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The module of lowerable vector fields

for a multigerm

Yusuke Mizota

Abstract

Arnol’d introduced the notion of lowerable and liftable vector fields
for a mapping in 1976. These vector fields have various interesting appli-
cations; in particular, they have applications to classification problems of
singularities. However, no general theory has been constructed as far as
the author knows, and little is known about the modules of lowerable and
liftable vector fields.

In this thesis, we prove that the module of lowerable vector fields is
always finitely generated for a finitely L-determined multigerm. We also
present some examples of non-finitely L-determined multigerms for which
we explicitly construct generators for the modules of lowerable vector
fields.
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1 Introduction

The history of lowerable and liftable vector fields dates back to 1970’s. Arnol’d
[1] introduced the notion of lowerable and liftable vector fields for a mapping
for studying bifurcations of wave front singularities.

In the following, let K denote R or C. Throughout the thesis, all mappings
are of class C∞ for K = R, and are holomorphic for K = C, unless otherwise
stated.

Let S be a finite set in Kn. For a multigerm f : (Kn, S) → (Kp, 0), a vector
field ξ on the source is said to be lowerable if there exists a vector field η on the
target such that the following diagram is commutative:

(Kn, S)
ξ−−−−→ TKn

f

y ydf

(Kp, 0)
η−−−−→ TKp,

where df is the differential of f . A vector field η on the target is said to be
liftable if there exists a vector field ξ on the source such that the above diagram
is commutative. See Section 2 for details.

The set of liftable vector fields has the natural structure of a module over
the ring of function-germs on the target, while that of lowerable vector fields
has the structure of a module over the same ring “via f”.

Lowerable and liftable vector fields have been shown to have applications to
classification problems of singularities. Bruce and West [3] obtained generators
for the module of liftable vector fields for a crosscap in the complex analytic case
and classified certain functions on a crosscap. Ishikawa [5] used lowerable vector
fields to construct versal openings, which have applications to classifications of
tangential singularities.

Unfortunately, no general theory has been constructed on the modules of
lowerable or liftable vector fields as far as the author knows. It is usually difficult
to prove finite generation or to find explicit generators for their modules.

In the thesis, we investigate the module of lowerable vector fields for a multi-
germ. Let Cp,0 be the ring of all function-germs on (Kp, 0). The main result is
Corollary 4.4 as follows:

Main Result. Let f : (Kn, S) → (Kp, 0) be a finitely L-determined multigerm.
Then, the module of lowerable vector fields is finitely generated as a Cp,0-module
via f .

Here, a multigerm f : (Kn, S) → (Kp, 0) is said to be finitely L-determined
if there exists a positive integer k such that every g : (Kn, S) → (Kp, 0) which
has the same Taylor series up to degree k as f , is L-equivalent to f in the sense
that g coincides with f up to a change of coordinates of the target.

When f is a finitely L-determined multigerm, we can prove finite generation
of the module of lowerable vector fields in a constructive way in both the real
C∞ case and the complex analytic case. Note that it is usually difficult to judge
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whether a module over the ring of function-germs is finitely generated in the
real C∞ case due to “flat functions”.

The thesis is organized as follows. In Section 2, we explain basic materials
necessary for the rest of the thesis with many examples for the reader’s con-
venience. In Section 3, we present a lot of examples of finitely L-determined
multigerms by introducing the linear map C

i ωf for a multigerm f and a non-
negative integer i.

In Section 4, we prove Theorem 4.2, which is the key for proving the main
result. We then show that the module of lowerable vector fields is finitely
generated for a finitely L-determined multigerm (Corollary 4.4). Our proof is,
in principle, constructive and gives a method for constructing explicit generators
for the module of lowerable vector fields. We also give some examples in which
we construct explicit generators for the module of lowerable vector fields. In
Section 5, we consider the module of lowerable vector fields for some non-finitely
L-determined multigerms.

In Section 6, we mention some open problems. Section 7 is devoted to
acknowledgements.

The contents of Section 4 are mainly based on [8], which is a joint work with
Takashi Nishimura.

Throughout the thesis, we sometimes omit the brackets of equivalence classes
and the terminology “germ”, when there is no confusion.
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2 Preliminaries

In this section, we present some basic materials necessary for the rest of the
thesis.

Let (x1, x2, . . . , xn) (resp., (X1, X2, . . . , Xp)) be the standard local coordi-
nates of Kn (resp., Kp) around the origin. Sometimes, (x1, x2) (resp., (X1, X2))
is denoted by (x, y) (resp., (X,Y )), and (x1, x2, x3) (resp., (X1, X2, X3)) is de-
noted by (x, y, z) (resp., (X,Y, Z)).

Let S be a finite set consisting of r distinct points in Kn and T a subset
in Kp. Let f : U → Kp and g : V → Kp be mappings defined on open sets
containing S, such that f(S) ⊂ T and g(S) ⊂ T hold. We say that f and g are
equivalent at S if there exists an open set W containing S in U ∩ V such that
the restrictions of f and g to W coincide. We call the equivalence class of f
a map-germ f at S, and denote it by f : (Kn, S) → (Kp, T ). We often denote
f : (Kn, S) → (Kp,Kp) simply by f : (Kn, S) → Kp when T = Kp. A map-germ
f : (Kn, S) → (Kp, 0) (that is, T = {0}) is called a multigerm. When r = 1,
f is called a monogerm. A multigerm f : (Kn, S) → (Kp, 0) can be identified
with an ordered set {fk : (Kn, 0) → (Kp, 0)| 1 ≤ k ≤ r} of a finite number of
monogerms. Each fk is called a branch of f .

Example 2.1. Set S = {s1, s2} ⊂ K, where s1 ̸= s2. Let f̃ : (K, S) → (K2, 0)

be given by the monogerms f̃i : (K, {si}) → (K2, 0), i = 1, 2, defined by

f̃1(x) = ((x− s1)
2, (x− s1)

3) and f̃2(x) = ((x− s2)
3, (x− s2)

2).

This multigerm is identified with the ordered set of monogerms f1, f2 : (K, 0) →
(K2, 0) {f1(x) = (x2, x3), f2(x) = (x3, x2)}.

In the following, a multigerm f : (Kn, S) → (Kp, 0) given by

f1(x), f2(x), . . . , fr(x) (fk : (Kn, 0) → (Kp, 0), k = 1, 2, . . . , r),

means a multigerm f̃ : (Kn, S) → (Kp, 0) with S consisting of r distinct points

s1, s2, . . . , sr ∈ Kn, given by the monogerms f̃i : (Kn, {si}) → (K2, 0), i =
1, 2, . . . , r, defined by

f̃1(x) = f1(x− s1), f̃2(x) = f2(x− s2), . . . , f̃r(x) = fr(x− sr)

for x ∈ Kn.
For multigerms f , g : (Kn, S) → (Kp, 0), f is said to be A-equivalent to g

if there exist diffeomorphism germs for K = R, or biholomorphism germs for
K = C, φ : (Kn, S) → (Kn, S) and ψ : (Kp, 0) → (Kp, 0), such that we have
φ(s) = s for every s ∈ S and

f = ψ ◦ g ◦ φ.

If, in addition, φ can be chosen to be the germ of the identity mapping of
(Kn, S), then f is said to be L-equivalent to g.
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Let Cn,S (resp., Cp,0) be the K-algebra of all function-germs on (Kn, S)
(resp., (Kp, 0)) andmn,S (resp.,mp,0) be the ideal of Cn,S (resp., Cp,0) consisting
of the function-germs (Kn, S) → (K, 0) (resp., (Kp, 0) → (K, 0)). For a non-
negative integer i, let mi

n,S (resp., mi
p,0) denote the ideal of Cn,S (resp., Cp,0)

consisting of those function-germs on (Kn, S) (resp., (Kp, 0)) whose Taylor series
vanish up to degree i− 1. Thus, we have

m0
n,S = Cn,S , m

0
p,0 = Cp,0, m

1
n,S = mn,S , and m

1
p,0 = mp,0.

Let R be a ring. For a finite subset A = {a1, a2, . . . , am} of an R-module,
set

AR =

{
m∑
i=1

riai

∣∣∣∣∣ ri ∈ R

}
,

which is the smallest R-submodule containing A. The R-module AR is some-
times denoted by ⟨a1, a2, . . . , am⟩R.

