SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

Adelic Cohomology Groups for Arithmetic
Varieties and Ind-Pro Topology in Dimension Two

BR, BAKER

https://doi.org/10.15017/1500519

HARESR : UMARZE, 2014, B (BEEF) , RERELT
N— 30

WEFIRER : 2XT7 71 ILAKFE



Adelic Cohomology Groups for Arithmetic Varieties
and
Ind-Pro Topology in Dimension Two

Kotaro Sugahara (Kyushu University)

January 1, 2015



Contents

1

2

Introduction
Adelic Cohomology Theory on Noetherian Schemes

Arithmetic Adelic Groups and Arithmetic Cohomology Groups

3.1 Notations . . . . . . . e
3.2 Arithmetic AdelicGroups .. . . . . . . . . .
3.3 Arithmetic Cohomology Groups . . . . . . . . . . . i e
3.4 Inductive Long Exact Sequences . . . . . . . . . ...

Residue Pairings

Topological Structures of Adelic Groups

5.1 Topological Structures of Arithmetic AdelicRings . . . . .. ... ... ....
5.2 Ind-Pro Topological Spacesand TheirDuals . . . . .. ... ... .. ......
5.3 Completeness and Compact Orientedness of Arithmetic Adelic Groups . . . . .
5.4 Double Dual of Arithmetic AdelicRings . . . . . .. .. ... ... ........
5.5 Continuity of Scalar Product . . . . . ... ... ... ... ... . ... ...,
5.6 Continuityof ResidueMaps . . .. .. .. .. . . . .. ...
5.7 Self-Duality of Arithmetic AdelicRings . . . . . .. .. ... ... ... .....

Duality Theorem for Arithmetic Curves

Duality Theorem for Arithmetic Surfaces

14

16
16
17
20.
21
22
24
24

26

27



1 Introduction

Classical adelic theory is closely related with class field theory, theokyfohctions and alge-
braic groups. Its origin may be traced back to a paper of Chevalley on the so-called ideles. In 1938,
A. Well ([17]) gave the first adelic approach to Riemann-Roch theorem for curves. Contrary to the
formal sheaf theoretic approach to Riemann-Roch theorem widely adopted nowadays, the adelic
one, then popular, was very concrete for curves. Most important works on adeles in this period
were Tate’s thesis ([16]) and Weil's works on Tamagawa numbers. Influenced by them, adeles later
became a basic tool in the study of automorphic forms, Eisenstein series and trace formula.

Modern adelic theory started with A.N. Parshin’s pioneer works on adeles over algebraic sur-
faces around 1976. In [12], Parshin introduced adelic rings and adelic complexes for divisors on
algebraic surfaces, verified that his adelic cohnomology groups were isomorphic to Grothendieck’s
sheaf theoretic cohomology groups, and established the Serre duality. In 1980, Parshin’s works
were generalized by A. A. Beilinson to Noetherian schemes: In [1], Beilinson constructed adelic
complexes for quasi-coherent sheaves on Noetherian schemes, examined that the associated adelic
cohomology groups coincided with the sheaf theoretic cohomology groups and outlined an adelic
residue theory. This paper of Beilinson was very short affiiicdit for many to understand. To
remedy this, around 1990, younger generation started to supply the unwritten details. Now we have
the works of A. Huber[4], treating adelic complexes in great details, and A. Yekutieli[19], building
up an adelic residue theory.

At the same time, adelic approach to Riemann-Roch theorem was moving forwards. Around
2000, in [18], L. Weng developed an adelic cohomology theory for arithmetic curves, based on [16]
with a concrete construction of arithmetic cohomology groups. Furthermore, in 2011, D. V. Osipov
and A. N. Parshin not only obtained an adelic proof for the Riemann-Roch theorem on algebraic
surfaces in [11], but constructed arithmetic adelic rings for arithmetic surfaces in [10].

The purpose of our study is to introduce a general adelic cohnomology theory for quasi-coherent
sheaves on arithmetic varieties. Motivated by the works of Parshin, Beilinson, Weng and Osipov-
Parshin mentioned above, we here, together with Prof. Weng, first construct adelic complexes for
guasi-coherent sheaves on arithmetic varieties and hence their arithmetic cohomology groups, and
then develop a general ind-pro topological theory in dimension two and hence to establish a topo-
logical duality for our arithmetic cohomology groups associated to invertible sheaves on arithmetic
surfaces.

Acknowledgements.| would like to express my deepest gratitude and heartful thanks to my advisor
Professor Lin Weng. He always gave me aspiring guidances, invaluably constructive advices and
criticisms in the past seven years. Without his supervision, constant help and encouragement, this
dissertation would not have been possible.



2 Adelic Cohomology Theory on Noetherian Schemes

In this section, we recall adelic cohomology theory on Noetherian schemes developed by Parshin
([212]) and Beilinson ([1]). We will follow [4] for the presentation.

Definition 2.1 ([1], §2; [4], Definitions 1.3.1-3) Let X be a Noetherian scheme.

(1) Let P(X) be the collection of scheme-theoretic pointsXarFor pointsp, g € P(X), we write
p > qif q € {p}. Clearly,> makesP(X) a poset.

(2) Let S(X) be the set of simplexes corresponding to the orderedP{et),(>). In particular,
for m > 0, let S(X), be the set ofm-simplexes and5(X)/¢9 be the set of non-degenerate
m-simplexes. That is,

S(X)m = {(Po. -+ pm) € POO™ | pi > pisa},
S(X)?:= {(po. -+ . Pm) € SK)m | pi # pj (i # J)}.-

Accordingly, fori € {0, 1,--- , m}, we define the associated boundary mgpand degeneracy
mapso" as follows:

0-:“ S(X)m_’s(x)m+l1(p0, 9pl’ apm)H(p()’ 5pi’ pla ,pm)

Definition 2.2 ([1], §2; [4], §1.3). For a subseK c S(X), and a pointp € P(X), we define a subset
pK of S(X)m-1 by

pK = {(P1.- -+, Pm) € S(X)m-1 | (P P, -+ , Pm) € K}.

As usual, for each poinp € X, let Op denote the local ring oK at p andm, be its maximal
ideal. Then we get a natural morphism Spead, — X. Consequently, for eaall,-modulesN, it
makes sense for us to introdudé] = f.N. Moreover, letAbG pbe the category of abelian groups,
andQC(X) be the category of quasi-coherent sheaveX.on

Proposition 2.3 (Parshin-Beilinson ([12]§2; [1], §2; see also [4], Prop. 2.1.1)Jor each subset
K c S(X)m, there exists an additive and exact functor

A(K, ") : QC(X) — AbGp
determined uniquely by the following properties.
() A(K,-) commutes with direct limits.

(i) For m= 0and a coherent she& on X,

AK,F) = [ [lim Fo/m,Fp.

peK |

(i) For m> 0and a coherent she&f on X,

AKF) = | ] lim AGK, [Fo/mTplp).
peP(X) |

In the sequel, we call(K, -), resp.A(K, ), the adelic functor (associatedK9, resp. the adelic
group of quasi-coherent sheat



Remark.We cannot apply properties (i), (ii) directly for quasi-coherent but not coherent sheaves
¥ . In general, to calculate adelic groups for quasi-coherent sheaves, we have to use property (i).
Indeed, sinceX is a Noetherian scheme, any quasi-coherent sheedin be written a§ = Ian) Fi
iel

with # (i € |) coherent sheaves ad. Hence, by property (i), we can perform the following
calculations: A(K, F) = A(K,IiLnj—"i) = Ii_m)A(K, ). Note that now allF; are coherent, we can

i€l i€l
apply properties (ii), (iii) to get adelic groupsK, 7).
Definition 2.4 ([4], Definition 3.3.2) Let # be a quasi-coherent sheaf 8n Then, form > 0, we
define them-th adelic groupAR(¥) by

ANF) = AS(X)IEY, 7).

Definition 2.5 ([13], §2). Let ¥ be a quasi-coherent sheaf ®¥n Then, for 0< ip < i1 < -+ < i,
we define the typeid, - - - , im) adelic groupAxi i, .- i, (F) by

AX,io,il,m ,im(T) = AX(Kio,il,m Jim» T),
where

Kigjig, - im = { (Po, P1, -+ » Pm) € S(X)m | 0 < Vt <m, codim{p} = it }.

Remark([13], §2). If dim X < +oo, we haveAT(F) = €D Axig. in(¥)-

O<ipg<-<imzdim X
Proposition 2.6([4], Prop. 2.1.4) For a subset Kc S(X)m, and a quasi-coherent she@f, we have
a natural inclusion

A(K’ 7:) - ]_[ A((po’ Tt pm), 7:)
(Po. . pm)eK
Notation. By this proposition, we may write an elemehbf A(K, ) as eitherf = (fx, .. x,), or
f = (fop pm)» WhereX; = {pi} (0 <i < m), andfx,.. x, = Tpo, -.pm € AP0, , Pm), F). If, in
addition, X is irreducible andy; is its generic point, we often omit the index€s p;.

