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1 Introduction

Classical adelic theory is closely related with class field theory, theory ofL-functions and alge-
braic groups. Its origin may be traced back to a paper of Chevalley on the so-called ideles. In 1938,
A. Weil ([17]) gave the first adelic approach to Riemann-Roch theorem for curves. Contrary to the
formal sheaf theoretic approach to Riemann-Roch theorem widely adopted nowadays, the adelic
one, then popular, was very concrete for curves. Most important works on adeles in this period
were Tate’s thesis ([16]) and Weil’s works on Tamagawa numbers. Influenced by them, adeles later
became a basic tool in the study of automorphic forms, Eisenstein series and trace formula.

Modern adelic theory started with A.N. Parshin’s pioneer works on adeles over algebraic sur-
faces around 1976. In [12], Parshin introduced adelic rings and adelic complexes for divisors on
algebraic surfaces, verified that his adelic cohomology groups were isomorphic to Grothendieck’s
sheaf theoretic cohomology groups, and established the Serre duality. In 1980, Parshin’s works
were generalized by A. A. Beilinson to Noetherian schemes: In [1], Beilinson constructed adelic
complexes for quasi-coherent sheaves on Noetherian schemes, examined that the associated adelic
cohomology groups coincided with the sheaf theoretic cohomology groups and outlined an adelic
residue theory. This paper of Beilinson was very short and difficult for many to understand. To
remedy this, around 1990, younger generation started to supply the unwritten details. Now we have
the works of A. Huber[4], treating adelic complexes in great details, and A. Yekutieli[19], building
up an adelic residue theory.

At the same time, adelic approach to Riemann-Roch theorem was moving forwards. Around
2000, in [18], L. Weng developed an adelic cohomology theory for arithmetic curves, based on [16]
with a concrete construction of arithmetic cohomology groups. Furthermore, in 2011, D. V. Osipov
and A. N. Parshin not only obtained an adelic proof for the Riemann-Roch theorem on algebraic
surfaces in [11], but constructed arithmetic adelic rings for arithmetic surfaces in [10].

The purpose of our study is to introduce a general adelic cohomology theory for quasi-coherent
sheaves on arithmetic varieties. Motivated by the works of Parshin, Beilinson, Weng and Osipov-
Parshin mentioned above, we here, together with Prof. Weng, first construct adelic complexes for
quasi-coherent sheaves on arithmetic varieties and hence their arithmetic cohomology groups, and
then develop a general ind-pro topological theory in dimension two and hence to establish a topo-
logical duality for our arithmetic cohomology groups associated to invertible sheaves on arithmetic
surfaces.

Acknowledgements.I would like to express my deepest gratitude and heartful thanks to my advisor
Professor Lin Weng. He always gave me aspiring guidances, invaluably constructive advices and
criticisms in the past seven years. Without his supervision, constant help and encouragement, this
dissertation would not have been possible.
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2 Adelic Cohomology Theory on Noetherian Schemes

In this section, we recall adelic cohomology theory on Noetherian schemes developed by Parshin
([12]) and Beilinson ([1]). We will follow [4] for the presentation.

Definition 2.1 ([1], §2; [4], Definitions 1.3.1-3). Let X be a Noetherian scheme.

(1) Let P(X) be the collection of scheme-theoretic points onX. For pointsp, q ∈ P(X), we write
p ≥ q if q ∈ {p}. Clearly,≥ makesP(X) a poset.

(2) Let S(X) be the set of simplexes corresponding to the ordered set (P(X),≥). In particular,
for m ≥ 0, let S(X)m be the set ofm-simplexes andS(X)red

m be the set of non-degenerate
m-simplexes. That is,

S(X)mB
{
(p0, · · · , pm) ∈ P(X)m+1 | pi ≥ pi+1

}
,

S(X)red
m B

{
(p0, · · · , pm) ∈ S(X)m | pi , p j (i , j)

}
.

Accordingly, fori ∈ {0, 1, · · · ,m}, we define the associated boundary mapsδm
i and degeneracy

mapsσm
i as follows:

δm
i : S(X)m→ S(X)m−1; (p0, · · · , pi , · · · , pm) 7→ (p0, · · · , p̌i , · · · , pm),

σm
i : S(X)m→ S(X)m+1; (p0, · · · , pi , · · · , pm) 7→ (p0, · · · , pi , pi , · · · , pm).

Definition 2.2 ([1], §2; [4], §1.3). For a subsetK ⊂ S(X)m and a pointp ∈ P(X), we define a subset
pK of S(X)m−1 by

pK B {(p1, · · · , pm) ∈ S(X)m−1 | (p, p1, · · · , pm) ∈ K}.

As usual, for each pointp ∈ X, let Op denote the local ring ofX at p andmp be its maximal
ideal. Then we get a natural morphismf : SpecOp → X. Consequently, for eachOp-modulesN, it
makes sense for us to introduce [N]p = f∗Ñ. Moreover, letAbGpbe the category of abelian groups,
andQC(X) be the category of quasi-coherent sheaves onX.

Proposition 2.3 (Parshin-Beilinson ([12],§2; [1], §2; see also [4], Prop. 2.1.1)). For each subset
K ⊂ S(X)m, there exists an additive and exact functor

A(K, ·) : QC(X)→ AbGp

determined uniquely by the following properties.

(i) A(K, ·) commutes with direct limits.

(ii) For m= 0 and a coherent sheafF on X,

A(K,F ) =
∏
p∈K

lim←−−
l

Fp/m
l
pFp.

(iii) For m> 0 and a coherent sheafF on X,

A(K,F ) =
∏

p∈P(X)

lim←−−
l

A(pK, [Fp/m
l
pFp]p).

In the sequel, we callA(K, ·), resp.A(K,F ), the adelic functor (associated toK), resp. the adelic
group of quasi-coherent sheafF .
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Remark.We cannot apply properties (i), (ii) directly for quasi-coherent but not coherent sheaves
F . In general, to calculate adelic groups for quasi-coherent sheaves, we have to use property (i).
Indeed, sinceX is a Noetherian scheme, any quasi-coherent sheafF can be written asF = lim−−→

i∈I
Fi

with Fi (i ∈ I ) coherent sheaves onX. Hence, by property (i), we can perform the following
calculations:A(K,F ) = A(K, lim−−→

i∈I
Fi) = lim−−→

i∈I
A(K,Fi). Note that now allFi are coherent, we can

apply properties (ii), (iii) to get adelic groupsA(K,Fi).

Definition 2.4 ([4], Definition 3.3.2). Let F be a quasi-coherent sheaf onX. Then, form ≥ 0, we
define them-th adelic groupAm

X(F ) by

Am
X(F ) B A(S(X)red

m ,F ).

Definition 2.5 ([13], §2). Let F be a quasi-coherent sheaf onX. Then, for 0≤ i0 ≤ i1 ≤ · · · ≤ im,
we define the type (i0, · · · , im) adelic groupAX,i0,i1,··· ,im(F ) by

AX,i0,i1,··· ,im(F ) B AX(Ki0,i1,··· ,im,F ),

where

Ki0,i1,··· ,im B
{

(p0, p1, · · · , pm) ∈ S(X)m

∣∣∣∣ 0 ≤ ∀t ≤ m, codim{pt} = it
}
.

Remark([13], §2). If dim X < +∞, we haveAm
X(F ) =

⊕
0≤i0<···<im≤dimX

AX,i0,··· ,im(F ).

Proposition 2.6([4], Prop. 2.1.4). For a subset K⊂ S(X)m and a quasi-coherent sheafF , we have
a natural inclusion

A(K,F ) ⊂
∏

(p0,··· ,pm)∈K
A((p0, · · · , pm),F ).

Notation. By this proposition, we may write an elementf of A(K,F ) as eitherf = ( fX0,··· ,Xm), or
f = ( fp0,··· ,pm), whereXi = {pi} (0 ≤ i ≤ m), and fX0,··· ,Xm = fp0, ··· ,pm ∈ A((p0, · · · , pm),F ). If, in
addition,X is irreducible andpi is its generic point, we often omit the indexesXi , pi .

Definition 2.7 ([4], Definition 2.2.2). Assume that there existi ∈ {1, · · · ,m}, K ⊂ S(X)m and
L ⊂ S(X)m−1 satisfyingδm

i K ⊂ L. Then, for a quasi-coherent sheafF on X, we define boundary
mapsdm

i (K, L,F )

dm
i (K, L,F ) : A(L,F )→ A(K,F )

as follows.

(a) Assume thati = 0 andF is a coherent sheaf. For each pointp ∈ P(X), we have a natural
mapA(L,F )→ A(L, [Fp/ml

pFp]p) induced from the structural morphismF → [Fp/mplFp]p.
Then the mapsφl

p : A(L,F )→ A(pK, [Fp/ml
pFp]p), obtaining as the compositions of the map

A(L,F )→ A(L, [Fp/ml
pFp]p) and the projectionsA(L, [Fp/ml

pFp]p)→ A(pK, [Fp/ml
pFp]p),

form a projective system forl ∈ N. Accordingly, we define a boundary map bydm
0 (K, L,F ) =∏

p∈P(X)

lim←−−
l

φl
p.

(b) Assume thati = 1, m = 1 andF is a coherent sheaf. For each pointp ∈ P(X), canonical
mapsπl

p : Γ(X, [Fp/ml
pFp]p) → A(pK, [Fp/ml

pFp]p) form a projective system forl ∈ N.

Accordingly, we define a boundary map byd1
1(K, L,F ) =

∏
p∈P(X)

lim←−−
l

πl
p.
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(c) Assume thati > 0,m> 1 andF is a coherent sheaf. Then we define a boundary map by

dm
i (K, L,F ) =

∏
p∈P(X)

lim←−−
l

dm−1
i−1 (pK, pL, [Fp/m

l
pFp]p).

(d) dm
i (K, L, ·) commutes with direct limits.

Notation. For a quasi-coherent sheafF , setdm =
∑m

i=0(−1)idn
i (S(X)red

m ,S(X)red
m−1),F ). Then we have

a boundary mapdm : Am−1
X (F )→ Am

X(F ).

Theorem 2.8(Parsin-Beilinson [12],§2, Thm 1; [1],§2, Cor; see also [4], Thm 4.2.3, Prop 5.1.2).
For a quasi-coherent sheafF on a Noetherian scheme X, we have

(i) (A∗X(F ), d∗) becomes a complex.

