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Abstract 

Purpose: Erlotinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor 

(TKI) and bevacizumab, an anti-vascular endothelial growth factor (VEGF) agent, are 

promising therapies for advanced non-small cell lung cancer (NSCLC). Our study was 

aimed to determine whether there were conditions under which the addition of 

bevacizumab would enhance the antitumor activity of erlotinib against NSCLC tumors in 

vitro and in vivo.  

Methods: MTS was for NSCLC cell (PC9, 11-18, H1975, H157, H460 and A549) growth 

assay in vitro. ELISA was for VEGF protein assay in cells and tumor tissues. Mouse 

xenograft models were established with H157, H460 and A549 with primary resistance to 

erlotinib, and treated with erlotinib plus bevacizumab or each agent alone. Erlotinib 

concentrations in tumors were determined by high-performance liquid chromatography. 

Results: Bevacizumab alone did not inhibit NSCLC cell growth in vitro. In primarily 

erlotinib-resistant NSCLC cells, the levels of VEGF protein were highest in H157 cell 

followed in order by H460 and A549 cells. In vivo, bevacizumab alone significantly 

inhibited tumor growth only in xenograft models with high (H157) and/or moderate (H460) 

levels of VEGF protein. A combination of erlotinib and bevacizumab partially reversed 

resistance to erlotinib in H157 xenografts (high VEGF level) with increasing intratumoral 

erlotinib concentrations, but not in H460 (moderate) or A549 (low) xenografts. 

Conclusions: These results support that combined with anti-VEGF therapy could enhance 

antitumor activity of anti-EGFR therapy and/or partially reverse resistance to EGFR TKI, 
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by increasing EGFR TKI concentration in specific tumors that express high levels of VEGF 

protein. 
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Introduction 

Over the past 10 years, targeted therapies such as small molecule inhibitors and monoclonal 

antibodies, have improved the treatment of cancers [1]. Lung cancer is the leading cause of 

cancer-related deaths worldwide, and approximately 75% of patients with non-small cell 

lung cancer (NSCLC, > 85% of lung cancer) present with advanced stage disease, which is 

unresectable or metastatic [2,3]. Thus, the epidermal growth factor receptor (EGFR) 

tyrosine kinase inhibitors (TKIs) erlotinib and gefitinib, and the monoclonal antibody 

against human vascular endothelial growth factor (VEGF) bevacizumab, are now 

components of treatment regimens for advanced NSCLC [4]. These targeted drugs received 

approval by the United States Food and Drug Administration (FDA) for the treatment of 

patients with advanced or metastatic NSCLC, respectively [5-7].  

Recently, combination therapy has received much attention because of its potential to 

reduce resistance to targeted therapies, and/or improve efficacy through the inhibition of 

multiple receptors. At the molecular level, erlotinib and bevacizumab target different 

pathways (EGFR and VEGF), which share both parallel and reciprocal downstream 

signaling mechanisms [8,9]. Phase 1/2 trials demonstrated that median overall survival (OS) 

was better after treatment with erlotinib plus bevacizumab than with bevacizumab plus 

chemotherapy or chemotherapy alone in patients with relapsed and refractory non-

squamous NSCLC [10,11]. However, phase III trials showed the addition of bevacizumab 

to erlotinib improved progression-free survival (PFS) but not OS in patients with recurrent, 



5 
 

advanced, or metastatic NSCLC [12,13]. The reason for the lack of additive benefits to 

erlotinib plus bevacizumab has remained speculative.  

Since an overactive VEGF pathway independent of EGFR plays a role in resistance to 

EGFR TKI [14], dual inhibition of both pathways may prevent resistance through VEGF 

[9]. In addition, several studies have focused on the effect of bevacizumab on drug delivery 

to tumors [15-17]. These studies may lead to a breakthrough that explains the reason for the 

lack of synergy in preclinical studies and clinical trials. In our study, we hypothesized that 

bevacizumab affects the antitumor activity of erlotinib and the available concentration of 

erlotinib in vivo depending on the levels of VEGF expression in NSCLC cells. We 

examined the relationship between the efficacy of bevacizumab and the levels of VEGF 

protein in NSCLC cells. Then we investigated antitumor activity of erlotinib plus 

bevacizumab in erlotinib-resistant NSCLC xenograft models and evaluated the levels of 

erlotinib in tumor tissues. 