Definition 2.7 ([4], Definition 2.2.2) Assume that there existe {1,---,m}, K c S(X), and
L ¢ S(X)m-1 satisfyingé"K c L. Then, for a quasi-coherent sheafon X, we define boundary
mapsd™(K, L, )

d"(K,L,7) : A(L,F) — A(K, F)
as follows.

(&) Assume that = 0 and¥ is a coherent sheaf. For each pont P(X), we have a natural
mapA(L, F) — A(L, [Tp/rrfp?’p] p) induced from the structural morphism — [Fp/my 7] p.
Then the map$'p CALF) = A(K, [Tp/n*l'p?‘p] p), obtaining as the compositions of the map
A(L,F) = A(L,[Fp/m,Fp]p) and the projections (L, [Fo/myFplp) = A(pK, [Fp/M,Fplp),
form a projective system fdre N. Accordingly, we define a boundary map &(K, L, ) =

[ tmsh
peP(X) |

(b) Assume that = 1, m = 1 and¥ is a coherent sheaf. For each pomt P(X), canonical
mapsn, © T(X, [Fp/MyFplp) — A(K, [Fo/myFplp) form a projective system for € N.
Accordingly, we define a boundary map bi;(K, L,F) = ]_[ I(imn'p.

peP(X) |



(c) Assume that > 0,m > 1 and¥ is a coherent sheaf. Then we define a boundary map by

d'(K, L) = [ ] lim d K, oL, [Fo/mFplp).
peP(X) |

(d) d™(K, L,-) commutes with direct limits.

Notation. For a quasi-coherent sheaf setd™ = ¥ (-1)'d"(S(X)igd, S(X)"ed)), 7). Then we have
a boundary map™ : A7) — AR(F).

Theorem 2.8(Parsin-Beilinson [12]§2, Thm 1; [1],§2, Cor; see also [4], Thm 4.2.3, Prop 5.1.2)
For a quasi-coherent she&f on a Noetherian scheme X, we have

(i) (AL(F).d") becomes a complex.

(i) Foreachi> 0, there is a natural isomorphism, as abelian groups,
Hi(A5 (7). d") = HI(X 7),

where the left side is the i-th comology group induced from the adelic cortylgs), d*),
and the right side is the i-th sheaf theoretic comology group of

We call the complex in this theorem an adelic complex, and their conomology groups adelic
cohomology groups.



3 Arithmetic Adelic Groups and Arithmetic Cohomology Groups

3.1 Notations

F : an algebraic field,

Ok : the integer ring of,

Siin : the set of finite places ¥,

S : the set of infinite places dF,

S = Siinh U So,

n: X = Y = SpecOk : an arithmetic variety of dimensiam+ 1,
Xg : the generic fibre oK,

F. : thev-completion ofF (ve S),

X = X Xy SpecF, (o € Sw),

Yo - Xa' - XF-

3.2 Arithmetic Adelic Groups

There is a natural one-to-one correspondence between closed points on arithmetic cuée Spec
and finite places ofF. The so-called Arakelov compactificati®pecOr of SpecOr is obtained by
adding infinite places. Associated 8pecOr is the adelic ringAr of F which contains much
refined information on not only finite places 8, but also infinite places i&.,. Similarly, when
we construct adelic rings (and more generally adelic groups associated to quasi-coherent sheaves)
on arithmetic varietieX, we have to treat scheme-theoretic points on bgt{= X) and onX,, :=
{Xsloes.,- In parallel to Arakelov theory, (in particular, the Arakelov intersection theory,) however,
we need not consider all points ofy.,, but only these corresponding to the so-called horizontal
cycles of bothXs, and X,,. Our treatment is motivated by Weng’s work [18], where arithmetic
curves are treated, with a use of the so-called uniformity condition: for a scheme-theoretiP point
on Xg, go;l(ﬁ) decomposes into finite irreducible closed varietieXjn Our uniformity condition
is a constrain on these irreducible componentXnand the induced cycles Of,. For our own
use, we call generic points of the above irreducible closed varietieB fiorX, the infinite points
corresponding t®.

Before treating general arithmetic varieties, we recall the following construction of arithmetic
adelic rings for arithmetic surfaces, introduced by Osipov and Parshin in [10]. For the time being,
let X be an arithmetic surface.

Definition 3.1 (Osipov-Parshin ([101§5)).
[Finite adelic ring] ‘
We define the finite adelic ring,‘;'{‘ for an arithmetic surfac¥ by

AN = Ax 012(0x).
Then we have

Al;i(n — ||Ln> L@ Ax,lz(Dl)/AX,IZ(DZ)’
D; D2:Dy<Dq

whereD. are divisors orX and we sef\x 12(D.) = Ax12(Ox(D.)).



[co-adelic ring]
For the adelic ring\x. = Ax. 01(Ox.) of the generic fibreXg, we have

Axe =1im - lim - Axe 1(C1)/Axe 1(Ca2),
C1 C:Cyr<Cy

whereC, are divisors orXg and we sefix. 1(C.) = Ax. 1(Ox(C.)). We define thex-adelic ring
AY for an arithmetic surfacX by

AR = Ay, @R = lim lim  ((Axe.1(C1)/Axe.1(C2)) ®g R).
C1 C:Co<Cq

[Arithmetic adelic ring]
We define the arithmetic adelic ring/ for an arithmetic surfac¥ by

ar._ par — Afin )
AY = AY = Al @ A

Remark.For any divisorsC; > C; on Xg, Ax. 1(C1)/Ax: 1(Cy) is a finite dimensionaF-vector
space, hence a finite dimensiof@alector space.

Remark. To understand meaning @, consider the following example. For the ring of Laurent
seriesQ((t)), we haveQ((t))®gR # R((t)). On the other hand)((t)) = Ian> I(@ t"Q[[t]] /t™™QI[]].

n mm<n
Sincet "Q[[t]]/t " ™Q[[t]] is a finite dimensional-vector space, we have

Q) B B = lim lim (C"QI[)/ Q) @ R = lim im "R /R = R(O).

n mm<n n mms<n

Motivated by Osipov-Parshin’s constuction, we defineadelic groups for arithmetic varieties
as follows. Assume in the sequel théts an arithmetic variety of dimensiom+ 1, unless otherwise
stated.

Theorem 3.2(c0-adelic groups, Sugahara-Weng [15For each subset Ko S(Xg)m, there exists
an additive and exact functor

determined uniquely by the following properti@s (ii), (iii) .
() Ax(K,-) commutes with direct limits.

(i) For m= 0and a coherent she@ on X,

Aw(K.Q) = | |im(Gp/myGp @ R).

peK |

(i) For m> 0 and a coherent sheg on X,

Au(K.G) = [ ]| I Au(pK,[Gp/MGplp).

peP(X) |

We define the arithmetic adelic groups by usieadelic groups and a uniformity condition.



Definition 3.3 (Arithmetic adelic groups, Sugahara-Wenggt ¥ be a quasi-coherent sheaf ®n

Fr be the quasi-coherent sheaf Bp induced byF. Fix an index tupleig,--- ,im) with 0 < ig <
< im-

(A) We define {p, - - - , im)-type finite adelic groumf'n .’im(?') and o, - - - , im)-typeco-adelic group
A . i (F) by

A (F) = Ax(Kxioe i )y AR i (F) = Aco(Ke igm iy FF),
where forZ = X, Xg, we set
KZio im = { (Po.*+ » Pm) € S(Z)m | codim{pi} =it (O <t <m) }
(B) We define arithmetic adelic groups as follows.

(1) Forim = n+1, we defineAarjy iy in(F) by

A?(rlo i1, ,im (f) A];I(nlo i1, (7:) ® A‘))(olo 11, lwl(TF)'
(2) Forim # n+1, we defineAd, ; . (¥) by

— h fin,inf
A<;i(rloll (7:) = AX(K;Z,Ioll 7:) GBAmm (KXIoll Jdim ’7:)
Here we set

K ioin i = { (Pios ==~ s Pin) € Kxigis.oiim | (Pigs =+ Piry) € S(Xe)n }

nh — L
KX7i07i1,"'»im T Kx"o"l’ \KX,Ioll

and use a uniformity condition to set

Afmmf(KXmll i T) —
{ ( EPiO""’EPim) X (fPIO le) € AX(KXIO i1, 5im? 7:) ® A‘X’;iovil,'",im(fF) fEPiO""’EPim = fPiO,'",Pim }

(3) Foranym > 0, we defineAT}(X, ) by

AT(X, F) = @ AY i (F).

