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Abstract

We study a mathematical model of small double crystals, that is, two
connected regions in Rn+1 with prescribed volumes and with surface
tension depending on the direction of the each point of the surface. Each
double crystal is a critical point of the anisotropic surface energy which
is the integral of the surface tension over the surface. We derive the first
and the second variation formulas of the energy functional. For n = 1 and
a certain special energy density function, we classify the double crystals
in terms of symmetry and the given areas. Also, we prove that some of
the double crystals are unstable, that is they are not local minimizers of
the energy.

1 Introduction

There was a long-standing conjecture which was called the double bub-
ble conjecture. It says that the standard double bubble provides the
least-perimeter way to enclose and separate two given volumes, here the
standard double bubble is consisting of three spherical caps meeting along
a common circle at 120 degree angles. This conjecture had been believed
since about 1870, and was proved in 2002. The existence of the mini-
mizer was proved by F. J. Almgren ([1]) in 1976. (This paper proved,
more general case, minimizing surface enclosing k prescribed volumes in
Rn+1, using geometric measure theory.)In 1993, the double bubble con-
jecture was proved in the plane by Joel Foisy et al ([3]) advised by Frank
Morgan. For higher dimensional case, M. Hutchings ([4]) proved that any
minimizer is axially symmetric and he also obtained a bound of the num-
ber of connected components of the two regions of a minimizer. Using
these results, finally in 2002, the double bubble conjecture was proved
by M. Hutchings et al ([5]) in R3, and a student of Morgan extended it
to higher dimensions ([12]).

Double bubbles are a mathematical model of soap bubbles. The en-
ergy functional is the total area of the surface. On the other hand,
when we think about a mathematical model of anisotropic substance like
crystals, we need to consider the energy density function γ : Sn → R+

depending on the normal direction N of the surface, where Sn := {X ∈
Rn+1 | ∥X∥ = 1} is the n-dimensional unit sphere in Rn+1. γ is
called an anisotropic energy density function, and its sum (integral)

F =

∫
Σ

γ(N)dΣ over the surface Σ is called an anisotropic (surface)
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energy. The surface is a constant anisotropic mean curvature (CAMC)
surface if it is a critical point of the anisotropic energy for all volume
preserving variations. CAMC surfaces are a generalization of CMC (con-
stant mean curvature) surfaces.

In this paper, we extend the double bubble problem to a double crystal
(DC) problem, that is, we minimize the anisotropic energy instead of
the surface area. The solutions are a mathematical model of multiple
crystals.

There were some previous researches relating to the DC problem.
Gary R. Lawlor ([10]) determined the energy-minimizer for the case
where each energy density function γi (i = 0, 1, 2) is constant (we con-
sider three surfaces, so we need three kinds of energy density functions).
We remark that these γi are isotropic. His work also means that he gave
a new proof of the double bubble conjecture. For n = 1, for a norm γ in
R2, Frank Morgan et al. ([11]) studied the shapes of the minimizers of the
total anisotropic energy F of curves among curves enclosing prescribed
k areas. Especially, they determined the shapes of the all minimizers for
the case of γi(ν1, ν2) = |ν1|+ |ν2| (i = 0, 1, 2)((ν1, ν2) ∈ S1).

Recall that there is a unique hypersurface that minimizes F among all
closed hypersurfaces enclosing the same volume. This surface is known
as the Wulff shape. In this paper, we assume that the Wulff shape is
smooth. We will derive the first variation formula for the anisotropic
energy F (Theorem 3.1), and obtain the conditions for a surface Σ to be
a double crystal (Theorem 3.2). Also, we will obtain the second variation
formula for F (Theorem 3.3) and obtain the condition for a double crystal
to be stable. For n = 1, we will consider a special energy density function
γ := γ1 = γ2 = γ0 satisfying

γ(ν1, ν2) =
(
ν2p1 + ν2p2

)1− 1
2p /

√
ν4p−2
1 + ν4p−2

2 .

We classify the double crystals in terms of symmetry and the given areas.
Also, we prove that some of the double crystals are unstable, that is they
are not local minimizers of the energy.

We will explain our problem more precisely in §2. In §3.1 , we derive
the first and the second variation formulas of the anisotropic surface
energy. In §3.2, we study the DC problem in the plane.

In §4, we study the case where the Wulff shape is not necessarily
smooth. We try to generalize the research by Morgan et al. ([11]).
mentioned above to higher dimensional case. In R3, for a norm γ in
R3, under some additional assumptions, we prove that each minimizer
of the anisotropic energy F among surfaces enclosing prescribed k vol-
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umes consists of parts of rescalings of the Wulff shape and γ-minimizing
surfaces (§4.1). Also, again under some additional assumptions, we de-
termine the shapes of the minimizers for the case where k = 2 and
γ(ν1, ν2, ν3) = |ν1|+ |ν2|+ |ν3| ((ν1, ν2, ν3) ∈ S2).

2 Preliminaries

In this section, first we introduce some fundamental facts about CAMC
surfaces (for details, see [6]). Then, we formulate the DC problem.

Let γ : Sn → R+ be a positive smooth function on the unit sphere Sn

in Rn+1. We call this function γ an anisotropic energy density function.
Let Σ be an n-dimensional oriented compact C∞ manifold with or with-
out boundary. And let X : Σ → Rn+1 be an immersion with Gauss map
(unit normal) N : Σ → Sn be its Gauss map. The anisotropic energy of
X is defined as

F(X) =

∫
Σ

γ(N)dΣ,

where dΣ is the volume form on Σ induced by X. Any smooth variation
X̃ : Σ× [−ε0, ε0] → Rn+1 (ε0 > 0) of X can be represented as X̃(∗, ε) =
Xϵ = X+ϵ(Z+φN)+O(ϵ2), where Z is tangent to X. The first variation
of F for this variation is (cf. Proof of Proposition 3.1 in [6])

δF :=
d

ds

∣∣∣
ε=0

F(Xε)

=

∫
Σ

φ(divΣDγ − nHγ)dΣ +

∮
∂Σ

−φ⟨Dγ, ν⟩+ γ⟨Z, ν⟩ ds, (1)

where D is the gradient on Sn, H is the mean curvature of X, ν is the
outward pointing unit conormal of X along ∂Σ, and ds is the (n − 2)-
dimensional volume form of ∂Σ. Λ := −divΣDγ + nHγ is called the
anisotropic mean curvature of X. X is called a Constant Anisotropic
Mean Curvature (CAMC) hypersurface when Λ ≡ constant. We remark
thatX is CAMC if and only if δF = 0 for all compactly-supported (n+1)-
dimensional-volume-preserving variations. For γ ≡ 1, we get Λ = nH.
It means that CAMC surface is a generalization of CMC surface.