 

Materials and methods 

Cell cultures and reagents 

The human NSCLC cell lines PC9, 11-18, H1975, H157, H460, A549, and the normal 

human bronchial epithelial cell line BEAS-2B, were obtained from the American Type 

Culture Collection. Cells were cultured in RPMI 1640 medium (Gibco, Carlsbad, CA) or 

DMEM/F-12 medium (Gibco, Carlsbad, CA) supplemented with 10 % fetal bovine serum 
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and 1 % penicillin-streptomycin at 37 °C in 5 % carbon dioxide. Bevacizumab and erlotinib 

were provided by Chugai Pharmaceutical Co. Ltd (Tokyo, Japan) and Cayman Chemical 

(Ann Arbor, MI), respectively. 

 

Cell growth assay 

Six NSCLC cell lines were seeded (~2,000-5,000 cells per well, depending on cell type) 

onto 96-well plates. After 24 h of incubation, cells were treated with erlotinib (0-20 

µmol/L), bevacizumab (0-20 ng/mL), or a combination of these agents (erlotinib 1 µmol/L; 

bevacizumab 10 ng/mL) for 72 h in serum-containing medium. The viability was 

determined by MTS assay (Promega, Madison, WI) according to the manufacturer’s 

instructions. 

 

Human VEGF ELISA assay 

The methods of VEGF quantification have been described previously [18,19]. Briefly, the 

supernatant of cell culture media and homogenized tumor samples were collected for the 

assays. The human VEGF protein was determined with Quantikine ELISA kit (R&D 

Systems, Minneapolis, MN), according to the manufacturer’s instructions. Total protein 

levels were quantified by BCA assay (Thermo Scientific, Rockford, IL). 
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Xenograft models 

Female BALB /cAJcI-nu/nu mice (5- to 6-week old) were obtained from CLEA Japan, Inc 

(Tokyo, Japan). Mice were kept in a 12-h light and dark cycle, and acclimatized for 1 week 

before the study. The experimental protocols were reviewed and approved by the Kyushu 

University Animal Care and Use Committee (Fukuoka, Japan). "Principles of laboratory 

animal care" (NIH publication No. 85-23, revised 1985) were followed or comply with 

standards equivalent to the UKCCCR guidelines for the welfare of animals in experimental 

neoplasia [20]. 

Human NSCLC cells (5-10 × 10
6
 H157, H460 or A4549 cells/mouse) were injected 

subcutaneously into the mice. When established tumors became palpable (~100-300 mm
3
), 

mice were randomized into control and treatment groups, and treated with vehicle, 

bevacizumab (5 mg/kg/twice weekly, i.p.), erlotinib (100 mg/kg/day, gavage), or erlotinib 

plus bevacizumab for the indicated periods. Moribund animals were killed to reduce 

suffering. Tumor volume and body weight were measured twice weekly. Tumor volume 

equation is V=ab
2
/2, where a and b are tumor length and width, respectively. Tumor 

growth inhibition (TGI, %) formula is (TuGcontrol − TuGtest)/TuGcontrol × 100%, where 

TuG = final tumor size-pretreatment tumor size. 

