only Fig.4.12(c) with multiple images

Figure 4.15:3D models constructed by the proposed methods and texture mapping
with the cat model
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(a) Range image (b) Reflectance image (c) Texture image

Figure 4.16:Range, reflectance, and texture images of target buildings

(a) (b) (c)

Figure 4.17: Seed point assignment to the building model.(a) Seed points ap-
plied manually (Proposed method 1). (b) The correspondences between Fig.4.16(b)
and Fig.4.16(c). (c) Seed points applied automatically based on the correspondences
(Proposed method 2).
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(a) (b) (c)

Figure 4.18: Colorization results of the building model. (a),(b) Colorized re-
flectance image based on Fig.4.17(a) with Proposed method 1 and Yatziv’s method
respectively. (c) Colorized reflectance images based on Fig.4.17(c) with Proposed
method 2.
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(a) Original 3D model (b) Method 1 (c) Method 2

(d) Yatziv’s method (e) Texture mapping

Figure 4.19:3D models constructed by the proposed methods and texture mapping
with the building model
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4.4 Conclusion

In this chapter, we proposed a new colorization technique for a 3D geometric model us-

ing the laser reflectivity. The proposed technique adds color information on the surface

of a 3D geometric model by colorizing the reflectance image manually or automati-

cally. Automatic colorization is easy but needs adequate correspondence between the

reflectance and color images. In contrast, manual colorization gives a colored model

even if the correspondence is slight between the images.

Precise calibration between color and range images is not required, even though

it is indispensable for conventional texture mapping. Thus, gaps or discontinuities

in appearance can be avoided even if several images must be registered on a model.

Moreover, the appearance of the entire surface of a model can be assigned from a

partial view of the model, if the appearance does not change significantly in the entire

model.

In addition, we carried out a quantitative evaluation of the proposed colorization

techniques in comparison with texture mapping to demonstrate their validities. The

results show that the proposed techniques are able to create photo-realistic 3D models

by colorizing reflectance images based on several color seed points, and the qualities

of 3D models constructed by the proposed techniques are as good as those of texture

mapping.



5
Texture Synthesis for Hole-Free

Texture Mapping

In recent years, 3D geometric modeling of real-world objects with laser scanners has

become very popular and widely used in many areas, such as robotics, landscape sur-

veying, digital archive of cultural heritages[4], and so on. Once a 3D geometric model

of a target object is obtained, a more realistic virtual model can be created by adding

color information to the surface of the geometric model. For photo-realistic modeling,

texture mapping is an effective technique and still remains one of important research

topics in Virtual Reality (VR). In texture mapping, appearance information is added

81
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to a 3D geometric model by mapping texture images on the surface. However, in case

that a 3D geometric model and a texture image are acquired from different viewpoints

through two independent sensors such as a laser scanner and a digital camera, some

texture-less regions (holes) may exist on the object surface where the appearance in-

formation is missing due to the occlusion by obstacles or out-of-sight of the camera

(Fig.5.1).

In this chapter, we propose a novel hole-free texturing technique utilizing laser re-

flectivity. The laser reflectivity, which denotes the power of a reflected laser light/pulse,

is obtained as by-product of the range information at laser scanning. By aligning the

reflectivity according to the order of scanning, a reflectance image, which contains rich

appearance information of the target surface, is obtained. This image is quite similar

to a camera image since each pixel indicates the intensity on the surface of the targets

under a single-frequency light source. Owing to this similarity, we first determine a

completion order of a texture image in an occluded region according to the reflectance

value, and then synthesize the partial texture by copying and pasting a proper texture

patch from the other regions with similar color and laser reflectivity.

The rest of this chapter is organized as follows. In Section5.1, we provide an

overview of the previous texture completion approaches. In Section5.2, we describe

the texture completion technique, including the generation of database patches, the

definition of completion priority based on the laser reflectivity, and the completion al-

gorithm. In Section5.3, we show some experimental results to verify the effectiveness

of the proposed method. In Section5.4, we conclude this chapter and mention the

future work.