O<ip<-<im<dim X

Remark.For m = 0, co-adelic groupsi.c(Kxe io..im1» 7F) Makes no sense. To complete above
definition, for an open subskt c X, we induce {1)-simplex 1, formally (see [19]§ 3.1). We set
S(Xg)_1 = S(XF)red 1, U c X : open sets And for K c S(Xg)-1, we defineA (K, 7r) by

_ | Fr(Ukp)® R (dimX > 2)
Ao(K.T) = { {So € Fr(Ukfr) ®g R | s€ F(Uk)} (dimX = 1)

whereUg = Uz, ex U ands,, denotes an element 6f(Uk r) ®g R corresponding te. The reason
for separation of arithmetic curves with others in this latest definition is that arithmetic varieties are
relative over arithmetic curves.



Theorem 3.4 (Sugahara-Weng [15])Let X be an arithmetic surface. For a Weil divisor D on
X, arithmetic adelic groupe\y,, AY ., AY,(D), A{y, A (D), AY,(D) as subgroups ohAf’
associated to the invertible sha@k(D) are given as follows:

() Aoy = {(fexd x (fp) € AL T (fex) € Axon, fe = fepx (P € Xe)},
(i) Ay, = Axo2® (K(Xg) ®g R),

(i) A%5(D) = AxiD)® lim  (Ax 2(Dr)/Ax 2(DE) ®g R),
Df-:Dj-<Df
where > denote a divisor on Xinduced by D.

N Aar

(V) AZ)=k(X) = Ao, N AL,

X,01
(V) AF1(D) = {(fcx) x (fp) € AY | (fex) € Axa(D), fo = fepx (P € Xp)} = Afy; N AL ,(D),
(vi) AZL(D) = {(fe )% (fr) € AY | (fox) € Ax2(D), (fp) € HO(Xg, DE)®gR} = Al 0aNAY 15(D).

Proof. These are direct consequences of our definition. O

Corollary 3.5 ([15]). Let X be an arithmetic surface. Then, there are following natural ind-pro

ar ar .
structures on the level two subspa(zﬁﬁ01 andAX’02 of AS 012

Afor = lim lim A5, (D)/AS, (E),
D E'E<D

ARz = lim lim ASH(D)/AS(E).
D E'E<D

Proof. This follows from the ind-pro structure

A?(,rmz = “ﬂl L@ A?(le(D)/ A?(tlZ(E)
D E:E<D
and facts that A{’y; N AJ',(D) = AJ (D), A{g, N AL 15(D) = AL(D). m|

3.3 Arithmetic Cohomology Groups

In this subsection, let : X — Y be an arithmetic surface.
Definition 3.6 ([15]). Form > 0 and a quasi-coherent sh&af we define the boundary mag§ by
d: ARG F) = ATHCF) (fege po) = (212671 fop o 61 )

Proposition 3.7([15]). Let¥ be a quasi-coherent sheaf on ¥\},(X, ), d3,) forms a complex of
abelian groups.

We call this compex an arithmetic adelic complex.

Definition 3.8 (Adelic cohomology groups, Sugahara-Wenggt # be a quasi-coherent sheaf on
X. Fori € {0,1,--- ,n+ 1}, we define the-th arithmetic cohomology groupd}, (X, ) of ¥ by

H(X, ) = HI(AZ(X, 7). d3)-

10



Theorem 3.9(Weng [18]) LetY be an arithmetic curve. Then for any divisor D on Y, we have
(i) H(Y,D) = A¥, n AZ (D),
(i) H3(Y,D) = A%, /(AT + AY (D).
Proof. To get arithmetic cohomology groups, calculate cohomology groups of an arithetic adelic
complex
ar ar dl ar
0—- Ajg@ AY1(D) — AYp — 0,
where
d' : (ag. a1) + (a1 — ao).
m]

Theorem 3.10(Sugahara-Weng [15])Let X be an arithmetic surface. Then, for a Weil divisor D on
X, the arithmetic cohomology groups of the invertible ski&giD) on X are given by the follows:

(i) HY(X,D) = AY  NAY

ar
X,01 X,02 N AKlZ(D)’

(i) HZ(X,D)
~ (A% o1 + A% 02) N AK D))/ (AS o1 N AS 15(D) + AT g, N AT 1,(D)),
= ((A?{m + AZ15(D)) N AT 1) /(A 01 N A 5o + AN 0o N AT 15(D)),

= ((A%o2 + A?(flz(D)) N A?(fm)/ (Afor N A?(foz + A?(fm N A?(le(D))’
(i) H2(X,D) = AY 010/ (A o1 + AX o, + A 1,(D)).

Proof. To get arithmetic cohomology groups, we calculate cohomology groups of the arithmetic
adelic complex

dt @2
0- A%o @AY (D) ® AY,(D) — A?(fm A, ® A?(tlZ(D) — Af012— 0,
where

d!: (@, a1, @) — (a1 — ag, & — ag, a2 — &), d? : (ao1, Ao, A12) > A12 — Aoz + Ao1-

3.4 Inductive Long Exact Sequences

In this subsection, let : X — Y be an arithmetic surface.
There are two types of irreducible curves¥nNamely,

(a) horizontal curvedH, whereH = {P} for an algebraic poinP of Xg. In this case we write
H = Ep.

(b) vertical curves/, wherer(V) = {v} consisting of a closed pointon'Y.

For an irreducible curv€ on X, we define a map
%
AY1(D + C)/AY, (D) ® AY,(D + C)/A¥,(D) = A¥;5(D + C)/AY 15(D),

wherey : (ag,a2) — ap — a3.

11



Proposition 3.11([15]). Let V c X be a vertical curve. We have the following long exact sequence
of cohomology groups

0 — HX D) = HIYX D +V) = HYV, (D +V) Iv)
— HLXX,D) - HL(X,D+V) - HYV,(D+ V) |v)
— H2(X,D) - H2(X,D +V) = 0.

Proof. This is a direct consequence of the following commutative diagram

0 0 0
d d
ASo ® AY1(D) ® AL,(D) —— A1 ® A%, ® AY;,(D) — AY
d d
A, @AY (D+V)@AL(D+V)  —— A¥, @AY, @AY (D +V) —— AY

! ! !

AZL (D +V)/AY,(D) ® AY,(D + V)/AY,(D) ——  AY (D +V)/AY,(D) —— 0

l !

0 0.
with exact columns and facts that
AY (D + V)/AY, (D) = Ay,
ASLH(D +V)/AY,(D) = Ay ((D + V) Iv),
A?{lz(D + V)/Aiflz(D) ~ Ayo1.

O

Proposition 3.12([15]). Let Ep c X be a horizontal curve. We have the following long exact
sequence of cohomology groups

0 — H(X, D) = HY(X,D +Ep) — Kerg
- H;r(x’ D) — H;r(X, D + Ep) — Cokergp
— H3(X,D) > H3(X,D + Ep) - 0.

Proof. This is a direct consequence of the following commutative diagram

0 0 0
d d
AZo @ AL (D) ® AT,(D) — Af01 ® A% 02 ® AY15(D) — AY
d d
A¥ @AY (D +Ep) ® AY,(D +V) —— A¥ 0 A, 0 AY (D +Ep) —— AY

! ! !

12
AZL(D + Ep)/AY (D) ® AT,(D + Ep)/ATH(D) ——  A{,(D +Ep)/AY,(D) —— 0

! !

0 0.

12



with exact columns. ]

Remark.Unlike for vertical curves, for horizontal curves, we do not have the group isomorphisms
between Kek, resp. Coketp, andH2(Ep, (D + Ep) |E,), resp. HY(Ep, (D + Ep) |g,). This is in

fact not surprising: dferent from vertical curves, for the arithmetic conomology, there is no simple
additive law with respect to horizontal curves when count these arithmetic groups: In Arakeloc
theory, we have the following formulas.

() (6], V, § 3, Proof of Lem 3.8) For any vertical cur¥g
Xx¥(Ox(D +V)) = xx/v(Ox(D)) = x(Ox(D + V) Iv).
(i) ([6],V, § 3, Theorem 3.4) For any horizontal curke,
xx/Y(Ox(D + Ep)) — xx/v(Ox(D)) = &,/ v(Ox(D + Ep) |g,) — 361(Ep),

where letd = %g be a Neron function resulting from a Green functmrd,(Ep) be a logarithmic
A—discriminant,y be a Euler characteristic (see [6], pp. 3, 21, 99 and 112).

13



4 Residue Pairings

In this section, letr : X — Y be a regular arithmetic surface.