For a multigerm f : (Kn, S) → (Kp, 0), let f∗ : Cp,0 → Cn,S be the K-algebra
homomorphism defined by f∗(ψ) = ψ ◦ f , ψ ∈ Cp,0, and for a non-negative
integer i and a Cn,S-module B, we define the Cn,S-submodule f∗mi

p,0B of B by

f∗mi
p,0B =


N∑
j=1

(ψj ◦ f)bj

∣∣∣∣∣∣ N ∈ N, ψj ∈ mi
p,0, bj ∈ B

 .

For a p-tuple of non-negative integers α = (α1, α2, . . . , αp), an n-tuple of non-
negative integers β = (β1, β2, . . . , βn), and a monogerm f : (Kn, 0) → (Kp, 0),
set

|α| = α1 + α2 + · · ·+ αp, |β| = β1 + β2 + · · ·+ βn,

Xα = Xα1
1 Xα2

2 · · ·Xαp
p , xβ = xβ1

1 x
β2

2 · · ·xβn
n ,

fα = (X1 ◦ f)α1(X2 ◦ f)α2 · · · (Xp ◦ f)αp .

We use the following proposition in Section 3.

Proposition 2.2. Let f : (K, 0) → (Kp, 0) be given by

f(x) = (xk + xk+1φ1(x), x
k+1φ2(x), . . . , x

k+1φp(x)),

where k ≥ 1 and φ1, φ2, . . . , φp ∈ C1,0. Then, for every non-negative integer i,
we have

f∗mi
p,0C1,0 =

⟨
xik
⟩
C1,0

.
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Proof. Let us take any element φ ∈ f∗mi
p,0C1,0. Then, we have

φ =

N∑
j=1

(ψj ◦ f)φ̃j

=
N∑
j=1

∑
|α|=i

(ψj,α ◦ f)fα
 φ̃j

=

 N∑
j=1

∑
|α|=i

(ψj,α ◦ f)(1 + xφ1)
α1(xφ2)

α2 · · · (xφp)
αp φ̃j

xik

for some N ∈ N, ψj ∈ mi
p,0, ψj,α ∈ Cp,0 and φ̃j ∈ C1,0. Therefore, φ ∈

⟨
xik
⟩
C1,0

holds.
Conversely, let us take any element φ ∈

⟨
xik
⟩
C1,0

. Then, we have

φ = φ̃(x)xik = (Xi
1 ◦ f)(x)

φ̃(x)

(1 + xφ1(x))i

for some φ̃ ∈ C1,0. Therefore, φ ∈ f∗mi
p,0C1,0 holds. Thus, we have

f∗mi
p,0C1,0 =

⟨
xik
⟩
C1,0

for every non-negative integer i. 2

Set

Q(f) =
Cn,S

f∗mp,0Cn,S
,

which is a K-vector space, and set δ(f) = dimKQ(f). We call δ(f) the multiplic-
ity of f . Note that the multiplicity is invariant under A-equivalence. Finiteness
of the multiplicity of f implies n ≤ p (see [10, p. 494]). Note that we have

f∗mp,0Cn,S =
r⊕

k=1

f∗kmp,0Cn,0,

where fk are the branches of f . Thus, we have

Q(f) =
r⊕

k=1

Q(fk) and δ(f) =
r∑

k=1

δ(fk).

Example 2.3. Let f : (K, 0) → (K2, 0) be given by

f(x) = (x2, x3).

Then, we have f∗(X) = x2, f∗(Y ) = x3, and f∗m2,0C1,0 = ⟨x2⟩C1,0 . Therefore,
the 2 functions [1] and [x] form a basis of Q(f). Thus, we have δ(f) = 2.
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Proposition 2.4. For a monogerm f : (Kn, 0) → (Kp, 0), we have δ(f) <∞ if
and only if there exists a positive integer ℓ such that xℓi ∈ f∗mp,0Cn,0 holds for
every i = 1, 2, . . . , n.

Proof. Suppose that δ(f) <∞ holds. Set ℓ = δ(f). Then, we have

dimK
Cn,0

mℓ+1
n,0 Cn,0 + f∗mp,0Cn,0

≤ dimK
Cn,0

f∗mp,0Cn,0
= ℓ.

Since Cn,0 is a finitely generated Cn,0-module and f∗mp,0Cn,0 is a submodule
of Cn,0, we have m

ℓ
n,0Cn,0 ⊂ f∗mp,0Cn,0 by Corollary (1.6) in [6, p. 130]. Thus,

xℓi ∈ f∗mp,0Cn,0 holds for every i = 1, 2, . . . , n.
Conversely, suppose that there exists a positive integer ℓ such that xℓi ∈

f∗mp,0Cn,0 holds for every i = 1, 2, . . . , n. Then, we have xβ ∈ f∗mp,0Cn,0 for
every n-tuple of non-negative integers β with |β| = nℓ. Thus, we have δ(f) <∞,
since mnℓ

n,0 ⊂ f∗mp,0Cn,0 holds. 2

Example 2.5. Let f : (K2, 0) → (K2, 0) be given by

f(x, y) = (x2 − y2, xy).

Then, we have

x3 = x(x2 − y2) + y(xy) and y3 = −y(x2 − y2) + x(xy).

Thus, δ(f) <∞ holds by Proposition 2.4.
Let us obtain a basis of the K-vector space Q(f). Since

x2y = x(xy) and xy2 = y(xy)

hold, we have m3
2,0 ⊂ f∗m2,0C2,0. Therefore, we have

f∗m2,0C2,0 = ⟨x2 − y2, xy⟩K +m3
2,0.

Then, we can show that the 4 functions [1], [x], [y], and [x2 + y2] form a basis
of Q(f) as follows.

First, let us take any element [φ] ∈ Q(f), φ ∈ C2,0. Then, we have

[φ(x, y)] = [c1 + c2x+ c3y + c4x
2 + c5xy + c6y

2]

= c1[1] + c2[x] + c3[y] +

(
c4 + c6

2

)
[x2 + y2] +

(
c4 − c6

2

)
[x2 − y2]

= c1[1] + c2[x] + c3[y] +

(
c4 + c6

2

)
[x2 + y2]

for some c1, c2, . . . , c6 ∈ K.
Moreover, the functions [1], [x], [y], and [x2 + y2] are linearly independent

over K. In fact, suppose that

d1[1] + d2[x] + d3[y] + d4[x
2 + y2] = [0]
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holds for some d1, d2, d3, d4 ∈ K. Since

d1 + d2x+ d3y + d4(x
2 + y2) = d5(x

2 − y2) + d6xy + ψ1(x, y)

holds for some d5, d6 ∈ K and ψ1 ∈ m3
2,0, we have d1 = d2 = d3 = d4 = 0.

Therefore, the 4 functions [1], [x], [y], and [x2 + y2] form a basis of Q(f). Thus,
we have δ(f) = 4.

For a multigerm f : (Kn, S) → (Kp, 0) and a subset B of a Cn,S-module
A, the set B has a Cp,0-module structure via f (or f∗Cp,0-module structure) if
B has the module structure by the addition induced from that of A and the
multiplication defined as follows:

ψη := f∗(ψ)η (ψ ∈ Cp,0, η ∈ B).

Note that f∗(ψ)η denotes the multiplication of f∗(ψ) and η in A. A Cn,S-module
naturally has a Cp,0-module structure via f .

The following theorem is a profound result and is useful in singularity theory
(see [6, p. 132]).

Preparation Theorem. For a multigerm f : (Kn, S) → (Kp, 0) and a Cn,S-
module A, suppose that A is finitely generated as a Cn,S-module and A/f∗mp,0A
is a finite dimensional K-vector space. Then, A is finitely generated as a Cp,0-
module via f .

In this thesis, Preparation Theorem is always used in the form as in the
following theorem.

Theorem 2.6. For a multigerm f : (Kn, S) → (Kp, 0) and a Cn,S-module A,
suppose that A is a finitely generated Cn,S-module and that [p1], [p2], . . . , [pk]
span the K-vector space A/f∗mp,0A. Then, p1, p2, . . . , pk generate A as a Cp,0-
module via f .

Proof. Note that A is finitely generated as a Cp,0-module via f by Preparation
Theorem. Since [p1], [p2], . . . , [pk] span the K-vector space A/f∗mp,0A, we have

A = ⟨p1, p2, . . . , pk⟩K + f∗mp,0A

= ⟨p1, p2, . . . , pk⟩f∗Cp,0 + f∗mp,0A.