5.1 Related work

For hole-free texture mapping, it is necessary to copy or synthesize a proper texture

image in the holes from the other regions or other camera images. Boehm[68] pro-

posed a simple texturing method by capturing multiple texture images from different
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Figure 5.1: In case that the positions of the camera and the laser scanner differ from each
other, some texture-less regions (holes) may exist on the object surface where the appearance
information is missing due to the occlusion or out-of-sight of the camera.

viewpoints to suppress occluded regions. Ortin et al.[69] proposed a similar technique

employing the information of adjacent images. These methods, however, reconstruct

a virtual texture from multiple images taken from different viewpoints by assuming a

planar target object and calculating a homography matrix between images. Moreover,

the quality of the synthesized texture depends on how proper images are taken from

different points of view.

On the other hand, Kawai et al.[70] proposed a completion method that restores the

shape and the color of the object with geometrical and photometrical holes simultane-

ously. They selected proper regions with geometrical or photometrical information

from other parts of the object by minimizing energy functions based on the similarities

of geometries and textures. However, if the resolution of the shape and the color differ,

blurry artifacts are appeared since this technique is a point-based approach.

Meanwhile, texture (or shape) inpainting are quite effective techniques to solve this

problem. Komodakis et al.[71] proposed a patch-exemplar based method that solves

texture inpainting as a discrete global optimization problem utilizing a belief propaga-

tion to avoid undesirable artifacts. For proper inpainting, the order of the completion
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(a) Scene 1 (b) Scene 2

Figure 5.2:Input textures

is also quite important. Criminisi et al.[72], Sun et al.[73], and Li et al.[74] devel-

oped image completion techniques that determined the order of the completion by

extending some curves or lines from a known region to an unknown region manually

or automatically. Although these methods offered some excellent results, unfavorable

discontinuities are still remained due to the geometrical and photometrical complexity

of the target.

5.2 Texture completion utilizing laser reflectivity

In this section, we propose a new texture completion technique for a partially-occluded

texture image, which extends patch-based completion techniques[71][72][73][74] to a

reflectance image. In this research, we assume that the texture image is aligned to the

geometrical model precisely beforehand[21]. Our first step is generating a database of

small image patches from non-occluded regions in the texture image. We define the

region of occluding objectsΩ manually so that the rest of the texture image is specified

as a source regionΦ. Next, we determine the completion order (priority) of occluded

regionΩ taking into account structures in a reflectance image. Finally, we calculate

the similarity between example patches in the database and the query patch centered at

the top-prioritized pixel inΩ, and complete the texture image copying the most similar

database patch to the missing region.



5.2 Texture completion utilizing laser reflectivity 85

5.2.1 Generation of database patches

At the beginning of the proposed technique, we divide a input texture imageI into a

missing regionΩ and a source regionΦ(=Ω̄) manually(Fig.5.2(a)(b)), where the for-

mer is supposed to have only reflectivity and the latter is supposed to have reflectivity

and texture. Next, we create a example patch consisting ofk× k pixels centered at a

pixel in Φ, and construct a databaseD for all pixels inΦ. Note that we discard patches

including pixels in the missing region. Moreover, each patch holds not only partial tex-

ture image but also the corresponding reflectance image, and both information describe

the characteristic of each example patch.

5.2.2 Completion priority based on laser reflectivity

A noteworthy fact of image inpainting is that the completion order significantly affects

the quality of the restored image[71][72][73][74]. Inspired by these researches, we

define ”Priority map”, shown in Fig.5.3(b)(f) utilizing reflectivity. Since reflectance

images have appearance information of the target objects, the structures of the scene

can be extracted by detecting edges in the reflectance image. By applying Canny filter

to the reflectance image, the priority is calculated as follows:

Priority(m) =

{
1
k2 ∑

p∈N(m)

M(p)

}
+C(m) (5.1)

M(p) =

 1 (p∈ Φ)

0 (otherwise)

Where,m denotes a pixel in the missing regionΩ, N(m) denotes a patch with

k× k pixels centered at pixelm, andC(m) is a value of pixelm in the canny-filtered

reflectance image. According toM(p), the pixelmon the boundary between the source

region Φ and the missing regionΩ has high priority. Furthermore, when the pixel

m is located on a structural edge in the canny-filtered reflectance image, the priority

becomes higher.
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5.2.3 Completion algorithm

We complete the deteriorated texture image by copying the most similar example patch

to the missing region. The similarity between a query patchq centered at the top-

prioritized pixel inΩ and one of database patchesp is calculated based on texture and

reflectivity as follows:

Similarity(p,q) = ∑
p∈D

{
SSD(Tp,Tq)+αSSD(Rp,Rq)

}−1
(5.2)

SSD(I ,J) =
k

∑
u=0

k

∑
v=0

{I(u,v)−J(u,v)}2 (5.3)

Where,Tp and Rp denote the texture and reflectance image belonging to patch

p, and α is a gain parameter. Note that we synthesize a reflectance image taken

from the viewpoint of the texture image by interpolating the reflectivity on 3D points

(Fig.5.3(a)(e)). The best patchb for the query patchq is determined by finding the

patch inD that maximizes the similarity, and complete the missing region inq by

copying the texture image ofb.