(ii) For each i≥ 0, there is a natural isomorphism, as abelian groups,

Hi(A∗X(F ), d∗) ≃ Hi(X,F ),

where the left side is the i-th comology group induced from the adelic complex(A∗X(F ),d∗),
and the right side is the i-th sheaf theoretic comology group ofF .

We call the complex in this theorem an adelic complex, and their cohomology groups adelic
cohomology groups.
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3 Arithmetic Adelic Groups and Arithmetic Cohomology Groups

3.1 Notations

F : an algebraic field,
OF : the integer ring ofF,
Sfin : the set of finite places ofF,
S∞ : the set of infinite places ofF,
S B Sfin ∪ S∞,
π : X→ Y = SpecOF : an arithmetic variety of dimensionn+ 1,
XF : the generic fibre ofX,
Fv : thev-completion ofF (v ∈ S),
Xσ B X ×Y SpecFσ (σ ∈ S∞),
φσ : Xσ → XF .

3.2 Arithmetic Adelic Groups

There is a natural one-to-one correspondence between closed points on arithmetic curve SpecOF

and finite places ofF. The so-called Arakelov compactificationSpecOF of SpecOF is obtained by
adding infinite places. Associated toSpecOF is the adelic ringAF of F which contains much
refined information on not only finite places inSfin but also infinite places inS∞. Similarly, when
we construct adelic rings (and more generally adelic groups associated to quasi-coherent sheaves)
on arithmetic varietiesX, we have to treat scheme-theoretic points on bothXfin(= X) and onX∞ :=
{Xσ}σ∈S∞ . In parallel to Arakelov theory, (in particular, the Arakelov intersection theory,) however,
we need not consider all points onXσ, but only these corresponding to the so-called horizontal
cycles of bothXfin and X∞. Our treatment is motivated by Weng’s work [18], where arithmetic
curves are treated, with a use of the so-called uniformity condition: for a scheme-theoretic pointP
on XF , φ−1

σ ({P}) decomposes into finite irreducible closed varieties inXσ. Our uniformity condition
is a constrain on these irreducible components inX∞ and the induced cycles onXfin. For our own
use, we call generic points of the above irreducible closed varieties forP in Xσ the infinite points
corresponding toP.

Before treating general arithmetic varieties, we recall the following construction of arithmetic
adelic rings for arithmetic surfaces, introduced by Osipov and Parshin in [10]. For the time being,
let X be an arithmetic surface.

Definition 3.1 (Osipov-Parshin ([10],§5)).
[Finite adelic ring]
We define the finite adelic ringAfin

X for an arithmetic surfaceX by

Afin
X B AX,012(OX).

Then we have

Afin
X = lim−−→

D1

lim←−−
D2:D2≤D1

AX,12(D1)/AX,12(D2),

whereD∗ are divisors onX and we setAX,12(D∗) = AX,12(OX(D∗)).
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[∞-adelic ring]
For the adelic ringAXF = AXF ,01(OXF ) of the generic fibreXF , we have

AXF = lim−−→
C1

lim←−−
C2:C2≤C1

AXF ,1(C1)/AXF ,1(C2),

whereC∗ are divisors onXF and we setAXF ,1(C∗) = AXF ,1(OX(C∗)). We define the∞-adelic ring
A∞X for an arithmetic surfaceX by

A∞X B AXF ⊗̂Q R B lim−−→
C1

lim←−−
C2:C2≤C1

(
(AXF ,1(C1)/AXF ,1(C2)) ⊗Q R

)
.

[Arithmetic adelic ring]
We define the arithmetic adelic ringAar

X for an arithmetic surfaceX by

Aar
X B A

ar
X,012B A

fin
X ⊕ A∞X .

Remark.For any divisorsC1 ≥ C2 on XF , AXF ,1(C1)/AXF ,1(C2) is a finite dimensionalF-vector
space, hence a finite dimensionalQ-vector space.

Remark.To understand meaning of̂⊗, consider the following example. For the ring of Laurent
seriesQ((t)), we haveQ((t))⊗QR , R((t)). On the other hand,Q((t)) = lim−−→

n

lim←−−
m:m≤n

t−nQ[[ t]]/t−mQ[[ t]].

Sincet−nQ[[ t]]/t−mQ[[ t]] is a finite dimensionalQ-vector space, we have

Q((t)) ⊗̂Q R = lim−−→
n

lim←−−
m:m≤n

(t−nQ[[ t]]/t−mQ[[ t]]) ⊗Q R = lim−−→
n

lim←−−
m:m≤n

t−nR[[ t]]/t−mR[[ t]] = R((t)).

Motivated by Osipov-Parshin’s constuction, we define∞-adelic groups for arithmetic varieties
as follows. Assume in the sequel thatX is an arithmetic variety of dimensionn+1, unless otherwise
stated.

Theorem 3.2(∞-adelic groups, Sugahara-Weng [15]). For each subset K⊂ S(XF)m, there exists
an additive and exact functor

A∞(K, ·) : QC(XF)→ AbGp

determined uniquely by the following properties(i), (ii), (iii) .

(i) A∞(K, ·) commutes with direct limits.

(ii) For m= 0 and a coherent sheafG on XF ,

A∞(K,G) =
∏
p∈K

lim←−−
l

(Gp/m
l
pGp ⊗Q R).

(iii) For m> 0 and a coherent sheafG on XF ,

A∞(K,G) =
∏

p∈P(X)

lim←−−
l

A∞(pK, [Gp/m
l
pGp]p).

We define the arithmetic adelic groups by using∞-adelic groups and a uniformity condition.
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Definition 3.3 (Arithmetic adelic groups, Sugahara-Weng). Let F be a quasi-coherent sheaf onX,
FF be the quasi-coherent sheaf onXF induced byF . Fix an index tuple (i0, · · · , im) with 0 ≤ i0 ≤
· · · ≤ im.
(A) We define (i0, · · · , im)-type finite adelic groupAfin

X,i0,··· ,im(F ) and (i0, · · · , im)-type∞-adelic group
A∞X,i0,··· ,im(F ) by

Afin
X,i0,··· ,im(F ) B AX(KX,i0,··· ,im,F ), A∞X,i0,··· ,im(F ) B A∞(KXF ,i0,··· ,im,FF),

where forZ = X, XF , we set

KZ,i0,··· ,im :=
{

(p0, · · · , pm) ∈ S(Z)m

∣∣∣∣ codim{pt} = it (0 ≤ t ≤ m)
}
.

(B) We define arithmetic adelic groups as follows.

(1) For im = n+ 1, we defineAar;i0,i1,··· ,im(F ) by

Aar
X;i0,i1,··· ,im(F ) B Afin

X;i0,i1,··· ,im(F ) ⊕ A∞X;i0,i1,··· ,im−1
(FF).

(2) For im , n+ 1, we defineAar
X;i0,i1,··· ,im(F ) by

Aar
X;i0,i1,··· ,im(F ) B AX(Knh

X,i0,i1,··· ,im,F ) ⊕ Afin,inf
X (Kh

X,i0,i1,·,im,F ).

Here we set

Kh
X,i0,i1,··· ,im B

{
(Pi0, · · · ,Pim) ∈ KX,i0,i1,··· ,im

∣∣∣ (Pi0, · · · ,Pim) ∈ S(XF)n
}

Knh
X,i0,i1,··· ,im B KX,i0,i1,··· ,im\Kh

X,i0,i1,··· ,im

and use a uniformity condition to set

Afin,inf
X (Kh

X,i0,i1,·,im,F ) B{
( fEPi0

,··· ,EPim
) × ( fPi0 ,··· ,Pim

) ∈ AX(Kh
X,i0,i1,··· ,im,F ) ⊕ A∞;i0,i1,··· ,im(FF)

∣∣∣∣ fEPi0
,··· ,EPim

= fPi0 ,··· ,Pim

}
.

(3) For anym≥ 0, we defineAm
ar(X,F ) by

Am
ar(X,F ) B

⊕
0≤i0<···<im≤dimX

Aar
X,i0,··· ,im(F ).

Remark.For m = 0, ∞-adelic groupsA∞(KXF ,i0,··· ,im−1,FF) makes no sense. To complete above
definition, for an open subsetU ⊂ X, we induce (−1)-simplex 1U formally (see [19],§ 3.1). We set
S(XF)−1 = S(XF)red

−1 = {1U | U ⊂ X : open sets}. And for K ⊂ S(XF)−1, we defineA∞(K,FF) by

A∞(K,FF) B
{
FF(UK,F) ⊗Q R (dimX ≥ 2)
{s∞ ∈ FF(UK,F) ⊗Q R | s ∈ F (UK)} (dimX = 1)

whereUK =
∪

1U∈K U ands∞ denotes an element ofFF(UK,F)⊗Q R corresponding tos. The reason
for separation of arithmetic curves with others in this latest definition is that arithmetic varieties are
relative over arithmetic curves.
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Theorem 3.4 (Sugahara-Weng [15]). Let X be an arithmetic surface. For a Weil divisor D on
X, arithmetic adelic groupsAar

X,01, A
ar
X,02, A

ar
X,12(D), Aar

X,0, A
ar
X,1(D), Aar

X,2(D) as subgroups ofAar
X

associated to the invertible sheafOX(D) are given as follows:

(i) Aar
X,01 = {( fC,x) × ( fP) ∈ Aar

X | ( fC,x) ∈ AX,01, fP = fEP,x (P ∈ XF)},

(ii) Aar
X,02 = AX,02⊕ (k(XF) ⊗Q R),

(iii) Aar
X,12(D) = AX,12(D) ⊕ lim←−−

D′F :D′F≤DF

(AXF ,1(DF)/AXF ,1(D′F) ⊗Q R),

where DF denote a divisor on XF induced by D.

(iv) Aar
X,0 = k(X) = Aar

X,01∩ A
ar
X,02,

(v) Aar
X,1(D) = {( fC,x) × ( fP) ∈ Aar

X | ( fC,x) ∈ AX,1(D), fP = fEP,x (P ∈ XF)} = Aar
X,01∩ A

ar
X,12(D),

(vi) Aar
X,2(D) = {( fC,x)× ( fP) ∈ Aar

X | ( fC,x) ∈ AX,2(D), ( fP) ∈ H0(XF ,DF)⊗QR} = Aar
X,02∩Aar

X,12(D).