It is known that there is a unique (up to translation in Rn+1) min-
imizer of F among all closed hypersurfaces enclosing the same volume
([15]), and it is a rescaling of the so-called Wulff shape. The Wulff shape
(we denote it by W ) is a closed convex hypersurface defined by

W := ∂
∩

N∈Sn

{w ∈ Rn+1|⟨w,N⟩ ≤ γ(N)}
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When the W is smooth and strictly convex (that is, all principal curva-
tures are positive with respect to the inward normal. This condition is
equivalent to the condition that A := D2γ + γ · 1 is positive definite at
earh N ∈ Sn, where D2γ is the Hessian of γ on Sn, and 1 is the identity
map on TNS

n. This condition is called the convexity condition), W can
be parametrized as an embedding Φ : Sn → W ⊂ Rn:

Φ(N) = Dγ + γ(N)N.

The anisotropic mean curvature of W is n with respect to the inward
normal.

3 Double Crystals problem for smoothWulff

shapes

In this section, we assume that the convexity condition is satisfied.
For later use, we give a new representation of the 1st variation for-

mula:

Lemma 3.1. The first variation of F for the variation Xϵ = X + ϵY +
O(ϵ2) is

δF = −
∫
Σ

φΛ dΣ +

∮
∂Σ

⟨Φ,−φν + fN⟩ ds,

where φ := ⟨Y,N⟩ and f := ⟨Y, ν⟩.

Proof. We compute the integrand of the second term of (1).

−φ⟨Dγ, ν⟩+ γ⟨Z, ν⟩ = ⟨−φ(Dγ + γN), ν⟩+ γf

= ⟨Φ,−φν⟩+ ⟨Dγ + γN,N⟩f
= ⟨Φ,−φν + fN⟩.

If n = 1, curves with constant anisotropic mean curvature are com-
pletely determined as follows:

Lemma 3.2. Let n = 1 and X : R ⊃ I → R2 be a curve parametrized
by arc-length. Then,

Λ = κ/κW ,

where Λ is the anisotropic mean curvature of X, κ is the curvature of X,
and κW is the curvature of the Wulff shape W .
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Proof. We denote by θ a point eiθ in S1. Then, the Wulff shape W is
represented by an embedding Φ : S1 → R2 defined as

Φ(θ) = γθ(θ)(− sin θ, cos θ) + γ(θ)(cos θ, sin θ).

Set X(s) = (x(s), y(s)). Then, the Gauss map N of X is

N(s) = (−y′(s), x′(s)) =: (cos θ(s), sin θ(s)).

Hence, the anisotropic mean curvature Λ of X is

Λ(s) = −γθs − κγ = −γθθθs − κγ = −κ(γθθ + γ). (2)

On the other hand,

dΦ

dθ
= (γθθ + γ)(− sin θ, cos θ),

d2Φ

dθ2
= (γθθθ + γθ)(− sin θ, cos θ)− (γθθ + γ)(cos θ, sin θ).

Hence, by elementary calculations, the curvature κW of W with respect
to the outward pointing unit normal is

κW =
−1

γθθ + γ
. (3)

(2) with (3) gives the desired formula.

Proposition 3.1. If the anisotropic mean curvature Λ of a curve X is
constant, then either

1. X is (a part of) a straight line (when Λ = 0), or

2. X is a part of the Wulff shape up to translation and homothety
(when Λ ̸= 0).

Proof. By Lemma 3.2, the curvatureof X is κ = ΛκW . Hence, by the
fundamental theorem for plane curves, we obtain the desired result.

Remark 3.1. For n ≥ 2, we have great many varieties of CAMC hypersur-
faces. For example, [8, §5] gives two parameter family of axisymmetric
CAMC surfaces.
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Let us explain our problem more precisely. Let Σ1,Σ2,Σ0 be three
piecewise smooth oriented connected compact hypersurfaces inRn+1 with
common boundary C such that Σ1∪Σ0 (resp. Σ2∪Σ0) encloses a region
R1 (resp. R2) with prescribed volume V1 (resp. V2), and let γi be energy
density functions on Σi. We study the following anisotropic energy of
the surface Σ := Σ1 ∪ Σ2 ∪ Σ0 :

F(Σ) :=
2∑

i=0

∫
Σi

γi(Ni)dΣi, (4)

where Ni : Σi → Sn is the unit normal vector field along Σi (we refer to
Figure 1 about the directions of Ni) and dΣi is the n-dimensional volume
form on Σi. The volumes Vi of the region Ri is given by

Figure 1: An admissible surface Σ in R3. The red curve C is the common
boundary of Σ1, Σ2 and Σ0.We always assume that Σ0 is in the middle.

V1 =
1

n+ 1

{∫
Σ1

⟨x1, N1⟩dΣ1 +

∫
Σ0

⟨x0, N0⟩dΣ0

}
,

V2 =
1

n+ 1

{∫
Σ2

⟨x2, N2⟩dΣ2 −
∫
Σ0

⟨x0, N0⟩dΣ0

}
.

Our problem is to study the minimizers of F among Σ’s such that
R1, R2 have prescribed volumes V1, V2, respectively.