5.3 Experiments

This section introduces the results of texture completion experiments. Range and re-

flectance images are captured by a laser scanner (SICK, LMS151) and a turn table.

The size of these images is 760×1135 pixels. Texture images are taken by a digital

camera (Nikon, D300) and registered on the corresponding 3D geometric models[21].

We set parameters ask = 15, α = 1.0 in the first experiment, andk = 13, α = 0.7 in

the second experiment.

We first carried out the preliminary experiment in a simple situation shown in

Fig.5.2(a). In this experiment, we cut out a part of the input texture image and at-

tempted to restore the missing region. Fig.5.3(a)(b) show a reflectance image and

a priority map. Fig.5.3(c)(d) show the completion results without and with the re-
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flectance image. By taking into account a property of the reflectance image, our pro-

posed technique successfully filled in the missing region compared with the conven-

tional ”onion-peeling” technique which merely fills the hole from outside to inside.

Textured 3D models of Scene 1 are shown in Fig.5.4(a)-(c).

Next, we addressed the experiment in a more complex scene shown in Fig.5.2(b)

where an obstacle occludes the wall and the texture behind it cannot be seen. Fig.5.3(e)

shows the reflectance image from the same viewpoint of the texture image, and the

completion order is determined by considering the structures of the reflectance im-

age as shown in Fig.5.3(f). The completion results after applying the conventional

technique and the proposed technique are shown in Fig.5.3(g)(h) respectively. 3D ge-

ometric models of Scene 2 after applying texture mapping are shown in Fig.5.4(d)-(f).

As shown these figures, our proposed technique outperformed the conventional tech-

nique which caused some artifacts. However, the proposed technique also produced

partial discontinuous textures, especially in a vertical direction. The reason why these

artifacts occurred was that sufficient appearance information in the reflectance image

could not be acquired due to the low resolution of the laser scanner.
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(a) Reflectance image (b) Priority map

(c) Completed texture (d) Completed texture
without reflectance image with reflectance image

Experimental result (Scene 1)

(e) Reflectance image (f) Priority map

(g) Completed texture (h) Completed texture
without reflectance image with reflectance image

Experimental result (Scene 2)

Figure 5.3:Texture completion results
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(a) Original texture (d) Original texture

(b) Completed texture (e) Completed texture
without reflectance image without reflectance image

(c) Completed texture (f) Completed texture
with reflectance image with reflectance image

Scene 1 scene 2

Figure 5.4:Texture mapping results
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5.4 Conclusion

In this chapter, we proposed a new texture completion technique for texture mapping

utilizing laser reflectivity. The proposed technique is able to generate the texture im-

age in an occluded region of the 3D geometric model accurately by prioritizing the

completion order.

In the future, we will improve the proposed technique so that it works well even

with a low resolution reflectance image. Furthermore, we will extend our proposed

method and generate the entire texture of a 3D geometric model from a single picture.



6
Conclusion and Outlook

Measuring 3D geometric information in the real world is one of the most essential

tasks in research fields such as robotics, computer vision, and computer graphics. Its

fundamental applications would include building 3D environmental maps available

for mobile robot localization or creating 3D models for cultural heritages of famous

buildings and art works.

In this dissertation, we first discussed the literature of 3D vision introducing several

range measurement techniques such as stereo triangulation and time-of-flight ranging.

We also focused on the characteristics of time-of-flight laser scanners in detail, and

developed a set of algorithms for enhancing functionality of 3D modeling with a laser
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scanner employing the benefits of the laser reflectivity. This work actually addressed

four different tasks: Range image smoothing using trilateral filter (Chapter2), Range

image completion with belief propagation (Chapter3), Manual/Automatic coloriza-

tion for 3D geometric models (Chapter4), and Texture synthesis for hole-free texture

mapping (Chapter5). This chapter review these approaches and their contributions,

and discuss outlook for the future work.