Proof. These are direct consequences of our definition. □

Corollary 3.5 ([15]). Let X be an arithmetic surface. Then, there are following natural ind-pro
structures on the level two subspacesAar

X,01 andAar
X,02 ofAar

X,012:

Aar
X,01 = lim−−→

D

lim←−−
E:E≤D

Aar
X,1(D)/Aar

X,1(E),

Aar
X,02 = lim−−→

D

lim←−−
E:E≤D

Aar
X,2(D)/Aar

X,2(E).

Proof. This follows from the ind-pro structure

Aar
X,012 = lim−−→

D

lim←−−
E:E≤D

Aar
X,12(D)/Aar

X,12(E)

and facts thatAar
X,01∩ A

ar
X,12(D) = Aar

X,1(D), Aar
X,02∩ A

ar
X,12(D) = Aar

X,2(D). □

3.3 Arithmetic Cohomology Groups

In this subsection, letπ : X→ Y be an arithmetic surface.

Definition 3.6 ([15]). Form≥ 0 and a quasi-coherent sheafF , we define the boundary mapsdm
ar by

dm
ar : Am

ar(X,F )→ Am+1
ar (X,F ); ( fP0,··· ,Pm) 7→ (

∑m+1
i=0 (−1)i fQ0,··· ,Q̌i ,··· ,Qm+1

).

Proposition 3.7([15]). LetF be a quasi-coherent sheaf on X.(A∗ar(X,F ), d∗ar) forms a complex of
abelian groups.

We call this compex an arithmetic adelic complex.

Definition 3.8 (Adelic cohomology groups, Sugahara-Weng). Let F be a quasi-coherent sheaf on
X. For i ∈ {0, 1, · · · , n+ 1}, we define thei-th arithmetic cohomology groupsHi

ar(X,F ) of F by

Hi
ar(X,F ) B Hi(A∗ar(X,F ),d∗ar).
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Theorem 3.9(Weng [18]). Let Y be an arithmetic curve. Then for any divisor D on Y, we have

(i) H0
ar(Y,D) = Aar

Y,0 ∩ A
ar
Y,1(D),

(ii) H1
ar(Y,D) = Aar

Y,01/(A
ar
Y,0 + A

ar
Y,1(D)).

Proof. To get arithmetic cohomology groups, calculate cohomology groups of an arithetic adelic
complex

0→ Aar
Y,0 ⊕ A

ar
Y,1(D)

d1

−−→ Aar
Y,01→ 0,

where

d1 : (a0,a1) 7→ (a1 − a0).

□

Theorem 3.10(Sugahara-Weng [15]). Let X be an arithmetic surface. Then, for a Weil divisor D on
X, the arithmetic cohomology groups of the invertible sheafOX(D) on X are given by the follows:

(i) H0
ar(X,D) = Aar

X,01∩ A
ar
X,02∩ A

ar
X,12(D),

(ii) H1
ar(X,D)
≃ ((Aar

X,01+ A
ar
X,02) ∩ A

ar
X,12(D))/(Aar

X,01∩ A
ar
X,12(D) + Aar

X,02∩ A
ar
X,12(D)),

≃ ((Aar
X,01+ A

ar
X,12(D)) ∩ Aar

X,02)/(A
ar
X,01∩ A

ar
X,02+ A

ar
X,02∩ A

ar
X,12(D)),

≃ ((Aar
X,02+ A

ar
X,12(D)) ∩ Aar

X,01)/(A
ar
X,01∩ Aar

X,02+ A
ar
X,01∩ Aar

X,12(D)),

(iii) H2
ar(X,D) = Aar

X,012/(A
ar
X,01+ A

ar
X,02+ A

ar
X,12(D)).

Proof. To get arithmetic cohomology groups, we calculate cohomology groups of the arithmetic
adelic complex

0→ Aar
X,0 ⊕ A

ar
X,1(D) ⊕ Aar

X,2(D)
d1

−−→ Aar
X,01⊕ A

ar
X,02⊕ A

ar
X,12(D)

d2

−−→ Aar
X,012→ 0,

where

d1 : (a0, a1,a2) 7→ (a1 − a0, a2 − a0, a2 − a1), d2 : (a01,a02, a12) 7→ a12− a02+ a01.

□

3.4 Inductive Long Exact Sequences

In this subsection, letπ : X→ Y be an arithmetic surface.
There are two types of irreducible curves onX. Namely,

(a) horizontal curvesH, whereH = {P} for an algebraic pointP of XF . In this case we write
H = EP.

(b) vertical curvesV, whereπ(V) = {v} consisting of a closed pointv onY.

For an irreducible curveC on X, we define a mapφ

Aar
X,1(D +C)/Aar

X,1(D) ⊕ Aar
X,2(D +C)/Aar

X,2(D)
φ
−→ Aar

X,12(D +C)/Aar
X,12(D),

whereφ : (a1, a2) 7→ a2 − a1.
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Proposition 3.11([15]). Let V ⊂ X be a vertical curve. We have the following long exact sequence
of cohomology groups

0 → H0
ar(X,D)→ H0

ar(X,D + V)→ H0(V, (D + V) |V)

→ H1
ar(X,D)→ H1

ar(X,D + V)→ H1(V, (D + V) |V)

→ H2
ar(X,D)→ H2

ar(X,D + V)→ 0.

Proof. This is a direct consequence of the following commutative diagram

0 0 0y y y
Aar

X,0 ⊕ A
ar
X,1(D) ⊕ Aar

X,2(D)
d1−−−−−→ Aar

X,01⊕ A
ar
X,02⊕ A

ar
X,12(D)

d2−−−−−→ Aar
Xy y ∥∥∥∥

Aar
X,0 ⊕ A

ar
X,1(D + V) ⊕ Aar

X,2(D + V)
d1−−−−−→ Aar

X,01⊕ A
ar
X,02⊕ A

ar
X,12(D + V)

d2−−−−−→ Aar
Xy y y

Aar
X,1(D + V)/Aar

X,1(D) ⊕ Aar
X,2(D + V)/Aar

X,2(D)
φ

−−−−−→ Aar
X,12(D + V)/Aar

X,12(D) −−−−−→ 0y y
0 0.

with exact columns and facts that

Aar
X,1(D + V)/Aar

X,1(D) ≃ AV,0,

Aar
X,2(D + V)/Aar

X,2(D) ≃ AV,1((D + V) |V),

Aar
X,12(D + V)/Aar

X,12(D) ≃ AV,01.

□

Proposition 3.12 ([15]). Let EP ⊂ X be a horizontal curve. We have the following long exact
sequence of cohomology groups

0 → H0
ar(X,D)→ H0

ar(X,D + EP)→ Ker φ

→ H1
ar(X,D)→ H1

ar(X,D + EP)→ Cokerφ

→ H2
ar(X,D)→ H2

ar(X,D + EP)→ 0.

Proof. This is a direct consequence of the following commutative diagram

0 0 0y y y
Aar

X,0 ⊕ A
ar
X,1(D) ⊕ Aar

X,2(D)
d1−−−−−→ Aar

X,01⊕ A
ar
X,02⊕ A

ar
X,12(D)

d2−−−−−→ Aar
Xy y ∥∥∥∥

Aar
X,0 ⊕ A

ar
X,1(D + EP) ⊕ Aar

X,2(D + V)
d1−−−−−→ Aar

X,01⊕ A
ar
X,02⊕ A

ar
X,12(D + EP)

d2−−−−−→ Aar
Xy y y

Aar
X,1(D + EP)/Aar

X,1(D) ⊕ Aar
X,2(D + EP)/Aar

X,2(D)
φ

−−−−−→ Aar
X,12(D + EP)/Aar

X,12(D) −−−−−→ 0y y
0 0.
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with exact columns. □

Remark.Unlike for vertical curves, for horizontal curves, we do not have the group isomorphisms
between Kerφ, resp. Cokerφ, andH0

ar(EP, (D + EP) |EP), resp. H1
ar(EP, (D + EP) |EP). This is in

fact not surprising: different from vertical curves, for the arithmetic cohomology, there is no simple
additive law with respect to horizontal curves when count these arithmetic groups: In Arakeloc
theory, we have the following formulas.

(i) ([6], V, § 3, Proof of Lem 3.8) For any vertical curveV,

χX/Y(OX(D + V)) − χX/Y(OX(D)) = χ(OX(D + V) |V).

(ii) ([6], V, § 3, Theorem 3.4) For any horizontal curveEP,

χX/Y(OX(D + EP)) − χX/Y(OX(D)) = χEP/Y(OX(D + EP) |EP) − 1
2dλ(EP),

where letλ = 1
2g be a Neron function resulting from a Green functiong, dλ(EP) be a logarithmic

λ−discriminant,χ be a Euler characteristic (see [6], pp. 3, 21, 99 and 112).

13



4 Residue Pairings

In this section, letπ : X→ Y be a regular arithmetic surface.

Definition 4.1 (Morrow ([8], Definition 2.5)). Let (A,mA) be a Noetherian local ring andN be an
A-module. Then we define the maximal Hausdorff quotientNsepof N by

NsepB N/
∩
n≥1

mn
AN.

Let F be a complete discrete valuation field,OF be its valuation ring andK be a subfield ofF
such thatK = Frac(OF ∩ K). Then for the differential moduleΩOF/K∩OF we define the continuous
differential moduleΩcts

F/K

Ωcts
F/K B Ω

sep
OF/K∩OF

⊗OF F.

Definition 4.2 (Residue maps: equal characteristic zero, Morrow ([8],§ 2.2)). Let N be a 2-
dimensional local field of equal characteristic zero. Assume thatN includes local fieldL. Then
the following (1)-(4) hold.

(1) N have a unique coefficient fieldkN includingL,

(2) kN/L is a finite extension,

(3) kN is an algebraic closure ofL in N,

(4) There exists a uniformizert ∈ N such thatN ≃ kN((t)).

We define residue map resN for N by

resN : Ωcts
N/L = Ndt→ kN, (

∑
n

antn)dt 7→ a−1.