 

Determination of intratumoral erlotinib concentration by HPLC 
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Erlotinib levels in homogenized tumor tissues were determined by reverse-phase high-

performance liquid chromatography (HPLC) with UV detection at 345 nm. Separation was 

achieved on a Waters Symmetry C18 column (150 × 4.6 mm, 5.0 μm; Waters, Milford, MA) 

preceded by the use of a Symmetry C18 Guard column (3.9 × 20 mm). The mobile phase 

was 50 mM potassium phosphate buffer (pH 4.8) containing 0.2% triethylamine and 

acetonitrile (60:40, v/v), with 1.0 mL/min flow rate at 25 °C. Sample pretreatment involved 

mixing 500 μL of tumor tissue homogenate with 80 μL of internal standard (70 μg/mL of 

midazolam in methanol) and 5 mL of tert-butyl methyl ether for 10 min. After 

centrifugation (650 g, 10 min, 4°C), the organic top layer was transferred to a clean tube 

and dried under nitrogen gas at 37 C. The residue was dissolved in 250 μL of mobile phase. 

The solution was centrifuged (4,000 g, 30 min) and the supernatant was passed through a 

microporous membrane filter (Millex-GV 0.22-μm filters, Millipore Corp., Bedford, MA). 

Insoluble materials were removed by filtration, and the filtrate was analyzed by high-

performance liquid chromatography. The calibration curves were linear over a 

concentration range of 20-4000 ng/mL (r2 > 0.998).  

 

Statistical analysis 

Quantitative data are presented as the means ± SEM. The Student’s t test and/or Mann-

Whitney U test were used for comparison of two groups, and One-way analysis of variance 

(ANOVA) test was for more than three groups. P < 0.05 was considered statistically 

significant. All data were representative of three independent experiments. 



9 
 

Results 

Effects of erlotinib/bevacizumab on NSCLC cell lines in vitro  

We examined the sensitivity of various NSCLC cells to erlotinib in vitro (Fig. 1a). The PC9 

(EGFR exon 19 deletion) and 11-18 (EGFR L858) cells were sensitive to erlotinib, with 

IC50 values of 0.043 ± 0.025 µmol/L and 0.067 ± 0.0065 µmol/L, respectively (Fig. 1b). 

The H1975 cell (L858R + T790M) and the EGFR wild-type cells (H157, H460 and A549) 

were resistant to erlotinib, with IC50 values of 9.07 ± 2.11 µmol/L, 20.73 ± 4.66 µmol/L, 

4.58 ± 2.08 µmol/L, and 7.27 ± 0.69 µmol/L, respectively (Fig. 1b). The differences in 

sensitivity to erlotinib between the sensitive and the resistant cells were significant (P < 

0.05). 

Next, we applied bevacizumab alone or plus erlotinib to the NSCLC cells in vitro. As 

reported previously [21], bevacizumab alone did not inhibit the growth of the tested 

NSCLC cells in vitro (Fig. 1c). Growth inhibition with bevacizumab (10 ng/mL) plus 

erlotinib (1 µmol/L) was similar to that with erlotinib alone (1 µmol/L; (Fig. 1d) in the six 

NSCLC cells (P > 0.05). 

 

Human VEGF protein expression in NSCLC cell lines 

As shown in Fig. 2, VEGF protein expression varied among the cells. In the erlotinib-

resistant NSCLC cells, A549 cells secreted the lowest level of VEGF protein into the 

culture medium, H1975 and H460 cells expressed moderate levels, and H157 cells secreted 
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the highest level. The levels of VEGF protein in erlotinib-sensitive NSCLC cells PC9 and 

11-18 cells were lower than those secreted by H1975, H460 and H157 cells. Statistical 

analysis showed significant differences between the NSCLC cells (except A549) and the 

control cell BEAS-2B (P < 0.05). 

 

Effects of bevacizumab monotherapy in NSCLC xenograft models 

According to the results in vitro, EGFR wild-type cells H157, H460 and A549 are erlotinib-

resistant cells that express high, moderate and low levels of VEGF protein, respectively. 

We assessed the effect of bevacizumab monotherapy in these three xenograft models. 