3.1 Variation formulas

Throughout this section, Σ = Σ1 ∪ Σ2 ∪ Σ0 is such the union of smooth
hypersurfaces Σ0, Σ1, and Σ2 with common boundary C as in the last
part of §2. We derive the first variation formula for the functional F
defined by (4), and obtain the conditions for critical points.
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Let X̃ : Σ × [−ε0, ε0] → Rn+1 (ε0 > 0) be a variation of X : Σ →
Rn+1. X̃ is called an admissible variation if the two volumes V1, V2 are
preserved. Such X̃ can be represented as X̃(x, ε) = Xε = X + εY +
O(ε2), and Y is called an admissible variation vector field of X. If Y is
admissible, then

δV1 :=
d

dε

∣∣∣∣
ε=0

V1(Xε) =

∫
Σ1

⟨Y,N1⟩dΣ1 +

∫
Σ0

⟨Y,N0⟩dΣ0 = 0, (5)

δV2 :=
d

dε

∣∣∣∣
ε=0

V2(Xε) =

∫
Σ2

⟨Y,N2⟩dΣ2 −
∫
Σ0

⟨Y,N0⟩dΣ0 = 0. (6)

hold. By a suitable reparametrization of X̃, we may assume that, at each
point on C, Y is orthogonal to the ((n − 1)-dimensional) tangent space
of C. Then, the boundary condition implies the following:

Y = ⟨Y,N1⟩N1+⟨Y, ν1⟩ν1 = ⟨Y,N2⟩N2+⟨Y, ν2⟩ν2 = ⟨Y,N0⟩N0+⟨Y, ν0⟩ν0
(7)

hold on C, where νi is the outward pointing conormal vector for Σi along
C.

Lemma 3.3. Let φi, fi : Σi → R be smooth functions on Σi satisfying

(i)

∫
Σ1

φ1 dΣ1 +

∫
Σ0

φ0 dΣ0 = 0,

∫
Σ2

φ2 dΣ2 −
∫
Σ0

φ0 dΣ0 = 0, and

(ii) φ1N1 + f1ν1 = φ2N2 + f1ν2 = φ0N0 + f0ν0 on C.
Then there exists an admissible variation such that the normal (resp.
conormal to C) component of the variation vector field Y are φiNi (resp.
fiνi).

Proof. We give functions hi : Σi → R (i = 1, 2) such that
∫
Σi
hidΣi ̸= 0

holds and each hi has compact support on the interior of Σi. And we
extend each function hi to 0 on Σ \ Σi. On the other hand, set

Y := φiNi + fiνi on Σi, i = 0, 1, 2.

Then, Y gives a variation vector field of Σ. Set

X(s, t1, t2) := X + sY + t1h1N1 + t2h2N2,

Vi(s, t1, t2) := Vi(X(s, t1, t2)), i = 1, 2.

Set V 0
1 := V1(0, 0, 0), V

0
2 := V2(0, 0, 0). Consider the following simulta-

neous equations.

V1(s, t1, t2) = V 0
1 , V2(s, t1, t2) = V 0

2 .
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Differentiate V1, V2 at (s, t1, t2) = (0, 0, 0) to obtain

∂V1
∂s

(0, 0, 0) =

∫
Σ1

φ1dΣ1 +

∫
Σ0

φ0dΣ0 = 0,

∂V2
∂s

(0, 0, 0) =

∫
Σ2

φ2dΣ2 −
∫
Σ0

φ0dΣ0 = 0,

∂Vi
∂tj

(0, 0, 0) = δij

∫
Σi

hj dΣi

{
̸= 0, i = j,
= 0, i ̸= j.

Therefore, by the implicit function theorem, in there exist a neighborhood
I of s = 0 and smooth functions t1 = t1(s), t2 = t2(s) such that t1(0) = 0,
t2(0) = 0, Ṽ1(s) := V1(s, t1(s), t2(s)) = V 0

1 , Ṽ2(s) := V1(s, t1(s), t2(s)) =
V 0
2 (s ∈ I). Then,

0 = Ṽi
′
(s) = (Vi)s + (Vi)t1t

′
1(s) + (Vi)t2t

′
2(s), (i = 1, 2)

holds. Hence,

t′1(0) = −(V1)s(0, 0, 0) + (V1)t2(0, 0, 0)t
′
2(0)

(V1)t1(0, 0, 0)
= 0,

t′2(0) = −(V2)s(0, 0, 0) + (V2)t1(0, 0, 0)t
′
1(0)

(V2)t2(0, 0, 0)
= 0.

Consequently,

X(s, t1(s), t2(s)) = X + sY + t1(s)h1N1 + t2(s)h2N2 = X + sY +O(s2)

is an admissible variation of Σ, and so we obtain the desired result.

Using Lemma 3.1, we immediately obtain the following:

Theorem 3.1 (First variation formula). For a variation Xϵ = X + ϵY +
O(ϵ2) of Σ, the first variation of the anisotropic energy F is

δF :=
d

dε

∣∣∣∣
ε=0

F(Xε)

=
2∑

i=0

[
−
∫
Σi

φiΛi dΣi + (−1)i
∮
C

⟨Φi,−φiνi + fiNi⟩ dC

]
, (8)

where Φi = Dγi + γiNi, φi = ⟨Y,Ni⟩, fi = ⟨Y, νi⟩ on C, and the orienta-
tion of C is chosen so that it is the positive orientation for Σ1.

9



Definition 3.1. Each critical point of F for all admissible variations is
called a double crystal.

Theorem 3.2. A hypersurface Σ is a double crystal if and only if there
hold:

(i) For i = 0, 1, 2, the anisotropic mean curvature Λi is constant, and
−Λ1 + Λ2 + Λ0 = 0 holds, and

(ii) at each point ζ on C, Φ0 − Φ1 + Φ2 is in the (n − 2)-dimensional
linear subspace determined by the tangent space TζC of C at ζ.

Corollary 3.1. Assume γi ≡ 1, i = 0, 1, 2. Then, Σ is a double bubble
if and only if

(i) For i = 0, 1, 2, the mean curvature Hi is constant, and −H1+H2+
H0 = 0 holds, and

(ii) at each point on C, N0 −N1 +N2 = 0.