Definition 4.3 (Residue maps: mixed characteristic, Morrow ([8],§ 2.3)). Let N be a 2-dimensional
local field of mixed characteristics with the residue field of characteristicp. Then the following
(1)-(3) hold.

(1) N containsQp.

(2) Let kN be an algebraic closureQp in N. kN corresponds to a coefficient field ofN.

(3) There exists a 2-dimensional local fieldM ⊂ N satisfying conditions (i)-(iv):

(i) N/M is a finite extension.

(ii) M = N, whereM andN denote residue fields ofM andN respectively.

(iii) kM = kN.

(iv) M is kM-isomorphic tokM{{t}}, where

kM{{t}} B {
∑

n∈Z antn | an ∈ kM; inf i νkM (ai) > −∞; an→ 0 asn→ −∞}.

We define the residue map resN for N by

resN : Ωcts
N/L = Ω

cts
M/L ⊗M N

TrN/M−−−−→ Ωcts
M/L

resM−−−→ kM = kN,

resM : Ωcts
M/L = Mdt→ kM, (

∑
n

antn)dt 7→ −a−1.
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For the finite adelic ringAfin
X , it is known thatAfin

X ⊂
∏

{P0,P1,P2}∈S(X)red
2

A({P0,P1,P2},OX) and

k(X)C,x B A({P0,P1,P2},OX) is a finite direct sum of 2-dimensional local fields (see [1], 2; [13],
Prop. 1). HenceAfin

X is a subgroup of direct product of 2-dimensional local fields.

Similary, for∞-adelic ringA∞X , we have a natural inclusionA∞X ⊂
∏

P∈XK :closed

A({η,P},OXF ) ⊗̂Q R

andk(XF)P ⊗̂Q R B A({η,P},OXF ) ⊗̂Q R is a finite direct sum of fields of the formR((t)) or C((t)).
HenceA∞X is a subgroup of direct product of fields of the formR((t)) orC((t)).

From the above, to define residue paring for an arithmetic adelic ring, we can use residue maps
for 2-dimensional local fields above and the natural residue maps resK((t)) : K((t))→ K;

∑
n antn 7→

a−1 (whereK denotes eitherR orC).

Definition 4.4 (Tate ([16],§ 2.2)). We define residue mapsλ∞, λp (p a prime) by

λ∞ : R→ R/Z; x 7→ −x modZ,

λp : Qp→ R/Z;
∑

n

anpn 7→
∑
n<0

anpn modZ.

Notation. Set ResN B λv ◦ TrkN/Qv ◦ resN. SinceA({P0,P1,P2},OX) can be written as a finite direct
sum
⊕

N N of 2-dimensional local fieldsN, we define residue map ResC,x by ResC,x B
∑

N ResN,

whereC = {P1}, x = P2.
Similarly, sinceA({η,P},OXF ) ⊗̂Q R can be written as a finite direct sum fields

⊕
L L of fieldsL

of the formR((t)) orC((t)), we define the residue map ResP by ResP B
∑

L ResL.

Definition 4.5 (Residue parings, Sugahara-Weng [15]). Let 0 , ω ∈ Ωk(X)/F . We define the global
residue pairing⟨·, ·⟩ω on the arithmetic adelic ringAar

X by

⟨·, ·⟩ω : Aar
X × Aar

X → R/Z;

(( fC,x) × ( fP)), (gC,x) × (gP)) 7→
∑
(C,x)

ResC,x( fC,xgC,xω) +
∑

P

ResP( fPgPω).

For the global residue pairing, we have the following fundamental result.

Theorem 4.6 (Non-Degenercy of Residue Pairing, Sugahara-Weng [15]). Let 0 , ω ∈ Ωk(X)/F .
⟨·, ·⟩ω onAar

X is a non-degenerate pairing.

For later use, we also recall the following

Theorem 4.7(Residue formulas, Morrow ([8], Thm 4.1; [9], Thm 5.4)). Let 0 , ω ∈ Ωk(X)/F . We
have

(i) For a fixed closed point x∈ X, ∑
C:x∈C

ResC,x(ω) = 0.

(ii) For a fixed horizontal curve EP ⊂ X,∑
x:x∈EP

ResEP,x(ω) +
∑

P

ResP(ω) = 0.

(iii) For a fixed vertical curve V⊂ X, ∑
x:x∈V

ResV,x(ω) = 0.

15



5 Topological Structures of Adelic Groups

In this section, letπ : X→ Y be a regular arithmetic surface.

5.1 Topological Structures of Arithmetic Adelic Rings

To introduce a natural topology on the adelic ringAar
X , we follow [15] using ind-pro structures

on our space starting from locally compact topologies. More precisely, it goes as follows.
For all divisorsD ≥ E on X, AX(D)/AX(E) are locally compact, Hausdorff topological groups.

Indeed, settingD − E =
s∑

i=1

aiCi (ai ≥ 0), we have

AX,12(D)/AX,12(E) =
s∏

i=1

A(ηCi
K12, [OX(D)ηCi

/mai
ηCi
OX(D)ηCi

]ηCi
).

SettingF = [OX(D)ηCi
/mai

ηCi
OX(D)ηCi

]ηCi
, sinceF is a quasi-coherent sheaf, we can expressF =

lim−−→
j∈J
F j in terms of direct limit of certain coherent sheavesFi (i ∈ I ). Consequently, we have

A(ηCi
K12,F ) = A({x | x ∈ Ci}, lim−−→

j∈J
F j)

= lim−−→
j∈J
A({x | x ∈ Ci},F j)

= lim−−→
j∈J

∏
x:x∈Ci

(lim←−−
l

F j,x/m
l
xF j,x).

Note thatF j ( j ∈ J) are coherent sheaves andx are closed points. So,F j,x/ml
xF j,x are finite groups.

In particular, we can endow allF j,x/ml
xF j,x with discrete and compact topologies. Accordingly, by

using product topology, inductive limit topology and projective limit topology, we obtain a natu-
ral topology on the spaceAfin

X (D)/Afin
X (E). This topology onAfin

X (D)/Afin
X (E) is well-known to be

Hausdorff and locally compact.
Moreover, since we have

Afin
X = lim−−→

D

lim←−−
E:E≤D

AX,12(D)/AX,12(E).

Again by using projective limit topology first and then inductive limit topology, we obtain a natural
topology onAfin

X .
On the other hand, for all divisorsD ≥ E on XF , sinceA∞X,1(D)/A∞X,1(E) are finiteR-vector

spaces,A∞X,1(D)/A∞X,1(E) are locally compact, Hausdorff topological spaces. Furthermore, since

A∞X = lim−−→
D

lim←−−
E:E≤D

A∞X,1(D)/A∞X,1(E),

similarly, we obtain a natural topology onA∞X by using inductive limit and projective limit.
Recall thatAar

X = A
fin
X ⊕A∞X . Using product structure, we obtain a natural topology on our adelic

ringAar
X , which we call the ind-pro topology.

We may realize the above formal definition of the ind-pro topology onAar
X in a more concrete

term following [15]. To explain this, fix a Madunts-Zhukov lifiting

hC : AC,01 ≃ (
∏
x:x∈C

′
OC,x)/(πC

∏
x:x∈C

′
OC,x)

lifiting
−−−−−→

∏
x:x∈C

′
OC,x
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(see [7]). Then, following Parshin ([12, 13]),

Afin
X =

(
∞∑

iC=−∞
hC(aiC) πiC

C )C ∈
∏

C

∏
x:x∈C

k(X)C,x

∣∣∣∣∣∣∣∣∣
aiC ∈ AC,01,

aiC = 0 for sufficiently smalliC,
min{iC | aiC , 0} ≥ 0 for almost allC

 .
Moreover, one checks that a fundamental system of open neighborhoods of 0 for the ind-pro topol-
ogy onAfin

X may be described as follows:(
∞∑

iC=−∞
hC(UiC) πiC

C )C ∈ Afin
X

∣∣∣∣∣∣∣∣∣
UiC ⊂ AC,01 open subsets,
UiC = AC,01 for sufficiently largeiC,
max{iC | UiC , AC,01} < 0 for almost allC

 .
5.2 Ind-Pro Topological Spaces and Their Duals

For a topological spaceT, denote bŷT B { f : T → S1 | continuous}. There is a natural topology
on T̂, namely, the compact-open topology generated by open subsets of the formW(K,U) B { f ∈
T̂ | f (K) ⊂ U}, whereK ⊂ T are compact,U ⊂ S1 are open. We call̂T the (Pontryagin) dual ofT.

Proposition 5.1([15]). Let {Pn}n be a projective system of Hausdorff topological groups with struc-
tural mapsπn,m : Pm → Pn andπn : lim←−−

n

Pn → Pn. Assume that allπn andπn,m are surjective and

open, and that for any n, n′, there exists an n′′ such that n′′ ≤ n and n′′ ≤ n′. Then, as topological
groups,

̂lim←−−
n

Pn ≃ lim−−→
n

P̂n.

Proof. Denote byπ̂n,m : P̂n → P̂m, fn 7→ fn ◦ πn,m, the dual ofπn,m. Then, for an element lim−−→
n

fn ∈

lim−−→
n

P̂n, we haveπ̂n,m( fn) = fm, or equivalently,fn ◦ πn,m = fm. Hence, ifx = lim←−−
n

xn ∈ lim←−−
n

Pn, we

have fn(xn) = fn(πn,m(xm)) = fm(xm) for sufficiently smalln ≥ m. Based on this, we define a natural
map

φ : lim−−→
n

P̂n→ ̂lim←−−
n

Pn, lim−−→
n

fn 7→ f

where f : lim←−−n
Pn→ S1, x = lim←−−n

xn 7→ fn(xn). From above discussion,f is well-defined.

Lemma 5.2([15]). Concerningφ and f , the following holds.

(1) f is continuous. In particular,φ is well-defined.

(2) φ is a bijection.

(3) φ is continuous.

(4) φ is open.

Proof. (1) For sufficiently smalln, f = fn ◦ πn. Since fn andπn is continuous,f is continuous,
and henceφ is well-defined.
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(2) To prove thatφ is injective, we assume thatφ(lim−−→
n

fn) = 0. Thus fn(xn) = 0 for sufficiently

smalln and for all lim←−−
n

xn ∈ lim←−−
n

Pn. Note thatπn are surjective. Sofn(xn) = 0 for all xn ∈ Pn.

