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Introduction

The vanishing of cohomology groups associated with p-adic Galois represen-
tations defined by elliptic curves is one of the useful results towards general-
ization of methods in Iwasawa theory to larger Galois extensions. Such van-
ishing enables the computation of Euler characteristics for discrete modules
associated to p-adic Galois representations ([CSWO01], [CS99]) and Selmer
groups of elliptic curves over extensions containing all p-power roots of unity
([CHO1], [CSS03]).

Let R be a topological commutative ring with unity and V' be a topo-
logical R-module. Let G be a closed subgroup of the group Autg(V) of
topological R-automorphisms of V' endowed with the compact-open topol-
ogy. We consider the continuous cohomology groups H™(G,V') of G with
coefficients in V' defined by continuous cochains.

Definition 1. We say that V' has vanishing G-cohomology if the cohomology
groups H™(G, V) are trivial for all m =0,1,.. ..

Let p be a prime number. In [CSWO01], Coates, Sujatha and Wintenberger
computed the Euler characteristic of the discrete module associated to the
p-adic representation of a p-adic field K given by the étale cohomology group
of a proper smooth variety with potential good reduction over K. In order
to do this, they proved the following

Theorem 2 ([CSWO01], Theorems 1.1 and 1.5). Let X be a proper smooth
variety defined over K with potential good reduction. Leti > 0 be an integer.
Put V. = H. (X%, Q,) and consider the Galois representation p : Gg —
GL(V). Denote by K(up~) the field extension of K obtained by adjoining
to K all roots of unity whose order is a power of p. Let Gy = p(Gk) and
HV = p(GK(upoo))- Then:

(1) if i is nonzero, then V' has vanishing Gy -cohomology;

(2) if i is odd, then V' has vanishing Hy -cohomology.

In the above theorem, let K (V) be the fixed subfield of K by the kernel
of p. Observe that we may identify G with the Galois group Gal(K (V)/K).
Similarly, Hy may be identified with Gal(K (V)/K (V) N K (pp=)).
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A result similar to Theorem 2 holds in the case where the variety X is
defined over a number field.

Theorem 3 ([Su00], Theorem 2.7). Let X be a proper smooth variety over a
number field F. Let p be a prime and i > 0 an integer. PutV = H} (X% Q,)
and consider the Galois representation p : Gp — GL(V'). Denote by F(juye)
the field extension of F obtained by adjoining to F all roots of unity whose
order is a power of p. Let Gy = p(Gr) and Hy = p(Gr(u,)). Then:

(1) if i is nonzero, then V' has vanishing Gy -cohomology;

(2) if i is odd, then V has vanishing Hy -cohomology.

These results provide a vast generalization of the following theorem due
to Imai.

Theorem 4 ([Im75], Theorem 1). Let A be an abelian variety over a p-adic
field K with potential good reduction and consider the representation V =
Vo(A) of Gk given by the Tate module of A. Then the group A(K (pip))[p>]
is finite.

For a p-adic Galois representation V' as in Theorems 2 and 3, let T" be a
Zy,-lattice which is stable by the Galois action. To see why Theorem 4 follows
from Theorem 2, we just note that the vanishing of H%(Jy,, V) is equivalent
to the finiteness of HY(Jy,, V/T) via the following

Lemma 5 (cf. e.g. [KT13], Lemma 2.1). Let G be a group, ¢ : G — GLg, (V)
be a Q,-linear representation of G, and T a G-stable Z,-lattice in V. Then
the following conditions are equivalent:

(i) H(G,V) = 0;
(ii) H*(G,V/T) is a finite group.

Our interest is to generalize Theorems 2 and 3. More precisely, we want
to find the answer to the following

Problem 1. Consider a Galois extension L of K (resp. F') and put Jy =
p(Gr). When does the representation V' have vanishing Jy -cohomology?

From the proof of Theorem 2, we may obtain a simple criterion that gives
a partial answer to the above problem:

Theorem 6 (Theorem 7.2.7; [Dil4-1], Theorem 1.2). Let X be a proper
smooth variety over a p-adic field K with potential good reduction and 1 a
positive odd integer. Put V = H (X7, Q,) and Kyy = K(V) N K(pp=).



Let L/K be any p-adic Lie extension such that K(p,e~) is of finite degree
over Koo 1, := LN K(pye). Assume that the Lie algebras

Lie(Gal(K(V)/Ku,v)) and Lie(Gal(L/Kw 1))

have no common simple factor. Then V' has vanishing Jy -cohomology, where

Jv = p(G L)-
For example, the above criterion implies the following vanishing result:

Corollary 7 (Theorem 7.2.17; [Dil4-1], Theorem 4.8). Let X be a proper
smooth variety over a p-adic field K with potential good ordinary reduction
and let E/K be an elliptic curve with potential good supersingular reduction.
Let i be a positive odd integer and we put V = H (X7, Q,) and V' = V,(E).
We denote by p and p' the continuous homomorphisms giving the action of
Gy on'V and V' respectively. Then

(i) if L = K(V') and Jyv = p(GL), then V has vanishing Jy-cohomology; and
(i) if L' = K(V') and Jv = p'(Gr/), then V' has vanishing Jy-cohomology.

The above corollary suggests another related problem. Suppose we take
representations V = H} (X%, Q,) and V' = H/ (Y%, Q,) as in Theorem 2 (or
Theorem 3) and we take L = K (V). Then does it follow in general that if X
and Y are “different”, then V' has vanishing Jy-cohomology? Of course, this
statement is vague because there is no general way to define the “difference”
between general proper smooth varieties. As we will see later (see Chapter
2), in many situations where we can describe this “difference” we may obtain
the vanishing of cohomology.

In some cases it is already helpful to determine whether the group H°(Jy,, V)
vanishes or not. Establishing the finiteness of H°(Jy,, V/T) where Jy is given
by an arbitrary p-adic Lie extension allows us to weaken hypotheses of many
theorems in the Iwasawa theory of elliptic curves (cf. [KT13], Section 6). Let
us recall some known related results. For the moment, we concentrate on
the case where the base field is a p-adic field K. In [0z09], Ozeki considered
the case when the field L is obtained by adjoining to K the coordinates of
p-power torsion points of an abelian variety. Suppose A/K is an abelian va-
riety with potential good ordinary reduction and consider the representation
V = V,(A) given by the Tate module of A. In this case Ozeki determined,
under suitable conditions, a necessary and sufficient condition for the van-
ishing of H°(Jy, V). Let L be a Galois extension of K. Following op. cit.,
we say that the residue field kj, of L is a potential prime-to-p extension if the
p-part of the degree of kj, over k is finite. Then we have the following result:
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Theorem 8 ([0z09], Theorem 1.1 (2)). Suppose A is an abelian variety with
good ordinary reduction over K. Let L be a Galois extension of K with
residue field k. Assume that L contains K(uy~) and the coordinates of
the p-torsion points of A. Then H°(Jy,V) vanishes if and only if kr, is a
potential prime-to-p extension of k.

It turns out that the statement of the above theorem can be extended to
include the vanishing of the higher-dimensional cohomology groups.

Theorem 9 (Corollary 7.2.15). Suppose A is an abelian variety with good
ordinary reduction over K. Let L be a Galois extension of K with residue
field k. Assume that L contains K (uye~) and the coordinates of the p-torsion
points of A. Then V' has vanishing Jy-cohomology if and only if kp is a
potential prime-to-p extension of k.

Consider the case where V' = V,,(E) is given by an elliptic curve £/ K with
potential good reduction and L = K(E) is the field extension obtained by
adjoining to K the coordinates of p-power torsion points of another elliptic
curve E'/ K. By distinguishing the reduction types of F and E’, Ozeki further
proved the following

Theorem 10 ([0z09], Theorem 1.2). The group H°(Jy,V) vanishes in the
following cases:

E E’
. supersingular
ordinary multiplicative
ordinary
supersingular supersingular with FCM*
with FCM supersingular without FCM
multiplicative
ordinary
supersingular supersingular with FCM
without FCM supersingular without FCM*
multiplicative

In the table above, FCM means formal complex multiplication (see Chap-
ter 1 for the definition) and * means that the vanishing holds under some
suitable condition as in Theorem 2.3 of Chapter 2.

In [KT13], Kubo and Taguchi studied the vanishing of H°(.Jy;, V) in the
general setting where K is a complete discrete valuation field of mixed char-
acteristic (0, p). This includes the possibility that the residue field k of K is
imperfect. For this setting, let M be the extension obtained by adjoining all
p-power roots of all elements of K*.
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Theorem 11 ([KT13], Theorem 1.2 (i)). Let K be a complete discrete val-
uation field of mized characteristic (0,p). Assume X is a proper smooth
variety over K with potential good reduction and v an odd integer > 1. Put
V = H. (X%, Q,). Then the group H°(Jy, V) vanishes for any subfield L of
M.

Although we were not able to do so in this thesis, it seems possible that
Theorem 2 can be extended in this general setting.

The above theorem is just the p-part of the main result of Kubo and
Taguchi. In fact, they also considered the (-adic cohomologies (cf. op.cit.
Theorem 1.2 (ii)). With the notation and hypothesis in the theorem above,
assume in addition that the residue field k of K is an algebraic extension of
finite separable degree over a purely transcendental extension of a prime field
(essentially of finite type in the language of [KT13]). Let ¢ # p be a prime.
Then they proved that for the Q-vector space V = H (X7, Qy), the group
of Gr-fixed points H°(G, V) vanishes for any subfield L of M.

As observed in Corollary 7 and Theorems 8 and 10, we may consider
Problem 1 with L taken to be a field extension of K which corresponds to
the kernel of another representation V' of Gg. The problem in this scenario
becomes symmetric as we may ask the same question to the representa-
tion V' and the field extension L’ corresponding to the kernel of V. As
such, the problem in this case becomes a problem of comparison, or “inde-
pendence”, between the representations V' and V' from which we can derive
some cohomological results. There can be several notions of “independence”,
the simplest being non-isomorphism. Another notion is the “independence”
among representations in a given system of representations of a profinite
group which was studied by Serre [Sel3] (also see Chapter 6). In view of
the above discussion we propose another notion of “independence” between
representations.

Definition 12. Let G be a topological group and R and R’ be topological
rings. Let p: G — GLg(V) and p' : G — GLg/(V’) be two continuous
linear representations of G on a topological R-module V' and a topological
R'-module V| respectively. Put G = p(Kerp') and G’ = p/(Ker p). We say
that V and V' are cohomologically coprime if V has vanishing G-cohomology
and V' has vanishing G’-cohomology.

Note that when G = G is the absolute Galois group of a field K in the
above definition, we have p(Ker p') = p(Ggvry) ~ Gal(K(V)/K(V)NK(V")),
and similarly p'(Ker p) = p'(Ggpy) ~ Gal(K(V')/K(V) N K(V')). In view
of the above definition, we have the following special case of Problem 1.
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Problem 2. Let G be the absolute Galois group of a p-adic field or a number
field. Given continuous representations V- and V' of G, when are V' and V'
cohomologically coprime?

Using some (partial) answers to Problem 1 for the vanishing of cohomol-
ogy groups, we may obtain partial answers to Problem 2 for some repre-
sentations of G as above coming from geometry. For instance we see from
Corollary 7 that the representations HY (X#, Q,) and V,(E) of a p-adic field
K are cohomologically coprime, for a proper smooth variety X/K with po-
tential good ordinary reduction, a positive odd integer 7 and an elliptic curve
E/K with potential good supersingular reduction.

Like Theorem 8, Theorem 10 can be extended to include the vanishing
of higher-dimensional cohomology groups when both elliptic curves have po-
tential good reduction. We state this in terms of cohomological coprimality.

Theorem 13 (Theorem 2.3; [Dil4-1], Theorem 5.1). Let E and E’ be elliptic
curves with potential good reduction over a p-adic field K. Then V,(E) and
Vo(E") are cohomologically coprime in the following cases:

E E’
ordinary supersingular
supersingular , ordmary 7
with FOM supersingular with FCM
supersingular without FCM
supersingular ordinary

supersingular with FCM

without FCM supersingular without FOM*

Here, “FCM” and * have the same meaning as those in Theorem 10.

In the global setting, we can say more. From the results on almost in-
dependence of systems of representations of a number field, we may extend
Theorem 3 to systems of representations associated with a proper smooth
variety over a number field indexed by a set of primes. This extension allows
us to prove the following result.

Theorem 14 (Theorem 7.3.3). Let S and S’ be sets of primes. Let X and X'
be proper smooth varieties over a number field F' and i,1" be positive integers.
Put Vs = @ s Hy (X7, Q) and Vi = P ,cq Hgt(X’f, Q). If Sns =10,

then Vs and V{, are cohomologically coprime.

Interestingly, if we concentrate on the case of elliptic curves over a number
field, we see that non-existence of isogeny implies the cohomological copri-
mality of the associated Galois representations. This is furnished by the
following theorem.
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Theorem 15 (Theorem 2.5; [Dil4-2], Theorem 1.3). Let S and S’ be sets
of primes. Let E and E’ be elliptic curves over a number field F. Put
Vs = @reg Vi(E) and Vg = @eg Vi(E') Assume that E and E' are not

isogenous over F. Then Vg and Vi, are cohomologically coprime.

This implies the following corollary, which in some way is reminiscent of
the Isogeny Theorem for elliptic curves (see Chapter 2).

Corollary 16 (Corollary 2.6; [Dil4-2], Corollary 1.4). Let E and E' be el-
liptic curves over a number field F'. The following statements are equivalent:
(i) E and E' are not isogenous over F;

(ii) Vsla,, and Vg |q,, are cohomologically coprime for any S and S and for
every finite extension F' of F;

(i) Vi(E)|a,, and Vi(E')|q,, are cohomologically coprime for some prime
number £ and for every finite extension F' of F.

We now describe the organization of this thesis. We first define the nota-
tions and recall some terminologies which are used in this thesis in Chapter
1. In Chapter 2 we list our results regarding the cohomological coprimality
of Galois representations over a p-adic field and over a number field. We
recall the definitions of the cohomology of profinite groups and Lie algebras
in Chapter 3. In Chapter 4, we give a background on p-adic Hodge theory.
We discuss the main ideas and recall some important results which are used
for the proof of Theorems 2 and 3. Since Theorems 2 and 3 are essential for
the proof of our results, we give an exposition of their proofs in Chapter 5 as
given by Coates, Sujatha and Wintenberger in [CSWO01] and by Sujatha in
[Su00], respectively. The proofs for the vanishing Gy-cohomology (and Hy -
cohomology) follow the same line of thought. Using a theorem of Lazard, we
identify the cohomology group H"(Gy, V) with a Q,-vector subspace of the
Lie algebra cohomology group H"(Lie(Gy ), V') and show that the cohomol-
ogy groups H"(Lie(Gy), V') vanish. The proof of the latter uses a criterion
for the vanishing of Lie algebra cohomology groups. This requires a special
element of the Lie algebra whose eigenvalues satisfy a linear condition (see
Chapter 5, §5.1). The complicated part is the construction of such special
elements. We explain the construction of the desired elements in the Lie
algebras of the images of Galois representations concerned. For this part we
reproduce the arguments in [CSWO01] and [Su00] in proving the said results.
We also recall the analogue of Theorem 2 for /-adic representations with
¢ # p. In Chapter 6, we deal with the almost independence of systems of
(-adic representations. We recall its definition as given by Serre and prove
some results that will be used for the proof of Theorems 14 and 15. Finally



we give the proof of our results in Chapter 7 using the arguments in Chap-
ters 5 and 6. We present some criteria (Theorem 7.2.7, Theorem 7.2.12 and
Lemma 7.3.1) for the vanishing of Jy-cohomology that follow from the proofs
of Theorems 2 and 3, thus obtaining partial answers to Problem 1. These cri-
teria are used to prove our results (Chapter 2) on cohomological coprimality.
Two appendices are included to provide a convenient reference to concepts
and well-known results used in some of the proofs which are scattered in the
literature.
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Chapter 1

Notations and Terminologies

Let ¢ be a prime number. The field of rational /-adic numbers is denoted by
Q. Throughout this thesis, F' denotes any field of characteristic 0. When
¢ = pis fixed and F' is a p-adic field, we use K instead of I’ to distinguish
the local setting from the global one. For a p-adic field K, we let Ok be the
ring of integers of K. We denote by k the residue field of O (or of K, for
brevity). We denote the cardinality of k by ¢ = p/. We also let K, denote
the maximal unramified subextension in K/ Q,,.

For a field F, we fix a separable closure F. For a positive integer m, let
F(pem) be the field extension obtained by adjoining to F' all £™th roots of
unity. We write F(jip) := Upnezo, F(ptem). For a subextension L of F over F,
we denote by G, the Galois group Gal(F/L). Endowing G with the Krull
topology makes it into a profinite group; that is, a totally disconnected, com-
pact, Hausdorff topological group. For a topological ring R, a continuous
representation of Gr on a topological R-module M is a continuous homo-
morphism p : Gp — GLgr(M). We denote by F(M) the fixed subfield of
F by the kernel of p. An (-adic representation of the Galois group Gp will
always refer to a continuous representation p, : Gp — GLgq,(V'), where V is
a finite-dimensional vector space over Q,, made into a topological Q,-module
by endowing it with the ¢-adic topology. For such a continuous representa-
tion, we denote by G, the image group p,(Gr). When ¢ = p and F = K,
we often suppress the subscript and simply write p : Gx — GLg, (V). In
this case we put Gy = p(Gk) and Hy = p(Gg(u,)). We write K™ for the
maximal unramified extension of K and Ix for the Galois group Ggur; that
is, the inertia subgroup of G . The image of Ix by a p-adic representation
p of Gk as above is denoted by Iy .

In this thesis, x : G — Z,; always denotes the p-adic cyclotomic character,
that is, the continuous character such that g(¢) = X9 for all g € G and all

1



2 CHAPTER 1. NOTATIONS AND TERMINOLOGIES

¢ € iy, Where py is the group of all p-power roots of unity in F.

For any vector space W over Q, and any field extension L of QQ,, we write
WL for W ®@z L.