Bevacizumab (5 mg/kg) was well tolerated with no significant effects on body weight 

(Supplementary Fig. 1) [22] and showed significant antitumor activity in the H157 and 

H460 models (P < 0.01; Fig. 3a, b) rather than in the A549 model (Fig. 3c). TGI % were 

80.82, 65.62 and 57.14% in H157, H460 and A549 models at the end of treatment, 

respectively (Fig. 3d). These results suggested the NSCLC xenograft model that expressed 

high levels of VEGF protein was more sensitive to VEGF blockade than the models with 

lower VEGF protein. 

We also examined the levels of human VEGF protein in tumor tissues. Consistent with the 

previous observations in vitro, the level of VEGF protein in the H157 tumor tissue was 

highest, followed in order by H460 and A549 tumor tissues (P < 0.01; Fig. 3e). 

Bevacizumab significantly reduced the level of VEGF protein in tumor tissues from the 

H157 (P < 0.05) and H460 (P < 0.001) models but not in that from the A549 model (P > 



11 
 

0.05). This result was due to the function of bevacizumab that neutralizes VEGF [23,24]. 

The changes in VEGF levels observed between the bevacizumab and control groups also 

reflected the sensitivity of NSCLC xenografts to bevacizumab treatment. 

 

Antitumor activity of erlotinib combined with bevacizumab in NSCLC xenograft models 

Current chemotherapy/targeted regimens have used multiple agents for the treatment of 

carcinomas to improve efficacy and avoid the development of resistance [8,25,26]. Because 

the effect of combined agents to erlotinib is difficult to detect in erlotinib-sensitive tumor, 

we investigated the efficacy of erlotinib plus bevacizumab in erlotinib-resistant xenografts 

in a separate experiment. 

Erlotinib alone did not cause significant inhibition of tumor growth compared with vehicle 

in the H157 model (TGI <40%; Fig. 4a, d) or in the H460 model (TGI <30%; Fig. 4b, e). 

Erlotinib plus bevacizumab achieved significant tumor inhibition compared with treatment 

with erlotinib alone (P < 0.05) or vehicle (P < 0.001) in the H157 model (TGI > 85%; Fig. 

4d and Supplementary Fig. 2a). In contrast, combination treatment inhibited H460 tumor 

growth by about 40 % by the end of study (Fig. 4e), but the inhibition was not significantly 

greater than that of erlotinib alone or vehicle (Fig. 4b and Supplementary Fig. 2b). 

Although A549 cells were resistant to erlotinib in vitro, A549 tumor growth in nude mice 

was moderately suppressed by erlotinib (TGI > 52%; Fig. 4c, f). Blockade by combined 

treatment inhibited A549 tumor growth more than treatment with vehicle (P < 0.01), but 

was not more effective than treatment with either agent alone (Fig. 4c and Supplementary 
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Fig. 2c).) No substantial weight loss was observed during treatment (Supplementary Fig. 3). 

Taken together, these results indicated that erlotinib plus bevacizumab was capable of 

inhibiting tumor growth and/or partially reversing resistance to erlotinib in established 

xenografts with high VEGF expression.  

 

Concentration of erlotinib in tumor tissues of xenograft models 

Previous studies have shown that bevacizumab can enhance drug delivery to tumors [15], 

however, this remains controversial [16,17]. According to a previous study [27], the 

erlotinib concentration in mouse tumors reaches its peak concentration within 1 h after p.o. 

administration and declines rapidly for the next 6 h. Therefore, we excised tumor samples 

in athymic mice 1 h after administrating erlotinib p.o. on the last day of treatment and 

observed the changes in intratumoral erlotinib concentration. 

Erlotinib concentrations in the H157, H460 and A549 tumor tissues treated with erlotinib 

alone or plus bevacizumab reached 3.98 ± 0.65 µg/g and 7.61 ± 1.28 µg/g (P = 0.289; Fig. 