Definition 4.1 (Morrow ([8], Definition 2.5)) Let (A, ma) be a Noetherian local ring arld be an
A-module. Then we define the maximal HaudtiquotientNs¢P of N by

NSeP:= N/ () miN.

n>1

Let F be a complete discrete valuation fieldy be its valuation ring andk be a subfield ofF
such thatk = FracOr N K). Then for the diterential modul&y, ;k~o- We define the continuous

. . :
differential module’zgfK

Q> F.

cts ._
Q 0 /knor EOF

F/K "™

Definition 4.2 (Residue maps: equal characteristic zero, Morrow (f8R.2)). Let N be a 2-
dimensional local field of equal characteristic zero. Assume khaticludes local fieldL. Then
the following (1)-(4) hold.

(1) N have a unique cdkcient fieldky includingL,

(2) kn/L is a finite extension,

(3) ky is an algebraic closure afin N,

(4) There exists a uniformizdre N such thatN =~ ky((t)).
We define residue map rg$or N by

resy : QCNI/SL = Ndt — ky, (Z antM)dt > a_;.
n

Definition 4.3 (Residue maps: mixed characteristic, Morrow (B2.3)). Let N be a 2-dimensional
local field of mixed characteristics with the residue field of characteristidhen the following
(2)-(3) hold.

(1) N containsQy.
(2) Letkn be an algebraic closur@, in N. ky corresponds to a céiecient field ofN.

(3) There exists a 2-dimensional local fidll c N satisfying conditions (i)-(iv):
(i) N/M is a finite extension.
(i) M =N, whereM andN denote residue fields ol andN respectively.
(iii) km = kn.
(iv) M is km-isomorphic tdkw{{t}}, where
kmi{th = {Znez ant" | @n € km; infi vi, (&) > —c0;an — 0 asn — —oo}.
We define the residue map fefor N by

Tr/m resv
. OCts cts cts
resy : QN/L = QM/L MmN —— QM/L — km = kn,

resy : Qﬁ,‘,jl_ = Mdt — ky, (Z ant"dt —~ —a_;.
n
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For the finite adelic ringA", it is known thatAll" ¢ l_[ A({Po, P1, P2}, Ox) and
{Po,P1,P2}eS(X)¢
k(X)cx = A({Po, P1, P2}, Ox) is a finite direct sum of 2-dimensional local fields (see [1], 2; [13],
Prop. 1). Hencex‘;'(“ is a subgroup of direct product of 2-dimensional local fields.

Similary, foreco-adelic ringA5’, we have a natural inclusioh§’ ¢ 1—[ A({n,P},Ox.) ® R
PeX:closed
andk(Xg)p ®qg R = A({n, P},Ox.) ®g R is a finite direct sum of fields of the foriR((t)) or C((t)).
HenceAs is a subgroup of direct product of fields of the foR{(t)) or C((t)).
From the above, to define residue paring for an arithmetic adelic ring, we can use residue maps
for 2-dimensional local fields above and the natural residue magpgyesK((t)) — K; Xpant" -
a1 (whereK denotes eitheR or C).

Definition 4.4 (Tate ([16],§ 2.2)). We define residue mapis,, 1, (p a prime) by

Ao : R > R/Z; X~ —Xx modZ,
Ap:Qp = R/Z; Zanp HZanp modZ.

n<0

Notation. Set Reg = Ay o Ty, 0, © resv. SinceA({Pg, P1, P2}, Ox) can be written as a finite direct
sum@ N of 2-dimensional local fieldsl, we define residue map Resby Reg x = Yy Res,

whereC = {P1}, X = P,.
Similarly, sinceA({n, P}, Ox.) ® R can be written as a finite direct sum field, L of fieldsL
of the formR((t)) or C((t)), we define the residue map Rdsy Res = 3| Res.

Definition 4.5 (Residue parings, Sugahara-Weng [18]¢t 0 # w € Qyx)r. We define the global
residue pairing:, )., on the arithmetic adelic ring§f by

(Y ATXAY - R/Z;

((fex) X (), (@c) X (@F) = > Regx(fexdexw) + Z Res(fpgpw).
(€

For the global residue pairing, we have the following fundamental result.

Theorem 4.6 (Non-Degenercy of Residue Pairing, Sugahara-Weng [15J 0 # w € Qx/F-
(-,w ONAY is a non-degenerate pairing.

For later use, we also recall the following

Theorem 4.7(Residue formulas, Morrow ([8], Thm 4.1; [9], Thm 5.4))et0 # w € Qux)r. We
have

(i) For afixed closed point & X,

> Regx(w) =0

C:xeC

(i) For a fixed horizontal curve Ec X,

Y, Regux(@)+ Z Res(w) =

X:XeEp

(iif) For afixed vertical curve \& X,

Z Res/x(w) =0

x:xeV
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5 Topological Structures of Adelic Groups

In this section, letr : X — Y be a regular arithmetic surface.

5.1 Topological Structures of Arithmetic Adelic Rings

To introduce a natural topology on the adelic riagf, we follow [15] using ind-pro structures
on our space starting from locally compact topologies. More precisely, it goes as follows.
For all divisorsD > E on X, Ax(D)/Ax(E) are locally compact, Hausd®topological groups.
S

Indeed, settindp — E = Z aCi (g = 0), we have
i=1

S

Ax12(D)/Ax12(E) = | | Ale, Kaz [Ox(D)ye, /My, Ox(Dyc 1)

=1

SettingF = [OX(D),,Ci/m,";“Ci Ox(D)g I, » since¥ is a quasi-coherent sheaf, we can express
IiLn>7-‘j in terms of direct limit of certain coherent sheayggi € 1). Consequently, we have
jed

Al Kiz, F) Ax] x € Ci},lim 77)
jed
= "Ln)A({MXGCi}jTj)
jed
= lim [ ] (im 75/mF).

jed xxeCi |

Note thatF; (j € J) are coherent sheaves axdre closed points. SG—,'j,X/nfxﬂx are finite groups.
In particular, we can endow affj x/m, 7 x with discrete and compact topologies. Accordingly, by
using product topology, inductive limit topology and projective limit topology, we obtain a natu-
ral topology on the spacafi’(D)/AfM(E). This topology onall"(D)/AM(E) is well-known to be
Hausdoft and locally compact.

Moreover, since we have

Afln = lim lim Ax12(D)/Ax12(E).
D E:E<D
Again by using projective limit topology first and then inductive limit topology, we obtain a natural
topology onAfin.
On the other hand, for all diviso® > E on X, sinceA‘;Zl(D)/A‘)’("’l(E) are finiteR-vector
spacesA‘;Zl(D)/A‘;Zl(E) are locally compact, Hausd®topological spaces. Furthermore, since

AR =lim lim AY,(D)/A(E),
D E:EE<D
similarly, we obtain a natural topology o’ by using inductive limit and projective limit.
Recall thatA§ = AE‘{‘ ® Ay . Using product structure, we obtain a natural topology on our adelic
ring A§, which we call the ind-pro topology.
We may realize the above formal definition of the ind-pro topologyghin a more concrete
term following [15]. To explain this, fix a Madunts-Zhukov lifiting
’ ’ lifiting ’
he : Aco1 = ( l_l Ocx)/(mc 1_[ Ocx) — l_[ Oc.x

x:xeC X:xeC x:xeC
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(see [7]). Then, following Parshin ([12, 13]),

. o . aic € Aco1,
AR =2 he@e) nd)c e [ | | | KX)ex| ac = 0 for suficiently smalic,
ic=—co C xxeC min{ic | & # 0} > 0 for almost allC

Moreover, one checks that a fundamental system of open neighborhoods of O for the ind-pro topol-
ogy onA‘;'(” may be described as follows:

00 _ | Uic € Aco1 0pen subsets
( Z hc(Uic) né)c € AN Ui, = Ao for sufficiently largeic,
ic=—co maXic | Uic # Aco1} <0 for almost allC

5.2 Ind-Pro Topological Spaces and Their Duals

_For atopological spacg, denote byl := {f : T — S| continuou$. There is a natural topology
onT, namely, the compact-open topology generated by open subsets of theigii) = {f €
T | f(K) c U}, whereK c T are compacty c S* are open. We call the (Pontryagin) dual of.