By a wvariety over a field F', we mean a separated scheme of finite type
over F. For a variety X over F, we write X7 = X ®p F. Given an integer
i > 0, we can define the ith étale cohomology group H (X7, Z/(™Z). This
is a finite abelian group killed by ¢™. The maps

Hey (X7, Z/0" ' Z) — Hiy (X7, 2/ 0" )

given by reduction modulo £™ make (Hf (Xz, Z/(™Z))mez., into a projective
system and its inverse limit M H (X%,Z/0™7Z) is a Z-module of finite type
on which G'r acts continuously. Its extension of scalars

H (X7, Q) = lim Hy (X7, /(L) @z, Q,
gives rise to an f-adic representation
p: Gr — GLg,(Vi),

where we write V;, = H., (X7, Q).

Let A be the set of all rational prime numbers. For a subset S of A,
let (pr : Gp — GLg,(Vi))ees be a system of (general) f-adic representations
indexed by S. In this case, we write ps = [[,cqpe : Gr = [[peg GLo,(V2))
and Vs = @, V; for its representation space.

For a g-dimensional abelian variety A over F, we let A[{™] be the group
of F-rational points of A of order /™. The Tate module Ty(A) := lim A[¢(™]
of A is a Z,-module of rank 2g with a continuous action of Gr. We denote
by

PA - GF — GL(TZ(A)) ~ GLQ(ZZ)

the natural continuous representation associated with Ty(A). We use the
usual notation V;(A) = T;(A)®z, Q. Let Qp(r) denote the rth twist by the (-
adic cyclotomic character, where r € Z. The dual V;(A)Y = Hom(V;(A), Qy)
is canonically isomorphic to H} (Ax, Q). On the other hand, the Weil
pairing allows us to identify V;(A) with V,(AY) in a canonical way. Thus
we may canonically identify Vy(A) with Hj (AY, Qg(1)). We also note that
F(Vy(A)) = F(Ayx), where F(Apx) is the extension of F' generated by the
coordinates of all the /-power torsion points on the group of F-valued points
A(F). By the Weil pairing, the field F'(As=) contains F(fis).

Given a proper smooth variety X over K, we say that X has good reduc-
tion over K if there exists a proper smooth scheme X over Spec(Of) whose
generic fiber X X, K is isomorphic to X. Following Bloch-Kato [BK86],



X is said to have good ordinary reduction over K if there exists a proper
smooth scheme X over Spec(Ok) as above with special fiber ) such that the
de Rham-Witt cohomology groups H"(), d(23,) are trivial for all r and all s,
where d2j, is the sheaf of exact differentials on ). When X is an abelian
variety of dimension g, this definition coincides with the property that the
group of k-points of Y killed by p is isomorphic to (Z/pZ)?, which is the
the classical definition of an abelian variety with good ordinary reduction.
Here, k denotes an algebraic closure of the residue field k of K. We say X
has potential good (resp. potential good ordinary) reduction over K if there
exists a finite extension K’/K such that X has good (resp. good ordinary)
reduction over K.

An elliptic curve (that is, a one-dimensional abelian variety) will always
be denoted by E or E’. Consider an elliptic curve E over K. Choose a mini-
mal Weierstrass model for E with coefficients in Op. If the curve F obtained
by reducing the coefficients of the chosen Weierstrass model for F over K has
a node, we say that F has multiplicative reduction over K. Suppose F has
good reduction over K. In this case, the k-points of E killed by p is either iso-
morphic to Z/pZ or is trivial. As mentioned above, the reduction is ordinary
if the former holds. If the latter holds, we say that E has good supersingular
reduction. We say that E has potential good supersingular (resp. potential
multiplicative reduction over K if there exists a finite extension K’/K such
that E has good supersingular (resp. multiplicative) reduction over K’.

An elliptic curve E over K with good supersingular reduction is said to
have formal complex multiplication over K if the endomorphism ring of the
p-divisible group &£(p) associated with the Néron model € of E over Ok is
a Z,-module of rank 2. We simply say E has formal complex multiplication
if ' xg K’ has formal complex multiplication for some algebraic extension
K' of K. Then the quadratic field Ende, (€(p)) ®z, Q, is called the formal
complex multiplication field of E. We can take for K’ a finite extension of K
of degree at most 2.

If Fis a field and F’ is an algebraic extension of F', we say that F” is
a prime-to-p extension of F if F' is a union of finite extensions over I’ of
degree prime-to-p. If F” is a prime-to-p extension over some finite extension
field of F', we say that F” is a potential prime-to-p extension of F. Clearly,
if F’ is a potential prime-to-p extension of F, then every intermediate field
F" (with F* C F” C F') is a potential prime-to-p extension of F.

For a finite-dimensional Q,-vector space V' and a subgroup J of GL(V)
we write J# for its Zariski closure, that is, the intersection of all algebraic
subgroups J’ of GL(V') such that J' is defined over Q, and J'(Q,) contains
J. For a p-adic Lie group or an algebraic group J, its Lie algebra is denoted
by Lie(J).
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A ¢-Weil number of weight w > 0 is an algebraic integer o such that
|t(a)] = ¢q= for all field embeddings ¢ : Q(a) < C.



Chapter 2

Cohomological Coprimality

We list our results on the cohomological coprimality of representations com-
ing from geometry. We follow the notations as stated in Chapter 1. First,
we consider the setting where the base field is a p-adic field K.

Theorem 2.1. Let p: Gx — GLg, (V) and o : Gk — GLg, (V') be poten-
tially crystalline representations (cf. Chapter 4, Definition 4.2.1 (8)). Let
K' be a finite extension of K such that pla,, and p|q,., are crystalline. Let
® and O’ denote the associated endomorphism of the filtered module associ-
ated to pla,, and p'|g,.,, respectively. Suppose the following conditions are
satisfied:

(i) the eigenvalues of ® and @' are q-Weil numbers of odd weight;

(i1) the determinant of ® and ®' are rational numbers;

(iii) there ezists a filtration

O=VacWwecWh=V

of Ggr-stable subspaces such that I acts on Vi by x* and I acts on Vi /Vj
by x°, where a and b are distinct integers;

(iv) the residue field of K (V') is a potential prime-to-p extension of k;

(v) VG =0 for every finite extension L' of K(V') and V't =0 for every
finite extension L' of K(V').

Then V and V' are cohomologically coprime.

Although the above theorem already gives a nice consequence for abelian
varieties, it should be possible to extend it to the case where the filtration
has arbitrary length. Unfortunately, we were not able to obtain such an
extension in this thesis. We leave this for now and hope to be able to prove
this generalization in the future.
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Theorem 2.2. Let X be a proper smooth variety over K with potential
good ordinary reduction and let E/K be an elliptic curve with potential
good supersingular reduction. Let 1 be a positive odd integer and we put
V = H, (X% Q,) and V' = V,(E). Then V and V' are cohomologically
coprime.

Suppose E and E’ are elliptic curves over K. We prove some results on
the cohomological coprimality of V,,(E) and V,(E’). As in Theorem 10 in the
Introduction, this is done by distinguishing the reduction types of £ and E’.
As such, it provides an extension of the said theorem. This is summarized
in the following

Theorem 2.3. Let E and E’ be elliptic curves over K. The cohomological
coprimality of V,(E) and V,(E") is given by the following table:

E E’ Cohomologically coprime

ordinary Nof

ordinary supersingular Yes
multiplicative “No”

supersingular supefsmgular @ith FCM Yes*
with FOM supersmgulqr @zthout FCM Yes
multiplicative “No”

supersingular supersingular without FCM Yes*
without FCM multiplicative “No”
multiplicative multiplicative “No”

Again, FCM in the above table means formal complex multiplication. The
symbol * means conditional cohomological coprimality. The cohomological
coprimality in this case holds under the additional assumption that the group
E(L")[p*>] of L'-rational points of E of p-power order is finite for every finite
extension L' of K(E].). For §, refer to Remark 7.2.18. For the case where
one of the elliptic curves has multiplicative reduction, we refer to Remark
7.2.27. The rest is provided by Theorem 7.2.19 in §7.2.6.

We also consider ¢-adic representations associated with proper smooth
varieties as above. Let £ and ¢’ be primes. Let X and X’ be proper smooth
varieties with potential good reduction over K and ¢ and ¢ be non-zero
integers. We consider the f-adic and ¢’-adic representations of Gk given by
pe : G — GL(V;) and p), : Gx — GL(V})) where V; = H} (X%, Q,) and
Vi =H g;(X’?, Qp), respectively. Then we have the following

Theorem 2.4. Let { and ¢’ be distinct primes. Assume the above situation.
Then Vy and V,; are cohomologically coprime.



We now consider the setting where the base field is a number field F'. We
let S and S’ be subsets of A and suppose E and E’ are elliptic curves over
F. We consider the systems of f-adic representations associated with F and
E’ indexed by S and S’, respectively:

(pe: Gp — GL(Vi(E)))res

and
(pr : Gr — GL(VI(E")))ees-

Let Vo = @es Ve(E) and Vi = Peer Vi(E').

Theorem 2.5. Let S and S’ be sets of primes. Let E and E’ be elliptic
curves over F.

(i) Assume that E and E' are not isogenous over F. Then Vs and V1, are
cohomologically coprime.

(it) If SN S" =0, then Vs and VI, are cohomologically coprime.

The Isogeny Theorem due to Faltings ([Fa83], §5 Korollar 2) implies that

E and E' are isogenous over F < Vy(E) ~ V,(E') as Gp-modules for some prime ¢
& Vy(E) =~ Vy(E') as Gp-modules for all primes /.

We have the following

Corollary 2.6. Let E and E’ be elliptic curves over F'. The following state-
ments are equivalent:

(i) E and E' are not isogenous over F;

(i) Vs|a,, and Vg |q,, are cohomologically coprime for any S and S" and for
every finite extension F' of F;

(it)) Vi(E)lc, (= Vigle,) and Vi(E')|c,, (= Viylc,.) are cohomologically
coprime for some prime number £ and for every finite extension F' of F.

Proof. The implication (i) = (ii) is given by Theorem 2.5-(i) and clearly
(ii) = (iii). We show (iii) = (i). If E and E' are isogenous over F, then
they are isogenous over some finite extension F’ of F. Then the Isogeny
Theorem implies that V,(E) and Vy(E’) are isomorphic as Gg-modules for
some prime ¢. Since kernels of isomorphic representations coincide, V;(E)
and V;(E") are not cohomologically coprime over F. O
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Chapter 3

Cohomology of profinite groups
and of Lie algebras

3.1 Cohomology of profinite groups

Let G be a profinite group. A topological G-module M is a topological group
endowed with a continuous action of G, i.e., the map G x M — M is con-
tinuous. For n € Z.y, endow G™ with the product topology. We define the
nth group of continuous cochains C™(G, M) as the group of continuous maps
G" — M for n > 0, and C"(G, M) := M, for n = 0. We define the nth
coboundary map d, : C"(G, M) — C"*(G, M) by the formula

(dngo)<gla cee 7gn+1) = 91(10(927 cee 7gn+1)
+ Z(—l)iSD(gh o5 Gim15 9iGit1, Git2s - - - Gnt1)
=1

+ (_1)71"!‘1@(91’ s 7gn>7

for ¢ € C"(G, M).
It can be verified that for any n > 0, we have d,,;1 od,, = 0 (cf. [NSW0§],
Proposition 1.2.1). Hence, the sequence C*(G, M)

G, A) — " cva, A) s oG, A) T on@, A)
(3.1)

is a cochain complex. The kernel of d,, is the group of continuous n-cocycles,
denoted by Z"(G,M). For n > 1 we define B"(G, M) to be the image of
d,—1 and B°(G, M) to be the trivial group. The elements B"(G, M) are
called the continuous n-coboundaries. Since d,y1 o d, = 0, we see that
B"(G,M) C Z"(G, M) for all n > 0.
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Definition 3.1.1. The nth continuous cohomology group of G with coefhi-
cients in M is

H™(G, M) = Z"(G, M)/B"(G, M).

Note that the groups Z"(G, M), B"(G, M) and H"(G, M) are all abelian
groups. We will often omit ’continuous’ when we refer to the groups de-
fined above. The cohomology groups measure how far the cochain complex
C*(G, M) is from being exact.

The cohomological functors C"(G,—) and H"(G,—) are functorial. If
n : My — M, is a morphism of topological G-modules, then it induces a
morphism of complexes C*(G, M;) — C*(G, M3), which then induces mor-
phisms from Z™(G, M) (resp. B"(G, My) or H"(G, M;)) to Z™(G, Ms) (resp.
Bn(G, Mg) or HH(G, Mg))

The following proposition will be used later.

Proposition 3.1.2 ([Ko02], Theorem 3.6). Let G be a profinite group and
M a G-module. Suppose M s a direct sum of G-modules M;, 1 € I. Then
H™(G, M) is a direct sum of the abelian groups H™(G, M;), i € 1.

The Hochschild-Serre spectral sequence

A spectral sequence is an important tool in studying (co)homology groups.
We recall below the spectral sequence due to G. Hochschild and J.-P. Serre.

Theorem 3.1.3 ([HS53], Chap. I, §7 Proposition 7). Let G be profinite group,
H a closed normal subgroup and M o G-module. Then there exists a spectral
sequence

H"(G/H,H*(H,M)) = H (G, M).
As a consequence of the spectral sequence, we have the following

Corollary 3.1.4 ([HS53|, Chap. III, §4 Theorem 2). Let m > 1 and assume
that H'(H,M) = 0 for 0 < r < m. Then we have the following exact
sequence

0— H™(G/H,M") — H™(G, M) —-H™(H, M)/
— H™YNG/H, M?) — H™ (G, M).

Corollary 3.1.5 ([NSWO08], Corollary 2.4.2). If H"(H,M) = 0 for r > 0,
then
H™G/H,M") ~ H™(G,M)  (m>0).

Proof. This follows from Corollary 3.1.4 by induction on m. O
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3.2 Lie Algebra Cohomology

Let g be a Lie algebra over a field F' and M be a g-module which is finite-
dimensional as an F-vector space. We denote by M? the subspace of M
consisting of all m € M with v-m = 0 for all v € g.

The n-dimensional cochains for g in M are the n-linear alternating func-
tions f on g" with values in M, that is, n-linear functions f such that
f(71,---y7m) = 0 whenever v; = v; for 1 < i < j < n. The n-dimensional
cochains form a vector space C™(g, M) over F. We identify C°(g, M) with
M.

For n > 0 we define a linear map d,, : C"(g, M) — C""!(g, M) by the
formula

n

(dnf)0s - m) =X (=D Fos - Fir - m)

=0
+ Z<_1)T+Sf([’y7‘7/ys]7707 e a’?rv s 7’)7& cee 7771)’

r<s

where the symbol ~ indicates that the argument below it must be omitted.
We call d,, a coboundary operator. It can be shown that the coboundary
operator satisfies the following properties (cf. [CE48], Chapter III §14):

(1) dpy10d, =0, for n > 0;
(2) du(y- f) =7 (dnf) for v € g and f € C"(g, M); and
(3) (dof)(y) = f for f € C%g, M) =M.

Having known property (1) above, we define the space Z"(g, M) of n-
cocycles as the kernel of the transformation d,,, and the space B"(g, M) of
n-coboundaries as the image of d,,_;. By definition, B%(g, M) = 0.

Definition 3.2.1. The nth cohomology group H™(g, M) of g with coefficients
in M is defined as the quotient space

H"(g, M) := Z"(g,M)/B" (g, M).
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Chapter 4

Background from p-adic Hodge
theory

Let K be a p-adic field and denote by Rep(Gk) the category of p-adic rep-
resentations of Gi. In this chapter, we recall certain full Tannakian sub-
categories of Rep(Gg). This means that these categories contain the unit
representation and are stable by the “usual” operations of linear algebra;
that is, taking sub-objects, quotients, direct sum, tensor product and dual.
These are:

- the category Repyr(Gg) of Hodge-Tate representations,

- the category Repyr(Gr) of de-Rham representations,

- the category Repg (G ) of semi-stable representations,

- the category Rep.(Gk) of crystalline representations,

- the category Rep,(Gk) of potentially semi-stable representations,

- the category Rep,..is(G ) of potentially crystalline representations, and
- the category Rep,,(Gk) of unramified representations.

We have the following hierarchy of these categories:
Reppcris(GK) - Reppst(GK) C Rede(GK) C RepHT(GK)

U U N
Rep,,(Gk) C Repui(Gx) C Repy(Gk) Rep(Gxk)

In fact we have Rep,(Gx) = Repgr(G k), but note that the other inclusions
are strict.

13
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4.1 Hodge-Tate representations

Let K be a p-adic field and C, be the completion of the algebraic closure
of Q,. Let p: Gx — GLg,(V) be a p-adic representation of Gx. We may
extend the action of Gr on V' to the C,-vector space V¢, =V ®q, C, by

U(Z(Uz‘ ®c;)) = Z o(vi) ® o(c;),

1

forv, eV, ¢; € C, and 0 € Gg. For m € Z, we consider the K-vector space
Ve, {m} == {v € V¢, |o(v) = x(0)™v for all o0 € Gk}

where y : Gg — Z; is the p-adic cyclotomic character. The inclusion
Ve, {m} C V¢, extends to a C,-linear injective map

&v : P Ve, {Im} @k C,) — Ve,

mEZ

This particularly implies that the K -vector spaces V¢, {m} are finite-dimensional
and trivial for almost all m € Z.

Definition 4.1.1. A p-adic representation V' of Gk is said to be Hodge-Tate
if the homomorphism &y, is an isomorphism.

Put
ty = dimg Ve, {m} = dimc, (Ve,{m} @k C,).
Clearly, V' is Hodge-Tate if and only if ), t,, = dimg, V.
Definition 4.1.2. Let V' be a Hodge-Tate representation of G . The nonzero
integers m which occur in the decomposition Ve, ~ @, ., (Ve,{m} @k C,)

are called the Hodge-Tate weights of V' and t,, is the multiplicity of a weight
m.