6.1 Range image smoothing using trilateral filter

The proposed smoothing filter ”Trilateral filter” allows us to successfully refine dete-

riorated range images including noise due to measurement error while preserving the

geometric features. Although the proposed technique needs geometric and appearance

information of the target object, it relies only on data measured with a laser scanner and

no additional measurements or instruments are required. In addition, calibration error

between the geometric and appearance data can be avoided that is a crucial problem for

conventional appearance-based denoising techniques. Simulations using synthesized

data and experiments using actual scan data demonstrated the validity of the proposed

denoising technique and the performance in edge preservation. As future work, we

should discuss the optimum parameters of the proposed technique. Besides, we cur-

rently assume that discontinuities in reflectance images are incidental to the geometric

changes such as jump and roof edges, texture patterns sometimes affects the smooth-

ing and completion results. In the future, we will develop a technique that can detects

only geometric edges for better denoising results.

6.2 Range image completion with belief propagation

In order to restore holes in range images, we developed a new completion technique

which estimates missing range data in optimization framework with belief propaga-

tion. Reflectance images tend to be more sensitive to geometric changes such as jump
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and roof edges than range images, and much edges can be observed more clearly in

reflectance images. Taking advantage of the fact, we proposed 2-step completion tech-

nique: First restore a deteriorated reflectance image with belief propagation in order to

acquire a rough estimate of an appearance of the target object, and then apply an ex-

tended belief propagation to a corresponding deteriorated range image which weights

belief messages among adjacent pixels according to continuities of reflectance data in

the restored reflectance image. While simulations and experiments verified that the

proposed completion technique successfully restored missing regions in range images,

it still depends on the parameters adjusted manually. As future work, we will improve

the proposed method so that it can determines optimum parameters automatically ac-

cording to input range data. We will also develop the completion technique further so

that it can restore larger holes and more complicated structures.

6.3 Manual/Automatic colorization for 3D geometric

models

While a number of studies has addressed 2D-3D alignment techniques for texture map-

ping in order to assign colors to 3D geometric models, we developed a novel approach

taking advantage of laser reflectivity. Inspired by image colorization, the proposed

method gives colors to a 3D model by colorizing the corresponding reflectance image

directly. This novel approach allows us to easily create colorized 3D models based

on manually or automatically assigned color seeds, and also to avoid color shift due

to alignment error between the 3D model and camera image. Colorization experi-

ments verified that the proposed technique appropriately assigned colors to the target

3D models, but we need to improve automatic color seed assignment for better col-

orization results. In addition, although quantitative evaluations demonstrated that the

chromatic difference of colorized models and texture-mapped models were quite small,

3D models created with texture mapping have much more realistic appearances. This
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would be partly because that the proposed method uses raw laser reflectivity as the

brightness of the target object, but it only indicates an intensity on the surfaces under a

single-frequency light source. Therefore, as future work, we have to develop a method

that corrects reflectance values so that the reflectance image has similar appearance to

a monochrome camera image.

6.4 Texture synthesis for hole-free texture mapping

For removing obstacles or filling holes in texture images used for texture mapping,

we proposed a novel texture synthesis technique based on laser reflectivity. A color

image and a 3D model are usually captured from different viewpoints with different

sensors such as a laser scanner and a digital camera, and some texture-less regions

(holes) may exist on the object surface where the appearance information is missing

due to the occlusion or out-of-sight of the camera. In order to complete the missing

regions avoiding artifacts, the proposed method first extracts structural information

in the missing region from corresponding reflectance image and determines the com-

pletion order, and then synthesizes texture according to the completion order. This

approach allows us to inpaint undesirable parts in the input texture images, but still has

some issues to be solved. The size of texture patch affects completion results, however,

we determine it experimentally for each input image at the moment. So as to gener-

ate appropriate size patches automatically, we will develop a technique that adjust the

patch size according to texture frequency around the missing region. Additionally, we

will introduce optimization process to avoid artifacts due to discontinuities of assigned

patches.