Proposition 5.1([15]). Let{Pn}, be a projective system of Hausgdopological groups with struc-
tural mapsmnm : Pm — Pnandm, : I(@ Pn — Pn. Assume that alt,, and 7, m are surjective and

n
open, and that for any,m’, there exists an’hsuch that # < nand rf’ < n’. Then, as topological
groups,

o S
lim P, = lim Py.
— —

n n

Proof. Denote bymnm : If’\n — ﬁ\n fn > fn o 7nm, the dual ofrnm. Then, for an element_lin‘}1 €
n
I|_m> Pn, we havernm(f,) = fm, or equivalently,f, o mnm = fm. Hence, ifx = I(mxn € I(@ Pn, we

n n n
have fn(xh) = fa(mnm(Xm)) = fm(Xm) for suficiently smalin > m. Based on this, we define a natural
map

- lim P, — lim P lim f,— f
" M Fn o Fn, 1M n
n n n

wheref : lim P, — S, x=1lim x, — f.(x,). From above discussioth,is well-defined.
«—n <«—n
Lemma 5.2([15]). Concerningp and f, the following holds.
(1) fis continuous. In particulak is well-defined.
(2) ¢is abijection.
(3) ¢ is continuous.
(4) ¢ is open.

Proof. (1) For suficiently smalln, f = f, o m,. Sincef, andn, is continuous,f is continuous,
and hence is well-defined.
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(2) To prove thaty is injective, we assume tha(IiLn) fo) = 0. Thusf.(x,) = O for suficiently
n
smalln and for aII(Ii_mxn € I(@ Pn. Note thatr, are surjective. Sdn(x,) = 0 for all x,, € P,.

n n
This meand,, = 0 for suficiently smalin. Consequently(infn = 0, and hence is injective.
n

To show thaty is surjective, letf : I(@ P, — S! be a continuous map. Then, for any open

n
subsetU c S containing 1,f~%(U) is an open neighborhood of 0 in_IiFn]. Hence, we can
n

write f~1(U) asf~1(U) = I(m Py N ]_[ Kn whereK, c P, are open subsets aiG, = P, for

almost alln. By our assurrr;ptions, ?anl, .-+, ny such thatk,, ¢ Py, there exists afN such
thatN < n;. Hence,f(Kerzy) = 1. So,f(Kerzy) = 1 for alln < N. Built on this, we define,
for n < N, the mapsf, : P, — S, x, = f(X) if 7n(X) = X,. Note thatf(x) always make
sense, sincey, is surjective. Moreoverfy's are well-defined. Indeed, ¥f € I(@ P, such that

n
m(y) = Xn, thenmp(y) = X, = mn(X) for n < N. Hencex —y € Ker m,. This implies that
f(y) = f(x). Clearly, by definition;p(liLn) fn) = . Sog is surjecitive.

n

(3) To prove thaty is continuous, it sfiices to show that for open subsetsl@l\% in the form
n
W(K, V), ¢ {(W(K, V)) is open inmﬂsn, whereK is a compact subset gﬂimndv is open
n Pn
subset ofS'. Sincern, are continuousK, = m,(K) are compact. In this way, we get an
inductive system of open subséW(Kn, V)},. SetU = Ii_m)W(Kn,V). Note that we have

n

f(U) = W(K, V). This shows thaf is continuous.

(4) To prove thatp is open, letU be an open subset ﬂiﬁfh such that=1(U) = W(K,, V) for a
n
compact subse&,, of P, for anyn wherer, : |5} - Iln> |5} K:= I(@ Kn is compact inirrPn.
n n n
ConsequenthiyV(K, V) is open inl(@l\%. Note that we have(U) = W(K, V). Sogy is open.
n
This proves the lemma.

O

Clearly, our proposition is a direct consequence of the lemma above. Hence, the proposition is
proven. m]

Let {Dn}n be an inductive system of Hausditopological groups such that ajl,, are injective

and closed. By definition{Dp},, is called compact oriented, if, for any compact sub6et Ian> Dn,

n
there exists an indemg such thak c Dp,,.

Proposition 5.3 ([15]). Let {Dn}n be a compact oriented inductive system of topological groups
with structural maps,m : Dn —» Dy ande, : Dy — Ian> Dy. Assume (that all, , are injective and

n
closed, and) that for any,m’, there exists an’hsuch thatf > nand i’ > n’. Then, as topological
groups,

lim Dy, ~ lim Dp,.
—) (—
n n
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Proof. Denote byinm : [’);1 — [’)\n fm — fm o tnm, the dual oftnm. Then, for(li_mfn € I(@[’)\n
n n
we haver, m(fm) = fn, or equivalently,fy, o inm = fn. Hence, ifx = IiLn)xn € th> Dn, fm(Xm) =
n n
fm(tnm(Xn)) = fn(Xn) for suficiently largen > m. Based on this, we define a natural map
:,b:l(?Dnﬁll_:n)Dn, L?anf

wheref : Ian> D, — S, th) Xn = fr(Xy). From above discussioff,is well-defined.
n n

Lemma 5.4([15]). Fory and f, the following holds.
(1) fis continuous. In particulaiy is well-defined.
(2) ¢ is a bijection.
(3) v is continuous.
(4) v is open.
Proof. (1) To prove thatf is continuous, leU c S* be an open subset. For any;(f~1(U)) =
f-1(U) is open inDy,. Hencef~1(U) is open. Sdf is continuous.
(2) To prove thaty is injective, we assume thw(l(im fo) = 0. Thenf(x,) = fa(Xn) = O for all

n
Xn € Dp. This means that, = 0 for anyn. Consequently,_li)rrin = 0, and hencé is injective.
n
To show thaty is surjective, leff : I|_m> Dn — S! be a continuous map. Skt= f oc,. Clearly,
n
f, is continuous. Sdy, € Dy,. Moreover, foralln’ > n, fy = f oty = f oty 0ty = fiv 0ty
That is,{ fn}n forms a projective limit. Obviously&(l(im f) = f.
n

(3) To prove thaty is continuous, it sfiices to show that for open subsetsli_nf/)\Dn in the form
n

W(K, V), y"1(W(K, V)) is open inmf)\n, whereK is a compact subset @)imn andV is

n n
an open subset @f'. By our assumptions, for any, L;,l(Dn) is closed. Henc®, c Ian) Dp

n
are closed. S&, := K n D, are compact. Sincg 1(W(K,V)) = LimW(Kn,V), it suffices
n
to show thathW(Kn,V) is open. This is a consequence of our assumptions. Indeed, since

n
our system is compact oriented, there exists a cen@such thak = Ian> Kn c Dp,. Hence,

0

n
Kn = Kn, = K for all n > no. lim W(K, V) = T (W(Kn,, V)). So, JimW(Kn, V) is open.
n n

(4) To prove thaty is open, letJ be an open subset ((ﬂiﬁ\n such thaty = ;%(W(K, V)) for
n
a compact subsét, of Py for somen, whereny, : lim D, — Dn. ThenW(Kp, V) is open in
n
@\Dn. Note that we have(U) = W(K,, V). Soy is open. This proves the lemma.
n
m]

Clearly, our proposition is a direct consequence of the lemma above. Hence, the proposition is
proven. m]
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5.3 Completeness and Compact Orientedness of Arithmetic Adelic Groups

For basis of complete topological groups, please refer to [2] and [3].

In the sequel, we use simpl to denote arithmetic adelic grouﬁ@'(”, or Axo1, Or Axo2 Or
AY. Similarly, we useA(D) to denote arithmetic adelic groups12(D), or Ax 1(D), or Ax (D) or
AY,(D). WhenA andor A(D) represent what will be clear according to the text involved below.

Proposition 5.5([15]). The subgroup#\(D) of A are complete and hence closed.

Proof. SinceA(D)/A(E) are complete Hausddiocally compact, as a projective limit of complete
spacesA(D) = I(@ A(D)/A(E) is complete. Itis also closed sinéeis Hausdoft. O
E:E<D

Lemma 5.6([15]). Let{A(Dn)}n be a strictly increasing sequence afa}}, be a sequence of ele-
ments ofA. Assume thatae A(Dp) — A(Dp-1) for all n > 1. Then there exists an open subset U of
Ii_m)A(Dn)suchthata,--- ,an,---¢Uandan1, - ,an - ¢ U+ A(Dy) forallm < n.

n

Proof. We separate the finite and infinite adeles.