Here, f∗Cp,0 is a commutative ring with identity, ⟨p1, p2, . . . , pk⟩f∗Cp,0 is a f
∗Cp-

submodule of A, and f∗mp,0 is an ideal in f∗Cp,0 such that 1 + φ is invertible
for every φ ∈ f∗mp,0. Thus, by Nakayama’s Lemma (see [6, p. 130]), we have
A = ⟨p1, p2, . . . , pk⟩f∗Cp,0 . 2

For a map-germ f : (Kn, S) → Kp, a map-germ ξ : (Kn, S) → TKp is a
vector field along f if the following diagram is commutative:

TKp TKp

ξ

x yπ

(Kn, S)
f−−−−→ Kp,
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where π : TKp → Kp is the projection. Set

θ(f) = {ξ : (Kn, S) → TKp |π ◦ ξ = f}.

The set θ(f) has the natural structure of a Cn,S-module and we have

θ(f) =

r⊕
k=1

θ(fk),

where fk are the branches of f . Note that each θ(fk) is identified with the direct
sum of p copies of Cn,0. Set

θS(n) = θ(id(Kn,S)) and θ0(p) = θ(id(Kp,0)),

where id(Kn,S) (resp., id(Kp,0)) is the germ of the identity mapping of (Kn, S)
(resp., (Kp, 0)).

For a multigerm f : (Kn, S) → (Kp, 0), following Mather [6, p. 141], let tf :
θS(n) → θ(f) and ωf : θ0(p) → θ(f) be defined by

tf(ξ) = df ◦ ξ and ωf(η) = η ◦ f

for ξ ∈ θS(n) and η ∈ θ0(p), respectively, where df is the differential of f . The
map tf is a Cn,S-module homomorphism, while ωf is a Cp,0-module homomor-
phism, where θ(f) is considered to be a Cp,0-module via f . Following Wall [10,
p. 485], set

TRe(f) = tf(θS(n)) and TLe(f) = ωf(θ0(p)).

We call TRe(f) (resp., TLe(f)) the extended R-tangent space (resp., extended
L-tangent space) of f . Note that

TRe(f) =

r⊕
k=1

TRe(fk)

always holds, while in general we have

TLe(f) ̸=
r⊕

k=1

TLe(fk),

although we always have

TLe(f) ⊂
r⊕

k=1

TLe(fk),

where fk are the branches of f .

Example 2.7. Let f : (K, S) → (K2, 0) be given by

f1(x) = (x2, x3), f2(x) = (x2, x3).
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Then, we have θ(f) = θ(f1)⊕ θ(f2) = (C1,0 ⊕ C1,0)⊕ (C1,0 ⊕ C1,0) and we see
that

TRe(f) =

{((
2xφ1(x)
3x2φ1(x)

)
,

(
2xφ2(x)
3x2φ2(x)

))∣∣∣∣ φ1, φ2 ∈ C1,0

}
,

TLe(f) =

{((
ψ1(x

2, x3)
ψ2(x

2, x3)

)
,

(
ψ1(x

2, x3)
ψ2(x

2, x3)

))∣∣∣∣ ψ1, ψ2 ∈ C2,0

}
hold. Moreover, TLe(f) ̸= TLe(f1)⊕ TLe(f2) holds, since we have((

x2

0

)
,

(
0
0

))
̸∈ TLe(f) and

((
x2

0

)
,

(
0
0

))
∈ TLe(f1)⊕ TLe(f2).

We use the following proposition in Sections 4 and 5 .

Proposition 2.8. For a multigerm f : (Kn, S) → (Kp, 0), suppose that δ(f) <
∞ holds. Then, tf is injective.

Proof. It suffices to show that if a monogerm f : (Kn, 0) → (Kp, 0) satisfies
δ(f) <∞, then tf is injective.

Suppose that for ξ ∈ θ0(n), we have tf(ξ) = 0 on an open set U1 containing
0. Then, f is constant along any integral curve of ξ on U1. Since δ(f) < ∞
holds, each integral curve of ξ on an open set U2 containing 0 must consist of a
single point by Propositions 2.2 and 2.3 in [4, pp. 167–168]. Therefore, we have
ξ = 0 on U1 ∩ U2. Thus, tf is injective. 2

We cannot, in general, remove the assumption that δ(f) < ∞ holds in
Proposition 2.8.

Example 2.9. Let f : (K2, 0) → (K2, 0) be given by

f(x, y) = (x, 0).

Since [1], [y], [y2], . . . are linearly independent in Q(f) over K, the multiplicity
δ(f) is not finite. On the other hand, tf is not injective, since we have

tf

((
0
1

))
= 0.

Let us now define lowerable and liftable vector fields.

Definition 2.10. A vector field ξ ∈ θS(n) is said to be lowerable for a multigerm
f : (Kn, S) → (Kp, 0) if df ◦ ξ belongs to TRe(f) ∩ TLe(f). A vector field
η ∈ θ0(p) is said to be liftable for a multigerm f : (Kn, S) → (Kp, 0) if η ◦ f
belongs to TRe(f) ∩ TLe(f).

A vector field ξ ∈ θS(n) (resp., η ∈ θ0(p)) is lowerable (resp., liftable) for a
multigerm f : (Kn, S) → (Kp, 0) if and only if there exist a vector field η ∈ θS(n)
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(resp., ξ ∈ θ0(p)) such that the following diagram is commutative:

(Kn, S)
ξ−−−−→ TKn

f

y ydf

(Kp, 0)
η−−−−→ TKp.

Let Lower(f) (resp., Lift(f)) be the set of all lowerable (resp., liftable) vector
fields for the multigerm f . Then, Lower(f) has a Cp,0-module structure via f
and Lift(f) has a natural Cp,0-module structure. By the definitions, we have

tf(Lower(f)) = TRe(f) ∩ TLe(f) and ωf(Lift(f)) = TRe(f) ∩ TLe(f).

Example 2.11. Let f : (K, 0) → (K2, 0) be given by

f(x) = (x2, x3).

Then, the Jacobian matrix of f at 0 is the transpose of
(
2x, 3x2

)
. We see that(

2X
3Y

)
◦ f =

(
2x2

3x3

)
=

(
2x
3x2

)(
x
)

holds. Thus, we have

(
x
)
∈ Lower(f) and

(
2X
3Y

)
∈ Lift(f).

The liftable vector field for f given above is depicted in red in Figure 1. The
blue curve corresponds to the image of f .

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 1: A liftable vector field

Let us finally recall the notion of finite L-determinacy.
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Definition 2.12. A multigerm f : (Kn, S) → (Kp, 0) is said to be finitely
L-determined if there exists a positive integer ℓ such that

mℓ
n,Sθ(f) ⊂ TLe(f)

holds.

Remark 2.13. Originally, L-determinacy of a multigerm f is defined as follows.
A multigerm f : (Kn, S) → (Kp, 0) is said to be finitely L-determined if there
exists a positive integer k such that every g : (Kn, S) → (Kp, 0) which has the
same Taylor series up to degree k as f , is L-equivalent to f . It is known that
this definition is equivalent to Definition 2.12 (see [6, pp. 140–141]).

Proposition 2.14. If f : (Kn, S) → (Kp, 0) is a finitely L-determined multi-
germ, then we have δ(f) <∞.

Proof. There exists a positive integer ℓ such that mℓ
n,Sθ(f) ⊂ TLe(f) holds.

Then, for every branch fk, k = 1, 2, . . . , r, we have

mℓ
n,0 ⊂ f∗kCp,0 ⊂ K+ f∗kmp,0Cn,0.

Therefore, we see that
mℓ

n,0 ⊂ f∗kmp,0Cn,0

holds. Thus, we have δ(f) <∞, since δ(fk) <∞ holds for every k = 1, 2, . . . , r.
2

A monogerm f : (Kn, 0) → (Kp, 0) is said to be non-singular if rank Jf(0) =
min{n, p} holds, where Jf(0) is the Jacobian matrix of f at 0.

Example 2.15. Let f : (Kn, 0) → (Kp, 0), n ≤ p, be given by

f(x1, x2, . . . , xn) = (x1, x2, . . . , xn, 0, . . . , 0).

Then, f is non-singular, since rankJf(0) = n holds.
Moreover, every g : (Kn, 0) → (Kp, 0) which has the same Taylor series up

to degree 1 as f , is L-equivalent to f by the implicit function theorem. Thus,
f is finitely L-determined by Remark 2.13.

A lot more examples of finitely L-determined multigerms are given in Sec-
tion 3.
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3 Examples of finitely L-determined multigerms

It is, in general, difficult to check L-determinacy for a given multigerm f :
(Kn, S) → (Kp, 0), since TLe(f) does not have a Cn,S-module structure.