Proof of Theorem 3.2. Assume that Σ = Σ0∪Σ1∪Σ2 is a double crystal.
Then, Σ1 is a critical point of F for all admissible variations that fix
Σ = Σ0 ∪ Σ2. Hence, Λ1 is constant. Similarly, Λ2 is constant. Now
consider any variation Σ0(ϵ) of Σ0 that fixes ∂Σ0. Then, the variation
vector field of Σ0(ϵ) can be extended to an admissible variation vector
field of Σ. In fact, Σ0(ϵ) can be represented as

Xϵ = X + ϵφ0N0 +O(ϵ2),

where φ0 = 0 on C. It is obvious that we can find functions φ1, φ2,
f1 = 0, and f2 = 0 satisfying (i) and (ii) in Lemma 3.3. So, by Lemma
3.3, there exists an admissible variation of Σ whose variation vector field
is an extension of Y0 := φ0N0. We obtain, using Theorem 3.1, (5), and
(6),

0 = δF = δF + Λ1δV1 + Λ2δV2 =

∫
Σ0

(Λ1 − Λ2 − Λ0)⟨Y0, N0⟩ dΣ0.

Hence, Λ1 − Λ2 − Λ0 = 0 holds, which proves the condition 1. Now,
assume that the condition 2 does not hold. Then, there exists a non-
empty open set U of C such that (Φ0−Φ1+Φ2)(ζ) /∈ TζC for any ζ ∈ U .
Then, we can define a non-zero vector field Ỹ on C with support in U
such that Ỹ is orthogonal to C at any ζ ∈ U and∮

C

⟨Σ2
i=0(−1)iΦi, Ỹ ⟩ dC ̸= 0
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holds. Clearly, Ỹ can be represented as

Ỹ = −φiνi + fiNi, i = 0, 1, 2,

and Y := φiNi + fiνi can be extended to an admissible variation vector
field along Σ. Here we used Lemma 3.3 again as above. We obtain

0 = δF = δF + Λ1δV1 + Λ2δV2 =

∮
C

⟨Σ2
i=0(−1)iΦi, Ỹ ⟩ dC ̸= 0,

which is a contradiction.
Conversly, assume that the conditions 1 and 2 hold. Then, again by

using Theorem 3.1, (5), and (6), for any admissible variation, we have

δF = δF + Λ1δV1 + Λ2δV2 = 0.

Hence, the hypersurface is a double crystal. □

Definition 3.2. A double crystal Σ is said to be stable if the second
variation δ2F is nonnegative for all admissible variations, and otherwise
it is said to be unstable.

Theorem 3.3 (Second variation formula). Let Σ = Σ1 ∪ Σ2 ∪ Σ0 be a
double crystal. Then for any admissible variational vector field Y , the
second variation of the anisotropic energy F is given by

δ2F =
2∑

i=0

[
−
∫
Σi

φiL[φi]dΣi+(−1)i
∮
C

φi⟨Ai∇φi−fiAidNi(νi), νi⟩dC

]
,

(9)
where L is the self-adjoint Jacobi operator

L[φi] := div(Ai∇φi) + ⟨AidNi, dNi⟩φi,

Ai := D2γi + γi · 1, φi = ⟨Y,Ni⟩, and fi = ⟨Y, νi⟩ on C.

Proof. The first variation formula (Theorem 3.1) gives

δF :=
d

dε

∣∣∣∣
ε=0

F(Xε) =
2∑

i=0

[
−
∫
Σi

φiΛi dΣi + (−1)i
∮
C

⟨Φi, Ỹ ⟩ dC

]
,

where Ỹ = −φiνi + fiNi. Hence, any volume-preserving variation, at a
double crystal Σ, we obtain

δ2F = δ(δF+Λ1δV1+Λ2δV2) =
2∑

i=0

[
−
∫
Σi

φiδΛi dΣi+(−1)i
∮
C

⟨δΦi, Ỹ ⟩ dC

]
.
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Note that δΛi = L[φi] holds (cf. [6]). Also, we compute, on C,

⟨δΦi,−φiνi + fiNi⟩ = −φi⟨δΦi, νi⟩ = −φi⟨Ai(−∇φi + dNi(fiνi)), νi⟩
= −φi⟨−Ai∇φi + fiAidNi(νi), νi⟩. (10)

3.2 Double crystals in the plane

In this section, we assume n = 1 and apply the above discussion to a
certain special energy density function on S1. The Wulff shape corre-
sponding to this energy density function is a smooth square (see Figure.
2). We will discuss the critical points (i.e. double crystals) and their
stability.

From Proposition 3.1 and Theorem 3.2, we immediately obtain the
following:

Theorem 3.4. For n = 1, Σ = Σ0 ∪ Σ1 ∪ Σ2 is a double crystal if and
only if there hold:

(i) Each Σi is, up to translation, a part of a rescaling of the Wulff
shape corresponding to γi.

(ii) Φ0 − Φ1 +Φ2 = 0 on the common boundary C (C is a set of two
points).

From now on, if we do not say anything special, we assume that the
energy density functions γi : S1(⊂ R) → R are the following special
ones.

γ(ν1, ν2) := γ(p)(ν1, ν2) := γi(ν1, ν2)

=
(
ν2p1 + ν2p2

)1− 1
2p /

√
ν4p−2
1 + ν4p−2

2 , i = 0, 1, 2, (11)

where p is any fixed positive integer. Then the Wulff shape is given by

Φ(θ) := (cos2p θ + sin2p θ)−
1
2p (cos θ, sin θ).

3.2.1 Classifications of double crystals for a special energy
density function

From now on, without loss of generality, we assume V1 ≤ V2. If Λi ̸= 0,
from (i) in Theorem 3.4, Σi is represented by

X1(θ) = − 1

Λ1

(cos2p θ + sin2p θ)−
1
2p (cos θ, sin θ) + (a1, b1), α1 ≤ θ ≤ β1,

(12)
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Figure 2: The Wulff shapes W(p) for the energy density γ(p) in (11). W(1)

is a circle. When p approaches infinity, W(p) converges to a cube.

X2(θ) = − 1

Λ2

(cos2p θ + sin2p θ)−
1
2p (cos θ, sin θ) + (a2, b2), β2 ≤ θ ≤ α2,

(13)

X0(θ) = − 1

Λ0

(cos2p θ + sin2p θ)−
1
2p (cos θ, sin θ) + (a0, b0), β0 ≤ θ ≤ α0,

(14)
where α0, α1, α2 correspond to one of the two points in the common
boundary C, and β0, β1, β2 correspond to the other point in C. By the
second condition in Theorem 3.4, we have{

f(θ0) cos θ0 − f(θ1) cos θ1 + f(θ2) cos θ2 = 0,
f(θ0) sin θ0 − f(θ1) sin θ1 + f(θ2) sin θ2 = 0,

(θi = αi, βi), (15)

where f(θ) = (cos2p θ + sin2p θ)−
1
2p .