5a); 3.15 ± 0.094 µg/g and 4.11 ± 0.17 µg/g (P = 0.0751; Fig. 5b); 13.19 ± 2.39 µg/g and 

10.00 ± 0/.30 µg/g (P = 0.569; Fig. 5c), respectively. The changes in intratumoral erlotinib 

concentration were consistent with the antitumor activity of erlotinib plus bevacizumab 

treatment in these three xenografts. Compared with an increased erlotinib concentration 

following combination treatment in H157 tumor tissue, A549 tumors showed the opposite 

results.  
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Discussion 

Erlotinib monotherapy is approved for treatment of patients with advanced or metastatic 

NSCLC, while bevacizumab monotherapy is not standard for NSCLC treatment [5,7]. The 

objective of our study was to determine whether there were conditions under which the 

addition of bevacizumab would enhance antitumor activity of erlotinib against NSCLC 

tumors in vitro and in vivo. First, we found that erlotinib plus bevacizumab were no extra 

inhibitory than erlotinib alone in vitro. This result is consistent with those of a previous 

study [21]
 
and may be explained by the fact that VEGFR is expressed on vascular 

endothelium but not on malignant cells in human solid tumor types (including lung cancer) 

[28]. Because the change of erlotinib concentration is undetectable in erlotinib-sensitive 

tumor due to effective apoptosis induction to the cancer cells with low level of erlotinib, we 

then produced xenograft models bearing primarily erlotinib-resistant NSCLC cells to 

investigate the erlotinib accumulation in the tumor with bevacizumab combination. We 

found that the tumors expressing higher levels of VEGF protein were more responsive to 

inhibition by bevacizumab and combination treatment. These results suggest that the effect 

of dual inhibition of EGFR and VEGF is dependent on VEGF expression in EGFR TKI-

resistant xenografts. Finally, we demonstrated a trend toward increasing concentrations of 

erlotinib in the tumor tissues during treatment with erlotinib and bevacizumab compared 

with erlotinib alone. This effect also appeared to be influenced by the levels of VEGF 

protein. 



14 
 

VEGF plays a central role in angiogenesis and is necessary for endothelial cell survival in 

tumors, while the expression of VEGF protein depends on the type of cancer [29]. 

Decreasing VEGF levels by bevacizumab is known to block angiogenesis, transiently 

normalize tumor vessels, sensitize tumors to radiotherapy and chemotherapy, improve 

tumor oxygenation and decrease interstitial fluid pressure, as well as restore delivery of 

drugs into the tumor [15,30]. These might explain why the combination treatment worked 

better in the H157 model with high VEGF expression. In addition, because EGFR plays a 

vital role in the regulation of cell proliferation, survival and differentiation [31], partial 

normalization of tumor vessels by bevacizumab could cause proliferation of the tumor cells, 

which could make them more sensitive to EGFR TKI. As reported previously, EGFR TKI 

is known to be dose-related inhibition of EGFR function [27,32,33]. Therefore, 

bevacizumab combined with erlotinib is reasonable to enhance the antitumor effect by 

increasing intratumoral concentration of erlotinib. 

On the other hand, the differences in efficacy for combinations of erlotinib plus 

bevacizumab between our study and the clinical trials [12,13] are just like previous reports, 

that clinical efficacy is lower than that observed in preclinical cancer models [15,16,31,34]. 

One possible explanation is that the efficacy of bevacizumab alone or combined with other 

agents differs among tumor types, such as transplantable tumors in mice, spontaneous 

tumors and tumors from patients, which exhibit different degrees of vessel abnormality and 

levels of VEGF protein [15]. An alternate explanation for the variability in treatment 

efficacy is that vessel normalization by VEGF blockade is limited to a small window in 

treatment time. The window of normalization in murine models is relatively short and 
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occurs soon after administration of bevacizumab compared with that in humans [29], which 

may explain several paradoxical findings reported recently and suggest that the schedule 

and dosing of combination therapies warrant considerable attention. For example, 

bevacizumab and cetuximab (anti-EGFR monoclonal antibody) have shown promising 

results in clinical trials in NSCLC [35]. However, this is at odds with the results of a study 