In this section, we present a lot of examples of finitely L-determined multi-
germs. Although the contents of this section seem folklore for experts, we give
complete proofs for all the results, since there is no literature in which the
contents of this section are written explicitly as far as the author knows.

For a non-negative integer i and a multigerm f : (Kn, S) → (Kp, 0), we
define the K-linear map C

i ωf as follows:

C
i ωf :

mi
p,0θ0(p)

mi+1
p,0 θ0(p)

→
f∗mi

p,0θ(f)

f∗mi+1
p,0 θ(f)

,

C
i ωf([η]) = [ωf(η)], η ∈ mi

p,0θ0(p).

This map is well-defined. We call Ci ωf the i-th reduced version of ωf . A reduced
version of ωf was first introduced as ωf in [7, p. 227] to characterize stability of
f with respect to A-equivalence. Our reduced version C

i ωf is useful in studying
L-determinacy.

Proposition 3.1. For a multigerm f : (Kn, S) → (Kp, 0) and a non-negative
integer i, C

i ωf is surjective if and only if f∗mi
p,0θ(f) ⊂ ωf

(
mi

p,0θ0(p)
)
holds.

Proof. Suppose that f∗mi
p,0θ(f) ⊂ ωf

(
mi

p,0θ0(p)
)
holds. Let us take any ele-

ment [ξ] ∈ f∗mi
p,0θ(f)/f

∗mi+1
p,0 θ(f). Then, there exists an η ∈ mi

p,0θ0(p) such

that we have [ξ] = [ωf(η)] = C
i ωf([η]). Thus,

C
i ωf is surjective.

Conversely, suppose that C
i ωf is surjective. Then, we have

f∗mi
p,0θ(f) = f∗mi+1

p,0 θ(f) + ωf
(
mi

p,0θ0(p)
)

= f∗mi+1
p,0 θ(f) +


p∑

j=1

∑
|α|=i

cj,α (ηj,α ◦ f)

∣∣∣∣∣∣ cj,α ∈ K

 ,

where

ηj,α = Xα ∂

∂Xj
.

Therefore, the K-vector space f∗mi
p,0θ(f)/f

∗mi+1
p,0 θ(f) is spanned by the classes

represented by the vector fields along f

[ηj,α ◦ f ] (j = 1, 2, . . . , p, |α| = i).

Note that we have

f∗mi
p,0θ(f)

f∗mi+1
p,0 θ(f)

=
f∗mi

p,0θ(f)

f∗mp,0

(
f∗mi

p,0θ(f)
)

and that f∗mi
p,0θ(f) is a finitely generated Cn,S-module.
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Let us take any element ξ ∈ f∗mi
p,0θ(f). Then, by Theorem 2.6, we have

ξ =

p∑
j=1

∑
|α|=i

(ψj,α ◦ f) (ηj,α ◦ f)

=

 p∑
j=1

∑
|α|=i

ψj,αηj,α

 ◦ f

for some ψj,α ∈ Cp,0. Thus, f
∗mi

p,0θ(f) ⊂ ωf
(
mi

p,0θ0(p)
)
holds. 2

Proposition 3.2. For a multigerm f : (Kn, S) → (Kp, 0) and a non-negative
integer i, suppose that C

i ωf is surjective. Then, C
ℓωf is surjective for every

positive integer ℓ with ℓ > i.

Proof. Suppose that C
i ωf is surjective. It suffices to show that C

i+1 ωf is surjec-
tive. Note that

f∗mi
p,0θ(f) ⊂ ωf

(
mi

p,0θ0(p)
)

holds by Proposition 3.1.
Let us take any element ξ ∈ f∗mi+1

p,0 θ(f). Since

f∗mi+1
p,0 θ(f) = f∗mp,0(f

∗mi
p,0θ(f))

holds, we have

ξ =

N1∑
j=1

(ψj ◦ f)

((
N2∑
k=1

ψj,kηj,k

)
◦ f

)

=

 N1∑
j=1

N2∑
k=1

(ψjψj,k) ηj,k

 ◦ f

for some N1, N2 ∈ N, ψj ∈ mp,0, ψj,k ∈ mi
p,0 and ηj,k ∈ θ0(p). Since ψjψj,k

belongs to mi+1
p,0 , the vector field ξ belongs to ωf

(
mi+1

p,0 θ0(p)
)
. Thus, C

i+1 ωf is
surjective by Proposition 3.1. 2

Lemma 3.3. Let f : (Kn, 0) → (Kp, 0) be a monogerm satisfying δ(f) < ∞.
For every positive integer k, there exists a positive integer ℓ such that mℓ

n,0 ⊂
f∗mp,0(m

k
n,0) holds.

Proof. Since we have δ(f) <∞, there exists a positive integer ℓ′ such that xℓ
′

i ∈
f∗mp,0Cn,0 holds for every i = 1, 2, . . . , n by Proposition 2.4. Then, for every

positive integer k, we have xℓ
′+k
i ∈ f∗mp,0(m

k
n,0). Thus, mℓ

n,0 ⊂ f∗mp,0(m
k
n,0)

holds for ℓ = n(ℓ′ + k). 2

By the following proposition, we can find examples of finitely L-determined
multigerms.
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Proposition 3.4. For a multigerm f : (Kn, S) → (Kp, 0) satisfying δ(f) <∞,
suppose that there exists a non-negative integer i such that C

i ωf is surjective.
Then, f is finitely L-determined.

Proof. Since δ(f) <∞ holds, by Propsotion 3.1 and Lemma 3.3, we have

mℓ
n,Sθ(f) ⊂ f∗mi

p,0θ(f) ⊂ ωf
(
mi

p,0θ0(p)
)
⊂ TLe(f)

for some positive integer ℓ. Thus, f is finitely L-determined. 2

Remark 3.5. Proposition 3.4 does not hold, in general, for a multigerm f :
(Kn, S) → (Kp, 0) such that δ(f) is not finite. For example, let us consider the
zero map-germ f : (K, 0) → (K2, 0) given by f(x) = (0, 0). The multiplicity δ(f)
is not finite, since f∗m2,0θ(f) vanishes. We have f∗mi

2,0θ(f) ⊂ ωf
(
mi

2,0θ0(2)
)

for every positive integer i. Thus, C
i ωf is surjective for every positive integer

i by Proposition 3.1. However, f is not finitely L-determined, since TLe(f)
consists only of constant vector fields.

Lemma 3.6. For multigerms f, g : (Kn, S) → (Kp, 0) and a non-negative inte-
ger i, suppose that f is A-equivalent to g and C

i ωf is surjective. Then, C
i ωg is

also surjective.

Proof. Since f is A-equivalent to g, there exist diffeomorphism germs for K = R,
or biholomorphism germs for K = C, φ : (Kn, S) → (Kn, S) and ψ : (Kp, 0) →
(Kp, 0), such that we have φ(s) = s for every s ∈ S and f = ψ ◦ g ◦ φ. By
Proposition 3.1, it is enough to show that

g∗mi
p,0Cn,S ⊂ g∗mi

p,0.

Let us take any element φ ∈ g∗mi
p,0Cn,S . Then, we have φ◦φ ∈ f∗mi

p,0Cn,S .

Since C
i ωf is surjective, there exists a ψ̃ ∈ mi

p,0 such that φ ◦ φ = ψ̃ ◦ f . Then,
we have

φ = ψ̃ ◦ f ◦ φ−1 = ψ̃ ◦ ψ ◦ g.
Thus, φ ∈ g∗mi

p,0 holds, since we have ψ̃ ◦ ψ ∈ mi
p,0. 2

Proposition 3.7. For a multigerm f : (Kn, S) → (Kp, 0), C
0ωf is surjective if

and only if n ≤ p, r = 1 and f is non-singular, where r is the cardinality of S.

Proof. Suppose that C
0ωf is surjective. We see that θ(f) = TLe(f) holds by

Proposition 3.1. Therefore, f is finitely L-determined and we have δ(f) < ∞
by Proposition 2.14.

The dimension of the K-vector space θ0(p)/mp,0θ0(p) is clearly equal to p.
On the other hand, the dimension of theK-vector space θ(f)/f∗mp,0θ(f) is equal
to pδ(f). Since C

0ωf is surjective, we see that δ(f) ≤ 1 holds. Furthermore, since
1 ≤ r ≤ δ(f) and δ(f) <∞ hold, we see that r = 1 and n ≤ p hold. In order to
see that f is non-singular, let us consider the mono-germ g : (Kn, 0) → (Kp, 0),
n ≤ p, given by

g(x1, x2, . . . , xn) = (x1, x2, . . . , xn, 0, . . . , 0).
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We see that g is non-singular. Moreover, the K-vector space θ0(p)/mp,0θ0(p) is
spanned by the classes represented by the p vector fields on the target of g


1
0
...
0


 ,



0
1
...
0


 , . . . ,




0
0
...
1


 .