We can prove the following results about geometry of the double crys-
tals.

Lemma 3.4. There are uniquely determined functions φ, ψ : S1 → R
such that θ2 = φ(θ1) and θ0 = ψ(θ1) satisfy (15).

Proof. We will prove that for fixed Φ(θ1) there are uniquely determined
Φ(θ2) and Φ(θ0) satisfying (15). Since we assumed V1 ≤ V2, there are
relationships between each Φ(θi) shown in Figure 3 (θi = αi, βi). We
remark that Φ(θ2) and Φ(θ0) trade places with each other depending on
αi and βi.

First we fix Φ(α1). Let z-axis be an axis pointing the same direction
of Φ(α1) (Figure 4 (a)), and let w-axis be an axis orthogonal to the z-axis
and passing through center point o of the Wulff shape W . In addition,
let l be a line parallel to the w-axis and passing through Φ(α1) (Figure
4 (a)).

We remark that the z-coordinate of Φ(α2) is smaller than that of
Φ(α1). Otherwise, the condition (15) implies that Φ(α0) /∈ W . On the
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Figure 3: The relationship between each Φ(αi) and Φ(βi).

Figure 4:

other hand, by relationship among Φ(α0), Φ(α1) and Φ(α2) (Figure 3)
can only move in {w ≥ 0}. This means that the movable range of Φ(α2)
in W is represented as a graph, say w = f(z). Therefore, there are
exactly two points z1, z2 in the z-axis and one point w0 in the w-axis
such that w0 = f(z1) = f(z2) and |Φ(α1)| = |z1 − z2| (Figure 4 (b)).
Denote (z1, w0) by u, and (z2, w0) by v (Figure 4 (b)). The vector Φ(α1)
coincides with vector u − v. Set Φ(α2) := u and Φ(α0) := −v, then we
obtain the desired result. Similarly, we can prove the statement about
Φ(βi).

Lemma 3.5. For double crystals, we have the following results about
the relationship between αi and βi.

(I) If α1+β1 = 2n1π (n1 ∈ Z), then αi+βi = 2niπ, (ni ∈ Z, i = 0, 2).

14



(II) If α1 + β1 = (2n1 + 1/2)π (n1 ∈ Z), then αi + βi = (2ni + 1/2)π,
(ni ∈ Z, i = 0, 2).

(III) If α1 + β1 = (2n1 + 1)π (n1 ∈ Z), then αi + βi = (2ni + 1)π,
(ni ∈ Z, i = 0, 2).

(IV) If α1 + β1 = (2n1 +3/2)π (n1 ∈ Z), then αi + βi = (2ni +3/2)π,
(ni ∈ Z, i = 0, 2).

(V) If β1 = α1 + π, then β0 = α2 − π and β2 = α0 − π.

Proof. By (15),

Φ(α1) = Φ(α0) + Φ2(α2), Φ(β1) = Φ(β0) + Φ(β2). (16)

For (I)-(IV), by the proof of Lemma 3.4, we obtain the desired result.
For (V), by the assumption of (V), Φ(α1) = −Φ(β1). In addition, by
(16),

Φ(α0) + Φ(α2) = Φ(α1) = −Φ(β1) = −Φ(β0)− Φ(β2).

By the proof of Lemma 3.4, we obtain Φ(α0) = −Φ(β2) and Φ(α2) =
−Φ(β0).

Lemma 3.5 gives the following result about about symmetry of double
crystals:

Theorem 3.5. About the five types of the double crystals in Lemma
3.5, we have the following three types of symmetry (up to translation
and homothety) (see Figure 5).

Type 1 Symmetry with respect to either a horizontal line or a vertical
line.

Type 2 Symmetry with respect to the ±π/4 rotation of the horizontal
line.

Type 3 Rotational symmetry with respect to the center point of the
smallest cube. In this case, the two bigger Wulff shapes are double
size of the smallest one.

Actually, double crystals of Type (I) and (III) have Type 1 symmetry,
double crystals of Type (II) and (IV) have Type 2 symmetry, and double
crystals of Type (V) have Type 3 symmetry.

Remark 3.2. In Type 1 and 2, ρ can be any number bigger than or equal
to 1. On the other hand, in Type 3, ρ can take numbers in the interval
[3, 8]. In fact, in Type 3, two bigger Wulff shapes (black and red shape
in Figure 5) are double size of the smallest one (blue shape in Figure 5).
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Figure 5: These figures show the three types in Theorem3.5 according to
ρ = V2/V1.

Figure 6:

3.2.2 Stability for special energy density function

In this subsection we discuss the stability of the three types of double
crystals appeared in Theorem 3.5.

First we give a result about instability of some double crystals which
was essentialy proved in [11].

Lemma 3.6. Set γ∞(ν1, ν2) = |ν1| + |ν2| (ν1, ν2) ∈ S1, and consider an

anisotropic surface energy F(X) =

∫
Σ

γ∞(N) dΣ. Consider the three

types of shapes in Figure 6. Then we can decrease anisotropic the energy
of these shapes without changing the enclosed areas.

Proof. Note that the anisotropic energy of a horizontal or vertical edge

16



Figure 7: Unstable examples corresponding to Figure 6

Figure 8: The anisotropic energy of (a)-1 is decreased without changing
the enclosed area when it is changed like (a)-2.

is equal to its length, and the anisotropic energy of a diagonal edge is
equal to

√
2 times its length. Figures 8 - 11 show how the anisotropic

energy is decreased without changing the enclosed area.

Let us think about the stability of the double crystals for our energy
γ = γ(p) defined in (11). Define two angles ζ and η so that

f(ζ) cos(ζ) =
1

2
, f(η) sin

(
η +

π

4

)
= 2

−1−p
2p

holds.
Recall that the Wulff shape W(p) for the energy density γ(p) in (11)

converges to the Wulff shape for γ∞ when p approaches infinity (Figure
2). By Lemma 3.6 and an approximation procedure (Figure 7), we can
show the following:

Proposition 3.2. For sufficiently large p, we have the following result
about the instability of double crystals. Double crystals of type1 in Theo-
rem 3.5 are unstable if π

4
< α0 < ζ. Double crystals of type2 are unstable

if π
4
≤ α0 <

π
2
− η.