A
Additional Discussion of Chapter4

A.1 Cost function for colorization

Color information from a seed point should be diffused within a single object, and

should not be spread over different objects. To do so, we emphasize a gap in a depth

image rather than a reflectance image and use an exponential cost function for a depth

image. To demonstrate the validity of the exponential cost function, we also carried out

an experiment with the cost function weighted by the difference of reflectance values

instead of Equation (4.4). The formulation is as follows:
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r i j = min
n−1

∑
k=1

{
κ|Dpk+1 −Dpk|+1

}
|Ypk+1 −Ypk| (A.1)

whereκ denotes a gain parameter to control the effect of the depth data for color

estimation. You can see the colorization results using Yatziv’s method in Fig.4.8(d),

exponential weight in Fig.4.8(c), and difference weight in Fig.A.1. As shown in Fig.

4.8(d), Yatziv’s method which considers only reflectance data couldn’t prevent some

color seeds from spreading too much, especially an abdominal region of the person

sitting on a chair. We tried to colorize this region appropriately with Equation (A.1)

changing the parameterκ (Fig. A.1(a) and (b)). Whenκ is small, the colorization

result was almost the same as that of Yatziv’s method. On the other hand, although

biggerκ enabled us to colorize the abdominal region appropriately, the cost term of

depth data became more dominant than that of reflectance data and some color seeds

diffused too much ignoring edges in a reflectance image. This can be seen in an left

arm of the person on a chair. In contrast, the exponential cost function could suc-

cessfully detect abrupt changes in geometry, which are object boundaries, and prevent

undesirable color diffusions over different objects (Fig.4.8(c)).

(a) Colorization result with smallκ (κ = 1) (b) Colorization result with largeκ (κ = 100)

Figure A.1:Colorization with a cost function weighted by a difference of reflectance
using Fig.4.8(b)
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A.2 HOG feature from raw/normalized reflectivity

Although reflectance data is quantized to 256 levels, HOG feature still can be extracted

stably. In order to extract HOG feature, the gradient orientation calculated at each

pixel in an input image is discretized in large intervals, and the histogram at each cell

is computed robustly by casting a weighted vote for the corresponding bin according

to the gradient and strength of each pixel within the cell.

To demonstrate it, we extracted HOG features with 8 bins (45 degree/per a bin)

and 8×8 cells from raw and normalized range images individually and compared the

difference. As shown in Fig.A.2, the extracted HOG features changed slightly.

(a) (b)

Figure A.2: HOG extraction based on reflectance data in scene 1.(a) and (b)
visualize extracted HOG features from normalized and raw reflectance values, respec-
tively.





B
Sensor Specifications

This appendix shows a specification of each range sensor that was used for experi-

ments in every chapter. Note that LMS200, LMS151, LMS511 (SICK), and Focus3D

(FARO) are time-of-flight laser scanners while SG-100 (ShapeGrabber) is an active

stereo sensor which was used for a quantitative evaluation in Chapter4.
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Sensor
Measuring

range
Accuracy Field of view

Angular
resolution

LMS200

80 [m] ± 15 [mm] 180 [deg.] 0.25 [deg.]

LMS151

50 [m] ± 30 [mm] 270 [deg.] 0.25 [deg.]

LMS511

80 [m]
± 25-50 [mm]

(1...30[m])
190 [deg.] 0.167 [deg.]

Focus3D

120 [m] ± 2 [mm] 305 [deg.] 0.009 [deg.]

SG-100

190 [mm] 70-125 [µm] 90-190 [mm]
70-150

[µm/point]

Table B.1:Laser scanner specifications



Bibliography

[1] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless,

Steven M. Seitz, and Richard Szeliski. Building rome in a day.Communications

of the ACM, 54(10):pp.105–112, October 2011.

[2] A. Kolb, E. Barth, R. Koch, and R. Larsen. Time-of-flight cameras in computer

graphics.Computer Graphics Forum, 29(1):141–159, 2010.

[3] G.J. Iddan and G. Yahav. 3d imaging in the studio (and elsewhere...).In Pro-

ceedings of SPIE, 4298:pp.48–56, 2001.

[4] Ryo Kurazume, Yusuke Noda, Yukihiro Tobata, Kai Lingemann, Yumi Iwashita,

and Tsutomu Hasegawa. Laser-based geometric modeling using cooperative mul-

tiple mobile robots. InProc. IEEE International Conference on Robotics and

Automation, pages 3200–3205, 2009.

[5] Roger N. Clark.Visual Astronomy of the Deep Sky. Cambridge University Press

and Sky Publishing, 1990.