On the other hand, the K-vector space θ(g)/g∗mp,0θ(g) is spanned by the classes
represented by the p vector fields along g


1
0
...
0


 ,



0
1
...
0


 , . . . ,




0
0
...
1


 .

Therefore, we also see that C
0ωg is surjective. We see that

θ(f) = TLe(f) and θ(g) = TLe(g)

hold by Proposition 3.1. These facts imply that f∗Cp,0 = g∗Cp,0 holds. There-
fore, f is L-equivalent to g by Proposition A (a) in [2, p. 303]. Thus, f is a
non-singular monogerm.

The converse follows from the implicit function theorem and Lemma 3.6. 2

Proposition 3.8. For a curve-germ f : (K, 0) → (Kp, 0), p ≥ 2, satisfying
δ(f) <∞, C

1ωf is surjective if and only if f is L-equivalent to one of the map-
germs gk given by

gk(x) = (xk, xk+1, . . . , x2k−1, 0, . . . , 0), k = 1, 2, . . . , p.

Moreover, gk1 is not L-equivalent to gk2 if k1 ̸= k2.

Proof. Suppose that C
1ωf is surjective. Since we have δ(f) < ∞, f is L-

equivalent to the map-germ g of the form

g(x) = (xδ(f) + xδ(f)+1φ1(x), x
δ(f)+1φ2(x), . . . , x

δ(f)+1φp(x))

for some φ1, φ2, . . . , φp ∈ C1,0.
We see that

g∗mp,0C1,0 =
⟨
xδ(f)

⟩
C1,0

and g∗m2
p,0C1,0 =

⟨
x2δ(f)

⟩
C1,0

hold by Proposition 2.2. Therefore, we have

g∗mp,0C1,0

g∗m2
p,0C1,0

=
⟨[
xδ(f)

]
,
[
xδ(f)+1

]
, . . . ,

[
x2δ(f)−1

]⟩
K
.
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Thus, the dimension of the K-vector space g∗mp,0θ(g)/g
∗m2

p,0θ(g) is equal to
pδ(f). The dimension of the K-vector spacemp,0θ0(p)/m

2
p,0θ0(p) is clearly equal

to p2. Since C
1ωg is also surjective by Lemma 3.6, we see that δ(f) ≤ p holds.

First, suppose that δ(f) = 1 holds. Then, g is L-equivalent to

g1(x) = (x, 0, . . . , 0)

by the implicit function theorem.
Second, suppose that 2 ≤ δ(f) ≤ p holds. Here, note that C

1ωgk is surjective
for every k with 1 ≤ k ≤ p. In fact, the K-vector space mp,0θ0(p)/m

2
p,0θ0(p) is

spanned by the classes represented by the p2 vector fields


Xα

0
...
0


 ,



0
Xα

...
0


 , . . . ,




0
0
...
Xα




(|α| = α1 + α2 + · · ·+ αp = 1).

On the other hand, the K-vector space g∗kmp,0θ(gk)/g
∗
km

2
p,0θ(gk) is spanned by

the classes represented by the pk vector fields


xk+j1

0
...
0


 ,



0
xk+j2

...
0


 , . . . ,




0
0
...

xk+jp




(j1 = 0, 1, . . . , k − 1; j2 = 0, 1, . . . , k − 1; . . . ; jp = 0, 1, . . . , k − 1)

by Proposition 2.2. Since Xj+1 ◦ gk = xk+j holds for every j = 0, 1, . . . , k − 1,
we see that C

1ωgk is surjective. Therefore, we have

ωgk(mp,0θ0(p)) = g∗kmp,0θ(gk)

for every k with 1 ≤ k ≤ p by Proposition 3.1. Note that

g∗mp,0C1,0 = g∗δ(f)mp,0C1,0

by Proposition 2.2. Moreover, we have

ωg(mp,0θ0(p)) = g∗mp,0θ(g)

by Proposition 3.1 and Lemma 3.6. Therefore, we have

ωg(mp,0θ0(p)) = ωgδ(f)(mp,0θ0(p)).

This fact implies that g∗Cp,0 = g∗δ(f)Cp,0 holds. Thus, g is L-equivalent to gδ(f)
by Proposition A (a) in [2, p. 303].

Conversely, suppose that f : (K, 0) → (Kp, 0), p ≥ 2, is L-equivalent to
the map-germ gk for some k = 1, 2, . . . , p. Since C

1ωgk is surjective for every
k = 1, 2, . . . , p, C

1ωf is also surjective by Lemma 3.6.
Finally, if k1 ̸= k2, then we have δ(fk1) ̸= δ(fk2). Thus, fk1 is not L-

equivalent to fk2 . 2
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Remark 3.9. Proposition 3.8 gives the complete L-classification of curve-
germs f : (K, 0) → (Kp, 0), p ≥ 2, satisfying ωf(mp,0θ0(p)) = f∗mp,0θ(f)
and δ(f) < ∞ by Proposition 3.1. This proposition was first mentioned in [9,
p. 61], although the precise proof was not given there.

Let us give other examples of finitely L-determined multigerms.

Example 3.10. Let f : (K, 0) → (K2, 0) be given by

f(x) = (xk + xk+1φ1(x), x
k+1 + xk+2φ2(x)),

where k ≥ 2, φ1, φ2 ∈ C1,0. We see that δ(f) = k holds.
The K-vector space mk−1

2,0 θ0(2)/m
k
2,0θ0(2) is spanned by the classes repre-

sented by the 2k vector fields[(
Xk−1−iY i

0

)]
,

[(
0

Xk−1−jY j

)]
(i = 0, 1, . . . , k − 1; j = 0, 1, . . . , k − 1).

On the other hand, the K-vector space f∗mk−1
2,0 θ(f)/f

∗mk
2,0θ(f) is spanned by

the classes represented by the 2k vector fields[(
xk(k−1)+i

0

)]
,

[(
0

xk(k−1)+j

)]
(i = 0, 1, . . . , k − 1; j = 0, 1, . . . , k − 1)

by Proposition 2.2.
We see that

C
k−1ωf

([(
Xk−1−iY i

0

)])
=

[(
xk(k−1)+i(1 + xφ̃1,i(x))

0

)]
,

C
k−1ωf

([(
0

Xk−1−jY j

)])
=

[(
0

xk(k−1)+j(1 + xφ̃2,j(x))

)]
(i = 0, 1, . . . , k − 1; j = 0, 1, . . . , k − 1)

hold for some φ̃1,i, φ̃2,j ∈ C1,0. Therefore, a matrix representative of C
k−1ωf

is regular. Thus, C
k−1ωf is surjective. By Proposition 3.4, f is finitely L-

determined.
We have

f∗mk−1
2,0 θ(f) ⊂ ωf(mk−1

2,0 θ0(2))

by Proposition 3.1 and we have

f∗mk−1
2,0 θ(f) = m

k(k−1)
1,0 θ(f)

by Proposition 2.2. Thus,

m
k(k−1)
1,0 θ(f) ⊂ TLe(f)

holds.
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Example 3.11. Let f : (K, S) → (K2, 0) be given by

f1(x) = (x2, x3), f2(x) = (x3, x2).

We see that δ(f) = δ(f1) + δ(f2) = 2 + 2 = 4 holds.
The K-vector space m3

2,0θ0(2)/m
4
2,0θ0(2) is spanned by the classes repre-

sented by the 8 vector fields[(
X3−iY i

0

)]
,

[(
0

X3−jY j

)]
(i = 0, 1, 2, 3; j = 0, 1, 2, 3).

On the other hand, the K-vector space f∗m3
2,0θ(f)/f

∗m4
2,0θ(f) is spanned by

the classes represented by the 8 vector fields[((
x6+i1

0

)
,

(
0
0

))]
,

[((
0

x6+i2

)
,

(
0
0

))]
,

[((
0
0

)
,

(
x6+i3

0

))]
,

[((
0
0

)
,

(
0

x6+i4

))]
(i1 = 0, 1; i2 = 0, 1; i3 = 0, 1; i4 = 0, 1)

by Proposition 2.2.
We see that

C
3ωf

([(
X3−iY i

0

)])
=

[((
x6+i

0

)
,

(
x9−i

0

))]
,

C
3ωf

([(
0

X3−jY j

)])
=

[((
0

x6+j

)
,

(
0

x9−j

))]
(i = 0, 1, 2, 3; j = 0, 1, 2, 3).