This meansfn = 0 for sufficiently smalln. Consequently, lim←−−
n

fn = 0, and henceφ is injective.

To show thatφ is surjective, letf : lim←−−
n

Pn → S1 be a continuous map. Then, for any open

subsetU ⊂ S1 containing 1,f −1(U) is an open neighborhood of 0 in lim←−−
n

Pn. Hence, we can

write f −1(U) as f −1(U) = lim←−−
n

Pn ∩
∏

n

Kn whereKn ⊂ Pn are open subsets andKn = Pn for

almost alln. By our assumptions, forn1, · · · , nr such thatKni ⊊ Pn, there exists anN such
thatN ≤ ni . Hence,f (Ker πN) = 1. So, f (Ker πn) = 1 for all n ≤ N. Built on this, we define,
for n ≤ N, the mapsfn : Pn → S1, xn 7→ f (x) if πn(x) = xn. Note that f (x) always make
sense, sinceπn is surjective. Moreover,fn’s are well-defined. Indeed, ify ∈ lim←−−

n

Pn such that

πn(y) = xn, thenπn(y) = xn = πn(x) for n ≤ N. Hencex − y ∈ Ker πn. This implies that
f (y) = f (x). Clearly, by definition,φ(lim−−→

n

fn) = f . Soφ is surjecitive.

(3) To prove thatφ is continuous, it suffices to show that for open subsets of̂lim←−−
n

Pn in the form

W(K,V), φ−1(W(K,V)) is open in lim−−→
n

P̂n, whereK is a compact subset of lim←−−
Pn

andV is open

subset ofS1. Sinceπn are continuous,Kn = πn(K) are compact. In this way, we get an
inductive system of open subsets{W(Kn,V)}n. SetU = lim−−→

n

W(Kn,V). Note that we have

f (U) =W(K,V). This shows thatf is continuous.

(4) To prove thatφ is open, letU be an open subset of lim−−→
n

P̂n such thatι−1(U) = W(Kn,V) for a

compact subsetKn of Pn for anyn whereιn : P̂n→ lim−−→
n

P̂n. K B lim←−−
n

Kn is compact in lim←−−
n

Pn.

Consequently,W(K,V) is open in̂lim←−−
n

Pn. Note that we haveφ(U) = W(K,V). Soφ is open.

This proves the lemma.
□

Clearly, our proposition is a direct consequence of the lemma above. Hence, the proposition is
proven. □

Let {Dn}n be an inductive system of Hausdorff topological groups such that allιn,m are injective
and closed. By definition,{Dn}n is called compact oriented, if, for any compact subsetK ⊂ lim−−→

n

Dn,

there exists an indexn0 such thatK ⊂ Dn0.

Proposition 5.3 ([15]). Let {Dn}n be a compact oriented inductive system of topological groups
with structural mapsιn,m : Dn → Dm and ιn : Dn → lim−−→

n

Dn. Assume (that allιn,m are injective and

closed, and) that for any n, n′, there exists an n′′ such that n′′ ≥ n and n′′ ≥ n′. Then, as topological
groups,

̂lim−−→
n

Dn ≃ lim←−−
n

D̂n.
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Proof. Denote byι̂n,m : D̂m → D̂n, fm 7→ fm ◦ ιn,m, the dual ofιn,m. Then, for lim←−−
n

fn ∈ lim←−−
n

D̂n,

we haveι̂n,m( fm) = fn, or equivalently,fm ◦ ιn,m = fn. Hence, ifx = lim−−→
n

xn ∈ lim−−→
n

Dn, fm(xm) =

fm(ιn,m(xn)) = fn(xn) for sufficiently largen ≥ m. Based on this, we define a natural map

ψ : lim←−−
n

D̂n→ ̂lim−−→
n

Dn, lim←−−
n

fn 7→ f

where f : lim−−→
n

Dn→ S1, lim−−→
n

xn 7→ fn(xn). From above discussion,f is well-defined.

Lemma 5.4([15]). For ψ and f , the following holds.

(1) f is continuous. In particular,ψ is well-defined.

(2) ψ is a bijection.

(3) ψ is continuous.

(4) ψ is open.

Proof. (1) To prove thatf is continuous, letU ⊂ S1 be an open subset. For anyn, ι−1
n ( f −1(U)) =

f −1
n (U) is open inDn. Hencef −1(U) is open. Sof is continuous.

(2) To prove thatψ is injective, we assume thatψ(lim←−−
n

fn) = 0. Then f (xn) = fn(xn) = 0 for all

xn ∈ Dn. This means thatfn = 0 for anyn. Consequently, lim−−→
n

fn = 0, and henceψ is injective.

To show thatψ is surjective, letf : lim−−→
n

Dn→ S1 be a continuous map. Setfn = f ◦ ιn. Clearly,

fn is continuous. Sofn ∈ D̂n. Moreover, for alln′ ≥ n, fn = f ◦ ιn = f ◦ ιn′ ◦ ιn,n′ = fn′ ◦ ιn,n′ .
That is,{ fn}n forms a projective limit. Obviously,ψ(lim←−−

n

fn) = f .

(3) To prove thatψ is continuous, it suffices to show that for open subsets of̂lim−−→
n

Dn in the form

W(K,V), ψ−1(W(K,V)) is open in lim←−−
n

D̂n, whereK is a compact subset of lim−−→
n

Dn andV is

an open subset ofS1. By our assumptions, for anyn′, ι−1
n′ (Dn) is closed. HenceDn ⊂ lim−−→

n

Dn

are closed. SoKn B K ∩ Dn are compact. Sinceψ−1(W(K,V)) = lim←−−
n

W(Kn,V), it suffices

to show that lim←−−
n

W(Kn,V) is open. This is a consequence of our assumptions. Indeed, since

our system is compact oriented, there exists a certainn0 such thatK = lim−−→
n

Kn ⊂ Dn0. Hence,

Kn = Kn0 = K for all n ≥ n0. lim←−−
n

W(Kn,V) = π−1
n0

(W(Kn0,V)). So, lim←−−
n

W(Kn,V) is open.

(4) To prove thatψ is open, letU be an open subset of lim←−−
n

D̂n such thatU = π−1
n (W(Kn,V)) for

a compact subsetKn of Pn for somen, whereπn : lim−−→
n

D̂n → D̂n. ThenW(Kn,V) is open in

̂lim−−→
n

Dn. Note that we haveψ(U) =W(Kn,V). Soψ is open. This proves the lemma.

□

Clearly, our proposition is a direct consequence of the lemma above. Hence, the proposition is
proven. □
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5.3 Completeness and Compact Orientedness of Arithmetic Adelic Groups

For basis of complete topological groups, please refer to [2] and [3].
In the sequel, we use simplyA to denote arithmetic adelic groupsAfin

X , or AX,01, or AX,02 or
A∞X . Similarly, we useA(D) to denote arithmetic adelic groupsAX,12(D), orAX,1(D), orAX,2(D) or
A∞X,1(D). WhenA and/orA(D) represent what will be clear according to the text involved below.

Proposition 5.5([15]). The subgroupsA(D) ofA are complete and hence closed.

Proof. SinceA(D)/A(E) are complete Hausdorff locally compact, as a projective limit of complete
spaces,A(D) = lim←−−

E:E≤D

A(D)/A(E) is complete. It is also closed sinceA is Hausdorff. □

Lemma 5.6([15]). Let {A(Dn)}n be a strictly increasing sequence and{an}n be a sequence of ele-
ments ofA. Assume that an ∈ A(Dn) − A(Dn−1) for all n ≥ 1. Then there exists an open subset U of
lim−−→

n

A(Dn) such that a1, · · · ,an, · · · < U and am+1, · · · ,an, · · · < U + A(Dm) for all m < n.

Proof. We separate the finite and infinite adeles.
[Finite Adeles] SinceA(D1)/A(D0) is Hausdorff, there exists an open, and hence closed, subgroup
U1 ⊂ A(D1) such thata1 < U1 andU1 ⊃ A(D0). SinceA(D1) is complete andU1 is closed in
A(D1), U1 is complete as well. Now, viewing inA(D2), sinceA(D2) is Hausdorff, U1 is a complete
subgroup, soU1 is closed inA(D2). HenceA(D2)/U1 is Hausdorff too. Therefore, there exists an
open and hence closed subgroupV2,0 of A(D2) such thata1,a2 < V2,0 andV2,0 ⊃ U1. In addition,
A(D2)/A(D1) is Hausdorff, there exists an open subgroupV2,1 such thata2 < V2,1 andV2,1 ⊃ A(D2).
Consequently, if we setU2 = V2,0 ∩ V2,1, U2 is an open hence closed subgroup ofA(D2) such
that a1, a2 < U2, a2 < U2 + A(D1) and U2 ⊃ U1. So, inductively, we may assume that there
exists an increasing sequence of open subgroupsU1, · · · ,Un−1 satisfying the properties required. In
particular, the following quotient groups

A(Dn)/Un−1 + A(D0) (= A(Dn)/Un−1), · · · ,A(Dn)/Un−1 + A(Dn−1) (= A(Dn−1))

are Hausdorff. Hence there are open subgroupsVn,m,0 ≤ m≤ n−1 ofA(Dn) such thatam+1, · · · , an <

Vn,m andVn,m ⊃ Un−1 + A(Dm). DefineUn B
n−1∩
m=1

Vn,m. ThenUn is an open subgroup ofA(Dn)

satisfyinga1, · · · , an < Un, am+1, · · · ,an < Un+A(Dm), 1 ≤ m≤ n−1 andUn ⊃ Un−1. Accordingly,
if we let U = lim−−→

n

Un, by definition,U is an open subgroup of lim−−→
n

A(Dn), and from our construction,

a1, · · · , an, · · · < U andam+1, · · · , an, · · · < U + A(Dm),m≥ 1.