We apply Theorem 3.3 (second variation formula) to the 2-dimensional
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Figure 9: The anisotropic energy of (b)-1 is decreased without changing
the enclosed area when it is changed like (b)-2.

Figure 10: The anisotropic energy of (c)-1 is decreased without changing
the enclosed area when it is changed like (c)-2.

case. For admissible variation vector field Y , We obtain

δ2F = −
2∑

i=0

∫
Σi

qiL[qi] dΣi + [Λipiqi − Ai(qi)tqi]
b
a , (17)

where pi = ⟨Y, vi⟩ and qi = ⟨Y,Ni⟩. We expect that we will be able to
prove the following conjecture by using (17).

Conjecture 3.1. Except the cases in Proposition 3.2, double crystals of
types 1-3 are stable.

Let the Wulff shape be a square. Then the energy minimizing shape
is one of the three types in Figure 12 according to ρ = V2/V1.

We expect that, by using the variational method, we will be able to
obtain not only the absolute minimum but also local minimums. It is
important to get local minimums because the physical state sometimes
takes a local minimum.

18



Figure 11: Angle ξ and η.

Figure 12: The right side figure is ρ ≤ 2 and both R1 and R2 are rect-
angular. The ratio of middle figure is 2 ≤ ρ ≤ ρ0 := 43+30

√
2

16
and R1 is

square and R2 is rectangular (this ratio of edge length is 1 : 2). The
ratio of left side figure ρ ≤ ρ0, and both R1 and R2 are squares.

4 Double crystals problem for general Wulff

shapes

In §3, we assumed that the Wulff shape is smooth and strictly convex.
However, in general, the Wulff shape is not necessarily smooth. In this
section, we discuss double crystals problem that for general Wulff shapes.
We try to generalize the research by F. Morgan et al. ([11])

4.1 γ-minimizing surfaces

Let W be the Wulff shape for an energy density function γ : S2 → R+.
We extend γ to a function γ̃ : R3 → R on R3 as follows:{

γ̃(0) = 0 x = 0
γ̃(x) = |x| · γ( x

|x|) x ̸= 0
.

We assume that γ̃ satisfies

γ̃(u+ v) ≤ γ̃(u) + γ̃(v) (∀u, v ∈ R3),

that is, γ̃ is a norm.
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Definition 4.1. Let Γ be a piecewise smooth simple closed plane curve in
R3. Denote by S(Γ) the set of all compact connected oriented piecewise
smooth surfaces in R3 bounded by Γ. Σ0 ∈ S(Γ) is called a γ-minimizing
surface if F(Σ0) = min{F(Σ) | Σ ∈ S(Γ)}.

For a plane H in R3. Denote by H+, H− the two closed half spaces
bounded by H. For subset A ⊂ R3, H is the support plane of A at x ∈ A
if x ∈ A ∩H, and either A ⊆ H+ or A ⊆ H− is satisfied.

Definition 4.2. All vectors that are normal to the supporting plane at
w ∈ W are called exterior normal vectors at w.

Figure 13: For the Wulff shape is a cube, we draw exterior normal vectors
(red vector). And this movable range is a part of a sphere.

Remark 4.1. If the Wulff shape W is of C1, for any w ∈ W , the exterior
normal vector at w is unique. If W is piecewise smooth and convex, for
the point that is not smooth, the exterior normal vector is not unique
(Figure 13).

It is easy to prove the following:

Lemma 4.1. Let w be a point on the Wulff shape W . Then, ⟨w, ν⟩ =
γ(ν) if and only if ν is an exterior normal vector to W at w.
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γ(ν)ν 

ν

Figure 14: Wulff shape and frank shape

Proposition 4.1. Let Γ be a piecewise smooth simple closed plane curve
in R3. Let Π(Γ) be a plane including Γ, and let w be a point on the
Wulff shape W such that the normal vector of Π(Γ) is one of the exterior
normal vectors at w. Then oriented surface X ∈ S(Γ) is a γ-minimizing
surface if and only if all normal vectors of X are exterior normal vectors
to W at w.

Remark 4.2. If the Wulff shape is of C1, then all γ-minimizing surfaces
are planer.

Proof.

F(X) =

∫
Σ

γ(ν)dΣ ≥
∫
Σ

⟨w, ν⟩dΣ.

By Lemma4.1, the equality holds if and only if ν is an exterior normal
vector to W at w.

Proposition 4.2. Let V > 0 and let Γ be a piecewise smooth simple plane
curve in R3. We assume that Γ is the curve of a section of a rescaling
of the Wulff shape W cut by a plane or Γ consists of line segments each
of which is parallel to an edge of W . Let Σ ∈ S(Γ) such that Σ and Γ
enclose volume V . Σ is either a γ-minimizing surface or a rescaling of
W .
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Figure 15: The left figure is the Wulff shape W . The right figure is a γ-
minimizing surface whose boundary is consists of the three red segments.
All normal vectors of this shape include exterior normal vectors at a point
of W .

Proof. We suppose that Π(Γ) is a plane including Γ, and w is a point on
W such that the normal vector of Π(Γ) is one of the vector into exterior
normal vectors at w. If W is of C1 at w, there is a portion of a scaling
of W enclosing volume V . If W is not of C1 at w, let V0 be volume
of the smaller side of W cut by Π(Γ). If V ≥ V0, there is a portion of
some scaling of W enclosing V . If V < V0, by Proposition 4.1 there is
γ-minimizing surface enclosing V .

4.2 Existence of Wulff cluster

Theorem 4.1. Let γ be an anisotropic energy density function satisfying
γ(ν) = γ(−ν). Given the following prescribed volumes V1, V2, . . . , Vm >
0, let Ω be the set of all S =

∪N
i=1 Si (N can be any integer greater than

m) satisfying the following (i)-(iii).

(i) S1, . . . SN are oriented compact connected piecewise smooth sur-
faces with or without boundary.