Since x8, x9 ∈ f∗1m
4
2,0C1,0 ∩ f∗2m4

2,0C1,0 holds, a matrix representative of C
3ωf is

regular. Thus, C
3ωf is surjective. By Proposition 3.4, f is finitely L-determined.

We have
f∗m3

2,0θ(f) ⊂ ωf(m3
2,0θ0(2))

by Proposition 3.1 and we have

f∗m3
2,0θ(f) = m6

1,0θ(f)

by Proposition 2.2. Thus,

m6
1,0θ(f) ⊂ TLe(f)

holds.
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Example 3.12. Let f : (K2, 0) → (K7, 0) be given by

f(x, y) = (x2, xy, y2, x3, x2y, xy2, y3).

We see that δ(f) = 3 holds.
The K-vector space m7,0θ0(7)/m

2
7,0θ0(7) is spanned by the classes repre-

sented by the 49 vector fields



Xα

0
0
0
0
0
0




,





0
Xα

0
0
0
0
0




, . . . ,





0
0
0
0
0
0
Xα




(|α| = α1 + α2 + · · ·+ α7 = 1).

On the other hand, the K-vector space f∗m7,0θ(f)/f
∗m2

7,0θ(f) is spanned by
the classes represented by the 49 vector fields



fα

0
0
0
0
0
0




,





0
fα

0
0
0
0
0




, . . . ,





0
0
0
0
0
0
fα




(|α| = α1 + α2 + · · ·+ α7 = 1).

Since we see that a matrix representative of C
1ωf is regular, C1ωf is surjective.

By Proposition 3.4, f is finitely L-determined.
We have

f∗m7,0θ(f) ⊂ ωf(m7,0θ0(7))

by Proposition 3.1 and we have

f∗m7,0θ(f) = m2
2,0θ(f).

Thus,
m2

2,0θ(f) ⊂ TLe(f)

holds.
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4 The module of lowerable vector fields for a
finitely L-determined multigerm

The main theme of this thesis is the following problem.

Problem 4.1. Let f : (Kn, S) → (Kp, 0) be a multigerm satisfying δ(f) < ∞.
Then, is the module Lower(f) of lowerable vector fields finitely generated? In
the case that Lower(f) is finitely generated, prove it in a constructive way.

Problem 4.1 is reduced to that of the finite generation of TRe(f) ∩ TLe(f)
by Proposition 2.8 and the fact that tf(Lower(f)) = TRe(f) ∩ TLe(f). We
see that, in the complex analytic case, TRe(f) ∩ TLe(f) is finitely generated,
since Cp,0 is Noetherian and TRe(f)∩TLe(f) is a Cp,0-submodule of the finitely
generated module θ(f). The algebraic argument, however, gives no constructive
proof. Moreover, the finite generation of TRe(f) ∩ TLe(f) has been an open
problem in the real C∞ case, as far as the author knows.

In this section, we give a constructive proof of the following theorem, which
works well in both the real C∞ case and the complex analytic case.

Theorem 4.2. Let f : (Kn, S) → (Kp, 0) be a finitely L-determined multigerm.
Then, TRe(f) ∩ TLe(f) is finitely generated as a Cp,0-module via f .

Proof. There exists a positive integer ℓ such that

mℓ
n,Sθ(f) ⊂ TLe(f) (1)

holds and we have δ(f) < ∞ by Proposition 2.14. Thus, Q(fk) is a finite
dimensional K-vector space of dimension δ(fk) for every k with 1 ≤ k ≤ r,
where fk are the branches of f . Then, there exist φk,j ∈ Cn,0, 1 ≤ j ≤ δ(fk),
such that we have

Q(fk) =
⟨
[φk,1], [φk,2], . . . , [φk,δ(fk)]

⟩
K .

We would like to find a finite set of generators for TRe(f) ∩ TLe(f). Let
us take any element η = (η1, η2, . . . , ηr) ∈ TRe(f) ∩ TLe(f). For every k =
1, 2, . . . , r, the vector field ηk can be expressed as

ηk =



∂(X1 ◦ fk)
∂x1

∂(X1 ◦ fk)
∂x2

· · · ∂(X1 ◦ fk)
∂xn

∂(X2 ◦ fk)
∂x1

∂(X2 ◦ fk)
∂x2

· · · ∂(X2 ◦ fk)
∂xn

...
...

. . .
...

∂(Xp ◦ fk)
∂x1

∂(Xp ◦ fk)
∂x2

· · · ∂(Xp ◦ fk)
∂xn




φ̃1,k

φ̃2,k

...
φ̃n,k



for some φ̃1,k, φ̃2,k, . . . , φ̃n,k ∈ Cn,0.
By Theorem 2.6, for every i = 1, 2, . . . , n, there exist ψk,i,j ∈ Cp,0 such that

we have
φ̃i,k =

∑
1≤j≤δ(fk)

(ψk,i,j ◦ fk)φk,j .
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Thus, ηk can be simplified as follows:

ηk =
∑
i, j

(ψk,i,j ◦ fk)ξk,i,j ,

where the symbol
∑
i, j

means the summation taken over all i and j with 1 ≤ i ≤ n

and 1 ≤ j ≤ δ(fk), respectively, and ξk,i,j is the transpose of(
∂(X1 ◦ fk)

∂xi
φk,j ,

∂(X2 ◦ fk)
∂xi

φk,j , . . . ,
∂(Xp ◦ fk)

∂xi
φk,j

)
.

Note that ξk,i,j ∈ TRe(fk) holds.
The function-germ ψk,i,j ∈ Cp,0 can be written in the form

ψk,i,j(X1, X2, . . . , Xp) =
∑

0≤|α|≤ℓ−1

ck,i,j,αX
α +

∑
|α|=ℓ

ψ̃k,i,j,αX
α

for some ck,i,j,α ∈ K and ψ̃k,i,j,α ∈ Cp,0. Recall that ℓ is the positive integer
given in (1). Then, we have

ηk =
∑
i,j

∑
0≤|α|≤ℓ−1

ck,i,j,α(f
α
k ξk,i,j) +

∑
i,j

∑
|α|=ℓ

(ψ̃k,i,j,α ◦ fk)(fαk ξk,i,j).

Set
ξk,i,j,α = (0, 0, . . . , 0, fαk ξk,i,j︸ ︷︷ ︸

k entries

, 0, . . . , 0).

Note that ξk,i,j,α ∈ TRe(f) holds. Then, we have

η =
∑

1≤k≤r

∑
i,j

∑
0≤|α|≤ℓ−1

ck,i,j,αξk,i,j,α +
∑

1≤k≤r

∑
i,j

∑
|α|=ℓ

(ψ̃k,i,j,α ◦ f)ξk,i,j,α.

We define the finite sets L and H of TRe(f) as follows:

L =
{
ξk,i,j,α | 0 ≤ |α| ≤ ℓ− 1, 1 ≤ k ≤ r, 1 ≤ i ≤ n, 1 ≤ j ≤ δ(fk)} ,

H =
{
ξk,i,j,α | |α| = ℓ, 1 ≤ k ≤ r, 1 ≤ i ≤ n, 1 ≤ j ≤ δ(fk)} .

Then, H ⊂ TRe(f) ∩ TLe(f) by (1). Therefore,∑
1≤k≤r

∑
i,j

∑
0≤|α|≤ℓ−1

ck,i,j,αξk,i,j,α

belongs to V = TRe(f) ∩ TLe(f) ∩ LK.
The set V is a finite dimensional K-vector space. Set dimK V = m. Then,

there exist ξ
1
, ξ

2
, . . . , ξ

m
∈ TRe(f) ∩ TLe(f) such that we have

V = ⟨ξ
1
, ξ

2
, . . . , ξ

m
⟩K.
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Clearly, we have V ⊂ ⟨ξ
1
, ξ

2
, . . . , ξ

m
⟩f∗Cp,0

. Therefore, we see that

η ∈ ⟨ξ
1
, ξ

2
. . . , ξ

m
⟩f∗Cp,0 +Hf∗Cp,0 .

Thus, we have

TRe(f) ∩ TLe(f) ⊂ ⟨ξ
1
, ξ

2
, . . . , ξ

m
⟩f∗Cp,0 +Hf∗Cp,0 .