[Infinite Adeles] SinceA(D1) is Hausdorff, there exists an open subsetU1 of A(D1) such thata1 <
A(D1). Moreover, sinceA(D2) ≃ A(D2)/A(D1) ⊕ A(D1) andA(D2)/A(D1) is Hausdorff, there
exists an open subsetU2 of A(D2) such thata1,a2 < U2 and U2 ∩ A(D1) = U1. In particular,
a2 < U2 + A(D1). Similarly, as above, with an inductive process, based on the fact thatA(Dn) ≃
A(Dn)/A(Dn−1)⊕A(Dn−1) andA(Dn)/A(Dn−1) is Hausdorff, there exists an open subsetUn ofA(Dn)
such thata1, · · · , an < Un andUn ∩ A(Dn) = Un−1. Consequently,am+1, · · · ,an < Un + A(Dm), 1 ≤
m≤ n−1. In this way, we obtain an infinite increasing sequence of open subsetsUn. LetU = lim−−→

n

Un.

Then we havea1, · · · , an, · · · < U and am+1, · · · ,an, · · · < U + A(Dm),m ≥ 1. This proves the
lemma. □
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Proposition 5.7([15]). A is complete.

Proof. Let {an}n be a Cauchy sequence ofA. We will show that these exists a divisorD such that
{an}n ⊂ A(D). Assume that, on the contrary, for all divisorsD, {an}n ⊂ A(D). Then there exists a
subsequence{akn}n of {an}n, a (strictly increasing) sequence{Dn}n, and an open neighborhoodU of
0 in lim−−→

n

A(Dn) such that

(i) akn ∈ A(Dn) − A(Dn−1) (n ≥ 2),

(ii) ak1, · · · , akn, · · · < U,

(iii) aki+1, · · · ,akn, · · · < U + A(Di) (i ≥ 1).

Since{akn}n is not a Cauchy sequence of lim−−→
n

A(Dn), we the get a contradiction. Therefore, there

exists a divisorD such that{an} ⊂ A(D). But A(D) is complete, the Cauchy sequence{an}n is
convergent inA(D). □

Proposition 5.8([15]). A is compact oriented.

Proof. Assume that for all divisorsD, K 1 A(D). Then there exists a sequence{an}n in K, a (strictly
increasing) sequence{Dn}n, and an open neighborhoodU of 0 in lim−−→

n

A(Dn) such that

(i) an ∈ A(Dn) − A(Dn−1) (n ≥ 2),

(ii) a1, · · · , an, · · · < U,

(iii) ai+1, · · · ,an, · · · < U + A(Di) (i ≥ 1).

{U + A(Dn)}n is a open covering ofK ∩ lim−−→
n

A(Dn) and admits no finite sub-covering. On the other

hand,K ∩ lim−−→
n

A(Dn) is compact, a contradiction. Indeed, since lim−−→
n

A(Dn) is complete andA is

Hausdorff, lim−−→
n

A(Dn) is closed inA and henceK ∩ lim−−→
n

A(Dn) is compact. This completes the

proof. □

5.4 Double Dual of Arithmetic Adelic Rings

Proposition 5.9([15]). As topological groups, we have the following isomorphisms.

(i) Â ≃ lim←−−
D

lim−−→
E:E≤D

(A(D)/A(E)) ,̂

(ii) ̂̂A ≃ A.

Proof. (i)

Â ≃ (lim−−→
D

lim←−−
E:E≤D

A(D)/A(E))̂
≃ lim←−−

D

( lim←−−
E:E≤D

A(D)/A(E))̂
≃ lim←−−

D

lim−−→
E:E≤D

(A(D)/A(E)) .̂
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(ii) Remarking that (A(D)/A(E))̂̂≃ A(D)/A(E) sinceA(D)/A(E) are Hausdorff locally compact
groups,

̂̂
A ≃ (lim←−−

D

lim−−→
E:E≤D

(A(D)/A(E)) )̂̂
≃ lim−−→

D

( lim−−→
E:E≤D

(A(D)/A(E)) )̂̂
≃ lim−−→

D

lim−−→
E:E≤D

(A(D)/A(E))̂̂
≃ lim−−→

D

lim−−→
E:E≤D

A(D)/A(E) = A.

□

5.5 Continuity of Scalar Product

Proposition 5.10([15]). For a fixed element a ofAfin
X , resp. ofA∞X , the induced scalar product map:

ϕfin
a : Afin

X

×a−−→ Afin
X , resp.ϕ∞a : A∞X

×a−−→ A∞X is continuous.

Proof. If a = 0, there is nothing to prove. Assume, from now on, that

0 , a = (aC) = (
∞∑

iC=iC,0

hC(aiC) πiC
C ) ∈ Afin

X .

Here, for eachC, we assume thataiC,0 , 0. To prove thatϕfin
a is continuous, it suffices to show that

for an open subgroup

U = (UC) = (
rC−1∑

jC=−∞
hC(AC,1(D jC)) π jC

C +

∞∑
jC=rC

hC(AC,01) π
jC
C ) ∩ Afin

X ,

as an open neighborhood of 0, its inverse image (ϕfin
a )−1(U) contains an open subgroup. For later

use, setIC B rC − iC,0.
Let

b = (bC) = (
∞∑

kC=−∞
hC(bkC) πkC

C ) ∈ (ϕfin
a )−1(U) ⊂ Afin

X .

Then, for each fixedC,

aCbC =

∞∑
lC=−∞

(
∞∑

iC=iC,0

hC(aiC)hC(blC−iC)) πlC
C .

Recall thathC is the Madunts-Zhukov lifting map

hC : AC,01 ≃ (
∏
x:x∈C

′
OC,x)/(πC

∏
x:x∈C

′
OC,x)

lifiting
−−−−−→

∏
x:x∈C

′
OC,x.

Thus ifbkC ∈ AC,01, we always have

hC(aiC)hC(blC−iC) ∈
∞∑

mC=0

hC(AC,01)π
mC
C .

Moreover, if we write, as we can,aiC ∈ AC,1(FiC), bkC ∈ AC,1(EkC) for some divisorsFiC andEkC ,
we have
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hC(aiC)hC(blC−iC) ∈
∞∑

mC=0

hC(AC,1(FiC + ElC−iC)) πmC
C .

Now write

bC = (
IC−1∑

kC=−∞
+

∞∑
kC=IC

)hC(bkC) πkC
C .

We will construct the required open subgroup according to the range of the degree indexkC.

(i) If

bC ∈ (
∞∑

kC=IC

hC(AC,01) π
kC
C ) ∩ (

∏
x:x∈C

′
k(X)C,x),

we haveaCbC ∈ UC.

(ii) To extend the range including to also the degreeIC − 1, choose a divisorEIC−1 such that

hC(AC,1(FiC,0 + EIC−1)) ⊂ hC(AC,1(DrC−1)).

Then if we choose

bC ∈ (hC(AC,1(EIC−1) πIC−1
C +

∞∑
kC=IC

hC(AC,01) π
kC
C ) ∩ (

∏
x:x∈C

′
k(X)C,x),

we also haveaCbC ∈ UC.

(iii) Similarly, to extend the range including the degreeIC − 2, choose a divisorEIC−2 such that

hC(AC,1(FiC,0 + EIC−2)) ⊂ hC(AC,1(DrC−2)) ∩ hC(AC,1(DrC−1))

hC(AC,1(FiC,0+1 + ElC−2)) ⊂ hC(AC,1(DrC−1)).

Then, if we choose

bC ∈ (
IC−1∑

kC=IC−2

hC(AC,1(EkC)) πkC
C +

∞∑
kC=IC

hC(AC,01) π
kC
C ) ∩ (

∏
x:x∈C

′
k(X)C,x),

then we haveaCbC ∈ UC.

Continuing this process repeatedly, we obtain divisorsEkC ’s such that, for

bC ∈ VC B (
IC−1∑

kC=−∞
hC(AC,1(EkC)) πkC

C +

∞∑
kC=IC

hC(AC,01) π
kC
C ) ∩ (

∏
x:x∈C

′
k(X)C,x),

we haveaCbC ∈ UC.
Since, for all but finitely manyC, rC ≤ 0 andiC,0 ≥ 0, or better,IC ≤ 0. Therefore, from above

discussions, we conclude that
∏

C

VC ∩ Afin
X is an open subgroup ofAfin

X anda(
∏

C

VC ∩ Afin
X ) ⊂ U.

In particular,ϕfin
a is continuous.

A similar proof works forϕ∞a . □
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5.6 Continuity of Residue Maps

Fix a non-zero rational differentialω on X. Then for an elementa of Afin
X , resp.A∞X , induced

from the natural residue pairing⟨·, ·⟩ω, we get a natural mapϕfin
a B ⟨a, ·⟩ω : Afin

X → R/Z, resp.
ϕ∞a B ⟨a, ·⟩ω : A∞X → R/Z.

Lemma 5.11([15]). Let a be a fixed element inAfin
X , resp.A∞X . Thenϕ∞a B ⟨a, ·⟩ω : A∞X → R/Z is

continuous. In particular, the residue map on arithmetic adelesAar
X is continuous.

Proof. We prove only forϕfin
a , as a similar proof worksϕ∞a . WriteAfin

X =
∏

F

′
F where the product

ranges over 2-dimensional local fields. And, for each 2-dimensional local fieldF, fix an elementtF
of F such that for equal characteristic fieldF, tF is a uniformizer ofF, while for mixed characteristic
field F, tF is a lift of a uniformizer of its residue field. Since the scalar product is continuous, to
prove the continuity of⟨a, ·⟩ω , it suffices to show that the residue map Res :Afin

X → R/Z, (xF) 7→∑
F

resF(xFdtF) is continuous. (Note that, by the definition ofAfin
X , the above summation is a finite

sum.) Since the open subgroup

(
−1∑

iC=−∞
hC(AC,1(0)) πiC

C +

∞∑
iC=0

hC(AC,01) π
iC
C ) ∩ Afin

X

is contained, the kernel of the residue map is an open subgroup. This proves the lemma. □

5.7 Self-Duality of Arithmetic Adelic Rings

We will treat bothAfin
X andA∞X simultaneously. So as before, we useA to represent them.

Recall that, for a fixeda ∈ A, the map⟨a, ·⟩ω : A → S1 is continuous. Accordingly, we define a
mapφ : A→ Â, a 7→ φa B ⟨a, ·⟩ω.

Proposition 5.12([15]). For the mapφ : A→ Â, a 7→ φa B ⟨a, ·⟩ω, we have the follows.

(1) φ is continuous.

(2) φ is injective.

(3) The image ofφ is dense.

(4) φ is open.