Example 4.1.3 ([Fa88|, §1.b, [Fa02]). Let X be a proper smooth variety
over a p-adic field K and ¢ € Z. There is a canonical isomorphism which is
compatible with the action of G,

Hy (X7, Q) ®, Cy = D H™ (X)) @k Cyl—7).
0<r<i
Here H™(Xg) = H*® (XK, Q&K/K> and Q% i is the sheaf of r-differentials.

Thus H (X%, Q,) is a Hodge-Tate representation with Hodge-Tate weights
0,—1,...,—u. Further, the Hodge symmetry shows that ¢; = t__;).
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Consider a Hodge-Tate representation p : Gx — GL(V) of Gk. The
operator of Sen is the element ¥ € Endc, (V¢,) such that

Yo = mu, formeZ, velg{m}okC,.

Let I, be the image of Ix under p and we write I‘a/lg for its Zariski closure.

Theorem 4.1.4 ([Sen73], §4, Theorem 1). The Lie algebra i = Lie(ly) is
the smallest Qp-subspace of Endg, V' such that 1 ®q, C, contains V.

Theorem 4.1.5 ([Sen73], §6, Theorem 2). The Lie algebra Lie(Iy) C Endg, (V)
15 algebraic. That s,
Lie(Iy) = Lie(1%®).

4.2 de Rham, semistable and crystalline rep-
resentations

In order to understand and sub-categorise the category Rep(G), Fontaine
constructed some rings of periods B.. These are topological Q,-algebras
with a continuous and linear action of G together with some additional
structures which are compatible with the action of G such that K, = BEx
is a field and the K,-vector space Dg, (V) = (V ®q, B,)“¥ is an interesting
invariant of an object V' of Rep(Gk) that inherits the additional structures
of V. For such rings B,, it can be shown that

dimg, (V @g, B.)“¥ < dimg, V.

We briefly recall the the period rings Bggr, Bs and Bes.
Roughly speaking, the ring Bgr is a complete discrete valuation field,
with residue field isomorphic to C, having the following properties:

. RS = K
e Bgr has a uniformizer ¢ such that o(t) = x(o)t, for all 0 € Gk, and
e Bgg has filtration Bl = {b € Bagr|ord;(b) > r}.

Y

The rings By, and B, are subrings of Bgr such that
@p - Bcris C Bst - BdR

and B &% = By 0K = Ky, the maximal unramified subextension in K/ Q,.
The ring By, comes equipped with two operators: the “Frobenius” ¢ : By —
By and the “monodromy operator” N : By — By which commute with the
Gk,-action and such that Ny = ppN. Furthermore, B = {b € By |[Nb =

0}.
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Definition 4.2.1. (1) A p-adic representation p : Gx — GL(V) of Gk is
said to be de Rham if

dlmK<V ®Qp BdR)GK = dlme V
(2) A p-adic representation V' of G is said to be semi-stable if
dimg, (V ®g, By)“* = dimg, V.

A p-adic representation V' of Gk is said to be potentially semi-stable if
there exists a finite extension K’ of K such that V|, is semi-stable.

(3) A p-adic representation V' of G is said to be crystalline if
dimg, (V ®g, Bes) ¥ = dimg, V.

A p-adic representation V' of G is said to be potentially crystalline if
there exists a finite extension K’ of K such that Vg, is crystalline.

Potentially semi-stable representations are de Rham. As mentioned ear-
lier, we have Repyr(Gr) = Rep,y(Gk). This follows from the following
result.

Theorem 4.2.2 ([Ber02], Théoreme 0.7). If V' is a de Rham representation,
then V is potentially semi-stable.

Definition 4.2.3. A filtered (p, N)-module is a quadruple (D, ¢, N, Fil®* D)
where

D is a finite-dimensional Ky-vector space,

¢ : D — D, is an automorphism which is semi-linear with respect to
the absolute Frobenius o on K|

N :D — D is a Ky-linear endomorphism such that Ny = ppN, and
Fil* Dk is a filtration on the K-vector space Dk := D ®, K that is
decreasing (Fil! Di D Fill™ Dy), separated (Njez Fil! D = 0) and
exhaustive (Ujez Fil/ Dg = Dg).

To each filtered (p, N)-module D, we associate two polygons: the Hodge
polygon Py (D) coming from the filtration and the Newton polygon Py (D)
coming from the “slopes” of ¢.

Definition 4.2.4. A filtered (¢, N)-module D over K is said to be admissible
if for every subobject D’ of D, Py(D’) lies below Py (D’) and their endpoints
are the same. We denote the category of admissible filtered (¢, N)-modules
over K by MF#

adm*
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It can be shown that for every semistable representation V' of G, the
Ko-vector space Dy (V) := (V ®q, B )9 is an admissible filtered (¢, N)-
module. In this case, the fth iterate ® = ¢/ of ¢ is a Ky-linear automorphism
of Dg (V). Similarly, for every crystalline representation V' of G, the Ky-
vector space Deis(V) 1= (V®g, Bst)“% is an admissible filtered (o, N)-module
with N = 0. In fact, we have the following

Proposition 4.2.5. (1) The functor Dy : Repy (Gx) — MFZ induces
an equivalence of tensor categories.

(2) The functor Des @ Repes(Gr) — MFfjl:O induces an equivalence of
tensor categories.

Example 4.2.6. (1) Let X be a proper smooth variety with good (resp.
semi-stable, potential good, potential semi-stable) reduction over K and ¢
an integer. Then H (X%, Q,) is a crystalline (resp. semistable, potentially
crystalline, potentially semi-stable) representation of Gk (cf. [Fa02], [Ts99]).
(2) If X has potential good reduction over K, then the eigenvalues of the
Ko-linear automorphism ® acting on Des(HY, (X7, Q,)) are ¢-Weil numbers
of weight i (cf. [CS99]).

4.3 Unramified representations

Definition 4.3.1. A p-adic representation p : Gx — GLg, (W) is said to be
unramified if p(Ix) = {0}.

Let p : Gk — GLg,(W) be an unramified representation of Gr. Let

Q)" be the maximal unramified extension of Q, and @ its completion. The
action of Gk on W extends to W®Qp@ by o (> (wi®c;)) =Y. o(w;)®0(c;),
for w; € W, cie@andUEG;{.
Proposition 4.3.2 ([CSWO01], Lemma 3.4). Assume that p : Gx — GLg, (W)
is an un/m\mz’ﬁed representation of Gg. Consider the Ky-subspace U =
(W ®q, @))% of W ®q, Q). Then W is crystalline and Des(W) = U.
Moreover, the Ky-automorphism ®y = gpé/ 0f Deris(W) is given by

Bo®y o = p(Frob™),

where Frob is the arithmetic Frobenius in Gg/Ix and  : U ®k, @ ~

W ®q, @ s the isomorphism obtained by extending scalars on the K-
subspace U of W.
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Chapter 5

The vanishing of Gy - and Hy -
cohomologies

5.1 The strong Serre criterion

Let F be a field of characteristic zero. Fix an algebraic closure F of F. Let
W be a finite-dimensional vector space over F' and g a finite-dimensional Lie
algebra over F'. Let

7:g — End(W)

be a faithful Lie algebra homomorphism. We consider the Lie algebra coho-
mology groups of g having coefficients in .

Definition 5.1.1. We say that W has vanishing g-cohomology if H" (g, W) =
0 for all » > 0.

For x € g, we write e(z) for the set of distinct eigenvalues in F' of 7(x).
Following [CSWO01], we make the following

Definition 5.1.2. We say that 7 satisfies the strong Serre criterion if there
exists x € g such that, for every integer k£ > 0, and for each choice ay, ..., ay,
By, Bry Prs1 of 2k + 1 elements of e(x) (not necessarily distinct), we have

ar+...otag# B+ .+ B+ Brga
When k = 0, this should be interpreted as 5 # 0 for all § € e(z).

Lemma 5.1.3. If 7 is faithful and satisfies the strong Serre criterion, then
W' has vanishing g-cohomology.

Proof. This follows from [Se71], Théoreme 1. O

19
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We now consider a continuous representation p : G — GLg, (V) of a
profinite group G on a finite-dimensional Q,-vector space V. Let Gy be the
p-adic Lie group p(G). The relation between the cohomology groups of Gy
and Lie(Gy) is well-understood, thanks to the following

Proposition 5.1.4 ([La65], Chap. V, Théoreme 2.4.10). Let U be a p-adic
Lie group. The cohomology group H™(U,V') can be identified with a Q,-
vector subspace of the Lie algebra cohomology group H™(Lie(U), V') for all
m > 0.

From the representation p we have a faithful representation Gy — GL(V).
Considering the corresponding homomorphism of Lie algebras and extend-
ing scalars, we obtain a faithful Lie algebra representation Lie(Gy)c, —
End(V@p).

Proposition 5.1.5 ([CSWO01], Proposition 2.3). Assume that Lie(Gv)c, —
End(Ve,) satisfies the strong Serre criterion. Then for any open subgroup U
of Gy, V' has vanishing U-cohomology.

Proof. Since Lie algebra cohomology is compatible with scalar extensions,
we have

Hm(Lie(Gv)CP, V(C;,) = Hm(Lie(Gv), V)(Cp (m > 0)

Hence the hypothesis and Lemma 5.1.3 imply that V' has vanishing Lie(Gy )-
cohomology. If U is an open subgroup of Gy, then Lie(U) = Lie(Gy) and it
follows from Proposition 5.1.4 that V' has vanishing U-cohomology. [

5.2 Local setting

5.2.1 p-adic Logarithms

We recall the extension of the p-adic logarithm to the multiplicative group
of @p. Denote by O the ring of integers of @p, by O the unit group of O,
and by m the maximal ideal of O. The usual series

tog, (=) = 3 EN (o e

n

n=1

converges if and only if z — 1 € M. Let p:={z € Q,: 2™ =1,(p,m) = 1}.
Then O = p x (1 4 m). We extend log, to O by defining log,(z) = 0 for
zepu Fixme QTP whose p-adic absolute value is less than one.
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Definition 5.2.1. Let x € (QTPX. Write z = 7%, where a € Q and y € 0.
Define

log, (x) := logp(y).

Let W be a finite-dimensional vector space over Q,. Take ¢ € GLg, (W).
Write 0 = su, where s is semisimple and u is unipotent. Thus the series

tog(w) = 3 Sy g

n

converges. Write W@ = @ W;, where W; is the eigenspace of W correspond-
ing to an eigenvalue «; of s. Define log, (s) to be the endomorphism of W@p
which acts on W; by log, (o).

Definition 5.2.2. For 6 = su € GLg, (W), we define

log,.(6) := log,(s) + log(u).

Let m = dimg, (W) and r the cardinality of GL, (k). Assume 6 €
GLgq, (W) topologically generates a compact subgroup of GLg, (W). Then
¢ stabilizes a lattice in W. Choosing a Q,-basis of W relative to this lattice
implies that the matrix A of 6" satisfies A =1 (mod p). We can define

log(0) = %2

Proposition 5.2.3 ([Bo08-1], Chap. III, §7.6 Propositions 10 and 13). Let
W be a finite-dimensional vector space over Q,, and 6 € GLq, (W). If 0 topo-
logically generates a compact subgroup of GLq, (W), then log, (0) = log(f).
If J is an algebraic subgroup of GLw and 6 lies in J(Q,), then log, () lies
in Lie(J).

T'L—

— 1)

5.2.2 Proof of Theorem 2

In this section, we give an account of the proof of Theorem 2. In view of
Example 4.2.6, we see that the theorem is a special case of the following
result.

Proposition 5.2.4 ([CSWO01], Propositions 4.1 and 4.2). Let p : Gx —
GL(V) be a potentially crystalline Galois representation of dimension n. Let
K' be a finite extension of K such that p|q,., is crystalline. Let ® = ol de-
note the associated endomorphism of the filtered module associated to plq,, .
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Assume that the eigenvalues of ® are q-Weil numbers of weight w. We also
let § be the determinant of the endomorphism ® = ¢f. Then

(a) if w is nonzero, then V' has vanishing Gy -cohomology;

(b) if w is odd and & is a rational number, then V has vanishing Hy -
cohomology.

Before proving this proposition, we list some results that we will need for
the proof.

Lemma 5.2.5 ([CSWO01], Lemma 3.5). Suppose p : Gx — GL(V) is an n-
dimensional semistable representation of Gx and let det p : Gx — Z,; be its
determinant character. Let mq, ..., m, denote the Hodge-Tate weights of V,
counting multiplicities, and put t = Z;L:1 m;. Then the following statements
are equivalent:

(i) The map det p coincides on an open subgroup of G with x'.

(ii) If § denotes the determinant of the endomorphism ® = o/ of Dy (V),
then

log,(6) = log,(¢™"). (5.1)

In particular, when t # 0, these equivalent assertions imply that the image
of det p is infinite.

In the crystalline case, the equivalent assertions of this lemma immedi-
ately hold under the hypothesis of Proposition 5.2.4. The following result is
actually embedded in the proof of one of the main results of Coates, Sujatha
and Wintenberger (see [CSWO01], Proposition 4.2; also cf. [Se89], Chapter I1I
Appendix A5).

Lemma 5.2.6. Assume the hypothesis of Proposition 5.2.4. Let mq,...,m,
be the Hodge-Tate weights of V', counting multiplicities. Then the determi-
nant character det p : Gx — Z, coincides on an open subgroup of G with

X!, where x is the p-adic cyclotomic character and t = = Z?zl m;.

Remark 5.2.7. This lemma implies that if Ay = GyNSL(V), then Lie(Ay) =
Lie(Hy). In particular, K (p,) is a finite extension of K (V) N K (fi ).

Proof. The result is trivial if n = 0 so we assume that n > 0. We may also
assume that K = K’. The hypothesis implies that § is a rational number
which is a product of ¢-Weil numbers of weight w. Thus, J has archimedean
absolute values equal to ¢z . On the other hand, by p-adic Hodge theory
the p-adic absolute value of 0 is ¢~%, where ¢ is the sum of the Hodge-Tate
weights of V. Hence, we must have t = %% and § = £¢'. Consider the
one-dimensional p-adic representation detp ® x! of G, with representa-

tion space W = (A\?V)(—t). Since det p is crystalline, the restriction of the
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character det p to I is equal to x* (cf. [Fo94], Proposition 5.4.1). Thus W
is unramified, and is in fact crystalline. We have D;(W) = Z]t], where
Z = N Deyis(V) and Z[t] means that the automorphism ® 5 of Z is replaced
by the automorphism ¢*®,. Thus, the automorphism ®y = gp&/ of W is
multiplication by ¢ - ¢ = +1. Now as W is one-dimensional, Lemma 4.3.2
implies that ®y is equal to (det p ® x~*)(Frob™'), where Frob € G /I de-
notes the arithmetic Frobenius. Therefore Frob acts on W via multiplication
by +1. From this we see that det p coincides with x* on an open subgroup

of GK. ]

Theorem 5.2.8 ([CSWO01], Theorem 3.1). Assume that p : Gx — GL(V)
is an n-dimensional semistable representation, and let ® = ¢/ denote the
endomorphism acting on the filtered (¢, N)-module D (V). Let A\i,..., A\,
denote the eigenvalues in @p of ®. Consider the faithful representation
Lie(Gv)@ — End(V@). Then there exists an element B in the Lie alge-

bra Lie(Gv)@ whose eigenvalues are

log,. (A1), ...,log (\,).

Theorem 5.2.9 ([CSWO01], Theorem 3.2). Assume that p : Gx — GL(V) is
an n-dimensional semistable representation, and that its determinant char-
acter det p : Gx — Z, coincides on an open subgroup of G with x*, where
is the p-adic cyclotomic character and t is the sum of the Hodge-Tate weights
of V. Let ® = ¢/ denote the endomorphism acting on the filtered (p, N)-
module Dgt (V') and Ay, ..., \, denote the eigenvalues in QTP of ®. Consider
the faithful representation Lie(Av)@ — End(V@), where Ay = Gy NSL(V).
Then there exists an element B’ in the Lie algebra Lie(A)@p such that for a
suitable ordering of A1, ..., \,, the eigenvalues of B’ are

log,(A1g™),...,log (Ang™),
where myq, ..., m, are the Hodge-Tate weights of V', counting multiplicities.

Admitting Theorems 5.2.8 and 5.2.9, we may proceed to prove Proposition
5.2.4 as follows.

Proof of Proposition 5.2.4. We assume that n > 0 as the case n = 0 is trivial.
Choose 7 used to define log, such that m ¢ Q. This implies that log, (2) # 0
for every z € QTI, which is algebraic over Q but is not a root of unity. We
may also assume that K = K’ so that V' is crystalline.

(i) If A1, ..., A\, are the eigenvalues of ®, then Theorem 5.2.8 shows that there
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is an element B in Lie(GV)@ whose eigenvalues are log (A1), ..., log,(\,).
Let r be a non-negative integer and

{log, (&), - - -, log (&), logy (k). - - ., log (pr11)}
be a multiset of 2r 4+ 1 eigenvalues of B. We claim that

r+1

Z log,.(§;) # Z log.(147)-

This is equivalent to showing that
log, (k) # 0,
where

K= Hm+1 ng_luj'
j=1

By hypothesis, k is a ¢-Weil number of weight w # 0. Thus & is an algebraic
number which is not a root of unity. Therefore log, (k) # 0 as claimed. This
shows that the representation Lie(Gv)@ — End(V@) satisfies the strong
Serre criterion. We conclude that V' has vanishing Gy -cohomology from
Proposition 5.1.5.