The converse inclusion also holds, since {ξ
1
, ξ

2
, . . . , ξ

m
} ∪H is contained in

TRe(f)∩TLe(f). Thus, TRe(f)∩TLe(f) is finitely generated as a Cp,0-module
via f . 2

Remark 4.3. By our proof of Theorem 4.2, we can estimate the minimal num-
ber of generators for TRe(f) ∩ TLe(f) from above as follows.

We have
dimK TRe(f) ∩ TLe(f) ∩ LK ≤ dimK LK.

Thus, the minimal number of generators for TRe(f) ∩ TLe(f) is less than or
equal to the cardinality of L ∪H, that is,

n
r∑

k=1

δ(fk)

(
(ℓ+ p)!

ℓ ! p !

)
,

where ℓ is a positive integer such that mℓ
n,Sθ(f) ⊂ TLe(f) holds.

We have the following partial affirmative answer to Problem 4.1 as a corollary
to Theorem 4.2.

Corollary 4.4. Let f : (Kn, S) → (Kp, 0) be a finitely L-determined multigerm.
Then, the module Lower(f) of lowerable vector fields is finitely generated as a
Cp,0-module via f .

Proof. Since tf(Lower(f)) = TRe(f) ∩ TLe(f) holds, the required conclusion
follows directly from Propositions 2.8, 2.14, and Theorem 4.2. 2

The proof of Theorem 4.2 gives a method for finding explicit generators for
the module TRe(f) ∩ TLe(f). The required data are the following:

1. a positive integer ℓ such that mℓ
n,Sθ(f) ⊂ TLe(f) holds,

2. a spanning set of the K-vector space Q(f),

3. a spanning set of the K-vector space TRe(f) ∩ TLe(f) ∩ LK, where LK is
determined by the data given in the above item 2.

We present some examples in which we give explicit generators for the module
of lowerable vector fields. Note that these examples are new as far as the author
knows.
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Example 4.5. Let f : (K, 0) → (K2, 0) be given by

f(x) = (x2, x3).

By Example 3.10, m2
1,0θ(f) ⊂ TLe(f) holds. We see that

Q(f) = ⟨[1], [x]⟩K

holds.
We first look for a spanning set of the K-vector space TRe(f)∩TLe(f)∩LK.

The set L consists of the 6 vector fields

ξ1,1,1,(0,0) =

(
2x
3x2

)
, ξ1,1,1,(1,0) =

(
2x3

3x4

)
, ξ1,1,1,(0,1) =

(
2x4

3x5

)
,

ξ1,1,2,(0,0) =

(
2x2

3x3

)
, ξ1,1,2,(1,0) =

(
2x4

3x5

)
, ξ1,1,2,(0,1) =

(
2x5

3x6

)
.

Let us show that TRe(f) ∩ TLe(f) ∩ LK is spanned by the 4 vector fields

ξ1,1,1,(1,0), ξ1,1,1,(0,1), ξ1,1,2,(0,0), ξ1,1,2,(0,1).

It is clear that these vector fields belong to TRe(f)∩ TLe(f)∩LK. Let us take
any element η ∈ TRe(f) ∩ TLe(f) ∩ LK. Then, since η ∈ LK holds, there exist
c1, c2, . . . , c5 ∈ K such that we have

η = c1

(
2x
3x2

)
+ c2

(
2x2

3x3

)
+ c3

(
2x3

3x4

)
+ c4

(
2x4

3x5

)
+ c5

(
2x5

3x6

)
.

Since η ∈ TLe(f) holds, there exists a ψ ∈ C2,0 such that we have

2c1x+ 2c2x
2 + 2c3x

3 + 2c4x
4 + 2c5x

5 = ψ(x2, x3).

Therefore, we have c1 = 0. Thus, the K-vector space TRe(f) ∩ TLe(f) ∩ LK is
spanned by the 4 vector fields

ξ1,1,1,(1,0), ξ1,1,1,(0,1), ξ1,1,2,(0,0), ξ1,1,2,(0,1).

On the other hand, the set H consists of the 6 vector fields

ξ1,1,1,(2,0) =

(
2x5

3x6

)
, ξ1,1,1,(1,1) =

(
2x6

3x7

)
, ξ1,1,1,(0,2) =

(
2x7

3x8

)
,

ξ1,1,2,(2,0) =

(
2x6

3x7

)
, ξ1,1,2,(1,1) =

(
2x7

3x8

)
, ξ1,1,2,(0,2) =

(
2x8

3x9

)
.

According to the proof of Theorem 4.2, TRe(f) ∩ TLe(f) is generated as a
C2,0-module via f by the 10 vector fields

ξ1,1,1,(1,0), ξ1,1,1,(0,1), ξ1,1,2,(0,0), ξ1,1,2,(0,1)
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and

ξ1,1,1,(2,0), ξ1,1,1,(1,1), ξ1,1,1,(0,2), ξ1,1,2,(2,0), ξ1,1,2,(1,1), ξ1,1,2,(0,2).

By easy calculations, we see that ξ1,1,1,(1,0) and ξ1,1,2,(0,0) generate TRe(f) ∩
TLe(f). The corresponding lowerable vector fields are (x) and (x2), respectively.
Thus, Lower(f) is generated as a C2,0-module via f by the 2 vector fields

(x), (x2).

Example 4.6. Let f : (K2, 0) → (K7, 0) be given by

f(x, y) = (x2, xy, y2, x3, x2y, xy2, y3).

By Example 3.12, m2
2,0θ(f) ⊂ TLe(f) holds. We see that

Q(f) = ⟨[1], [x], [y]⟩K

holds.
We first look for a basis of TRe(f) ∩ TLe(f) ∩ LK. The set L consists of 48

elements, say, ξ1, ξ2, . . . , ξ48. The elements ξ3, ξ4, . . . , ξ48 all belong to TRe(f)∩
TLe(f) except for the following ξ1 and ξ2:

ξ1 =



2x
y
0

3x2

2xy
y2

0


, ξ2 =



0
x
2y
0
x2

2xy
3y2


.

Therefore, we have

⟨ξ3, ξ4, . . . , ξ48⟩K ⊂ TRe(f) ∩ TLe(f) ∩ LK.

Conversely, let us take any element η ∈ TRe(f)∩TLe(f)∩LK. Then, there
exist c1, c2, . . . , c48 ∈ K such that we have

η = c1



2x
y
0

3x2

2xy
y2

0


+ c2



0
x
2y
0
x2

2xy
3y2


+ c3ξ3 + · · ·+ c48ξ48.

Then, there exist ψ1, ψ2 ∈ C7,0 such that we have

2c1x = ψ1(x
2, xy, y2, x3, x2y, xy2, y3), 2c2y = ψ2(x

2, xy, y2, x3, x2y, xy2, y3).
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Therefore, c1 = c2 = 0 holds. Thus, the K-vector space TRe(f) ∩ TLe(f) ∩ LK
is spanned by the 46 vector fields ξ3, ξ4, . . . , ξ48. By easy calculations, we see
that

⟨ξ3, ξ4, . . . , ξ48⟩f∗C7,0

is generated as a C7,0-module via f by the 10 vector fields

xξ1, yξ1, x
2ξ1, xyξ1, y

2ξ1, xξ2, yξ2, x
2ξ2, xyξ2, y

2ξ2.

On the other hand, we have

Hf∗C7,0 ⊂
⟨
xξ1, yξ1, x

2ξ1, xyξ1, y
2ξ1, xξ2, yξ2, x

2ξ2, xyξ2, y
2ξ2
⟩
f∗C7,0

.

Therefore, TRe(f)∩TLe(f) is generated as a C7,0-module via f by the 10 vector
fields

xξ1, yξ1, x
2ξ1, xyξ1, y

2ξ1, xξ2, yξ2, x
2ξ2, xyξ2, y

2ξ2.

Thus, Lower(f) is generated as a C7,0-module via f by the 10 vector fields(
x
0

)
,

(
y
0

)
,

(
x2

0

)
,

(
xy
0

)
,

(
y2

0

)
,(

0
x

)
,

(
0
y

)
,

(
0
x2

)
,

(
0
xy

)
,

(
0
y2

)
.
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5 Non-finitely L-determined cases

In this section, we give some examples of multigerms f which are not finitely
L-determined and for which we can nevertheless calculate TRe(f) ∩ TLe(f)
explicitly. We also present explicit generators for the module Lower(f) of low-
erable vector fields in these examples.