[Finite Adeles] SinceA(D;)/A (Do) is Hausdoft, there exists an open, and hence closed, subgroup
U; c A(Dy) such thata; ¢ U; andU; > A(Dg). SinceA(D1) is complete andJ; is closed in
A(D1), Up is complete as well. Now, viewing iA(D;), sinceA(D>) is Hausdoff, U, is a complete
subgroup, sdJ; is closed inA(D;). HenceA(D»)/U1 is Hausdoff too. Therefore, there exists an
open and hence closed subgroty of A(D>) such thatay,ax ¢ Voo andVop o Uz, In addition,
A(Dy)/A(D1) is Hausdoff, there exists an open subgrovg, such thasy ¢ Vo1 andV, 1 > A(Dy).
Consequently, if we sdtl, = Vo0 N V21, Uz is an open hence closed subgroupAgD,) such
thatay, ap ¢ Uy, a» ¢ Uy + A(D;) andU, > Ujp. So, inductively, we may assume that there
exists an increasing sequence of open subgrblps - , U,_; satisfying the properties required. In
particular, the following quotient groups

A(Dn)/Un-1 + A(Do) (= A(Dn)/Un-1),--- ,A(Dn)/Un-1 + A(Dn-1) (= A(Dn-1))

are Hausddt. Hence there are open subgrodag,, 0 < m < n—1 of A(Dy)) such thaBm,1,--- ,an ¢
n-1

Vom andVpym 2 Up-1 + A(Dy). DefineU, = ﬂ Vam- ThenU, is an open subgroup af(Dy)

m=1
satisfyingas,--- ,an € Un, @mi1, -+ .80 € Un+A(Dp), 1 < m< n—1andUy, o Up_1. Accordingly,
if we letU = Ian) Un, by definition,U is an open subgroup cil)im(Dn), and from our construction,

n n
&, - ,8n, - ¢Uandamg, -, 80, - ¢ U+ A(Dm),m> 1.

[Infinite Adeles] SinceA(D1) is Hausdoft, there exists an open sub&&t of A(D;) such thata; ¢
A(Dj). Moreover, sinceA(Dy) ~ A(D2)/A(D;) ® A(D1) and A(D2)/A(D;) is Hausdoft, there
exists an open subsél, of A(D2) such thata;,ay, ¢ U, andU> n A(D1) = Uz, In particular,
a ¢ Uo + A(Dq). Similarly, as above, with an inductive process, based on the facA(inf) ~
A(Dp)/A(Dp-1)®A(Dn-1) andA(Dy)/A(Dn-1) is Hausdoff, there exists an open subsktof A(Dy)
such thatay, - - ,a, ¢ Uy andU, N A(Dp) = Un_1. Consequenthgm; 1, -+ ,an ¢ Un + A(Dpy), 1 <
m < n-1. In this way, we obtain an infinite increasing sequence of open subgetetU = Ian> Un.

n
Then we haveay,--- ,an,--- ¢ U andam1,--+ ,an,--- ¢ U + A(Dm),m > 1. This proves the
lemma. O
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Proposition 5.7([15]). A is complete.

Proof. Let {an}n be a Cauchy sequence &f We will show that these exists a divisbBrsuch that
{an}n € A(D). Assume that, on the contrary, for all divisdds {a,}n, c A(D). Then there exists a
subsequencgy, }n Of {an}n, a (strictly increasing) sequen{®n},, and an open neighborhodbl of
0in I|_>m A(Dp) such that

n
() a, € A(Dn) — A(Dn-1) (N> 2),
(i) . . ak, - ¢U,
(i) a8k, - ¢ U+A(D) ([ >1).
Since{ay, }n is not a Cauchy sequence o_f)IiMDn), we the get a contradiction. Therefore, there

n
exists a divisoD such that{a,} ¢ A(D). But A(D) is complete, the Cauchy sequeneg}, is
convergent ilA(D). O

Proposition 5.8([15]). A is compact oriented.

Proof. Assume that for all divisorD, K ¢ A(D). Then there exists a sequerieg} in K, a (strictly

increasing) sequend®y},, and an open neighborhoddof 0 in Il_)m A(Dp) such that
n

() @ € A(Dn) = A(Dn-1) (n > 2),
(i) as,--,an--¢U,
(iii) @41, ,an,---¢U+A(D) (i = 1).
{U + A(Dp)}n is a open covering ok N I|_m> A(Dp) and admits no finite sub-covering. On the other
hand,K N IiLn)A(Dn) is compact, a conr][radiction. Indeed, sing D) is complete and\ is
Hausdoff, ﬁn}A(Dn) is closed inA and henceK N IiLn>A(Dn) isncompact. This completes the

n n
proof. O

5.4 Double Dual of Arithmetic Adelic Rings
Proposition 5.9([15]). As topological groups, we have the following isomorphisms.

() A=lim lim (A(D)/A(E)"
D E:E<D

(i) &=~ A
Proof. (i)

A = (lim lim A(D)/A(E))™
D E:E<D

~ lim( lim A(D)/A(E))™
(F EED

lim lim (A(D)/A(E))"
?EE)D

1
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(i) Remarking thatAx(D)/A(E))iz A(D)/A(E) sinceA(D)/A(E) are Hausddf locally compact
groups,

A =~ (lim lim (A(D)/A(E))™
<FEE)D

~ i lim (A(D)/AB) )"
D E:E<D

~ lim lim (A(D)/A(E)™
?EE)D

~ lim lim A(D)/A(E) = A
?EE)D

5.5 Continuity of Scalar Product
Proposition 5.10([15]). For a flxed element a oﬁ&f'” resp. ofAY, the induced scalar product map:
gin : Afin 22 AN resp.g : A =5 A s continuous.
Proof. If a =0, there is nothing to prove. Assume, from now on, that
O#a=(ac)=( ) hc(ac) ) e Al
ic=ico

Here, for eaclC, we assume tha, # 0. To prove thatzsf.jl” is continuous, it sfiices to show that
for an open subgroup

rc-1 . © . )
U=(Uc)=( D] hc(hcaDic) 75 + > helbcon) 7)) N AY,
je=—o0 je=rc

as an open neighborhood of 0, its inverse ima@E)(l(U) contains an open subgroup. For later
use, setc :==rc —ico.
Let

b=(bc) = ( ) helbe) x&) € (81 H(U) c A"

kc=—c0
Then, for each fixe(,

acbc = D (D] hel@ohe(bcic)) 7&.

|C=—0<J ic:ic’o
Recall thathc is the Madunts-Zhukov lifting map
Ilfltlng ’
: Acor = (l—[ Oc.x)/(nc l_[ Ocx) — l_l Ocx.

x:xeC x:xeC x:xeC

Thus ifb. € Aco1, we always have

he(@ic)he(bic-ic) € D, he(Aconnt®.
mc=0

Moreover, if we write, as we cam. € Ac1(Fi.), bk. € Aci1(Ek.) for some divisors;. andEy.,
we have
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he(@c)hc(ic-ic) € ). he(bca(Fic + Eic-ic)) nee.
mc=0
Now write
Ilc-1

=(> + Z he(bie) 7.

kc=—c0  kc=I
We will construct the required open subgroup accordlng to the range of the degreé&dndex

(i) If
be € ( Z he(bcon) ) 0 ([ | KX)ex,
x:xeC

we haveacbc € Uc.

(i) To extend the range including to also the dedgge 1, choose a divisdE._1 such that

hc(Ac1(Fico + Eic-1)) € he(Ac1(Dre-1))-

Then if we choose

b € (he(Aca(Erg1) 78 + Z he(acon) 7€) 0 (] | K(Xex),

X:xeC

we also havexchc € Uc.

(iii) Similarly, to extend the range including the degrge- 2, choose a divisoE,._» such that

hc(Ac1(Fico + Eic-2)) € he(Ac 1(Dre-2)) N he(Ac1(Dre-1))
hc(Ac1(Fice+1 + Eic-2)) € hc(Ac1(Dre-1))-

Then, if we choose

lc-1
bee( ), helhca(Ei)) 7& + Z he(acon) &) 0 ([ | KX)e),
kc=lc-2 x:xeC

then we havecbe € Uc.

Continuing this process repeatedly, we obtain divigeyss such that, for

Ic-1

be Ve = ( ) helhca(Bi)) 7 + Z he(aco) 7€) 0 (] | KX)ex),

kc=—c0 ke=Ic x:xeC

we haveacbe € Uc.
Since, for all but finitely manyg, rc < 0 andico > O, or betterlc < 0. Therefore, from above
discussions, we conclude thﬁ[ Ve N Af;(” is an open subgroup cﬁtfj(” anda(l_[ Ve N A‘;'(”) c U.
C C

In particular,¢i" is continuous.
A similar proof works forgy’. O
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5.6 Continuity of Residue Maps

Fix a non-zero rational dierentialw on X. Then for an elemerd of A‘;i(”, resp. Ay, induced
from the natural residue pairing, -),,, we get a natural mapgn ={a, )y - Ag'(” — R/Z, resp.
P = (@ ) AY - R/Z.

Lemma 5.11([15]). Let a be a fixed element m;i{', resp.Ay. Thengy =(a, ), : AY = R/Zis
continuous. In particular, the residue map on arithmetic adel&ss continuous.