(ii) Lemma 5.2.6 implies that det p = x* on an open subgroup of G where
t = Z;;l my; = "¢ # 0, as w is odd. By Theorem 5.2.9, there exists an ele-
ment B’ € Lie(Hv)@ whose eigenvalues are log, (A1¢g™™), ..., log, (A,g~ ™).
Let r be a non-negative integer and

{logﬂ (é-lq_al), cee ,1Og7r (gTq_a’“)’ 10g7r(,u1q_bl), . 710g7r(,ulq_bT+l)}

be a multiset of 2r + 1 eigenvalues of B’. Then

r+1

D log, (&q7%) = Y log, (1ig ") = log, (k),
j=1 I=1

where
T
1 by 1 _—a;+b;
k=g [ &nyta .
=1

Since the &;’s and the p;’s are g-Weil numbers of weight w, it follows that «
has archimedean absolute value equal to ¢ where s = w+2(b, 1 + (b=
a;)). Since w is odd, we see that s is a ¢g-Weil number of odd weight s. In
particular, log_(x) # 0. Therefore the strong Serre criterion holds for the
representation Lie( H V)@ — End(V@). Again, we conclude from Proposition
5.1.5 that V' has vanishing Hy-cohomology. O]
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5.2.3 Construction of the elements B and B’

We now give the proof of Theorems 5.2.8 and 5.2.9. Throughout this section,
p: Gg — GL(V) is a finite-dimensional semistable representation of G i over
Q,- As in the previous subsection, Gy = p(Gk), Ay = Gy NSL(V). Also,
Iy = p(Ik). By definition, we have Gy C G?}g(@p). For each representation
oGP — GL(V,) in Rep@p(G?}g), we obtain a new representation of G

P Gr 2 Gy C GU8 S GL(V,).
We write Gy, = po(Gk).

Proof of Theorem 5.2.8. The proof consists of two steps: the construction of
an element of Lie(G?}g)@p with the desired set of eigenvalues and showing
that this element actually belongs to Lie(Gy)g -

Step 1: Let a: G?/lg — GL(V,) be a representation of G?/lg. Then « gives
rise to a homomorphism of algebraic groups G?,lg — Gz{‘/lf. Thus, we may
identify Rep(G?‘”,lf) with a Tannakian sub-category of Rep(G?}g). We have

two fiber functors over Kj:
wg : Rep(GY®) — Vecg,
Va — Va ®Qp KO

and

wp : Rep(G2¥) — Vecg,
Vo — Dy (Vo) = (Va ®q, Byt) %

We have an isomorphism G?}f ~ Aut®(wg| Rep(G?}f)) of algebraic groups
over K, where wg| Rep(G?,lf) means the restriction of the functor wg to the
subcategory Rep(G?}f) (cf. Appendix A, Proposition A.4). We define the

algebraic groups
G .= Aut®(wp)
Gt = Aut®(wp| Rep(GTf)).
Note that G3¢ and G3¢ are both defined over K, and G is the image of
G2 in GL(Dg(Va)).
We also define the affine algebraic varieties
Js := Isom®(wp,ws), and

Js, = Isom®(wp| Rep(G?}f), wg| Rep(G?}f))
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Note that Js, is a right torsor under G and a left torsor under G}°.

Eachi = (niﬁx)XGObj(Rep(G;‘t}g)) € Js(Q,) gives apoint i, = (77imX)X60bj(Rep(G§*}§)) €

J5,(Q,) by restriction to the sub-category Rep(G?}f). In particular, we ob-
tain from the family ¢, an isomorphism

Nig - Dst(va) ® Ko QTp = (Va)@ = (Va ®Qp KO) QKo QTp' (5'2)
If ¢ = (§X)X€Obj(Rep(Galg)) is a family which lies in G%¢ (Q,), then there exists
v «@
a family ¢ = (<x) x conjirep(cee)) 10 Ge (Q,) such that the following diagram
v [e3

— Tig
Dst(va) ®Ko @p - (V@)@

P

‘ &v, h Vo

— Mg
Dst(va) ®K0 @p - (ch)@

is commutative. Hence we see that the isomorphism (5.2) induces an isomor-
phism of algebraic groups

1 = 1 =
G Xk Qp % Gy g, Qy (5.3)
and an isomorphism of Lie algebras

Lie(GP?) ®x, Q, o Lie(GV#) ©g, Q-

If we choose another point 7’ in J5(Q,) so that we have another isomorphism

Nir, - Dot (V) @k, Q) (VQ)@, then we obtain a commutative diagram

—_— Nio
Dst(Va) ®K0 Qp (VQ)@
v, v,
T
—__ Nig,
Dst(va) ®K0 @p (VQ)QP o
__ i,
T Dst(Va) ®K0 Qp (Va)@

f(/,, o %
g Ui

Dst(va) ®K0 @p : (VQ)@
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where all the arrows are isomorphisms. Here o and &, are automorphisms

of (Va)g, while 7 and i, are automorphisms of Dy (Va) @1, @. From the
9] [e3

above diagram, we see that

Ny, =000, 0T (5.4)
and that another choice of point 7 changes the family £ or ¢ by a conjugate.
In turn, the isomorphism of algebraic groups f’ : G%‘i Rk, Q, =~ G"‘I/lf ®q,
Q, is obtained by taking an inner automorphism of G%li (Q,) or an inner
automorphism of G?}f (Q,). The same holds for the isomorphism Lie(f’) of
Lie algebras defined by f.

Since V, is semistable for each representation a of G?/lg, the filtered (¢, N)-
module Dg(V,) has the Kj-automorphism ®, = /. Thus, the family
(@a)ae()bj(Rep(G?}g)) lies in Aut®(wp). So we obtain a canonical element of

G¥8(K,), which we will also denote by ®. Then log, (®) € Lie(G%#). We
now fix a point ¢ € J5(Q,) and take a to be the tautological representation
a: GYE s GL(V). Let n;, : Dyo(Va) @k, @, = (Va®q, Ko) @1, Q, denote the
isomorphism as in (5.2). From this isomorphism we may identify Lie(G?)lg)@
with a subspace of End(V@). We now define

B, := 1, o log,(®) o ;! (5.5)

The element B; lies in Lie(G%g)@ since log, (®) lies in Lie(G%#). Therefore
B; belongs to End(V@). By definition, B; and log, (®) have the same set
of eigenvalues counting multiplicities. If A{,..., A\, are the eigenvalues of
® counting multiplicities, then log_(A1),...,log, (\,) are the eigenvalues of
log, (®) (hence of B;), counting multiplicities. This completes the first step
of the proof.

Step 2: We claim that B; € Lie(Gv)g. Let & : GY¢ — GL(Va) be
the representation of G?/lg such that Kera = If}lg. Such a representation
exists because I‘a/lg is a normal subgroup of G?/Ig. Then ps is unramified.
We write ®; = ¢! for the Ky-linear endomorphism of the filtered (p, N)-
module Dy (Vz). The image group Gy, is topologically generated by the
image ps(Frob) of Frobenius Frob € Gk /Ix. Moreover, G?}f is the smallest
algebraic subgroup of GL(V;) which contains ps(Frob) and is abelian. Since
pa(Frob) generates a compact subgroup, Proposition 5.2.3 shows that the
logarithm log(ps(Frob)) is defined and generates the Lie algebra Lie(Gys,).
Now, Theorem 4.1.5 implies that we have Lie(Iy) = Lie(I3®). Thus, if
IT: Lie(G3®) — Lie(G?}f) denotes the natural surjection, then we have

Lie(Gy) = I (Lie(Gh,)). (5.6)
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Let Lie(@) : Lie(G?}g)@ — Lie(GL(V@))@ = End(V@)@ be the Lie algebra
homomorphism induced by @. It suffices to show that

Lie(a)(B;) € Lie(Gy, )y (5.7)

Recall from Step 1 that the chosen point i € 35(@) gives a point 75 in
J55(Q,). Then

Lie(a)(B;) = n;, 0 log,(®5) o n;.". (5.8)
Let us first show that the right-hand side of (5.8) is the same for any choice
of m and any choice of i. Since p5 is unramified, the endomorphism ®; fixes
a lattice. Thus, ®5 generates a compact subgroup of GLg,(Dg(Vz)). By
Proposition 5.2.3, log, (®5) = log(®P4) is independent of the choice of 7. As
G?/lf is abelian, it follows from the isomorphism as in (5.3) that G%i X KO@ is

also abelian. Let ¢’ be another choice of point in J5(Q,). In view of equation

(5.4), for some o € Aut((Va)@) and some 7 € Aut(Dg(V,) ®x, Q,) we have

Ny, olog(®s)om;, ' =comn, or ' olog(®s)oTon; oo

=g o, olog(®s) o m;l oot

= 1); 0 log(®a) 0 ;..
Thus, the right-hand side of (5.8) is independent of the choice of . In par-
ticular, we see that it is independent of the choice of i5 in Jsz(M) for any
extension M of Ky. We now make a suitable choice of iz and M. On ap-
plying Proposition 4.3.2 to the unramified representation p; of Gk in V;, we
have the isomorphism

Ba : Dt(Va) @k, Qgr ~ Vs ®q, @zr

and the analogous isomorphisms for all the unramified representations in the
Tannakian category generated by ps. We take the point is in J55(Q}") to be
the family defined by these isomorphisms and M to be Q). Moreover, we

know from the said proposition that the Kj-linear endomorphism of Dy (V3)
and the image of Frob under p; are related via the equation

Pa o Pg o 55:1 = p@(Fl"Ob_l). (5.9)

Note that 35 also defines an isomorphism Dg (V) ®x, Q, =~ (Va)@p. Taking
the logarithm of both sides of (5.9), we obtain from (5.8) that

Lie(a)(B;) = log(pa(Frob™)), (5.10)

which clearly belongs to Lie(Gy,). This completes the proof of Theorem
5.2.8. -
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Proof of Theorem 5.2.9. Assume that the hypotheses of Theorem 5.2.9 hold
for V. Since V is semistable, it is Hodge-Tate. Let mq,..., m, denote the
Hodge-Tate weights of V. Thus we have a direct sum decomposition

Ve, = @Cp(mj). (5.11)

This allows us to define a homomorphism of algebraic groups over C,
p: G = 115 xg, C,, (5.12)
where, for ¢ € C)', p(c) is the automorphism of V¢, given by

ple)(x) =c™x for all z € C,(m;)

as j runs over the set {1,...,n}. Let us fix a point 7 in Js(Q,) and take o
again to be the tautological representation « : G?,lg — GL(V). We put

Q =, 0Pon; ! € Aut(Vy). (5.13)

Clearly, Q € G?}g(@p). We write Q as a product 2 = su = us, where
s,u €GOS (Q,) such that s is semi-simple and u is unipotent. Let © be the
smallest algebraic subgroup over @p which contains s. It is a multiplicative
group since s is semisimple. Replacing K by a finite extension, we may
assume that © is a torus. Indeed, © = ©° x P, where ©° is the connected
component of ® and P is a finite group. Then we may replace K by a
finite extension K’ such that the degree of the residue field extension k'/F,
is a multiple of the order of P. Let T be the maximal torus of G?/lg Xq, QTP
containing the torus ©. We choose a maximal torus in G?/lg X g, Cp containing
the image of u. Since all maximal tori in G?}g Xq, C, are conjugate, we find

an element g € G2%(C,) such that ;' = gug- ! has image in T'. Note that the

induced map 4 : G,, — T is defined over Q,, so that '(¢q) € T(Q,). We use

once again the representation a : G?}g — GL(V;) whose kernel is I@lg. We
have the exact sequence of algebraic groups

0— I8 x@p@p%(}?}g x@p@%Gi‘}f pr(QTp—m.

The torus T acts on G2 Xq, Q, and its normal subgroup e Xq, @ by
inner automorphisms. Thus it also acts on the quotient Gz xg, Q, by

inner automorphisms. But we saw earlier that G X@p@ is abelian. Thus,
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the action of 7" on Gy Xg, Q, and on its Lie algebra is trivial. Given an

algebraic group J over @p, we write J,, for its unipotent radical and Lie(J),
for the corresponding Lie algebra. We have the exact sequence of Lie algebras

over QTP
0 — Lie((5%)g)u — Lie((G¥)g)u — Lie((Gi)g). — 0.

The action by inner automorphisms of the torus 7" on the algebraic groups
induces the adjoint action of T on the Lie algebras. As representations of
a torus are semisimple and 7" acts trivially on Lie((G?}f)@)u, we have the
exact sequence

0 — H°(T, Lie((Iy*)g;)u) = H*(T, Lie((Gy#)g)u) — Lie((Gyf)g )u — 0.

Let uo be the image of w in G?}f Xq, Q, and n' be a lift of log(ug) in
HO(T, Lie((G?}g)@)u). Put v/ = exp(n’) € (G?}g)@)u. It is clear that o'
commutes with the elements of T, particularly with s and p/(¢). We now
take

B :=1log, (s t/(q) - u'). (5.14)
Since v’ is unipotent, the eigenvalues of s are precisely the eigenvalues Ay, ..., A,

of ® and the eigenvalues of i/(q) are the Hodge-Tate weights my, ..., m, of
V', it follows that the eigenvalues of B’ are

log,. (A1¢™), ..., log, (A.g™")

for a suitable ordering of A{,...,\,. Since B and B’ have the same image
in Lie(G?}f)@, Theorem 5.2.8 and (5.7) implies that B’ lies in Lie(Gy, )@
Letting 0 = det ® = [[7_; A; and t = 3_,_,, m;, we see that the trace of B’
is

tr(B') = log,(A\jg"™) = log, (][ \a™)
P =1

=log,(0¢") = log,(6) —log.(¢7") =0

where the last equality follows from Lemma 5.2.5. Therefore B’ lies in
Lie(Av)@ as desired. O

5.3 /{-adic case

Let ¢ be a prime not equal to p.
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Definition 5.3.1. Let w be an integer. An f-adic representation py : G —
GLg, (W) is said to be pure of weight w if the characteristic polynomial of
pe(Frob) has coefficients in Q and the eigenvalues of py(Frob) are g-Weil
numbers of weight w.

Consider a proper smooth variety X over K with potential good reduction
and the (-adic representation py : G — GL(V;) of Gk given by the ith /(-
adic étale cohomology group V, = H. (X%, Q,). Replacing K by a finite
extension, we may assume that X has good reduction over K. Then X has
a proper smooth model X — Spec(Ok). Let Y = X ®p, k and Vi = Y @y k.
Then we have the following (cf. [Jal0], §4)

Proposition 5.3.2. For any prime { # p, we have a canonical isomorphism
Hyy (X7, Qp) = Hy (Vi Qo)
which is compatible with the actions of G and Gy, := Gal(k/k).

Since Gy ~ Gk /I, the above proposition shows that for any ¢ # p, the
representation V; is unramified after a finite extension.

Corollary 5.3.3. For any prime { # p, the representation V; is pure of
weight i.

Proof. The Weil conjectures (cf. [De74], [De80]) imply that the character-
istic polynomial of the image of Frobenius in G}, acting on H (Y, Q,) has
coefficients in Q and its eigenvalues are ¢-Weil numbers of weight ¢, whence
the corollary. O]

Theorem 5.3.4. Let X be a proper smooth variety with potential good re-
duction over K. Let i be a positive integer. Then for any £ # p, V, =
H! (X%, Q) has vanishing G-cohomology.

Proof. Since V;, is unramified, G, is topologically generated by the image
pe(Frob) of Frobenius Frob € Gg/Ix. As pe(Frob) generates a compact
subgroup of GL(V}), Proposition 5.2.3 shows that the logarithm log(p,(Frob))
is defined and it belongs to Lie(Gy). Let Aq,..., A, be the eigenvalues of
pe(Frob), where n = dimg, Vz. These are ¢g-Weil numbers of weight 7. Then
the eigenvalues of log(p,(Frob)) are

log(A1), ..., log(An).

Let r € Z>, and take a multiset {log(&1),...,log(&),log(p), ..., log(tri1)}
of 2r + 1 eigenvalues of log(ps(Frob)). Then

r+1

Zlog(ﬂj) - Zlog(é’j) = log (H w) — log (H €j> = log(r).
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where Kk = H;Zl E  uiprsq. Since k is a ¢-Weil number of positive weight
i, log(r) # 0. Thus the representation Lie(G/)g, — End(V;)g, satisfies the
strong Serre criterion and the result follows from Proposition 5.1.5. O

5.4 Global setting

We give the proof of Theorem 3. Its proof uses the following result by
Bogomolov.

Proposition 5.4.1 ([Bo80], Corollaire of Théoreme 1). Let p : Gp — GL(V)
be a p-adic representation of Gg. Assume that for every place v of F lying
above p, the restriction p, : Gal(F,/F,) — GL(V) of p to the decomposi-
tion subgroup Gal(F,/F,) of a place T of F lying above v is a Hodge-Tate

representation. Then Lie(Gy) = Lie(G%#).
Consequently, we have the following

Proposition 5.4.2 ([Su00], Proposition 2.8). Let X be a proper smooth
variety over a number field F. Let i be an integer. PutV = H. (X%, Q,) and
consider the Galois representation p : Ggp — GL(V'). Let Gy, C GL(V') be the
image of p. Then the Lie algebra Lie(Gy) of Gy contains the homotheties.

Proof. As discussed in Example 4.1.3, the representation V satisifies the hy-
pothesis of Proposition 5.4.1. On the other hand, Lie(G%®) contains the
homotheties by a remark of Deligne (cf. [Se76], §2.3). This proves the propo-
sition. [

Proposition 5.4.3 ([OT14], Proposition 2.5). Let X be a proper smooth
variety over a number field F'. Let i be an integer. Let V be the Q,-linear
dual of H (X7, Q,) and put n = dimg, V. Then det(V') is isomorphic to the
twist of Q,(in/2) by a character € of order at most 2. If i is odd, then e = 1.

This is a global version of Lemma 5.2.6 for the étale cohomology group of
a proper smooth variety. As in Remark 5.2.7, Proposition 5.4.3 implies that
Lie(Hy) = Lie(Gy N SL(V)). It also implies that the field extension F'(py~)
is of finite degree over FI(V') N F(pupeo).