Example 5.1. Let f : (Kn, 0) → (Kn, 0) be given by

f(x1, x2, . . . , xn) = (xm1
1 , xm2

2 , . . . , xmn
n ),

where m1,m2, . . . ,mn are positive integers such that mi ≥ 2 holds for some
i = 1, 2, . . . , n.

We see that 
xkmi−1
i

0
...
0

 ̸∈ TLe(f)

for every positive integer k. Thus, f is not finitely L-determined.
Let us show that TRe(f) ∩ TLe(f) is generated as a Cn,0-module via f by

the n vector fields
φ1(x)
0
...
0

 ,


0

φ2(x)
...
0

 , . . . ,


0
0
...

φn(x)


(
φj(x) =

{
1 (mj = 1)
x
mj

j (mj ≥ 2)

)
.

It is clear that these vector fields belong to TRe(f) ∩ TLe(f).
Let us take any element ξ ∈ TRe(f) ∩ TLe(f). Then, there exist

φ1, φ2, . . . , φn, ψ1, ψ2, . . . , ψn ∈ Cn,0

such that we have

ξ =


m1x

m1−1
1 0 · · · 0

0 m2x
m2−1
2 · · · 0

...
...

. . .
...

0 0 · · · mnx
mn−1
n




φ1(x1, x2, . . . , xn)
φ2(x1, x2, . . . , xn)

...
φn(x1, x2, . . . , xn)



=


m1x

m1−1
1 φ1(x1, x2, . . . , xn)

m2x
m2−1
2 φ2(x1, x2, . . . , xn)

...
mnx

mn−1
n φn(x1, x2, . . . , xn)



=


ψ1(x

m1
1 , xm2

2 , . . . , xmn
n )

ψ2(x
m1
1 , xm2

2 , . . . , xmn
n )

...
ψn(x

m1
1 , xm2

2 , . . . , xmn
n )

 .
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Therefore, we have

mjx
mj−1
j φj(x

m1
1 , xm2

2 , . . . , xmn
n ) = ψj(x

m1
1 , xm2

2 , . . . , xmn
n )

for every j = 1, 2, . . . , n. If mj = 1, then we have

ψj(x
m1
1 , xm2

2 , . . . , xmn
n ) = (ψj ◦ f)1.

If mj ≥ 2, then there exists a ψ̃j ∈ Cn,0 such that

ψj(x
m1
1 , xm2

2 , . . . , xmn
n ) = (ψ̃j ◦ f)x

mj

j

holds, since we have

ψj(x
m1
1 , xm2

2 , . . . , x
mj−1

j−1 , 0, x
mj+1

j+1 , . . . , xmn
n ) = 0.

Therefore, Thus, ξ is expressed as follows:

ξ = (ψ1 ◦ f)


φ1(x)
0
...
0

+ (ψ2 ◦ f)


0

φ2(x)
...
0

+ · · ·+ (ψn ◦ f)


0
0
...

φn(x)


(
φj(x) =

{
1 (mj = 1)
x
mj

j (mj ≥ 2)
, ψj(x) =

{
ψj (mj = 1)

ψ̃j (mj ≥ 2)

)
.

Thus, TRe(f) ∩ TLe(f) is generated as a Cn,0-module via f by the n vector
fields

φ1(x)
0
...
0

 ,


0

φ2(x)
...
0

 , . . . ,


0
0
...

φn(x)


(
φj(x) =

{
1 (mj = 1)
x
mj

j (mj ≥ 2)

)
.

Moreover, by Proposition 2.8, Lower(f) is generated as a Cn,0-module via f
by the n vector fields

φ̂1(x)
0
...
0

 ,


0

φ̂2(x)
...
0

 , . . . ,


0
0
...

φ̂n(x)


(
φ̂i(x) =

{
1 (mj = 1)
xj (mj ≥ 2)

)
.

For n = 2, m1 = m2 = 2, and K = R, explicit generators for Lower(f) are given
in [5, p. 109].

Example 5.2. Let f : (K2, 0) → (K3, 0) be given by

f(x, y) = (x, y2, xy),
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which is the so-called the crosscap or Whitney umbrella. Note that we have

Q(f) = ⟨[1], [y]⟩K .

We see that  0
y2i−1

0

 ̸∈ TLe(f)

for every positive integer i. Therefore, f is not finitely L-determined.
Let us show that TRe(f) ∩ TLe(f) is generated as a C3,0-module via f by

the 4 vector fields x
0
xy

 ,

 xy
0
xy2

 ,

 0
2xy
x2

 ,

 0
2y2

xy

 .

It is clear that these vector fields belong to TRe(f) ∩ TLe(f).
Let us take any element ξ ∈ TRe(f)∩TLe(f). Then, by Theorem 2.6, there

exist ψ1, ψ2, ψ3, ψ4 ∈ C3,0 such that we have

ξ =

 1 0
0 2y
y x

( (ψ1 ◦ f) + (ψ2 ◦ f)y
(ψ3 ◦ f) + (ψ4 ◦ f)y

)

= (ψ1 ◦ f)

 1
0
y

+ (ψ2 ◦ f)

 y
0
y2


+(ψ3 ◦ f)

 0
2y
x

+ (ψ4 ◦ f)

 0
2y2

xy

 .

Since ξ ∈ TLe(f) holds, there exist ψ̃1, ψ̃2, ψ̃3 ∈ C3,0 such that we have

(ψ1(x, y
2, xy))y = ψ̃1(x, y

2, xy),

(ψ2(x, y
2, xy))y = ψ̃2(x, y

2, xy),

(ψ3(x, y
2, xy))y = ψ̃3(x, y

2, xy).

Here, set x = 0. Then, we see that

ψ1(0, y
2, 0) = ψ2(0, y

2, 0) = ψ3(0, y
2, 0) = 0

holds. Note that there exist ψ̃4, ψ̃5, . . . , ψ̃9 ∈ C3,0 such that we have

ψ1(x, y
2, xy) = ψ1(0, y

2, 0) + xψ̃4(x, y
2, xy) + xyψ̃5(x, y

2, xy),

ψ2(x, y
2, xy) = ψ2(0, y

2, 0) + xψ̃6(x, y
2, xy) + xyψ̃7(x, y

2, xy),

ψ3(x, y
2, xy) = ψ3(0, y

2, 0) + xψ̃8(x, y
2, xy) + xyψ̃9(x, y

2, xy).
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Therefore, we have

ξ = ((ψ̃4 + Y ψ̃7) ◦ f)

 x
0
xy

+ ((ψ̃5 + ψ̃6) ◦ f)

 xy
0
xy2


+(ψ̃8 ◦ f)

 0
2xy
x2

+ ((Xψ̃9 + ψ4) ◦ f)

 0
2y2

xy

 .

Thus, TRe(f) ∩ TLe(f) is generated as a C3,0-module via f by the 4 vector
fields  x

0
xy

 ,

 xy
0
xy2

 ,

 0
2xy
x2

 ,

 0
2y2

xy

 .

Moreover, by Proposition 2.8, Lower(f) is generated as a C3,0-module via f
by the 4 vector fields (

x
0

)
,

(
xy
0

)
,

(
0
x

)
,

(
0
y

)
.

This example is new as far as the author knows.

31



6 Problems

We have proved that the module Lower(f) of lowerable vector fields is finitely
generated for a finitely L-determined multigerm f in the thesis. The key point
is that TRe(f) ∩ TLe(f) is finitely generated if f is finitely L-determined. We
expect to weaken the hypothesis of Theorem 4.2. In fact, we have not found
a multigerm f satisfying δ(f) < ∞ such that TRe(f) ∩ TLe(f) is not finitely
generated yet.

It is difficult to investigate Lift(f), the module of liftable vector fields for a
multigerm f . Since ωf(Lift(f)) = TRe(f)∩TLe(f) holds, we have the following
isomorphism as Cp,0-modules:

TRe(f) ∩ TLe(f) ∼=
Lift(f)

kerωf
.

However, even if f is finitely L-determined, kerωf does not vanish in general.
Therefore, we need to study kerωf , although it seems to be difficult in the real
C∞ case.

In Section 3, we have classified curve germs f : (K, 0) → (Kp, 0), p ≥ 2,
such that δ(f) are finite and C

1ωf are surjective up to L-equivalence. The next
problem would be to classify multigerms f : (Kn, S) → (Kp, 0) such that δ(f) are
finite and C

i ωf are surjective for higher i or for more general pairs of dimensions
(n, p).
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