which showed that bevacizumab reduced tumor uptake of cetuximab in SUM149 

xenografts (a breast cancer xenograft) [16]. A bevacizumab/docetaxel combination was 

more effective than docetaxel alone in reducing breast and prostate cancer cell growth [36], 

but a rapid decrease in the delivery of docetaxel to tumors after bevacizumab therapy was 

observed in another study [17]. Notably, although the erlotinib concentration in the 

combination group of H157 model with high VEGF levels was much higher than that in the 

erlotinib only group, no significant difference in intratumoral erlotinib concentration was 

observed between these two groups in any of the three models. This might be attributed to 

different blood flow even within the same tumor, because abnormal vessels in tumors result 

in continuous vessel remodeling, as well as facilitate drug distribution in perfused and 

leaking vessels [16,17]. 

Until now, it is controversial whether EGFR TKIs alone or combined with other agents are 

recommended to patients with EGFR wild-type NSCLC as a second- or third-line treatment 

[37-42]. Lung cancer is not homogenous, and any change in histology or mutational status 

could happen after chemotherapy and/or targeted therapy, which suggests that EGFR wild-

type should not be invalid indication for EGFR TKI. Although cytotoxic chemotherapy 

remains the backbone of therapy for patients with advanced NSCLC, EGFR TKIs and 
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VEGF inhibitors are potential ones. Therefore, further understanding of mechanisms and 

modes in dual inhibition of EGFR and VEGF is a priority. As there are inconsistent reports 

on VEGF blockade affecting the delivery of combined drugs, the precise effects of these 

reactions should be further investigated.  

In conclusion, we demonstrated that bevacizumab may be useful for enhancing antitumor 

activity of erlotinib by increasing the intratumoral concentration of erlotinib in some tumors 

that express high levels of VEGF protein. Our study is limited by the small number of 

tissue samples evaluated and not assessing other angiogenic factors (such as basic FGF or 

PDGF [38]) that tumor may depend on. Besides, to establish histologically and genetically 

accurate models of human cancer, genetically engineered model will be used for further 

study. Overall, it is important to understand the principles and mechanisms of the 

combination approach for effectively translating preclinical studies into clinical practice for 

better efficacy. 
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Figure Legends 

Fig. 1. Effects of erlotinib/bevacizumab on NSCLC cell lines in vitro. MTS assay was 

used to evaluate the effects of erlotinib (a), bevacizumab (c), and combination of erlotinib 

and bevacizumab (d) on the growth of NSCLC cell lines, which included cell lines with 

EGFR mutations: PC9 (EGFR exon 19 deletion), 11-18 (EGFR L858), H1975 (EGFR 

L858R and T790M mutations) and EGFR wild-type cell lines: H157, H460 and A549. 

Cells were treated with erlotinib (0-20 µmol/L), bevacizumab (0-20 ng/mL), or 

combination of these agents (ER 1 µmol/L; BEV 10 ng/mL) for 72 h. The percentage of 

viable cells is shown relative to that of the untreated control. b The IC50 of erlotinib in the 

different cell lines. d No significant differences were noted between erlotinib alone and 

combination treatment in vitro (P >0.05). Results are presented as the means ± SEM. ER, 

erlotinib; BEV, bevacizumab. 

Fig. 2. Levels of human VEGF protein in NSCLC cell lines. Human VEGF protein in 

culture medium (2 mL with free fetal bovine serum) of NSCLC cell lines (3 × 10
5
 cells) 

and the human bronchial epithelial cell line BEAS-2B (control) was assessed by ELISA. 

Data are presented as the means ± SEM. *P< 0.05 for cells compared with BEAS-2B; 
#
P< 

0.05 for cells compared with H157. 