Proof. (1) For an open subsetW(K,V) of Â, whereK is a compact subset ofA and V is an
open subset ofS1, let U B φ−1(W(K,V)). SinceÂ = lim←−−

D

lim−−→
E:E≤D

(A(D)/A(E)) ,̂ we may write

χ0 B ⟨1, ·⟩ω as lim←−−
D

lim−−→
E:E≤D

χD/E with χD/E ∈ (A(D)/A(E)) .̂ Accordingly, write

AD/E B A(D)/A(E),

KD/E B K ∩ A(D)/K ∩ A(E),

UD/E B {aD/E ∈ AD/E | χD/E(aD/EKD/E) ⊂ V (V : open)}.

Since, for a fixed divisorD, A(D) is closed inA, K ∩ A(D) is a compact subset. So, for
E ≤ D, KD/E is compact inAD/E. Consequently, from the non-degeneracy ofχD/E on locally
compact spaces,UD/E is an open subset ofA, andU B lim−−→

D

lim←−−
E:E≤D

UD/E. We claim thatU is

open. Indeed, sinceA is compact oriented, for compactK, there exists a divisorD1 such that
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K ⊂ A(D1). On the other hand, sinceχ0 is continuous, there exists a divisorD2 such that
A(D1 + D2) ⊂ Ker(χ0). HenceU ⊃ A(D2). Thus, for a fixedD, with respect to sufficiently
smallE ≤ D, we haveUD/E = AD/E. This verifies thatU is open, and hence proves (1), since
the topology of̂A is generated by the open subsets of the formW(K,V).

(2) This is a direct consequence of the non-degeneracy of the residue pairing. So we have (2).

(3) To prove (3), we use the fact thatψ : A ≃ ̂̂A, where, fora ∈ A, ψa is given byψa : Â →
S1, χ 7→ χ(a). Thus to show that the image ofφ is dense, it suffices to show that the annihilator
subgroup Ann(Im(φ)) of Im(φ) is zero. Let thenx ∈ Ann(Im(φ)) be an annihilator of Im(φ).
Then, by definition,{0} = ψx({φa | a ∈ A}) = {φa(x) | a ∈ A}. That is to say,⟨a, x⟩ω = 0 for all
a ∈ A. But the residue pairing is non-degenerate. So,x = 0.

(4) This is the dual of (2). Indeed, letU ⊂ A be an open subset ofA. ThenU ∩ A(D) is open in
A(D). Write

UD/E B U ∩ A(D)/U ∩ A(E)

KD/E B {aD/E ∈ AD/E | χD/E(aD/EUD/E) ⊂ V (V : open)}

SinceA(D) is closed,UD/E is open inAD/E. This, together with the fact thatχD/E is non-
degenerate on its locally compact base space, implies thatKD/E is a compact subset. Let
K B lim−−→

D

lim←−−
E:E≤D

KD/E. SinceU is open, there exists a divisorE such thatA(E) ⊂ U. This

implies that there exists a divisorD such thatK ⊂ A(D). Otherwise, assume that, for anyD,
we haveK 1 A(D). Then, there exists an elementk ∈ K such thatk < A((ω) − E). Hence we
haveχ(kA(E)) , {0}, a contradiction. This then completes the proof of (4).

□

Theorem 5.13(Sugahara-Weng [15]). Let X be an arithmetic surface. Then, as topological groups,
we have the following canonical isomorphisms.

(i) Âfin
X ≃ Afin

X .

(ii) Â∞X ≃ A∞X .

(iii) Âar
X ≃ Aar

X .

Proof. We have an injective continuous open morphismφ : A → Â. So it suffices to show thatφ
is surjective. But this is a direct consequence of the fact thatφ is dense, since bothA andÂ are
complete and Hausdorff. This proves the theorem. □
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6 Duality Theorem for Arithmetic Curves

Proposition 6.1(Tate ([16], Lem 4.1.5)). For any elment x∈ F, residue formula∑
v∈S λv(TrFv/Qv(x)) = 0

holds.

Definition 6.2 (Tate ([16],§ 4.1)). We define a pairing⟨·, ·⟩ for an adelic ringAF

⟨·, ·⟩ : AF × AF → R/Z; ((xv), (yv)) 7→
∑

v∈S λv(TrFv/Qv(xvyv)).

Theorem 6.3(Tate ([16], Theorems 4.1.1, 4.1.4)). For the above pairing⟨·, ·⟩ of an adelic ringAF ,
we have the follows.

(i) ⟨·, ·⟩ is perfect.

(ii) (Self-duality)ÂF = AF , whereX̂ denote the Pontryagin duality of X.

(iii) F⊥ = F.

(iv) (Weng ([18],§1.3)) For any divisor D on Y,AY,1(D)⊥ = AY,1(KF − D), where KF denote
codifferent of F onQ.

Theorem 6.4(Weng ([18], Prop. 3)). Let D be an Arakelov divisor on Y, we have the following
canonical isomorphism as topological groups:

̂H1
ar(Y,D) ≃ H0

ar(Y,KF − D).

SinceH0
ar(Y,D) is discrete andH1

ar(Y,D) is compact, using Fourier analysis for locally compact
groups, we obtain their arithmetic countsh0

ar(Y,D) andh1
ar(Y,D) (See [18], Defs 2, 3).

Theorem 6.5(Weng ([18], Theorem 2)). For any divisor D on Y, we have the follows.

(i) (Arithmetic duality)

h1
ar(Y,KF − D) = h0

ar(Y,D).

(ii) (Arithmetic Riemann-Roch theorem)

h0
ar(Y,D) − h1

ar(Y,D) = deg(D) − 1
2 log |∆F |,

where∆F denote the discriminant of F.
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7 Duality Theorem for Arithmetic Surfaces

Theorem 7.1 (Sugahara-Weng [15]). Let X be an arithmetic surface. Fix a rational differential
0 , ω ∈ Ωk(X)/F , and denote by⟨·, ·⟩ω the natural residue pairing on the arithmetic adelic ringAar

X
induced byω. Then the following holds.

(i) For a divisor D on X,(Aar
X,12(D))⊥ = Aar

X,12((ω) − D).

(ii) (Aar
X,01)

⊥ = Aar
X,01.

(iii) (Aar
X,02)

⊥ = Aar
X,02.

Proof. (i) To prove (Aar
X,12(D))⊥ = Aar

X,12((ω) − D), we go as follows. Set ˜π : X → Y→ SpecZ.
Then, for an open subsetU of X, the dualizing sheafωπ̃ of π̃ can be written as

ωπ(U) = {ω ∈ Ωk(X)/Q | ResC,x( fω) = 0 (x ∈ C (⊂ U), f ∈ OX,C)}

(See e.g., [8], Theorem 5.7). By a similar argument as in the proof of this result, we have, for
a fixed irreducible curveC0,

ωπ,C0 = {ω ∈ Ωk(X)/Q | ResC0,x( fω) = 0 (x ∈ C0, f ∈ OX,C0)}.

This is just the set of differentialsω satisfying ordC0((ω)) ≥ 0. Moreover, we also have, a
fixed pairx ∈ C0,

ωπ,C0 ⊗OC0
OC0,x0 = {ω ∈ Ωk(X)C0,x0/Qπ̃(x0) | ResC0,x0( fω) = 0 ( f ∈ OC0,x0)}.

These results implies that for a fixed pair (x0,C0) the following conditions (1), (2) are equiv-
alent.

(1) For any f ∈ OX,C0, ResC0,x0( fω) = 0.

(2) ordC0((ω)) ≥ 0.

By a similar argument, we have that for a fixed closed pointP0 onXF the following conditions
(3), (4) are equivalent.

(3) For any f ∈ OXF ,P0, ResP0( fω) = 0.

(4) ordP0((ω)) ≥ 0.

Given these facts, we conclude (Aar
X,12(D))⊥ = Aar

X,12((ω) − D).

(ii) To showAar
X,01 ⊂ (Aar

X,01)
⊥, we use Theorem 4.6. By definition, elements ofAar

X,01 are inde-
pendent of closed pointsx ∈ X. So we may write components off = ( fC,x) × ( fP) ∈ Aar

X,01 as
fC,x = fC and fP = fEP, which are independent of closed points ofX. For f , g ∈ Aar

X,01, we
have then

⟨ f , g⟩ω =
∑

V:vertical

∑
x:x∈V

ResV,x( fVgVω) +
∑
P∈XF

(
∑

x:x∈EP

ResEP,x( fEPgEPω) + ResP( fEPgEPω)) = 0.

Now, for vertical curvesV, by Theorem 4.6(iii), we have∑
x:x∈V

ResV,x( fVgVω) = 0.
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Furthermore, by Theorem 4.6(ii), we have, for closed pointsP ∈ XF ,∑
x:x∈EP

ResEP,x( fEPgEPω) + ResP( fEPgEPω) = 0.

This then proves thatAar
X,01 ⊂ (Aar

X,01)
⊥.

Next we prove that (Aar
X,01)

⊥ ⊂ Aar
X,01. For this purpose, we use the ind-pro structure ofAar

X .
For divisorsD and vertical curvesC, using (i), we obtain perfect pairings

Aar
X,12(D)/Aar

X,12(D −C) × Aar
X,12((ω) − D +C)/Aar

X,12((ω) − D)→ R/Z (1)

induced by the residue pairing⟨·, ·⟩ω. By above resultAar
X,01 ⊂ (Aar

X,01)
⊥, we see that the perfect

residue pairing⟨·, ·⟩ω annihilatesAar
X,01×A

ar
X,01, hence the above perfect pairing (1) annihilates

Aar
X,1(D)/Aar

X,1(D −C) × Aar
X,1((ω) − D +C)/Aar

X,1((ω) − D). Note that we have isomorphisms
Aar

X,12(D)/Aar
X,12(D −C) ≃ AC,01,

Aar
X,1(D)/Aar

X,1(D −C) ≃ AC,0 = k(C),
Aar

X,12((ω) − D +C)/Aar
X,12((ω) − D) ≃ AC,01,

Aar
X,1((ω) − D +C)/Aar

X,1((ω) − D) ≃ AC,0 = k(C).