Proof. We prove only forgfi", as a similar proof workgy. Write Agi(” = H'F where the product

ranges over 2-dimensional local fields. And, for each 2-dimensional IgcaF’rie‘ch an elementg

of F such that for equal characteristic fidtdtr is a uniformizer of~, while for mixed characteristic
field F, tr is a lift of a uniformizer of its residue field. Since the scalar product is continuous, to
prove the continuity ofa, -),, , it suffices to show that the residue map Re@)‘(’:‘ - R/Z, (X)) —

Z res(xgdte) is continuous. (Note that, by the definition,mf(”, the above summation is a finite
F
sum.) Since the open subgroup

-1 )
(D helhciO)xE + ) helhcon) 7&) N AY!

ic=—c0 ic=0

is contained, the kernel of the residue map is an open subgroup. This proves the lemma. O

5.7 Self-Duality of Arithmetic Adelic Rings

We will treat bothAfl" andAY simultaneously. So as before, we us¢o represent them.
Recall that, for a fixed € A, the map@a, -), : A — stis continuous. Accordingly, we define a
mapy : A = A, a @g = (@, ).

Proposition 5.12([15]). For the mapy : A — A, a— ¢ = (@, -),, We have the follows.
(1) ¢is continuous.
(2) ¢isinjective.
(3) The image o is dense.
(4) ¢isopen.

Proof. (1) For an open subsatv(K,V) of A, whereK is a compact subset of andV is an
open subset df?, letU = ¢ 1(W(K, V)). SinceA = lim lim (A(D)/A(E))", we may write

D E:E<D
xo =(L % as(li_m Ian) xp/E With yp/e € (A(D)/A(E))". Accordingly, write
D E:E<D
Ape = A(D)/A(E),
Kpe = KnNA(D)/KnA(E),
Upe = {ap/e € Ap/e | xp/e(ap/eKpse) € V (V : open}).

Since, for a fixed divisoD, A(D) is closed inA, K n A(D) is a compact subset. So, for
E < D, Kp,e is compact irAp,e. Consequently, from the non-degeneracygfe on locally
compact spaces)p,/e is an open subset af, andU := Ian) I(m Up,e. We claim thatU is

D’ E:E<D
open. Indeed, sinc& is compact oriented, for compakt there exists a divisdD, such that
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K c A(D1). On the other hand, singg is continuous, there exists a divisDp such that
A(D1 + D) c Ker(yo). HenceU > A(D»). Thus, for a fixedD, with respect to sfticiently
smallE < D, we haveUp,e = Ap,e. This verifies that) is open, and hence proves (1), since
the topology ofd is generated by the open subsets of the fav(iK, V).

(2) This is a direct consequence of the non-degeneracy of the residue pairing. So we have (2).

(3) To prove (3), we use the fact that: A ~ A, where, fora € A, Wa IS given byy, : A —
S, x ~ x(a). Thus to show that the image @fs dense, it sfiices to show that the annihilator
subgroup Ann(lmg)) of Im(y) is zero. Let therx € Ann(Im(y)) be an annihilator of Imf).
Then, by definition{0} = yx({¢a | a € A}) = {pa(X) | a € A}. That is to saya, x),, = 0 for all
a € A. But the residue pairing is non-degenerate.»56,0.

(4) This is the dual of (2). Indeed, l&t c A be an open subset 8f. ThenU N A(D) is open in
A(D). Write

Uoe = UnAD)/U NAE)
Kp/e = {ap/e € Ap/e | xp/e(ap/eUpse) € V (V : open)

SinceA(D) is closed,Up/e is open inAp,e. This, together with the fact thatp,e is non-
degenerate on its locally compact base space, implieskipat is a compact subset. Let
K= I|_m> I(@ Kp,e. SinceU is open, there exists a divis& such thatA(E) c U. This

D E:E<D
implies that there exists a divis@r such thatk c A(D). Otherwise, assume that, for aBy

we haveK ¢ A(D). Then, there exists an elemédn¢ K such thak ¢ A((w) — E). Hence we
havey(kKA(E)) # {0}, a contradiction. This then completes the proof of (4).
m]

Theorem 5.13(Sugahara-Weng [15])Let X be an arithmetic surface. Then, as topological groups,
we have the following canonical isomorphisms.

. /f\  afi
(i) AN~ Afin,
(i) AF ~AS.

(i) A%~ A2

Proof. We have an injective continuous open morphismA — A. So it sufices to show thap
is surjective. But this is a direct consequence of the fact¢hiatdense, since both and A are
complete and Hausdidr This proves the theorem. O
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6 Duality Theorem for Arithmetic Curves

Proposition 6.1(Tate ([16], Lem 4.1.5)) For any elment x F, residue formula
2ves W(Tre,/q,(X) = 0
holds.
Definition 6.2 (Tate ([16],§ 4.1)). We define a pairing, -) for an adelic ringAg
() DA X AR = R/Z; (%), W) = Zves A(TrE /0, (XW))-

Theorem 6.3(Tate ([16], Theorems 4.1.1, 4.1.4)5or the above pairing-, -) of an adelic ringAr,
we have the follows.

() ¢,-)is perfect.
(i) (Self-duality)A-E = Ag, whereX denote the Pontryagin duality of X.
(i) F-=F.

(iv) (Weng ([18],§1.3)) For any divisor D on Y Ayi1(D)* = Ayi(Kg — D), where Kk denote
codiferent of F onQ.

Theorem 6.4(Weng ([18], Prop. 3)) Let D be an Arakelov divisor on Y, we have the following
canonical isomorphism as topological groups:

H%r(Ya D) = ng(Y7 Kr — D).

SinceHZ(Y, D) is discrete andHl (Y, D) is compact, using Fourier analysis for locally compact
groups, we obtain their arithmetic coum(Y, D) andhl,(Y, D) (See [18], Defs 2, 3).

Theorem 6.5(Weng ([18], Theorem 2))For any divisor D on Y, we have the follows.

(i) (Arithmetic duality)
hi(Y,Ke — D) = h9(Y, D).
(i) (Arithmetic Riemann-Roch theorem)
hg(Y. D) — hi(Y, D) = deg) - 3 log A,

whereAg denote the discriminant of F.
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7 Duality Theorem for Arithmetic Surfaces

Theorem 7.1(Sugahara-Weng [15])Let X be an arithmetic surface. Fix a rationalfiirential
0 # w € Qx)/F, and denote by, -),, the natural residue pairing on the arithmetic adelic riag’
induced byw. Then the following holds.
(i) Foradivisor D on X,(,,ty';‘{lz(D))l = A{},((w) - D).
(i) (A%od)" = A%on-
(iii) (A’§‘(f02)L A 0

Proof. (i) To prove &%,,(D))* = A{,,((w) — D), we go as follows. Set "X — Y — SpecZ.
Then, for an open subskt of X, the dualizing sheab; of 7 can be written as

wr(U) = {w € Qo | Regx(fw) =0 (xe C(cU), f €Oxc))

(See e.qg., [8], Theorem 5.7). By a similar argument as in the proof of this result, we have, for
a fixed irreducible curv€y,

wr o = {w € Qxyjo | Regox(fw) = 0 (x € Co, f € Oxc,))-

This is just the set of dierentialsw satisfying ord,((w)) > 0. Moreover, we also have, a
fixed pairx € Co,

Wr,Co ®Oc, Ocox = {w € Qk(x)co %o/ Qit(xg) | Reg.x0(fw) = 0 (f € Ocyxo)}-

These results implies that for a fixed paip,(Co) the following conditions (1), (2) are equiv-
alent.

(1) Foranyf € Oxc,, Re$,x(fw) =0
(2) orde,((w)) = 0.

By a similar argument, we have that for a fixed closed pBygdn Xg the following conditions
(3), (4) are equivalent.

(3) Foranyf € Ox. py, Res,(fw) =0
(4) ordey((w)) = 0.

Given these facts, we concludey(;,(D))* = A% ,((w) — D).

(i) To showA§, (,,tv“m)l we use Theorem 4.6. By definition, elementsAdf,, are mde-
pendent of closed pointse X. So we may write components 6f= (fcx) x (fp) € AX 01 @
fcx = fc andfp = fg,, which are independent of closed pointsXf For f,g € A?{Ol,
have then

FQo= D, D Resx(fvavw)+ D () Respx(fege,w) + Res(fe ge,w) = 0

V:verticalx:xeV PeXg x:xeEp

Now, for vertical curved/, by Theorem 4.6(iii), we have

> Resju(fvovw) =0

X:xeV
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Furthermore, by Theorem 4.6(ii), we have, for closed pdmh&sXg,

2, Resox(fe,0e,0) + Res(fe,gew) = 0.

X:XeEp

This then proves that, ¢ (A¥)*.