[6] Andrew J. Davison. Real-time simultaneous localisation and mapping with a

single camera. InProceedings of the Ninth IEEE International Conference on

101



102 BIBLIOGRAPHY

Computer Vision - Volume 2, ICCV ’03, pages pp.1403–. IEEE Computer Soci-

ety, 2003.

[7] R. I. Hartley and A. Zisserman.Multiple View Geometry in Computer Vision.

Cambridge University Press, ISBN: 0521540518, 2004.

[8] David G. Lowe. Distinctive image features from scale-invariant keypoints.Int.

J. Comput. Vision, 60(2):91–110, nov 2004.

[9] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up

robust features (surf).Comput. Vis. Image Underst., 110(3):346–359, jun 2008.

[10] Stephan Leutenegger, Margarita Chli, and Roland Siegwart. BRISK: Binary Ro-

bust Invariant Scalable Keypoints. InProceedings of the IEEE International Con-

ference on Computer Vision (ICCV), 2011.

[11] M. Okutomi and Takeo Kanade. A multiple-baseline stereo.IEEE Trans. on

Pattern Analysis and Machine Intelligence, 15(4):353–363, 1993.

[12] Andrea Fusiello, Emanuele Trucco, and Alessandro Verri. A compact algorithm

for rectification of stereo pairs.Machine Vision Application, 12(1):16–22, jul

2000.

[13] Georg Klein and David Murray. Parallel tracking and mapping for small AR

workspaces. InProc. Sixth IEEE and ACM International Symposium on Mixed

and Augmented Reality (ISMAR’07), Nara, Japan, November 2007.

[14] M. A. Cazorla D. Viejo, J. M. Saez and F. Escolano. Active stereo based com-

pact mapping. InIEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 529–534, 2005.

[15] Ryusuke Sagawa, Ryo Furukawa, and Hiroshi Kawasaki. Dense 3d reconstruc-

tion from high frame-rate video using a static grid pattern.IEEE Transactions on

Pattern Analysis and Machine Intelligence, 36(9):pp.1733–1747, 2014.



BIBLIOGRAPHY 103

[16] C. L. Zitnick S. B. Kang, J. A. Webb and T. Kanade. A multi baseline stereo

system with active illumination and real-time image acquisition. InInternational

Conference on Computer Vision (ICCV), pages 88–93, 1995.

[17] J. P. McDonald C. W. Urquhart, J. P. Siebert and R. J. Fryer. Active animate stereo

vision. InBritish Machine Vision Conference (BMVC), pages 75–84, 1993.

[18] Keiji Nagatani, Yoshito Okada, Naoki Tokunaga, Seiga Kiribayashi, Kazuya

Yoshida, Kazunori Ohno, Eijiro Takeuchi, Satoshi Tadokoro, Hidehisa Akiyama,

Itsuki Noda, Tomoaki Yoshida, and Eiji Koyanagi. Multirobot exploration for

search and rescue missions: A report on map building in robocuprescue 2009.

Journal of Field Robotics, 28(3):373–387, 2011.

[19] Megumi Shinozaki, Masato Kusanagi, Kazunori Umeda, Guy Godin, and Marc

Rioux. Correction of color information of a 3D model using a range intensity

image.Computer Vision and Image Understanding, 113:1170–1179, 2009.

[20] Ryo Kurazume, Ko Noshino, Zhengyou Zhang, and Katushi Ikeuchi. Simultane-

ous 2D images and 3D geometric model registration for texture mapping utiliz-

ing reflectance attribute. InProc. of Fifth Asian Conference on Computer Vision

(ACCV), pages 99–106, 2002.

[21] Ryo Inomata, Kenji Terabayashi, Kazunori Umeda, and Guy Godin. Registration

of 3d geometric model and color images using sift and range intensity images. In

Proceedings of the 7th international conference on Advances in visual computing

- Volume Part I, ISVC’11, pages 325–336. Springer-Verlag, 2011.

[22] Gabriel Taubin. A signal processing approach to fair surface design. InSIG-

GRAPH ’95: Proceedings of the 22nd annual conference on Computer graphics

and interactive techniques, pages 351–358, New York, NY, USA, 1995. ACM.



104 BIBLIOGRAPHY

[23] Mathieu Desbrun, Mark Meyer, Peter Schro”der, and Alan H. Barr. Implicit

fairing of irregular meshes using diffusion and curvature flow. InSIGGRAPH

’99, pages 317–324, 1999.
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