Proof of Theorem 3. Fix a place v of F' which lies above p. Let n = dimg, V' =
dimg, Vg, and tg,t_1,...,t_; be the multiplicities of the Hodge-Tate weights
0,—1,...,—1, respectively of the representation p, : Gr, — GL(V') obtained
by restriction to the decomposition subgroup of v. Let Iy be the image under
pv of the inertia subgroup of Gz . We fix a basis of V' over Q,. Theorem
4.1.4 provides an element ¥ € Lie(Iy) ®q, C, C Lie(Gy) ®q, C, which, when
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viewed as an element of End(1,), is an n x n-matrix with square diagonal
submatrices along the diagonal of the following shape:

0

-1+ 1

—1+1

(5.15)
—J
Here the square submatrix is of size t_;, for j = 0,1,...,4.
—J
The set of eigenvalues of VU is

e(V) ={—jl0 <j <i}.

Moreover, an integer —j occurs t_; times in e(¥).
Let I,, be the n x n identity matrix and let ¢ be an element of @, that is
not a rational number. Consider the n x n diagonal matrix

A=tIl,

Proposition 5.4.2 implies that A belongs to Lie(Gyv) and thus to Lie(Gy) ®q,
C,. Put B =V + A. This clearly belongs to Lie(Gy) ®q, C,. The set of
eigenvalues of B is

o(B) ={-j+1l0<j<i}.

We now verify that the strong Serre criterion is satisfied for Lie(Gy)c, —
End(Vg,). Let r be a non-negative integer and choose 2r + 1 eigenvalues of
B. We must show that

(=h+t)+.. .+ (=g +t) # (ki +O) + ..+ (k1 +1),
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where j1,..., 7, k1, ..., k.11 are non-negative integers less than or equal to ¢
and t € Q,\ Q. But this is equivalent to showing that

r+1 T

t 7& Z ks - sta
s=1 s=1

which clearly holds as the right-hand side is a rational integer but the left-
hand side is not. It follows from Proposition 5.1.5 that V' has vanishing
Gy-cohomology.

We now restrict to the case where 7 is odd. We claim that B belongs to
Lie(Ay) ®q, Cp,, where Ay = Gy NSL(V). Note that Lie(Ay) = Lie(Hy)
by Proposition 5.4.3. Note that t_; = t_(;_;), for j = 0,...,7 (cf. Example
4.1.3), and that Z;:o t_; = n. Since ¢ is odd, we have

2<t0+t_1+...+t7%> =n.

The trace of the matrix U is

r(0) == > gt

0<5<i
: , 1—1 1+1
:—(to(O—i—z)+t_1(1+(z—1))—|—...+t_i_21( 5 + 5 ))

= — <t0+t_1+...+t_%>

m

92

Therefore , ,
tr(B) = tr(P) + tr(A) = —% +n (%) =0,

which proves the claim. Therefore V' has vanishing Hy-cohomology. O]



Chapter 6

Almost independence of systems
of representations

6.1 Goursat’s Lemma and some of its conse-
quences

Let ¢1 : G — G and ¢, : G — G5 be continuous representations of a profi-
nite group G into locally compact groups GGy and G5, respectively. Consider
the continuous homomorphism ¢ = (p1,¢2) : G = ©1(G) X va(G). Let
71 o(G) = v1(G) and 7o : (G) = o G) denote the projections of p(G)
to ¢1(G) and ¢o(G), respectively. Let Ny = Kermy and Ny = Kermy. Then
N1 = o(G) N (e1(G) x {1}) and Ny = o(G) N ({1} X ¢2(G)). Thus we may
identify Ny (resp. N3) with a normal subgroup of ¢1(G)(= ¢1(G) x {1})
(resp. v2(G)(= {1} X v2(@G))). So we have a diagram

™ ™2

»1(G) p(G) 2(G)

T e

©1(G) /Ny —— ¢(GQ)/(N1.N2) —— ¢a(G) /Ny

where N;.N, denotes the subgroup generated by N; and N,. The following
result is well-known.

Lemma 6.1.1 (Goursat’s Lemma). Consider the above situation. Then
(1) o(G)/(N1.N2) == ¢;(G)/N; fori=1,2;

(2) We have an isomorphism p(G) ~ ¢1(G) X¢ wao(G), from diagram (6.1),
where C' = ¢(G)/(N1.Na).

35
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Proof. See, for example, Lemma 5.2.1 in [Ri76]. O

In the above situation, let A} := Ker ¢y and A}, := Ker ;. Then we have
the following

Corollary 6.1.2. The homomorphism ¢ = (1, p2) is surjective if and only
if G = AlLAL.

Proof. (<) Assume that G = A|.A,. Let h = (hy,h2) be an element of
©1(G) X p2(G). Then there exists g; € G such that p;(g;) = h; for i = 1,2.
For i =1, 2, we write

Hg”g”, where g; ; € A} and g;; € Aj.

Let g1 =[], 91; € A} and g5 =[], 95; € A3. Put g := g795. Then

0(9) = (¢1(9), v2(9))

= (1(g1); 2(95))
— h.

(¢1(9192), ©2(9195))

(0(91), £(92))

Therefore ¢ is surjective.
(=) Clearly A}.A, C G. Suppose ¢ is surjective. Goursat’s Lemma implies
that QO(G) = Nl.N27 N1 = (,01(G) X {1} and N2 = {1} X QOQ(G) Then if

g € G, we may write its image under ¢ as
9) =[] it
J

where h; € Ny and h; € Ny. For each j we can find g; (resp. ¢}) in G such
that o(g;) = h; (resp. w(g;) = h;). In fact, g; € A} and g; € A;. Hence, g
can be written as as a product of the g;’s and g}’s and some factors belonging
to Kerp = A} N A}. Therefore g € A}. A}, which shows that G = A].A,. O

Corollary 6.1.3. The group (G) is open (that is, a closed subgroup of finite
index) in ©1(G) X ©2(Q) if and only if A}. AL is open in G.

Proof. Put H = ¢1(G) x po(G). We identify N; with a normal subgroup
of p;(G) for i = 1,2. The diagram (6.1) and Goursat’s Lemma give us an
isomorphism ¢ : ¢1(G)/N; =~ ¢3(G)/Ny. Then the map [ : H/p(G) —
©2(G) /Ny given by f(hi,hs) := hyt)(hi)~! defines an isomorphism from
H/o(G) to 9(G)/Ny. Here, the (-) denotes the image of (-) in the quo-
tient group. Thus [H : ¢(G)] is finite if and only if [p2(G) : Ns] (equivalently
[p1(G) : Nq]) is finite. If ¢(G) is open in H, then N = N; x N, is open in
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H. Thus, N is open in ¢(G). Since G — ¢(G) is surjective and continuous,
the inverse image U of N by ¢ is an open subgroup of G which maps to V.
Then we see that

©1(U) X pa(U) € Ny x Ny =N = p(U).

Therefore, p|y = (¢1|v, p2|v) maps U onto ¢1(U) X po(U). Letting A7 :=
Ker ps|y and A} := Ker ¢q|y, Corollary 6.1.2 shows that U = A.A}. We
clearly have U C A|.A, C G and since U is open in G, we see that A}.A4)
is open in G. Conversely, if A = Aj.A} is open in G then ¢;(A) (resp.
©2(A)) is an open subgroup of ¢1(G) (resp. p2(G)). Corollary 6.1.2 shows
that ¢(A) = p1(A) X pa(A), so p(A) is an open subgroup of H. We see that
(@) is open in H from the inclusion:

p(A) Cp(G) C H.
O

6.2 Almost independent systems of represen-
tations

Let G be a profinite group and (g; : G — G;);er be a system of continuous
homomorphisms of G into a locally compact group G;. This system defines
a continuous homomorphism ¢ = (0;)ier : G — [[,c; Gi where the product is
endowed with the product topology. Following Serre we make the following

Definition 6.2.1 ([Sel3], §1). The system (g;)ics is said to be independent
if o(G) = [L;c; 0i(G). We say that it is almost independent if there exists an
open subgroup I' in G such that o(I") = [[,; o:(I").

Remark 6.2.2. (1) Let ¢; and s be continuous representations of a profi-
nite group G as above. Consider the continuous homomorphism ¢ = (¢1, p2) :
G — p1(G) X v2(G). The following statements are equivalent:

(i) (1, p2) is almost independent;

(ii) p(G) is an open subgroup of ¢1(G) X vo(G);

(iii) C' = ¢(G)/(N;1.Ns) is finite (see §6.1 for the definition of Ny and Ns).
We clearly have (ii) < (iii) as the cardinality of C' equals the index of ¢(G)
in ¢1(G) X pa(G). The equivalence (i) < (ii) follows from Corollary 6.1.3.

(2) Let (0;)ier be a system of continuous homomorphisms of a profinite
group G into a locally compact group G; and ¢ be the continuous homomor-
phism defined by their product as in the definition above. Let S be a subset
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of I and put " = I\ S. We consider the subsystem (g;);ce and the homo-
morphism g, given by the product, where @ = S, 5" If (9;);es is independent,
then (og, 0s) is independent. Indeed, since subsystems of an independent
system are independent (cf. [Sel3], §1), the systems (g;);ce are independent
(where @ = S,.5"). Then the equalities o(G) = [[;cq 0i(G) X [[;eq 0i(G) =
05(G) X 05/ (@) imply the surjectivity of 0 = 05 X 05 : G = 05(G) X 05/(G).

(3) Applying (1) to the situation of (2), we have o(G) = 05(G) X 05/ (G)
with finite C' as in (1).

(3) Note that the converse of the observation in (3) does not hold: if the
group C' in the fiber product os X¢ 0g is finite, the system (g;);esusr may
not be almost independent. For instance, we may consider og = 01 X 91 and
0sr = 0o with finite C' in pg X¢ 0s/. But then it is clear that (o1, 01, 02) is
not almost independent.

Suppose the index set I is a set of prime numbers. For ¢/ € I, assume that
the os : G — G is a continuous homomorphism of the profinite group G on a
compact f-adic Lie group Gy. In this setting Serre gave a useful criterion for
determining almost independence of systems of representations comprised of
such homomorphisms.

Lemma 6.2.3 ([Sel3], §7.2, Lemma 3). If there exists a finite subset J of I
such that the system (0¢)eer\s 5 almost independent then the system (0¢)ser
s almost independent.

The next result is a consequence of Theorem 1 of [Sel3] which made use of
Lemma 6.2.3. Serre proved it in the case of abelian varieties and conjectured
that the result should also hold in the general case of separated schemes of
finite type. Tllusie [1110] showed that it can indeed be generalized.

Theorem 6.2.4 ([Sel3], §3.1; [1110], Corollaire 4.4). Let X be a separated
scheme of finite type over a number field F' and i be a non-negative integer.
Put V; = H. (X7, Q). Then the system (py : Gp — GL(V))sen ts almost
independent.

Remark 6.2.5. In general, we need a finite extension F’ of F' so that the
system (p¢|g,,) is independent. This is observed in the case where S = A
and X = E is an elliptic curve which has complex multiplication over F with
CM field Q(v/d) such that v/d ¢ F. Also note that there are examples of
elliptic curves without complex multiplication such that p, is surjective for
all prime ¢ but p, is not (so the system (pg)een is not independent). This is
illustrated by the following example.
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Example 6.2.6. Consider the system (p, : Gg — GLa(Zy))eea associated
with the elliptic curve E over QQ of conductor 1728 with minimal Weierstrass
model y? = 23+ 62 —2. It has no complex multiplication and its discriminant
is A = —2063° This curve was considered in §5.9.2 of [Se72|, where it was
verified that the mod ¢ representation p, associated with E is surjective for
all £. A group-theoretic result (cf. e.g. [Gr10], Corollary 2.13-(iii)) implies
that p, is surjective for all £ > 5. The proof for the surjectivity of p, for
¢ = 2,3 was carried out in §I-7 of [LT76]. Hence p, is surjective for all /.
But VA € Q** = Q%, where Q* is the maximal abelian extension of Q.
Therefore, p is not surjective by Theorem 1.2 of [Gr10]. This shows that the
system (pg)eea is not independent.

6.3 Restrictions and Quotients of indepen-
dent systems

We show that the independence of a system is inherited by the system of
representations obtained by restriction to a closed normal subgroup and by
its corresponding system of quotients. Consider a system (g;);e; as above.
Let H be a closed normal subgroup of G. For each ¢ € I, we define the
continuous homomorphism 7; : 0;(G) — G; = 0:(G)/0:s(H) of compact
groups. Then we obtain new systems of representations:

(0ilm : H = Gi)ier
obtained by restriction of the g;’s (i € I) to H and
_ Qi s =
(0i: G —— 0i(G) —— Gi)ier-
Write 0 = [[.c; 0:-
Lemma 6.3.1. Let (9;)icr be a system of representations of a profinite group

G. Let H be a closed normal subgroup of G. Then (9;)ics is independent if
and only if the systems (0;|m)icr and (0;)ier are independent.

Proof. By definition of 9, we have the following commutative diagram of
(compact) topological groups with exact rows

1

ha hﬁ h (6.2)
I
. H 3.
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where the maps «, § and 7 are injective by definition. The five lemma
shows that the independence of the systems (¢;|g)ic; and (9;)ie; implies the
independence of (g;);c;. Conversely if (g;)ier is independent; that is, [ is
an isomorphism, then the five lemma applied to the commutative diagram
obtained by taking the first four terms of diagram (6.2) and adding trivial
groups on the left end implies that the system (o;|x)ics is independent. Ap-
plying the same argument to the commutative diagram obtained by taking
the last four terms of diagram (6.2) and adding trivial groups on the right
end implies that the system (g;);es is independent.

O

Now let us consider the case where the profinite group G in the definition
above is the absolute Galois group G of a number field F' and the index set
I is the set A of all primes. Consider a system of continuous representations

(00)een = (00 : Gp — Gy)een of G into a locally compact ¢-adic Lie group
Gy (e.g., Gy = GL,(Qy)). For each £ € A, let F, = FKQYQZ, the fixed subfield
of F by the kernel of ;. Since G is compact, the Galois group Gal(F,/F) ~
0¢(Gr) is a compact f-adic Lie group. We write op = [[,c, o¢ and Fj for the
compositum of all £, as ¢ runs over the elements of A. The field Fy is the
fixed subfield of F' by the kernel of ox. We let F®° be the field extension

obtained by adjoining to F' all roots of unity.

Lemma 6.3.2. Let (0¢)ien be a system as above. Assume the following
condition:

Fy D F(up) for each leA. (%)

Forl e A, let Ny=F, N FY°. Then

(1) if the system (0¢)een is independent then Ny = F(pu) for each € € A;
(1) if the system (g¢)een s almost independent then Ny/F(ue=) is a finite
extension for each ¢ € A.

Remark 6.3.3. The condition (*) implies that Fy contains the field Fe.

Proof. Statement (ii) follows from (i) after replacing I’ by a suitable finite
extension. For the proof of (i), we apply Lemma 6.3.1 to the system (pg)sen
with H = Gpeve. Then we may identify diagram (6.2) with the following
commutative diagram:

1 —— Gal(Fy/Fo) Gal(F,/F) Gal(Fo¢/F) —— 1

leA LeA LeA (63)
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By hypothesis and Lemma 6.3.1, diagram (6.3) gives an isomorphism Gal(F'®¢/F") ~
[Lsen Gal(Ne/F). Since Gal(F'<°/F) ~ ], Gal(F (e )/F') we get an iso-
morphism

[T Gal(F (pe<)/F) = [ ] Gal(N/F). (6.4)

LeA LeA
Let ¢/ € A. Taking the composition of (6.4) with the projection [[,., Gal(Ng/F) —
Gal(Ny /F) to the ¢-th component, we obtain a surjective homomorphism

[1 Gal(F (pe<)/F) - Gal(Np /F). (6.5)

The independence of the system (gy)scp means that the fields (Fy)pep are
linearly disjoint over F'. That is, if £ # ¢ then F = F, N Fp D F(ue=) N
Ny. So F(pgs) N Ny = F whenever ¢ differs from ¢. This implies that
the image of [,z gy Gal(F'(pe)/F) in Gal(Ny/F) under the map (6.5)
is trivial. Hence, (6.5) factors through Gal(F(pp~)/F) — Gal(Ny/F). On
the other hand we clearly have a surjection Gal(Ny/F) — Gal(F (up~)/F)
because F(pupe) is contained in Ny. Therefore we have Gal(F(upe)/F) ~
Gal(Ny /F) for each ¢ € A. This completes the proof of Lemma 6.3.2. [

We saw from the previous lemma a precise description of each intersection
N, under some suitable conditions. What can be said in general (without
the independence hypothesis and condition (%)) about the N,’s is given by
the following result.

Lemma 6.3.4. Let { be a prime and F; be an (-adic Lie extension of F
(that is, Gal(Fy/F) is an (-adic Lie group). Let Ny = F; N F¥°. Then
No/Fy NV F () s a finite extension.

Proof. Since Ny(py=) is contained in F° we have a surjection of Galois
groups
Gal(F¢/F) — Gal(Ny(pe )/ F). (6.6)

As the Galois group Gal(Ny(pe~)/F) is an abelian (-adic Lie group, we
may view it as a direct product of finitely many copies of Z, and a fi-
nite abelian group. But note that any homomorphism Gal(F%¢/F) — Z,
factors through Gal(F(ue~)/F). Hence the homomorphism (6.6) factors
through Gal(F'(pe=)/F) x C — Gal(Ny(p<)/F) where C' is a finite abelian
group. The finite abelian group C' maps onto Gal(Ny(pe=)/F (pe=)), and
since Ny N F(ppe) = Fy O F(upe) we see that Gal(Ng/Fy N F(puyo)) =~
Gal(Ny(pues )/ F (o)) is finite. O
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Chapter 7

Proofs

7.1 The Setup

We follow the notations as in Chapter 1. Suppose that F'is a global or a local
field and p : Gr — GL(V) is a continuous linear representation of Gp. For an
arbitrary Galois extension L/F, we may identify Jiy = p(G ) with a closed
normal subgroup of Gy, whose fixed field M = F(V)7v is the intersection
of F(V) and L. Then the Galois group Gal(M/F) may be identified with a
quotient of Gy . If the representation p is a p-adic representation, then the
group Gy is a p-adic Lie group and thus, so is Gal(M/F) (cf. [DDSMS99],
Theorem 9.6 (ii)). Hence, M/F' is a p-adic Lie extension. If L = F(up),
the field M will be written as Fiy := F(V) N F(ppee).
We have the following diagram of fields:

In particular, if L contains F'(f,e), then Jy is a closed normal subgroup of
Hy and M contains Fi .