(ii) If ∂Si ̸= ø, then either ∂Si is the boundary of a rescaling of a
section of W cut by a plane, or ∂Si consists of a finitely many line
segments each of which is parallel to an edge of W .

(iii) S =
∪N

i=1 Si dividesR
3 into (m+1) connected regionsR0, R1, . . . , Rm,
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where R0 is unbounded and each Ri is bounded and has volume Vi
(i = 1, . . . ,m).

We assume that there is S ∈ Ω such that S minimizes the anisotropic
energy in Ω. Then each Si is either a γ-minimizing surface for ∂Si or a
portion a rescaling of the Wulff shape for γ.

Remark 4.3. me

1. Each γ-minimizing surface can be replaced by a finite number of
plane regions that are parallel to the surfaces of the Wulff shape
without changing the energy. Then, the boundary curve also can
be replaced by line segments each of which is parallel to an edge of
the Wulff shape without changing the energy.

2. When S ∈ Ω minimizes the anisotropic energy in Ω, we call S
γ-minimizing cluster.

Proof. Let D0 be a closed domain in R2, and Let f : D0 → R3 be
a piecewise smooth surface, where f(D0) does not have selfintersection
and minimizes the surface energy. Let D ⊆ D0 (∂D ̸= ϕ). We suppose
that f0 := f |D is neither a γ-minimizing surface for ∂Si nor any portion
of the boundary of any rescaling of W . By Proposition 4.2, there is a
piecewise smooth surface f1 : D → R3 such that f1(D) does not have
selfintersection, f1(∂D) = f0(∂D), Vol(f1(D))=Vol(f0(D)), and f1(D) is
either a γ-minimizing surface for ∂Si or a portion of a rescaling of W .
We consider ft := (1− t)f0 + tf1 (t ∈ [0, 1]), then ft satisfies for small t,

ft(∂D) = f1(∂D) = f0(∂D),

Vol(ft(D)) = Vol(f1(D)) = Vol(f0(D)),

F(ft(D)) < F(f0(D)). (18)

We will prove that there is small t such that ft : D → R3 is an injection.
Let p1, p2 ∈ D and p1 ̸= p2. First claim that there is δ > 0 such that

|f1(p1)− f1(p2)| ≥ δ|p1 − p2|. (19)

If f1(D) is a γ-minimizing surface, then f1 is a graph. We denote by
(p, φ(p)) f1(D), then

|f1(p1)− f1(p2)| = |(p1, φ(p1))− (p2, φ(p2))

=
√
|p1 − p2|2 + |φ1(p1)− φ2(p2)|2.
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Hence, (
|f1(p1)− f1(p2)|

|p1 − p2|

)2

= 1 +
(φ1(p1)− φ2(p2))

2

(p1 − p2)2
≥ 1.

If f1(D) is a portion of a rescaling of W , then since W is convex, we
obtain the desired result.

On the other hand,

|ft(p1)− ft(p2)| = |(1− t)f0(p1) + tf1(p1)− (1− t)f0(p2)− tf1(p2)|
= |(1− t){f0(p1)− f0(p2)}+ t{f1(p1)− f1(p2)}|
≥ −(1− t)|f0(p1)− f0(p2)|+ t|f(p1)− f(p2)|. (20)

Since D ⊂ R2 is closed, we get R := maxp∈D|f0(p)| < +∞. For t > 0
satisfying

t >
2R

δ|p1 − p2|+ 2R
,

by using (19), we get
f1(p1) ̸= f1(p2),

which combined with (18) contradicts the minimality of the energy.

4.3 Double crystals for a cubic Wulff shape

Set γ∞(ν) = |ν1| + |ν2| + |ν3| on R3 where ν = (ν1, ν2, ν3). For this
anisotropic energy density function γ∞, the Wulff shape W is a cube.
In this subsection, for given V1, V2 > 0, a double cluster is a union of
oriented compact piecewise smooth surfaces enclosing two regions with
volume V1, V2. If a double cluster is a minimizer of the anisotropic enerfy
F , then it is called a γ-minimizing double cluster.

There are some kinds of double cluster in Figure 16. In this subsec-
tion, we firstly decide one type in Figure 16. We secondly consider these
combination. We remark that Type 3 of Figure 16 are excepted from the
candidates. Because we decrease the surface energy connecting domain
A and B.

Lemma 4.2. For a γ∞-minimizing double cluster with connected exte-
rior, it is possible to decrease the volume of either of R1 and R2 and
decrease surface energy F .

Proof. By Remark 4.3. 1, we transform the double cluster into three
types plane regions. We consider one connected domain R1 looks like
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Figure 16: Double clusters.

Figure 17, and some corners of the top or bottom planes. We notice one
corner that occupy one over eight of the sphere S2. Denote by S this
region. IfR2 include three regions of adjacent to S, then a part this corner
transfers volume from R1 and R2 (Figure 18). Next we scaling returns
R2 its original volume, decreases the volume of R1. We finally reduce
the surface energy. If R2 does not include three regions of adjacent to S,
then R1 is adjacent to exterior R0. Since the exterior of double cluster is
connected, R1 can be varied so that the both the volume and the energy
decrease.

Figure 17: One connected domain. Red broken circle shows one corner
of the bottom plane.

Lemma 4.3. The energy of a γ∞-minimizing double cluster is a strictly
increasing function of each of the two volumes.

Proof. For given two volumes V1 and V2, assume that a double cluster
D minimizes the anisotropic energy among all double clusters enclosing
V1 and any V ≥ V2. Denote by R1 the region of D with volume V1, and
R the other region of D. Let Ṽ be the volume of R. Denote by R0 the
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Figure 18: Adjusting the corners of a region, followed by scaling down,
decreases one volume and decreases anisotropic energy.

exterior of D. R0 is decomposed as R0 = R∞ ∪ RB, where R∞ is the
unbounded connected component of R0, and RB := R0−R∞. Denote by
VB the volume of RB. First we show that the exterior of D is connected,
that is RB = ø. If not, set R̂ := R∪R∞. Then, it is clear that R1∪R̂ is a
γ∞-minimizing double cluster for volumes V1, Ṽ + VB. Then, by Lemma
4.2, it is possible to decrease the energy. This contradicts the assumption
that D is γ∞-minimizing.