Fig. 3. Effects of bevacizumab monotherapy on NSCLC xenograft models with 

primary resistance to erlotinib. a, b and c Tumor volume over time in response to 

bevacizumab (5 mg/kg; n = 4-7). The Mann-Whitney U test was used to compare tumor 

volume at the last measurement between the groups (ΔT/ΔC): **P< 0.01 in H157 tumors (a) 
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and H460 tumors (b); 
ns

P > 0.05 in A549 tumors (c). d TGI % in each model was 

calculated from the beginning of bevacizumab treatment. e The levels of human VEGF 

protein in tumor tissues of H157, H460 and A549 models were assayed by ELISA. The 

Student’s t-test was used to compare bevacizumab and vehicle treatment in each model: *P 

< 0.05, ***P < 0.001, 
ns

P > 0.05. For comparison between the three xenograft tumors, one-

way ANOVA was used: 
φφ

P < 0.01, 
φφφ

P < 0.001. Data are expressed as the means ± SEM. 

ER, erlotinib; BEV, bevacizumab. 

Fig. 4. Effects of erlotinib plus bevacizumab on tumor growth in NSCLC xenograft 

models. a, b and c Changes in tumor volume over time in response to treatment with 

vehicle, bevacizumab (5 mg/kg), erlotinib (100 mg/kg), or combination of bevacizumab (5 

mg/kg) and erlotinib (100 mg/kg) for 2 weeks (n=3-7). One-way ANOVA was used to 

compare tumor volume at the last measurement between the treatment groups in each 

xenograft model: H157 model (a), H460 model (b), and A549 model (c). ***P < 0.001, *P 

< 0.05, **P < 0.01 for combination treatment or bevacizumab treatment compared with the 

vehicle (ΔT/ΔC); 
φ
P < 0.05 for combination treatment compared with erlotinib alone 

(ΔT/ΔT’); and 
ns

P > 0.05 means no significant differences. d, e and f TGI % by erlotinib, 

bevacizumab, and combination treatment in three models. g, h and i Images of tumor 

samples in three xenografts. Data are expressed as the means ± SEM. ER, erlotinib; BEV, 

bevacizumab. 

Fig. 5. Erlotinib concentration in tumor tissues. HPLC was used to determine the 

erlotinib concentration in the tumor tissues from the xenograft models treated with erlotinib 
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alone or combined with bevacizumab. Data are expressed as the means ± SEM. The 

Student’s t-test was used to compare erlotinib and combination groups in each model: P = 

0.289 (a, H157 model), P = 0.0751 (b, H460 model), and P = 0.569 (c, A549 model). ER, 

erlotinib; BEV, bevacizumab. 
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Supplementary Figure Legends 

Supplementary Fig. 1. Body weight of xenograft models treated with bevacizumab 

monotherapy. No significant effect on body weight (≥20% of body weight at the start of 

treatment) was observed in H157 (a), H460 (b), or A549 (c) models as a result of 

bevacizumab treatment (5 mg/kg/twice weekly). 

Supplementary Fig. 2. Weight of tumor samples in three xenografts. The weights of 

tumor tissue are shown in a (H157 tumors), b (H460 tumors) and c (A549 tumors). One-

way ANOVA was used to compare the differences between the treatment groups in each 

model: **P < 0.01, *P < 0.05, 
φφ

P < 0.01, 
φ
P < 0.05, and 

ns
P > 0.05. Data are expressed as 

the means ± SEM. ER, erlotinib; BEV, bevacizumab. 

Supplementary Fig. 3. Body weight of H157 (a), H460 (b), and A549 (c) xenograft 

models treated with vehicle, bevacizumab (5 mg/kg/twice weekly), erlotinib (100 

mg/kg/day), or a combination of the two agents. No significant effect of treatment on body 

weight (≥20% of body weight at start of treatment) was observed. ER, erlotinib; BEV, 

bevacizumab. 

 

 

 

 



29 
 

 

Fig.1

 

Fig.2 

 



30 
 

Fig.3 

 

Fig.4 

 



31 
 

Fig.5 
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Supplementary Fig.3 

 

 

 

 

 