43
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7.2 Proofs in the local setting

Throughout this section, we work with a p-adic local field K as our base
field.

7.2.1 Some lemmas

Let L be a Galois extension of K which contains K (pye). Put G = Gal(L/K)
and H = Gal(L/K (pp~)). Let € : G — Z) be a continuous character of G
whose image is open in Z;. The group G acts on H by inner automorphisms,
that is, for 0 € G and 7 € H, we have 0 - 7 = oro~!. Assume that the

following relation holds:
o7 =710 (7.1)

forallc e G, 7 € H.

Lemma 7.2.1. Let ¢ : G — GL(W) be a p-adic representation of G. Let ¢
be a character as above and suppose the action of G on H satisfies relation
(7.1). Then after a finite extension K'/K, the subgroup H acts unipotently
on W.

Proof. Put d = dimg, W. The result is trivial if d = 0. We assume henceforth
that d is nonzero. We may argue in the same manner as the proof of Lemma
2.2 of [KT13]. Let 7 € H and Aq,...,\; be the eigenvalues of (7). Then
relation (7.1) shows that

M, A = {59 )y

for all o € G. Let e be a positive integer such that 1 + p© lies in £(G). Such
an integer exists since £(G) is open in Z,. For each i =1,...,d, there exists

an integer r; with 1 < r; < d such that )\Z(-Hpe)” = );. We then put
m = LCM{(1+p°)" —1|r=1,--- ,d}.

With this choice of m we see that ¢ (7)™ is unipotent since A* = 1 for
all i = 1,...,d. Hence H™ = {7™|r € H} acts unipotently on W. Then
the semisimplification of the restriction |y to H is a sum of characters
H/H™ — pm, after a suitable extension of scalars. These characters become
trivial upon replacing K (j,~) by a finite extension, say K. In fact, K, =
K'(jupeo) for some finite extension K’ of K. O

Lemma 7.2.2. Let ¢ : U — GLg, (W) be a representation of a group U on
a finite-dimensional Q,-vector space W. Suppose U acts unipotently on W.
Then WY = 0 if and only if W = 0.
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Proof. Let d = dimg, W. It is known that for a suitable choice of basis
the image of U can be identified with a subgroup of the group U, of upper-
triangular matrices in GL4(Q,) (cf. e.g. [Bor91], Chapter I, §4.8, Theorem).
Hence, since U acts unipotently, W always has a nonzero vector fixed by U
if d> 0. m

7.2.2 Preliminary Results

We follow the notations as in Section 7.1. We consider the p-adic represen-
tation p : Gx — GL(V) with V = H{, (X%,Q,). Here X is a proper smooth
variety over K with potential good reduction and ¢ is a positive integer. We
consider a Galois extension L of K and consider the image Jy of Gy under

p-

Lemma 7.2.3. (1) If Jy has finite index in Gy, then V has vanishing Jy -
cohomology.

(2) Assume i is odd. If L contains K () and Jy has finite index in Hy,
then V' has vanishing Jy -cohomology.

Remark 7.2.4. By Galois theory, we have Gal(M/K) ~ Gy /Jy (resp.
Gal(M/Kyv) ~ Hy/Jy) in the discussion above. So the condition that
Jy has finite index in Gy (resp. Hy) is equivalent to the finiteness of the
degree of the extension M over K (resp. Ky v).

Proof. Replacing K with a finite extension, we may assume Gy = Jy (resp.
Hy = Jy). It follows immediately from Theorem 2 that V' has vanishing
Jy-cohomology. m

Remark 7.2.5. Let V be any p-adic representation of G as above with
odd ¢ and L/K a Galois extension containing K (j,~). Take a Gk-stable
Z,-lattice T of V. We know from Lemma 5 that the vanishing of H%(Jy,, V)
is equivalent to the finiteness of (V/T)%t. Hence, since V has vanishing Hy-
cohomology, we have the relation (1) = (2) = (3) between the following
statements:

(1) M is a finite extension of K (juye),

(2) V has vanishing Jy-cohomology, and

(3) (V/T)C* is a finite group.

However, converses may not necessarily hold. In some cases though, we have
(3) = (1), as we shall see in Corollary 7.2.25.

Lemma 7.2.6. Let X be a proper smooth variety over a p-adic field K with
potential good reduction and i be a positive integer. Consider the represen-
tation p : Gg — GL(V), where V = H} (Xg,Q,) and let detp : G — L
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be the character obtained by composing p with the determinant map. Then
det p = x"2 on an open subgroup of Gk, where n = dimg, V.

Proof. This follows from Lemma 5.2.6. [

The following is a simple criterion for determining the vanishing of Jy -
cohomology from the Lie algebras of Gal(K (V) /Kov) and Gal(L/LNK (pip=)).

Theorem 7.2.7. Let X be a proper smooth variety over K with potential good
reduction and i a positive odd integer. Put V = H (X%, Q) and Koy =
K(V)N K(ppe). Let L/K be any p-adic Lie extension such that K (pye) is
of finite degree over Koo := L N K (up~). Assume that the Lie algebras

Lie(Gal(K(V)/Ksy)) and Lie(Gal(L/K 1))

have no common simple factor. Then V has vanishing Jy -cohomology, where
Jv = p(GL)

Proof. The theorem clearly holds if n = dimg, V' is zero. We assume hence-
forth that V' is of positive dimension. Since the kernel of p is contained in
the kernel of det p, we see that K (V') contains the fixed subfield K (det V)
of K by the kernel of det p. Note that the character det p is the —in/2-th
power of the p-adic cyclotomic character on an open subgroup of G, by
Lemma 7.2.6. Hence the field K (V') contains a subfield K’ of K () such
that K (pp~) is of finite degree over K’ since n > 0. Replacing K by a
finite extension, we may then assume that K (V) and L contains K (g ).
Put h = Lie(Gal(K(V)/K(up~))) and b = Lie(Gal(L/K (pp~))). Recall
that M is the intersection of the fields K (V') and L, which is a Galois ex-
tension of K(up~). Let j and j’ be the Lie algebras of Gal(K(V')/M) and
Gal(L/M) respectively. The Lie algebra j (resp. j’) is an ideal of b (resp.
b’), since Gal(K(V')/M) (resp. Gal(L/M)) is a closed normal subgroup of
Gal(K(V)/ K (ppe)) (resp. Gal(L/K (f1p))). We have

0y (CaAKOV/K () o
7_Lle( Ry )_L (Gal(M/K (1))

o (G (e)) Y
_Lle( Gal(L/M) )— i

The above expressions are all equal to zero by hypothesis. Therefore Gal(K (V')/M)
has finite index in Gal(K(V')/K (p=)). We then apply Lemma 7.2.3 to ob-
tain the desired conclusion. O



7.2. PROOFS IN THE LOCAL SETTING 47

It seems worthwhile to state the following corollaries for cohomological
coprimality. More precisely, consider another proper smooth variety Y over
K with potential good reduction. Let j be a positive odd integer and put
Vi =V, as above and V5 = Hgt(Yf, Qp). Put Ju = pi(Ker(ps)) and Jp =
pa(Ker(p1)). Note that J, is a closed normal subgroup of H, = p,(G g (u,))
(after a finite extension) for » = 1,2. We have the following special case of

Lemma 7.2.3.

Corollary 7.2.8. Let V; and Vs be as above and let K(Vy) and K(V3) be the
fized fields of Ker(py) and Ker(ps), respectively. If M = K (Vi) N K(V,) is a
finite extension of M N K (fiye), then Vi and Vy are cohomologically coprime.

The cohomological coprimality can also be derived by comparing the Lie
algebras b, = Lie(H;) and hy = Lie(Hy).

Corollary 7.2.9. With the assumptions and notations in the discussion
above, suppose by and by have no common simple factor. Then Vi and V;
are cohomologically coprime.

Proof. Apply Theorem 7.2.7 with V' =V} and L = K(V3); and with V =V}
and L = K(1}). O

Remark 7.2.10. In view of Theorem 3 and Lemma 5.4.3, we note that
analogues of all the results in this section also hold in the case where the
variety X is defined over a number field without any assumption on reduction.

7.2.3 Lie algebras associated with elliptic curves

Let E be an elliptic curve over a p-adic field K. Consider the p-adic rep-
resentation pg : Gx — GL(V,(E)) of Gk on the p-adic Tate module of E.
We recall the well-known description of the structure of the Lie algebras
associated to E:

Proposition 7.2.11 ([Se89], Appendix of Chapter IV). Let E be an elliptic
curve over K. Let g := Lie(pp(Gk)) and i = Lie(pr(Ix)) be the Lie algebras
of the image of Gk and its inertia subgroup I under pg, respectively (These

are Lie subalgebras of End(V,(E))).

(1) If E has good supersingular reduction with formal complex multiplica-
tion, then g is a non-split Cartan subalgebra of End(V,(E)) and i = g.
We have dim g = dimi = 2.

(11) If E has good supersingular reduction without formal complex multipli-
cation, then g = End(V,(E)) and i =g. We have dimg = dimi = 4.
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(111) If E has good ordinary reduction with complex multiplication, then g is
a split Cartan subalgebra of End(V,(E)). We have dimg = 2 and i is
a 1-dimensional subspace of g.

(iv) If E has good ordinary reduction without complex multiplication, then
g is the Borel subalgebra of End(V,(E)) which corresponds to the kernel

of the reduction map V,(E) — V,(E). We have dimg = 3 and i is a
2-dimensional subspace of g with i/[i,i] of dimension 1.

(v) If E has j-invariant with negative p-adic valuation, then g is the subal-
gebra of End(V,(E)) which consists of the endomorphisms u for which
uw(V,(E)) € W, where W is the unique G -stable 1-dimensional sub-
space of V,(E). Moreover, i = g. We have dimg = dimi = 2

7.2.4 Proof of Theorem 2.1

The proof of Theorem 2.1 follows from the following more general result.

Theorem 7.2.12. Let p: Gg — GLq, (V) be a potentially crystalline repre-
sentation. Let K' be a finite extension of K such that p|q,., are crystalline.
Let ® denote the associated endomorphism of the filtered module associated
to pla,.,. Suppose the following conditions are satisfied:

(i) the eigenvalues of ® are q-Weil numbers of odd weight;

(ii) the determinant of ® is a rational number;

(1i) there ezists a filtration

0=V, CVEVi=V

of Ggr-stable subspaces such that I acts on Vi by x* and I acts on Vi /Vj
by x°, where a and b are distinct integers;

Let L be a Galois extension of K such that the residue field of L) s a
potential prime-to-p extension of k and VEr' = 0 for every finite extension
L of L. Then V has vanishing Jy -cohomology, where Jy = p(Gp).

For the proof we make some preparations. First of all replacing K with
K’ we may assume that V' is crystalline so that assumptions (i) and (ii) hold.
We may also suppose that assumption (iii) holds with K = K’. The assump-
tion (iii) allows us to obtain an explicit description of the representation
p.

Proposition 7.2.13. Let V' be a finite-dimensional p-adic Galois represen-
tation of Gk such that there exists a filtration

0=V, ,CVCVi=V
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of Gk -stable subspaces such that I acts on Vo by x* and I acts on Vy/Vy by
X°, where a and b are distinct integers. Let n = dimg, V' and d = dimg, V5.
Then, for some suitable basis of V', the representation p has the form

S T
0 Sy)7

(i) S1: Gk — GL4(Z,) and Sy : G — GL,_4(Z,) are continuous homo-
morphisms and

where

(ii) T : Gg — Matagx(m—ay(Zyp) is a continuous map.

Moreover, Sy (resp. S3) is of the form (x*)®4-Uy (resp. (x*)®=9.U,), where
Uy : Gk — GL4(Z,) and Uy : Gk — GL,_4(Z,) are continuous unramified
homomorphisms.

Proof. This follows immediately from the hypotheses upon choosing a basis
{v1,...,v,} of V such that {v,...,v4} is a basis of Vj. O

We now proceed to the proof of Theorem 7.2.12. First we note that we
may reduce the proof to the case L = L(pp~). Indeed letting L' = L(pp=)
and J{, = p(Gr/), then Ji, is a closed normal subgroup of Jy,. We see that if
V has vanishing J{,-cohomology then Corollary 3.1.5 implies

H™(Jy, V) = H"(Jy [Ty HOJp, V) >0,

and a priori, V' has vanishing Jy-cohomology. We assume henceforth that
L = L(pp~). After replacing K by a finite extension we may also assume
that K(V) D K(uy~) by assumptions (i) and (ii) together with Lemma 5.2.6.
Put M := LNK (V). Recall that M is a p-adic Lie extension of K. Moreover,
the residue field of M is a potential prime-to-p extension over k. Thus the
maximal unramified subextension K of M /K is of finite degree over K. Put
N = K(V)n K™, the maximal subextension of K (V') which is unramified
over K. This is the fixed subfield of K by the kernel of the restriction pl,
of p to the inertia subgroup. Recall that Iy = p(Ik), and so we may identify
Iy with Gal(K(V)/N). We also let Nog := N (pipe). Let M = M N Ny, and
we put G := Gal(M/K|) and H := Gal(M/M'). Note that M' = K{(jt,).
We have the following diagram of fields from which we observe that we may
identify G with a quotient of Iy :
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We have the following

Lemma 7.2.14. Assume the hypothesis in Theorem 7.2.12. Let 1 : Gal(M/K) —
GLg, (W) be a continuous linear representation of Gal(M/K). Then up to a

finite extension, the quotient Hy /Jy ~ Gal(M /K (uy=)) acts unipotently on
Ww.

Proof. We use the diagram of fields shown above to give an explicit de-
scription of the action of G on H. Replacing K by K|, we may assume
that G = Gal(M/K), so that H = Gal(M/K (pip)). The diagram of fields
clearly induces the following commutative diagram, having exact rows and
surjective left and middle vertical maps:

1 —— Gal(K(V)/Ny) Iy Gal(No/N) —— 1
l L u{ (7.2)
1 H G G/H 1

Moreover the above diagram is compatible with the actions by inner auto-
morphism, in the sense that if o € G and 7 € H, and & (resp. 7) is a lifting
of o (resp. 7) to Iy, then ¢ - 7 - 571 lies in Gal(K(V)/Ny). The representa-
tion p factors through Gy and so we obtain from p a faithful representation
GV — GLQp (V)

We now choose a suitable basis of V' whose first d elements is a basis of
Vh. By Proposition 7.2.13, the representation of Gy, on V' can be written as:

(Xa)@d . Ul T
0 (Xb)@(n—d) U,y ’
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where Uy : Gy — GL4(Z,) and Uy : Gy — GL,_4(Z,) are continuous
unramified homomorphisms and T : Gy — Maty(Z,) is a continuous map.
Let 0 € G and 7 € H. We take a lifting & (resp. 7) of o (resp. 7) to Iy.
Let I, denote the r x r identity matrix. We have U;(¢) = Uy(7) = 1; and
Uy(6) = Uy(T) = I,—q. Note that 7 belongs to Gal(K(V)/Ny), so we have
(x)®? - Uy (F) = Iy and (x*)®=9 . Uy(7) = I,,_q. We have

C(()FE) T I, T(7)
B 0 (x”)@”%)) (0 In_d)
<<<xa>@d<&>)1 — ((x)*(5)) " T() ((Xb)®”‘d(5))l>

0 (xn)em=d(a)) "
_ (fd ((x*")®4()) T<%>)
0 14 ’

Here (x*)¥"(e) € GL,(Z,) is the r x r diagonal matrix with entries x*(e).
Writing (xy*~°)®7(5) as a product of the scalar xy*~°(5) with I,, we see that
the last term in the above series of equations is just

(i 20" o)

This gives the relation
o-7 -0t =715), (7.3)

with € = x%7°, from the compatibility of (7.2) with the actions by inner au-
tomorphisms. The desired result follows from Lemma 7.2.1. This completes
the proof of Lemma 7.2.14. [

We may now complete the proof of Theorem 7.2.12.

Proof of Theorem 7.2.12. As Gal(M/K) ~ Gy /Jy we may consider H"(Jy, V')
as a representation of Gal(M/K). Replacing K by a finite extension, we may
assume that Hy /Jy acts unipotently on H"(Jy, V) for all r > 0, by Lemma
7.2.14. We prove the vanishing by induction on r. The case » = 0 is done
by hypothesis. By assumptions (i) and (ii) and Proposition 5.2.4, we know
that V' has vanishing Hy-cohomology. Now let » > 1 and assume that
H™(Jy,V) =0 for all 1 < m < r. Then Corollary 3.1.4 gives the following
exact sequence:

H"(Hy,V) — H(Hy/Jy, H (Jy,V)) = H ™ (Hy [ Jy, V).
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As the first and last terms both vanish, we have H°(Hy /Jy, H" (Jy,V)) = 0.
The vanishing of Jy-cohomology follows from Lemma 7.2.2 since Hy /Jy acts
unipotently on H"(Jy, V). O

As a corollary, we obtain necessary and sufficient conditions for the van-
ishing of Jy-cohomology groups for p-adic representations given by an abelian
variety with good ordinary reduction over K. Let A denote the reduction of
A modulo the maximal ideal of Ok.

Corollary 7.2.15. Let A be an abelian variety over K with good ordinary
reduction and L be a Galois extension with residue field kr. Assume that
L contains K () and the coordinates of the p-torsion points of A. Put
V =V,(A) and Jy = pa(GL). Then the following statements are equivalent:
(1) A(L)[p) is finite

(2) AY(L)[p>] is finite,

(3) A(ky)[p<] is finite,

(4) A (k)5 is finite,

(5) ki is a potential prime-to-p extension of k

(6) V' has vanishing Jy -cohomology.

Proof. The equivalence of the first five statements is given by Corollary 2.1 in
[0z09]. Theorem 7.2.12 shows that condition (5) implies condition (6). Note
that condition (1) is equivalent to H°(Jy, V) = 0 by Lemma 5, so condition
(6) implies (1). O

We are ready to give the proof of Theorem 2.1.