Next, we prove that Ṽ = V2. If not, Ṽ > V2. Again, by using Lemma
4.2, we can decrease the volume of R and at the same time decrease the
energy, which contradicts again the γ∞-minimality. Therefore, D has
connected exterior and is a γ∞-minimizing double cluster with volumes
V1 and V2. Hence, by Lemma 4.2, we obtain the desired result.

Proposition 4.3. A γ∞-minimizing double cluster has connected exte-
rior.

Proof. We assume that a γ∞-minimizing double cluster does not have
connected exterior. This contradicts Lemma 4.3.

Hence, Type2 of Figure 16 is not a γ∞-minimizer. We will prove
that a γ∞-minimizing double cluster has one domain for one volume,
thereby we prepare some words. A subregion is a connected compact
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component of one of the regionsR1, R2. A simple subregion shares exactly
one boundary surface with the exterior.

Lemma 4.4. A γ∞-minimizing double cluster has at least two simple
subregion.

Proof. First we show that there are at least two regions with exterior
boundary. Assume that there is only one such region R1. Then, by
moving the other region R2 to the outside of the cluster and replacing
R1 to R1 ∪R2, we get a contradiction be using Lemma 4.3. Hence, there
are at least two subregions with an exterior boundary. If two of these
regions are simple, we have the desired result. Otherwise, there exists a
subregion with at least two exterior boundary surfaces. This subregion
divides the remainder of the double cluster into at least two pieces D1

and D2. By induction, one area that each of D1 and D2 contains a simple
subregion.

Theorem 4.2. We use the same notations as in Theorem 4.1. Letm = 2.
We assume that ∂Si is the boundary of a section of a rescaling of the
Wulff shape W cut by a plane or ∂Si consists of line segments each of
which is parallel to an edge of W . Set ρ = V1

V2
. Then , γ∞-minimizing

double clusters are classified into the following three classes by the ratio
ρ, where Vol(Ri) = Vi and a, b, c and x, y, z are length (Figure 19). (The
larger region is denoted by R1 and the smaller region is denoted by R2.)

1. ρ ≤ 2; both R1 and R2 are cuboid. y = z = 3
√
2(V1 + V2)/3.

2. 2 ≤ ρ ≤ ρ0 :≒ 11.2 · · · ; R1 is a cube, and R2 is a cuboid (a : b : c =
1 : 2 : 2).

3. ρ ≤ ρ0; both R1 and R2 are cubes.

Proof. By using the above observation, we can show that γ∞-minimizing
double clusters are classified into the three types shown in Figure 19.
We fix volumes V1, V2. Let Ei be the minimum of the surface energy of
type i, and let Ai be the surface area of the energy minimizer of type i.
For energy density function γ∞, since the surface energy is equal to the
surface area, we can calculate these surface area. For type1,

A1 = 2xy + 2ab+ 2xz + 2az + 3yz.
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Figure 19: Double clusters

Using V1 and V2, we obtain

A1 =
2(V1 + V2)

z
+

2(V1 + V2)

y
+ 3yz

≥ 3 3

√
2(V1 + V2)

z
· 2(V1 + V2)

y
· 3yz

= 3 3
√
12(V1 + V2)2.

Hence, we get
E1 = 3 3

√
12(V1 + V2)2.

We use the same method to get the surface energy E2 (resp. E3) of type2
(resp. type3).

E2 = 3(2 3
√
(V1)2 +

3
√
(2V2)2), E3 = 3(2 3

√
(V1 + V2)2 +

3
√
(V2)2).

For type1 and type2, since E1 ≥ E2,

3 3
√

12(V1 + V2)2 ≥ 3(2 3
√

(V1)2 +
3
√

(2V2)2).

Since ρ ≥ 1, we get ρ ≥ 2. For type2 and type3, since E2 ≥ E3,

2(ρV2)
2/3(2V2)

2/3 ≥ 2{(ρ+ 1)V2}2/3 + V
2/3
2 .

hence, we obtain

12
(
22/3 − 1

)
ρ4/3 − 16ρ+ 6

(
22/3 − 1

)2
ρ2/3 +

(
22/3 − 1

)3 − 8 ≥ 0. (21)

Since ρ ≥ 1, we get ρ ≥ 11.2 · · · .
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5 Appendix

1. Wulff shape corresponding to a special energy density func-
tion

The case where a energy density function is

γ(p)(N1, N2) := γ(N1, N2) =
(
N2p

1 +N2p
2

)1− 1
2p /

√
N4p−2

1 +N4p−2
2 ,

then the Wulff shape corresponding to this γ is

W(p) : Φ(θ) := (cos2p θ + sin2p θ)−
1
2p (cos θ, sin θ).

Now, we will proof W(∞) is a square. If | cos θ| ≥ | sin θ|, then,

(cos2p θ + sin2p θ)−
1
2p ≥ (cos2p θ)−

1
2p =

1

| cos θ|
.

On the other hand,

(cos2p θ + sin2p θ)−
1
2p ≤ (2 cos2p θ)−

1
2p = 2−

1
2p (cos2p θ)−

1
2p . (22)

If p is close to ∞, then (22) is close to 1/| cos θ|, so we obtain

W(∞) :
1

| cos θ|
(cos θ, sin θ).

If | cos θ| ≤ | sin θ| then,

W(∞) :
1

| sin θ|
(cos θ, sin θ).

We have gotten the desired result.

2. Details about the proof of Lemma 3.6

We want to vary (b)-1 in Figure 20 to (b)-2, so that the two shaded
regions in (b)-3 have the same area. Then, the volumes V1, V2 are pre-
served. This is achieved by choosing the lengths x and y so that the two
green lines are parallel, that is, x and y satisfy xy+(x− y)a = 0 (length
a is fixed). Then, the anisotropic energy F of the new curves minus that
of the original curves is

x− y = − x2

a− x
. (23)

If 0 < x < a, then (23) is negative. Hence, the anisotropic energy F
is decreased without changing the enclosing area.
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Figure 20: The anisotropic energy of (b)-1 is decreased without changing
the enclosed areas when it is changed like (b)-2.
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