Next we prove thatA§/,)* c A{,. For this purpose, we use the ind-pro structure\gf

For divisorsD and vertical curveg, using (i), we obtain perfect pairings
A‘;“(flz(D)/A?(flz(D -C) x Aiflz((w) -D+C) /A‘;“(flz((w) -D) > R/Z 1)

induced by the residue pairidg-).,. By above results§, c (Aﬁ‘{m)l, we see that the perfect
residue pairing-, -)., annihilatesAy’,, x A{,, hence the above perfect pairing (1) annihilates
A";‘(fl(D)/A";‘(fl(D -C)x A‘;"(fl((w) -D+ C)/A‘;"(fl((w) — D). Note that we have isomorphisms

A)a(tlz(D)/A?(flz(D - C) = AC,Ol,

A (D)/AY (D - C) = Aco = k(C),

A1) = D+ C)/AY ,((w) - D) = Aca,
AY((w) - D+ C)/AY ((w) — D) = Ac = k(C).

Hence the above pairing (1) can be regarded as a perfect paigiggx Ac o1 (— Fp) = R/Z
on the vertical curveC/F, ({p} = 7(C)), which annihilatesAco x Acp. In particular, for
some non-zerac € Qc)/r, and a certaindy) € Ac1, we can write this perfect pairing as a
residue pairing

(s Vacya - Acor X Acpr — R/Z, (), (9x) = Z Res(fxgxaxwc). )

It is well-known that for a perfect pairing @fc 01 annihilatingAco x Aco, we haveAéO =
Aco (See e.g., [5]§4). Therefore, if we seB(D) = (A{ )" N AY,(D), we have that

G(D)/G(D -C) (AY1((w) - D+ C)/AT ((w) — D))~

AZ1(D)/AYL(D - C) 3

with respect to the perfect pairing (1) and for a certaif) € Acp used in the residue pairing

(2). When necessary, with a possible modificationJgn without loss of generality, we may

and will assume thatag) = 1, and write(:, -).c (a) SIMPlY as(-, ). In parallel, wherC is
horizontal, by a similar argument as above, we get the same conclusion. Consequently, using
(3), we have, for any irreducible curv€s, C,, the following commutative diagram with exact
columns

A (D - C1)/A% (D - Cy - C2) = G(D - C1)/G(D - C1 - Cy)

! !

A (D)/AS (D - C1-Cy) G(D)/G(D - C, - C))

! !

AY,(D)/AY (D -Cy) S G(D)/G(D - Cy).

|

This then proves that the horizontal map in the middle is surjective. Furthermore, the hor-
izontal map in the middle is injective, since, from abo¥g,,, ¢ (A";‘{Ol)l. Therefore, we
have
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(iii)

G(D)/G(D - C1 - Cp) = A{(D)/AY(D - C1 - Cy).
Repeating a similar argument as above, we have, for any divor&
G(D)/G(E) = A, (D)/AY,(E). (4)
Since we have

AY =lim lim A% ,(D)/AY1,(E),
D E:E<D

using (4), we conclude that

I
(45" = lim lim G(D)/G(E)
D’ E:E<D
= lim lim AS,(D)/AS;(E) = Ao,
D’ E:E<D
This proves that4$,))* = A{ ;.

Next we prove,éy';‘(r02 (A"’“Oz)L By definition, since elements oﬁﬁ";‘(foz are independent
of irreducible curve< of X and closed point® € Xg, we may write components df =
(fex) x (fp) € AXO2 asfcx = fxandfp = fo, which are independent of irreducible cun@s

and closed pointB. Hence, forf,g € AY,,, we have

(.00 = ), > Rewx(figw) + Z Rew(fuofoot) =

X C:xeC

Now, by Theorem 4.6(i), we have, for any closed point

Z Re%’x(fxgxw) = 0
C:xeC

Furthermore,

D Rew(fuguw) = 0
P

since we can use a standard residue formula for a c¥pyé (See [14],81l. 7, Prop. 6).
Therefore A¥, € (AF )"

Finally, we show that4§,)* ¢ A

02" Fix a vertical curveC. Then, for any divisoD on X,
we have

{ ASL(D)/AY,(D - C) ~ Aca(D lo),
ASH((w) = D+ C)/AY,((w) - D) ~ Aca((wg) — D o),

for a certainw; € Qc)/r, satisfying ;) = ((w) + C) Ic by adjunction formula (see [6],
Theorem 3.6). We claim thatvg) = (wg). Indeed, sincé\c1(D Ic)* = Aci((wc) - D Ic)
andAfy, € (Af g Aca((wg) — D lc) € Aca((we) — D c). This implies thatéc) > (wg)
and hencea()c) = (wg), because there is nb € k(C) such that {) > 0. Thus, for a residue
pairing (2), we haveAc1((wg) — D Ic))* = Aci(D Ic). By a similar argument as a proof of
(4), we have that for any integens> m e Z,

H(nC)/H(mC) = A, (nC)/ A ,(mC), (5)
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where we seH(D) = (A} 02)L N AS,(D). Since we have
AY = Im L@ AS12(D)/ AL 15(E),
D EE<D

using (5), we get

ar L i i
(4ot = lim lim H(D)/H(E)
D EE<D
> lim lim H(nC)/H(mC)
n m<n
= lim lim A¥,(nC)/A%,(mC)

n m<n

= H;(:xec k(X)x.

Hence for any € C, a (x, C)-component of on)l is an element ok(X)x (x). To prove the

rest, we take a classical approach with a use of Chinese reminder theorem, using an idea in the
proof of Prop. 1 of [12]. To be more precise, g € X and a hyperplan&l on X satisfying

thatxp € H. SettingV = SpecOxy, — H, V is dfine. We claim that for any family of prime
divisorsDj onV such thaD; N Dj = ¢ if i # j, and any rational functionf, f1,--- , f,onV,

and any fixed divisob supported orD;’s, there exists a rational functiansuch that

ordp,(fi—g) > ordp, (D) (i=1,---,n)
{ ordp,(g) > ordp, (D) i#1,---,n).

Indeed, by clearing the common denominators fiar (with a modification off;’s if neces-
sary), we may assume thi are all regular. Then by applying the Chinese reminder theorem
to the fractional |dealﬁ>OrdD (D) =0,---,n, andNigo1..-, }PordD ©) , WhereP; are the prime
ideals associated to the prlme dIVIS(Dﬁ we see the existence of suclga Associated to

f e (A2 02)l form a new adeld’” € Ay, by settingf’, = fcx — fux where H is a fixed
vertlcal hyperplane througk By (%), the deflnltlon off « Is well-defined. Then

D Resx(fL,0w) = ) Regx(fextuw) - | Remx(f,0xw)
C:xeC C:xeC C:xeC
= 0-0=0.

Now, applying the above existence to obtaig satisfying that for any fixed rational function
fo and any fixed curv€g > X, we have

{ orde(f,) + orde(fo — @) + orde((@)) = 0 (C = Co)
orde(f¢,) + orde(g) + orde((w)) = 0 (C #Co,H).

Consequently, by the definition of the residue map, wm; = 0 in mind, we get, for any
fo € k(X) and the correspondingjust chosen,

0= ) Regx(f¢,qw) = Reg,x(f, ,0w) = Regox(fE, xfow).
C:xeC

Since the last quantity is always zero for &l this then implies thaf’ . = 0, namely,
fco.x = fHx,- TO end the proof of (iii), we still need to show thit = fp, for a fixedPg € Xg
and allP € Xg. But this is amount to a use of a similar argument just said again, based on
Chinese reminder theorem (See [8}). Thus, iff = (fcx)x(fp) € (A% 02)l thenfcx = fc,x
andfp = fp, for fixed Co andPy. Thereforef A?{OZ That is to say, ’OZ)L A\g"{oz This
proves (iii).

m]
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Theorem 7.2(Duality theorem, Sugahara-Weng [15])et0 # w € Qux)r. Foranyie {0,1,2},
we have isomorphisms as topological groups

Ha(X, D) = HZ () - D).
Proof.
(1) Duality betweerH2, andH2,

Ha(X. D)

(A 01 N AR o N AY15(D)) —

AY/(AY Oln Ao N AL (D))"

= AJ/(AY 01)J_ + (A{)i(roz)l (A{;l(tlz(D))l

= AY/AL 0 + A gp + AX1x((w) — D) = HA(X, (w) - D),

1

(2) Duality amongHZ,

H;‘RD) = ( arASa{OZ r;r(A)a(rO:L ar Aarlz(a?)) ) -
ASo1 N ARz + A%02 N AX12(D)
N (A1 N AS 0" N (AF 5, N AT H(D))*
B (A" + (A oy + AY (D)

(A% o1 + AX02) N (A p + AL 1p((w) — D))
A§l<r02 (A?(fm Ailz((w) - D))
(Aaro1 + Aaroz) N A?{lz((w) -D) N
(Af 02 N A p0) + (A N AT 5((w) - D)) N

R

Ha(X, (@) - D).
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