Proof of Theorem 2.1. Our goal is to show that

(1) V has vanishing Jy-cohomology, where Jy = p(Ker p') = p(Gg(v)); and
(2) V' has vanishing .Jys-cohomology, where Jy: = p'(Ker p) = p'(Gk(v)).
Note that K(V)(up~) is a finite extension of K(V'). The same is true
for K(V'). Thus, statement (1) is a special case of Theorem 7.2.12 with
L = K(V'). To prove statement (2), we consider H"(Jy,, V') (r > 0) as
a representation of Gal(M/K), where M = K (V)N K(V’). Then Lemma
7.2.14 implies that by replacing the base field with a suitable finite exten-
sion we may assume that Hy/Jy/(~ Gal(M/K (py-))) acts unipotently on
H"(Jy:,V'). Arguing as in the proof of Theorem 7.2.12, we see that V' has
vanishing .Jy/-cohomology. O]

Before proving Theorem 2.2, we first recall the following result on the étale
cohomology groups of a proper smooth variety with good ordinary reduction
due to Ilusie.
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Theorem 7.2.16 ([1194], Cor. 2.7). Let X be a proper smooth variety over
K which has good ordinary reduction over K. Then the étale cohomology
group V. = H (X%, Q,) (i > 0) has the following property: there exists a
filtration by G k-invariant subspaces {Fil" V'},.cz which satisfies

Fil'™'V C Fil"V for all r,
Fil'V =V forr <0 and Fil"V =0 forr > 0,

such that the inertia subgroup Ik acts on the rth graded quotient gr"V =
Fil"V/ Fil'™' V' by the rth power of the p-adic cyclotomic character.

We now prove Theorem 2.2. For convenience let us recall the statement
of the said theorem.

Theorem 7.2.17. Let X be a proper smooth variety over K with potential
good ordinary reduction and let E/K be an elliptic curve with potential good

supersingular reduction. Let i be a positive odd integer and we put V =
H. (X%, Q,) and V' =V, (E). ThenV and V' are cohomologically coprime.

Proof. To prove the theorem we have to show that the following statements
hold:

(a) If we put L = K(Ep~) and Jy = p(Gp), then V' has vanishing Jy-
cohomology; and

(b) If we put L' = K(V) and Jyv» = pp(Gr/), then V' has vanishing Jy-
cohomology.

We only prove statement (a) since statement (b) can be proved in a similar
manner. Replacing K with a finite extension, we may assume that X has
good ordinary reduction and £ has good supersingular reduction over K. We
may also assume that K(V') contains K (uy~) by extending K further (cf.
Lemma 7.2.6). Put Ny, = K(V) N K™ (f1p). The assumption on V' implies
that the inertia subgroup Iy of Gk acts on the associated graded quotients
gr"V = Fil" V/Fil"™' V by the rth power of the p-adic cyclotomic character.
In particular the group

Gal(K (V) /Now) = Gal(K™ (V)/ K™ ()

acts unipotently on V. Hence, Lie(Gal(K(V)/Ny)) is a nilpotent Lie al-
gebra contained in Lie(Hy) = Lie(Gal(K(V)/Kwyv)). Recall that we may
identify Gal(L/K) with the subgroup pg(Gg) of Aut(T,(F)) ~ GLa(Z,).
Put g = Lie(Gal(L/K)) and b = Lie(Gal(L/K (y1y))). If E has no formal
complex multiplication, then g ~ gl,(Q,) by Proposition 7.2.11 (i7) and so
h =~ sl5(Q,). In particular, h is simple. It immediately follows from Theorem
7.2.7 that V has vanishing Jy-cohomology. This proves (a) when E has no
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formal complex multiplication. We now suppose that E has formal complex
multiplication. We claim that M = K (V)N L is a finite extension of K (g, ).
The restriction map induces a surjection

Gal(K(V)/Ny) = Gal(M Ny /Ny) ~ Gal(M/M N Ny),
from which we obtain a surjection of Lie algebras
Lie(Gal(K(V)/Ny)) — Lie(Gal(M/M N Ny)).

As Lie(Gal(K(V)/Ns)) is nilpotent, we see that Lie(Gal(M/M N Ny)) is a
nilpotent subalgebra of Lie(Gal(M /K (f1,0))). Since E has formal complex
multiplication, we know from Proposition 7.2.11 (i) that g is a non-split Car-
tan subalgebra of End(V,(F)) ~ gl,(Q,). Thus Proposition B.7 in Appendix
B implies that g contains the center ¢ of gl,(Q,) and h ~ g/c is a Cartan sub-
algebra of sl5(Q,). Its elements are semisimple in sl5(Q,) by Proposition B.9
in Appendix B. Thus, the elements of Lie(Gal(M /K (uy~))) are also semisim-
ple since it is a quotient of h. Since the Lie algebra Lie(Gal(M/M N Ny)) is
a nilpotent factor of Lie(Gal(M /K (up=))), we then see that Lie(Gal(M/M N
Ny)) = 0. This means M/M N N4 is a finite extension. But note that
M N Ny is unramified over K (py~). Since pg(Ik) is open in pp(Gk) again
by Proposition 7.2.11 (i), M N N is finite over K (fipe0). Thus M /K (pp=)
is a finite extension. By Remark 7.2.5, the finiteness of [M : K (up~)| is
equivalent to the finiteness of the index of Jy = p(Gp) in Hy. By Lemma
7.2.3, we conclude that V' has vanishing Jy-cohomology. O]

Remark 7.2.18. In Theorem 2.2 when the elliptic curve E has potential
good ordinary reduction, the vanishing statement (b) may not hold because
H°(Jy+, V") may be nontrivial. This is easily observed by taking X = E and
considering V = Hj, (X%, Q,). This observation in fact holds in a more gen-
eral case. Indeed, take any abelian variety A/K with potential good ordinary
reduction and consider V' = V,(A4) ~ H} (A%, Q,)". Since A has potential
good ordinary reduction, the field L' = K(A~) contains an unramified Z,-
extension. Hence, the residue field k; is not a potential prime-to-p extension
over k. Replacing K and L’ with appropriate finite extensions (so that the
hypothesis of Corollary 7.2.15 is satisfied), we conclude that the represen-
tation V'’ does not have vanishing Jy -cohomology. Thus V and V' are not
cohomologically coprime.

7.2.5 Vanishing results for elliptic curves

In this section, we give the proof of Theorem 2.3. We determine the coho-
mological coprimality of two Galois representations V,(E) and V,(E’) given
by elliptic curves E and E’, respectively.
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7.2.6 The case of good reduction

We first treat the case where F and E’ both have potential good reduction
over K.

Theorem 7.2.19. Let E and E' be elliptic curves with potential good reduc-
tion over K. Then the representations V,(E) and V,(E") are cohomologically
coprime if one of the following conditions is satisfied:

(1) E has potential good ordinary reduction and E' has potential good su-
persingular reduction, or vice versa,

(i) E has potential good supersingular reduction with formal complex mul-
tiplication and E' has potential good supersingular reduction without
formal complex multiplication, or vice versa;

(11i)) E and E'" both have potential good supersingular reduction with for-
mal complex multiplication and the group E(L')[p>] of p-power division
points of E over L' is finite for every finite extension L' of K(E«);

(iv) E and E' both have potential good supersingular reduction without for-
mal complex multiplication and the group E(L")[p™] is finite for every
finite extension L' of K(E)x).

Thanks to [Oz09], we have at our disposal some results in connection to
the finiteness of the group of p-power torsion points when E has potential
good supersingular reduction over K. Let us first recall these results. In
general we have the following

Proposition 7.2.20 ([0z09], Lemma 3.1). Let E be an elliptic curve over K
which has good supersingular reduction over K. Let L be a Galois extension of
K. Then the group E(L)[p™] is finite if and only if K(Ey~) is not contained
in L.

In the case where L = K(E~) as in (iii) and (iv) of Theorem 7.2.19, we
have the following two results.

Proposition 7.2.21 ([0z09], Proposition 3.7). Let E and E' be elliptic
curves over K which have good supersingular reduction with formal com-
plex multiplication. Let F C K (resp. F' C K ) be the field of formal complex
multiplication for E (resp. E'). Put L = K(E)~). Then E(L)[p™] is finite
if F# F.
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Proposition 7.2.22 ([0z09], Proposition 3.8). Let E and E' be elliptic
curves over K which have good supersingular reduction without formal com-
plex multiplication. Put L = K(E)).

(i) If there is a non-trivial homomorphism of formal groups E' = F over
Ok, then E(L)[p™] is infinite.

(i1) If E(L)[p>] is infinite, then there is a non-trivial homomorphism of for-
mal groups E' — F over Ok for some finite extension K’ of K.

We now give the proof of Theorem 7.2.19. By symmetry, it suffices to
verify the following:

Theorem 7.2.23. Let E and E' be elliptic curves with potential good re-
duction over K. Put L = K(E')). If one of the conditions (i) - (iv) in
Theorem 7.2.19 is satisfied then V' = V,(E) has vanishing Jy -cohomology,
where Jy = pp(GyL).

The case (i) of the theorem is already covered by Theorem 2.2. For case
(i1), we may replace K with a finite extension so that £ and E’ both have
good supersingular reduction over K. Put h = Lie(Gal(K (Ep~)/K (fpy=))).
The Lie algebra of Gal(L/K) is isomorphic to End(V,(E")) ~ gl,(Q,) by
Proposition 7.2.11 (i7). The Lie algebra b’ = Lie(Gal(L/K (p1pe))) is isomor-
phic to sl3(Q,). In particular, h’ is simple. As b is abelian, we see that b
and b’ have no common simple factor. By Theorem 7.2.7, the desired result
follows.

In view of Corollary 7.2.8, to prove the case of (iii) and (iv), it suffices to
show that the field K(E,~) N L is a finite extension of K (). We obtain
this by the following lemma.

Lemma 7.2.24. Let E and E' be elliptic curves over K which have potential
good supersingular reduction. Consider the following conditions:

(FCM) E and E" have formal complex multiplication;

(NFCM) E and E" do not have formal complex multiplication.

Suppose (FCM) or (NFCM) holds. Assume further that E(L")[p*] is a finite
group for every finite extension L' of L. Then M := K(E,~) N L is a finite
extension of K(pp=).

Proof. We split the proof into two cases:

(Case 1) Assume that both E and E’ have formal complex multiplication.
The Lie algebra Lie(pg(Gk)) attached to E is 2-dimensional, by Proposition
7.2.11 (i). Thus Gal(K(Ep~)/K) is a 2-dimensional p-adic Lie group and
so Gal(K (Epe~)/K (fp)) is 1-dimensional. The same statements hold when
E is replaced by E’. Replacing K with a finite extension, we may assume
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that Gal(K (Epe)/K (f1p)) is isomorphic to Z,. If M is infinite over K (ppe),
then Gal(K (Epe)/M) is of infinite index in Gal(K (Epe)/K (pp=)). Since the
only closed subgroup of Z, of infinite index is the trivial subgroup, the group
Gal(K(E,e)/M) must be trivial, and thus K(E,~) = M. That is, K(E,~)
is contained in L. Hence, E(L)[p>] is infinite by Proposition 7.2.20. This
contradicts our hypothesis. Therefore, M is a finite extension of K (fy).

(Case 2) Suppose both E and E’ do not have formal complex multiplica-
tion. Put g = Lie(Gal(K(E,~)/K)) and b = Lie(Gal(K (Epe)/K (f1p=))).
Then g (resp. ) is isomorphic to gly(Q,) (resp. sl2(Q,)). In particular, b
is simple. The Lie algebra j = Lie(Gal(K(E,~)/M)) is an ideal of b since
Gal(K(Ey~)/M) is a normal subgroup of Gal(K (Ep~)/K (ty=)). Thus j is
either (0) or sl5(Q,). In the former case, Gal(K (E,~)/M) is a finite group
and thus K(E,~)/M is a finite extension. Replacing K with a finite ex-
tension, we have K(Ey,~) = M C L. But then this implies E(L)[p>] is
infinite, in contrast to our hypothesis. Thus j = sl5(Q,), which means that
Gal(K(Ey~)/M) is an open subgroup of Gal(K (Eps)/K (fip)). This com-
pletes the proof of the lemma and of Theorem 7.2.23. O

Theorem 7.2.19 gives another proof of some finiteness results in [0z09].
For instance, in view of Remark 7.2.5, condition (i) of Theorem 7.2.19 implies
a part of Proposition 3.2 in [0z09]. We also obtain the following corollary.

Corollary 7.2.25. Let E and E' be elliptic curves with potential good super-
singular reduction over K, L = K(E)«) and L' = K(Ey~). Put V = V,(E),
V' =V, ('), Jv = pe(GL) and Jyv = pp/(Gr/). Suppose (FCM) or (NFCM)
in Lemma 7.2.24 holds. Then the following statements are equivalent:

(1) V and V' are cohomologically coprime;

(2) LN L is a finite extension of K(fiye);

(3) V' has vanishing Jy-cohomology;

(3°) V' has vanishing Jy:-cohomology;

(4) E(L")[p*] is a finite group for any finite extension L" of L;

(4°) E'(L")[p™] is a finite group for any finite extension L” of L';

(5) The p-divisible groups E(p) and E'(p) attached to E and E', respectively,
are not isogenous over Ok for any finite extension K' of K.

Proof. 1t remains to prove the equivalence of each of the first six conditions
with the last one. Replacing K by a finite extension, we may assume that F
and E’ have good supersingular reduction over K. We prove the equivalence
(4) < (5). If E and E’ both do not have formal complex multiplication
then this equivalence is given by Proposition 7.2.22. Assume that £ and E’
both have formal complex multiplication. Let L” be a finite extension of L
such that E(L”)[p™] is infinite. Replacing K by a finite extension, we may
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assume that L = L”. Then Proposition 7.2.21 implies that F and E’ have the
same fields of formal complex multiplication, say JF. The representations pg :
Gx — GL(V,(E)) and pp : Gk — GL(V,(E")) factor through Gal(K**/K),
where K" denotes the maximal abelian extension of K. Moreover pgr and
pr both have values in O and their restrictions to the inertia subgroup are
respectively given by

pE|1, pElg : [(K*™/K) ~ Of — OF.

Here, I(K®/K) is the inertia subgroup of Gal(K®"/K), with the isomor-
phism [(K*/K) ~ Ogx coming from local class field theory. In fact, pgl|s,
and ppr|r, are equal since they are both given by the map = +— Nrg z(z™1),
where Nrg /7 : K* — F* is the norm map (cf. [Se89], Chap. IV, A.2.2). From
Proposition 7.2.11 (i), we know that pg(lx) (resp. pr(Ik)) is an open sub-
group of pr(Gk) (resp. pp(Gk)). This, together with the assumption that
E(L)[p>] is infinite implies that pp(Ix/) = pp(Gx') = pp/(Gr') = pr(Ik)
after a finite extension K’/K. We see that the Tate modules T,(E) and
T,(E") become isomorphic over K’. By a well-known result due to Tate (cf.
[Ta67], Corollary 1), the p-divisible groups £(p) and &'(p) are isogenous over
O . Conversely, if there exists a finite extension K’ over K such that £(p)
and &'(p) are isogenous over Ok then V,(E) and V,(E’) are isomorphic as
representations of G, showing that K'(Ey~) = K'(E,~) which is a finite
extension of L. Therefore we obtain a finite extension L” of L such that
E(L")[p™] is infinite. O

7.2.7 The case of multiplicative reduction

We now treat the case where E’ has potential multiplicative reduction over
K. For this case, the Lie algebra of Gal(K(E,)/K) is given by Proposition
7.2.11 (v). We have the following result.

Theorem 7.2.26. Let E and E' be elliptic curves over K such that E has
potential good reduction over K and E' has potential multiplicative reduction
over K. Put L = K(E)~). Then V = V,(E) has vanishing Jy-cohomology,
where Jy = pp(Gr).

Proof. Replace K with a finite extension so that F and E’ have good and
multiplicative reductions over K, respectively. We first note that the residue
field k;, of L is a potential prime-to-p extension of k since Lie(pp/(Gg)) =
Lie(pe/(Ix)). Thus, the case where E has good ordinary reduction is just a
consequence of Theorem 7.2.12. It remains to settle the case where F has
good supersingular reduction over K. If E has no formal complex multiplica-

tion, note that the Lie algebra b = Lie(Gal(K (Epe)/K (ppe))) >~ 5l2(Q,) is
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simple. On the other hand, the Lie algebra by = Lie(Gal(K(E) )/ K (p1p=)))
is a abelian. The result follows from Theorem 7.2.7. If E has formal com-
plex multiplication, then by virtue of Corollary 7.2.8, it suffices to prove
that M := L N K(Ey~) is a finite extension of K (ju,~). The Lie algebra
Lie(pp(Gk)) attached to E is 2-dimensional, by Proposition 7.2.11 (). Thus
Gal(K (Ep~)/K) is a 2-dimensional p-adic Lie group and so Gal(K (Epe) /K (ptpe))
is 1-dimensional. As in the proof for Case (1) of Lemma 7.2.24, if we assume
that M is of infinite degree over K (i), then the group Gal(K (Ey~)/M)
must be finite, and thus K (E,~) = M after a finite extension of K. That is,
K(Ey~) is contained in L. Thus we have a natural surjection Gal(L/K) —
Gal(K (E,~)/K) which induces a surjection of Lie algebras Lie(Gal(L/K)) —
Lie(Gal(K (Ep~)/K)). Since both Lie algebras are two-dimensional, the
above surjection of Lie algebras must be an isomorphism. In view of Propo-
sition 7.2.11 (i) and (v), we have a contradiction. Therefore, M is a finite
extension of K (fiye). O

Remark 7.2.27. Despite the above result, we cannot expect much about
the cohomological coprimality of V' = V,(E) and V' = V,(E’) if at least one
of £ and E’ has multiplicative reduction over K. For instance if £’ has split
multiplicative reduction, the theory of Tate curves shows that H°(Hy, V') is
non-trivial. On the other hand if £’ has non-split multiplicative reduction,
we are not certain if all the Jy -cohomology groups of V'’ vanish or not. (But
see Proposition 3.10 in [0z09] for conditions where H°(Jy, V') vanishes).