Hence the above pairing (1) can be regarded as a perfect pairingAC,01×AC,01 (→ Fp)→ R/Z
on the vertical curveC/Fp ({p} = π̃(C)), which annihilatesAC,0 × AC,0. In particular, for
some non-zeroωC ∈ Ωk(C)/Fp and a certain (ax) ∈ AC,01, we can write this perfect pairing as a
residue pairing

⟨·, ·⟩ωC,(ax) : AC,01× AC,01→ R/Z; (( fx), (gx)) 7→
∑

x

Resx( fxgxaxωC). (2)

It is well-known that for a perfect pairing ofAC,01 annihilatingAC,0 × AC,0, we haveA⊥C,0 =
AC,0 (See e.g., [5],§4). Therefore, if we setG(D) = (Aar

X,01)
⊥ ∩ Aar

X,12(D), we have that

G(D)/G(D −C) = (Aar
X,1((ω) − D +C)/Aar

X,1((ω) − D))⊥

= Aar
X,1(D)/Aar

X,1(D −C) (3)

with respect to the perfect pairing (1) and for a certain (ax) ∈ AC,0 used in the residue pairing
(2). When necessary, with a possible modification onωC, without loss of generality, we may
and will assume that (ax) = 1, and write⟨·, ·⟩ωC,(ax) simply as⟨·, ·⟩ωC . In parallel, whenC is
horizontal, by a similar argument as above, we get the same conclusion. Consequently, using
(3), we have, for any irreducible curvesC1,C2, the following commutative diagram with exact
columns

Aar
X,1(D −C1)/Aar

X,1(D −C1 −C2) G(D −C1)/G(D −C1 −C2)y y
Aar

X,1(D)/Aar
X,1(D −C1 −C2) −−−−−→ G(D)/G(D −C1 −C2)y y

Aar
X,1(D)/Aar

X,1(D −C1) G(D)/G(D −C1).

This then proves that the horizontal map in the middle is surjective. Furthermore, the hor-
izontal map in the middle is injective, since, from above,Aar

X,01 ⊂ (Aar
X,01)

⊥. Therefore, we
have
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G(D)/G(D −C1 −C2) = Aar
X,1(D)/Aar

X,1(D −C1 −C2).

Repeating a similar argument as above, we have, for any divisorsD ≥ E

G(D)/G(E) = Aar
X,1(D)/Aar

X,1(E). (4)

Since we have

Aar
X = lim−−→

D

lim←−−
E:E≤D

Aar
X,12(D)/Aar

X,12(E),

using (4), we conclude that

(Aar
X,01)

⊥ = lim−−→
D

lim←−−
E:E≤D

G(D)/G(E)

= lim−−→
D

lim←−−
E:E≤D

Aar
X,1(D)/Aar

X,1(E) = Aar
X,01.

This proves that (Aar
X,01)

⊥ = Aar
X,01.

(iii) Next we proveAar
X,02 ⊂ (Aar

X,02)
⊥. By definition, since elements ofAar

X,02 are independent
of irreducible curvesC of X and closed pointsP ∈ XF , we may write components off =
( fC,x) × ( fP) ∈ Aar

X,02 as fC,x = fx and fP = f∞, which are independent of irreducible curvesC
and closed pointsP. Hence, forf ,g ∈ Aar

X,02, we have

⟨ f ,g⟩ω =
∑

x

∑
C:x∈C

ResC,x( fxgxω) +
∑

P

ResP( f∞g∞ω) = 0.

Now, by Theorem 4.6(i), we have, for any closed pointx,∑
C:x∈C

ResC,x( fxgxω) = 0.

Furthermore, ∑
P

ResP( f∞g∞ω) = 0

since we can use a standard residue formula for a curveXF/F (See [14],§II. 7, Prop. 6).
Therefore,Aar

X,02 ⊂ (Aar
X,02)

⊥.

Finally, we show that (Aar
X,02)

⊥ ⊂ Aar
X,02. Fix a vertical curveC. Then, for any divisorD on X,

we have {
Aar

X,2(D)/Aar
X,2(D −C) ≃ AC,1(D |C),

Aar
X,2((ω) − D +C)/Aar

X,2((ω) − D) ≃ AC,1((ω′C) − D |C),

for a certainω′C ∈ Ωk(C)/Fp satisfying (ω′C) = ((ω) + C) |C by adjunction formula (see [6],
Theorem 3.6). We claim that (ωC) = (ω′C). Indeed, sinceAC,1(D |C)⊥ = AC,1((ωC) − D |C)
andAar

X,02 ⊂ (Aar
X,02)

⊥, AC,1((ω′C) − D |C) ⊂ AC,1((ωC) − D |C). This implies that (ωC) ≥ (ω′C)
and hence (ωC) = (ω′C), because there is nof ∈ k(C) such that (f ) > 0. Thus, for a residue
pairing (2), we have (AC,1((ω′C) − D |C))⊥ = AC,1(D |C). By a similar argument as a proof of
(4), we have that for any integersn ≥ m ∈ Z,

H(nC)/H(mC) = Aar
X,2(nC)/Aar

X,2(mC), (5)
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where we setH(D) = (Aar
X,02)

⊥ ∩ Aar
X,12(D). Since we have

Aar
X = lim−−→

D

lim←−−
E:E≤D

Aar
X,12(D)/Aar

X,12(E),

using (5), we get

(Aar
X,02)

⊥ = lim−−→
D

lim←−−
E:E≤D

H(D)/H(E)

⊃ lim−−→
n

lim←−−
m≤n

H(nC)/H(mC)

= lim−−→
n

lim←−−
m≤n

Aar
X,2(nC)/Aar

X,2(mC)

=
∏′

x:x∈C k(X)x.

Hence for anyx ∈ C, a (x,C)-component of (Aar
X,02)

⊥ is an element ofk(X)x (∗). To prove the
rest, we take a classical approach with a use of Chinese reminder theorem, using an idea in the
proof of Prop. 1 of [12]. To be more precise, fixx0 ∈ X and a hyperplaneH on X satisfying
that x0 ∈ H. SettingV = SpecOX,x0 − H, V is affine. We claim that for any family of prime
divisorsD j onV such thatDi ∩D j = ϕ if i , j, and any rational functionsf0, f1, · · · , fn onV,
and any fixed divisorD supported onDi ’s, there exists a rational functiong such that{

ordDi ( fi − g) ≥ ordDi (D) (i = 1, · · · , n)
ordDi (g) ≥ ordDi (D) (i , 1, · · · , n).

Indeed, by clearing the common denominators forfi ’s (with a modification offi ’s if neces-
sary), we may assume thatfi ’s are all regular. Then by applying the Chinese reminder theorem

to the fractional idealsPordDi (D)
i , i = 0, · · · ,n, and

∩
i<{0,1,··· ,n}P

ordDi (D)
i , wherePi are the prime

ideals associated to the prime divisorsDi , we see the existence of such ag. Associated to
f ∈ (Aar

X,02)
⊥, form a new adelef ′ ∈ Aar

X,012 by setting f ′C,x = fC,x − fH,x where H is a fixed
vertical hyperplane throughx. By (∗), the definition off ′C,x is well-defined. Then∑

C:x∈C
ResC,x( f ′C,xgxω) =

∑
C:x∈C

ResC,x( fC,xgxω) −
∑

C:x∈C
ResC,x( f ′H,xgxω)

= 0− 0 = 0.

Now, applying the above existence to obtain ag satisfying that for any fixed rational function
f0 and any fixed curveC0 ∋ x, we have{

ordC( f ′C,x) + ordC( f0 − g) + ordC((ω)) ≥ 0 (C = C0)
ordC( f ′C,x) + ordC(g) + ordC((ω)) ≥ 0 (C , C0,H).

Consequently, by the definition of the residue map, withf ′H,x = 0 in mind, we get, for any
f0 ∈ k(X) and the correspondingg just chosen,

0 =
∑

C:x∈C
ResC,x( f ′C,xgω) = ResC0,x( f ′C0,xgω) = ResC0,x( f ′C0,x f0ω).

Since the last quantity is always zero for allf0, this then implies thatf ′C0,x
= 0, namely,

fC0,x = fH,x0. To end the proof of (iii), we still need to show thatfP = fP0 for a fixedP0 ∈ XF

and allP ∈ XF . But this is amount to a use of a similar argument just said again, based on
Chinese reminder theorem (See [5],§4). Thus, if f = ( fC,x)×( fP) ∈ (Aar

X,02)
⊥, then fC,x = fC0,x

and fP = fP0 for fixedC0 andP0. Thereforef ∈ Aar
X,02. That is to say, (Aar

X,02)
⊥ = Aar

X,02. This
proves (iii).

□
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Theorem 7.2(Duality theorem, Sugahara-Weng [15]). Let 0 , ω ∈ Ωk(X)/F . For any i ∈ {0, 1, 2},
we have isomorphisms as topological groups

̂Hi
ar(X,D) ≃ H2−i

ar ((ω) − D).

Proof.

(1) Duality betweenH0
ar andH2

ar

̂H0
ar(X,D) = (Aar

X,01∩ A
ar
X,02∩ A

ar
X,12(D)) ̂

≃ Aar
X/(A

ar
X,01∩ Aar

X,02∩ Aar
X,12(D))⊥

= Aar
X/(A

ar
X,01)

⊥ + (Aar
X,02)

⊥ + (Aar
X,12(D))⊥

= Aar
X/A

ar
X,01+ A

ar
X,02+ A

ar
X,12((ω) − D) = H2

ar(X, (ω) − D),

(2) Duality amongH1
ar

̂H1
ar(X,D) ≃

( Aar
X,02∩ (Aar

X,01+ A
ar
X,12(D))

Aar
X,01∩ A

ar
X,02+ A

ar
X,02∩ A

ar
X,12(D)

) ̂
≃

(Aar
X,01∩ A

ar
X,02)

⊥ ∩ (Aar
X,02∩ A

ar
X,12(D))⊥

(Aar
X,02)

⊥ + (Aar
X,01+ A

ar
X,12(D))⊥

=
(Aar

X,01+ A
ar
X,02) ∩ (Aar

X,02+ A
ar
X,12((ω) − D))

Aar
X,02+ (Aar

X,01∩ A
ar
X,12((ω) − D))

≃
(Aar

X,01+ A
ar
X,02) ∩ A

ar
X,12((ω) − D)

(Aar
X,01∩ A

ar
X,02) + (Aar

X,01∩ A
ar
X,12((ω) − D))

≃ H1
ar(X, (ω) − D).

□
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