7.2.8 (-adic cohomologies

In this section we give the proof of Theorem 2.4. Let us recall the hypotheses
in the said theorem. Let ¢ and ¢’ be primes. Let X and X’ be proper smooth
varieties with potential good reduction over K and i and i’ be non-zero
integers. We consider the ¢-adic representation p, : Gx — GL(V;) where
Vi, = H. (X%, Q). We also consider the ¢'-adic representation p, : G —
GL(Vy), where Vji = Hi (X%, Qp).

Theorem 7.2.28. Let ¢ and V' be distinct primes. Assume the above condi-
tions. Then V; and V,, are cohomologically coprime.

Proof. We let J, = pg(GK(VZ/,)) and Jy = pj(Gk(v,)) We must show that V;
has vanishing J,-cohomology and Vj, has vanishing .J;-cohomology. We iden-
tify G, with the Galois group Gal(K (V;)/K) and J, with Gal(K (V,)/K (V)N
K(V})). As £ and ¢ are distinct, K (V;) N K(V},;) must be a finite extension
of K. Hence, J; is an open subgroup of G,. It follows from Lemma 7.2.3
that V; has vanishing J,-cohomology. Similarly, it can be shown that V,, has
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vanishing J;-cohomology. Therefore V;, and V, are cohomologically coprime
as claimed. O]

Remark 7.2.29. In the above situation if £ # p and X has potential good
reduction over K, then the field extension K (V}) contains the unique unram-
ified Zg-extension of K. Thus if ¢,¢ # p and ¢ = (', then after a suitable
extension of the base field K we may obtain K (V;) = K(V/). Hence, V; and
V/ are not cohomologically coprime (after a finite extension).

7.3 Proofs in the global setting

In the following discussion F' denotes an algebraic number field.

7.3.1 A preliminary lemma

Let S be a set of primes. Given a proper smooth variety X over F, we
consider the system of f-adic representations (p; : Gp — GL(V}))ses of G,
where V; = H,(X#,Qy), and the continuous representation ps = [,cq pr
as defined in Chapter 1. Recall from Lemma 5.4.3 that F(us) is a finite
extension of F'(V;) N F(pue) for each prime /.

Lemma 7.3.1. Let S be a set of primes and L be a Galois extension of F.
Assume that F(V,) N L is a finite extension of F or of F(Vy) N F(uee) for
each ¢ € S. Put Js = ps(Gp). Then Vs has vanishing Js-cohomology.

Proof. By Theorem 6.2.4, there exists a finite extension F’/F such that
(PG, )ees is an independent system. Let L' be the compositum of L and F”.
It is a Galois extension of F'. Thus, Lemma 6.3.1 implies that (p¢|q,, )ees is
an independent system. Let L” be the Galois closure of L'/L. This is of finite
degree over L. Put J¢ = ps(Gr»). Then J¢ is an open normal subgroup of
Js and applying Lemma 6.3.1 to the system (o¢|¢,,) with H = G, we have
Jg = I1ses pe(Grr). It suffices to show that Vg has vanishing Jg-cohomology.
Indeed if this is so, then the vanishing of Jg-cohomology follows by Corollary
3.1.5 from the isomorphism

H"(Js, V) ~ H"(Jg/Ju, Vs’'s), (7.4)

for r > 1. Thus Vg has vanishing Jg-cohomology if Vs has vanishing Jg-
cohomology. Now, as cohomology commutes with direct sums (Proposition
3.1.2) we have

HT(‘]gv VS) = @ Hr(‘]ga ‘/f)

lesS
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for » > 0. Thus, it is enough to show that the cohomology groups H"(J¢, V;)
vanish for each ¢ € S. For ¢ € S, let us write J; = p;(G~). We identify G, =
pe(Gr) (resp. Hy = po(Griue))) with the Galois group Gal(F(V;)/F) (resp.
Gal(F(Vy)/F(Ve)NF (e ))). Then we may identify J;' with Gal(F(Vz)/F(Vy)N
L"). As [F(V,))NL": F(V,)NL] <[L": L] < oo, our hypothesis implies that
Jj is an open subgroup of Gy or of H,. Thus V; has vanishing J;'-cohomology
by Theorem 3. Arguing using an isomorphism similar to (7.4) applied to the
extension 0 — J) — Jg — J¢/J; — 0, it follows that V;, has vanishing
J§-cohomology. ]

The above lemma allows us to obtain the S-adic version of Theorem 3:

Theorem 7.3.2. Let S be a set of primes. Write Gg = ps(Gr) and Hg =
ps(Grese). Then Vg has vanishing Gg-cohomology and vanishing Hg-cohomology.

Proof. The statements of the theorem follow from Lemma 7.3.1 applied to
L = F and L = F%° respectively. The hypothesis of the said lemma clearly
holds if L = F. If L = F%° the required hypothesis is true because of
Theorem 6.2.4, Lemma 5.4.3 and Lemma 6.3.4. O

Let S and S’ be sets of primes. Let X and X’ be proper smooth varieties
over F' and 4,7 be integers > 0. We put V;, = H. (X%, Q,) (resp. V,/ =
Hé;(X’f, Qy)) for £ € S (resp. £ € S'). We consider two systems of (-adic
representations associated to X and X' respectively:

(pe: Gp — GL(V2))ses

and
(pe : Gr = GL(V}))ees-

We also put ps = [[,cq pr and ply = [[,cq P, whose representation spaces
are respectively denoted by Vs and Vi,.

Theorem 7.3.3. If SNS" =0, then Vs and VY, are cohomologically coprime.

Proof. We show that Vg has vanishing Jg-cohomology, where Jg = ps(G F(Vé/))'
In view of Lemma 7.3.1, it suffices to show that M := F(V;) N F(V,) is a
finite extension of F' for each ¢ € S. We know from Theorem 6.2.4 that the
system (pj)pes is almost independent. If ¢ € S then the hypothesis and
Lemma 6.2.3 implies that the system (p},, pr)res obtained by adjoining py to
the system (pj)pres is almost independent. Replacing F' by a finite exten-
sion we may assume that this system is independent. Thus the fields F'(1})
and F'(V{,) are linearly disjoint over F after some finite extension showing
that M is a finite extension of F' in the first place. By Lemma 7.3.1, Vg has
vanishing Jg-cohomology. In a similar manner, we can show that V¢, has
vanishing Jg-cohomology, where Jg = pls/(Gpvsy))- O



62 CHAPTER 7. PROOFS

7.3.2 The proof of Theorem 2.5

We recall the statement of the Theorem under consideration.

Theorem 7.3.4. Let S and S’ be sets of primes. Let E and E' be elliptic
curves over F. B

(1) Assume that E and E' are not isogenous over F. Then Vs and V{, are
cohomologically coprime.

(ii) If SN S" =0, then Vs and VY, are cohomologically coprime.

For sets S and S’ of primes, we write F(Eg) (resp. F(E%«)) for the
compositum of all the F(Ey~) (resp. F'(E}~)) as ¢ runs over the elements of
S (resp. S’). We put Jg := pS(GF(E’S,oo)) and JG = ps(Gr(Ege))-

Proof of (i). To prove this, we must show that Vg has vanishing Jg-cohomology
and V{, has vanishing Jg,-cohomology. We prove the former. First, we ob-
serve that if S” is a subset of S” then Jg is a closed normal subgroup of
Ts = ps(Gr Eg/m)). We see that the vanishing of Jg-cohomology implies the
vanishing of [Jg-cohomology by using an isomorphism in the shape of (7.4)
given by the extension 0 — Jg — Js — Js/Js — 0. Thus, we may assume
that S” = A. We verify the hypothesis of Lemma 7.3.1 with L = F(F)\«);
that is, we show that M, := F(Es~) N L is a finite extension of F'(je) for
each ¢ € S. We let M = F(FE\~)NL. It is known that M is a finite extension

of F¢ (cf. [SeT2], Théoremes 6” and 7). We also let

Mg = F(Es) N L = F(Eg=) N M,
NS:F(ESoo)ﬂFCyC, and

Note further that M, = F(FEyx) N M = F(Ey~) N Mg for each £ € S. We
have the following diagram of fields.
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F(Ejye) L= F(E\.)
ESoo

F(Eéw \\ /
\ SN
MS Jreye

SN S

M, Ng
NS
Ny
\
F(pugeo)

The extension M,/N, is of finite degree since Gal(M;/Ny) is isomorphic to a
quotient of the finite group Gal(M/F¢). Moreover N, is a finite extension
of F(ue=) by Lemma 6.3.4. Thus the hypothesis of Lemma 7.3.1 holds.
Therefore Vg has vanishing Js-cohomology. Similarly, V¢, has vanishing J,-
cohomology. This completes the proof of (i). O

Proof of (i1). This is a special case of Theorem 7.3.3 but we give another
proof. If E and E’ are not isogenous over F', then this follows from (i).
Suppose that E and E’ are isogenous over F. Then they are isogenous over
some finite extension of F'. Let F’ be the Galois closure of this finite exten-
sion. Then the Isogeny Theorem (see Chapter 2) implies that V;, ~ V/ as
G p-modules for each ¢ € S’. We identify ps(Gp/) (resp. ps(Ggr)) with the
Galois group Gal(F'(Eg«)/F") (resp. Gal(F'(Ege<)/F")). As S and S are
disjoint, applying Remark 6.2.2-(3) to the system (p¢|a,.,, Pyl )eesees =
(pZ|GF/)€65’US’ shows that [F/(Egoo) N F/(ESIOO) : F/} S [F/(Esoo) N F/(ES/OO) :
F'] < oo for each ¢ € S. Therefore Vg has vanishing Js-cohomology
by Lemma 7.3.1, where Js = ps(Gr/(gy)). Then Vg has vanishing Jg-
cohomology by arguing using the isomorphism of the form (7.4) with the
extension 0 — Js — Js — Js/Js — 0. In the same manner, we see that
V¢, has vanishing Jg,-cohomology. This ends the proof of Theorem 2.5. [
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Appendix A

Tannakian formalism

Let I be a field and Vecg be the category of finite-dimensional vector spaces
over F.

Definition A.1. A neutral Tannakian category over a field F' is a rigid
abelian tensor category (C,®) such that F' = End(1) for which there exists
an exact faithful F-linear tensor functor w : C — Vecp.

Example A.2. Trivially, the category Vecy is a neutral Tannakian category.
If G is an affine group scheme over F', then the category Repy(G) of finite-
dimensional representations of G' over F'is a neutral Tannakian category.

The main theorem of Tannakian formalism implies that every neutral
Tannakian category is equivalent to the category of finite-dimensional repre-
sentations of an affine group scheme.

Let FF: C — C'"and G : C — C’ be tensor functors between two neutral
Tannakian categories C and C'. A morphism of tensor functors F — G is a
morphism A : F — G such that, for all families (X;);c; of objects in C, the
diagram

RicrF(Xi) —— F(®ie1 Xi)

N@Z.GI)\Xi ‘)\®ielxi

®ic1G(X;) —— G(®ier X;)

is commutative. An isomorphism of tensor functors is a morphism as above
with two-sided inverse that is again a morphism of tensor functors.

Proposition A.3. Let 7 : C — C" and G : C — (C’ be tensor functors
between two neutral Tannakian categories. Then every morphism of tensor
functors A : F — G is an isomorphism.
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Let G be an affine group scheme over F. For two tensor functors F :
Repr(G) — Vecr and G : Repp(G) — Vecr, we denote by Isom®(F,G)
the set of morphisms of tensor functors F — G. For an F-algebra R, there
is a canonical tensor functor ¢r : Vecpr — Modg, namely the extension
of scalar functor ¢r(V) = V ®p R. Here, Modg denotes the category of
finitely-generated modules over R.

We define Isom®(F, G) to be the functor of F-algebras such that

Isom®(F,G)(R) = Isom®(¢r o F, g 0 G).

For an F-algebra R, Isom®(F, G)(R) consists of the families (Ax) xeobjRepp(G))
where Ay : F(X)® R = G(X) ® R is R-linear such that

(1> Axiex, = Ax; @ Ax,

(2) )\]1 = idR, and

(3) for all G-equivariant maps a : X — Y, the diagram

Fla)®1
FX)@r R—— F(Y)®FrR

>\X BAY

G(X)or RV Gy o R

1s commutative.
When F = G, we use the notation

Aut®(F) := Isom®(F, F).

Let w : Repp(G) — Vecg be the forgetful functor. Every g € G(R)
defines an element of Aut®(w)(R). Indeed, for each object X of Repp(G),
we obtain a representation px : G — GL(X ®p R) by extension of scalars.
Then we see that the family (px(g))xeobjrepp(c)) belongs to Aut®(w)(R).

Proposition A.4 ([DMS82], Proposition 2.8). Let G be an affine group
scheme over F'. There is an isomorphism of functors of F-algebras G —
Aut®(w).

Proposition A.5 ([DM82], Proposition 2.20). Let G be an affine group
scheme over F'. Then G is algebraic if and only if Repp(G) has a tensor
generator X; that is, every object of Repy(G) is isomorphic to a subquotient
of P(X,X"), where P(t,s) is polynomial with coefficients in N.

Let K be a p-adic field and denote by Rep(G) the category of p-adic
representations of Gx. For an object p : Gx — GL(V) of Rep(Gk) with non-
zero dimension, we write G‘a}g for the Zariski closure of Gy = p(Gk). Let
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Rep(Gz{‘,lg) denote the category of finite-dimensional p-adic representation of
G¢. We also write Repy(Gg) for the smallest sub-category of Rep(Gg)
containing V.

Proposition A.6 ([Fo94], Proposition 1.2.3). The categories Rep(G&¢) and
Repy (G) are ®-equivalent.
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Appendix B
Lie Algebras

Let F' be a field of characteristic 0.

Definition B.1. A Lie algebra over a field F' is a vector space g over F
together with an F-bilinear map

[,]:gxg—g

(called the bracket) such that
(a) [x,z] =0 for all z € g,
(b) (Jacobi identity) [z, [y, z]] + [v, [z, z]] + [z, [, y]] = 0 for all z,y, z € g.

A homomorphism of Lie algebras is an F-linear map « : g — g’ such that

a([z,y]) = [a(z), a(y)] for all 2,y € g

A Lie subalgebra of a Lie algebra g is an F-subspace b such that [z,y] € b
whenever x,y € h. It becomes a Lie algebra with the bracket.

A Lie algebra g is said to be abelian if [x,y] = 0 for all x,y € g.

A subspace a of g is called an ideal if [z,a] € a for all z € g and a € a.

Example B.2. (1) The associative F-algebra Mat, (F) consisting of n x n
matrices with entries from F is a Lie algebra (denoted by gl,,) endowed with
the bracket

[A,B] = AB — BA A, B € Mat,,(F).

Let E;; denote the matrix with 1 in the ijth position and 0 elsewhere. These
matrices form a basis for gl,, and

[Eija Ei’,j’] = _Ei/j if 1 = j/
0 otherwise.
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The following subspaces are Lie subalgebras of gl :

sl, = {A € Mat, (F) : trace(A) = 0}
b, = {A = (a;;) € Mat,(F) : a;; = 0 if i > j}(upper triangular matrices)

(2) More generally, let V' be a vector space over F. From the associative
algebra Endp (V') of F-linear endomorphisms of V', we obtain the Lie algebra
gly of endomorphisms of V' with bracket

[, fl=aof—foa a, € Endp(V).

Similar to above, the endomorphism with trace 0 of a finite-dimensional
vector space V' form a Lie subalgebra sly of gl .

Representations of Lie algebras

Definition B.3. A representation of a Lie algebra g on an F-vector space
V' is a homomorphism p : g — gly.

The F-vector space V is often called a g-module and we write x - v for
p(x)(v). With this notation,

[zyl-v=2-(y-v)—y-(z-0v)
We say that the representation p is faithful if it is injective.

Example B.4. Let g be a Lie algebra. For a fixed x € g, the linear map
g — g defined by y — [z, y] is called the adjoint map of x, denoted by adg4(x)
or simply ad z. The representation ady : g — Endy defined by z — ad z is
called the adjoint representation of g.

Borel and Cartan subalgebras

Let g be a finite-dimensional Lie algebra over a field F' of characteristic 0. The
derived series (D™g)mez., of ideals of g is defined inductively by D'g = g,
and D™g = [D™'g, D™ 'g] for m > 1. A Lie algebra g is said to be solvable
if its derived series terminates in the zero subalgebra; that is, there exists an

integer m such that D™g = {0}.

Definition B.5. A Borel subalgebra b of a Lie algebra g is a maximal solvable
Lie subalgebra of g.

The descending central series (C™g)mez., of ideals of g is defined induc-
tively by C'g = g, and C™g = [g,C™ 'g] for m > 2. A Lie algebra g is
said to be mnilpotent if its descending central series terminates in the zero
subalgebra; that is, there exists an integer m such that C™g = {0}.
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Definition B.6. A Cartan subalgebra b of a Lie algebra g is a nilpotent Lie
subalgebra which is equal to its own normalizer.

Proposition B.7 ([Bo08-2], Ch.7, §2.1, Proposition 5). Let g be a Lie al-
gebra with center ¢ and § be a vector subspace of g. Then b is a Cartan
subalgebra of g if and only if h contains ¢ and h/¢ is a Cartan subalgebra of

g/c.

Definition B.8. A Lie algebra g over F is called semisimple if its only
abelian ideal is {0}. An element x of a semisimple Lie algebra g is said to be
semisimple if ad x is semisimple (that is, represented by a diagonal matrix
after extending the base field).

Proposition B.9 ([Bo08-2], Ch.7, §2.4, Theorem 2). Let g be a semisimple
Lie algebra over F' and h be a Cartan subalgebra of g. Then b is commutative,
and all its elements are semisimple in g.
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