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1 Introduction
In this paper, we study the following fourth order linear partial differential
equation related to Jacobi forms of weight k and index m:

ϕ[4](τ, z)− 8mϕ[2](1)(τ, z) +
(2k + 1)m

3
E2(τ)ϕ

[2](τ, z)

+ 16m2ϕ(2)(τ, z)− 4(2k + 1)m2

3
E2(τ)ϕ

′(τ, z)

+
(2k − 1)(2k + 1)m2

3
E ′

2(τ)ϕ(τ, z) = 0, (♭k,m)

where k is a rational number, m a natural number, τ a variable in the upper
half plane H, z a variable in the complex plane C, E2(τ) the Eisenstein series
of weight 2 with respect to the full modular group SL2(Z), the symbol ′

the differential operator (2π
√
−1)−1d/dτ, ϕ(n) := (2π

√
−1)−n∂nϕ/∂τn and

ϕ[n] := (2π
√
−1)−n∂nϕ/∂zn for function ϕ = ϕ(τ, z) of two variables. If m =

1, we write (♭k) simply for (♭k,1). This equation (♭k,m) is a Jacobi form analog
of the following second order linear ordinary differential equation related to
elliptic modular forms:

f ′′(τ)− k + 1

6
E2(τ)f

′(τ) +
k(k + 1)

12
E ′

2(τ)f(τ) = 0. (♯k)

The equation (♯k) was derived by Kaneko and Zagier in [KZ98]. We call the
equation (♯k) the Kaneko-Zagier differential equation (the K-Z equation, for
short).

The K-Z equation (♯k) is closely connected with several mathematical ar-
eas, for example, elliptic curves [KZ98], modular forms of one variable [KZ98],
[KK03], [Gu15] and the conformal field theory [KNS13]. Among them, we
mention in particular a recent work of Guerzhoy [Gu15] who proved that
mixed mock modular forms [DMZ, §7.3] arise as solutions of the K-Z equa-
tion (♯k). It is possible that our equation (♭k,m) also admits a new type of
Jacobi form as a solution.

This paper is organized as follows. In Section 2, we review the theory of
modular forms of one variable. We outline a method for deriving the K-Z
equation (♯k) (employing the Ramanujan-Serre derivative) and summarize
existing results on (♯k) in Section 3. In Section 4, we review the theory of
Jacobi forms presented in [EZ85]. The equation (♭k,m) is treated in Section 5.
Because Section 5 is a main part of the paper, we explain the contents of the
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section in detail. In Subsection 5.1, we consider the equation (♭k) for Jacobi
forms of index 1. After deriving the equation (♭k) (employing the modified
heat operator) and showing several properties of (♭k), we explicitly define a
series of Jacobi forms ϕk of weights k ∈ Z≥0 with k ≡ 4 (mod 6) and prove
that ϕk is a solution of (♭k). In Subsection 5.2, we consider the equation (♭k,m)
for Jacobi forms of general index m. We discuss a connection with (♭k,m), (♯k)
and the classical heat equation in Subsection 5.3.

Notation
For a commutative ring R with an identity element, we denote by Matn(R)
the set of square matrices of size n with entries in R. Throughout the pa-
per, the notations τ and z mean variables in H and C, respectively. Also,
we use the notations e(w) := exp(2π

√
−1w) for variable w, q := e(τ),

ζ := e(z), ′ := (2π
√
−1)−1∂/∂τ, ϕ(n) := (2π

√
−1)−n∂nϕ/∂τn and ϕ[n] :=

(2π
√
−1)−n∂nϕ/∂zn for function ϕ = ϕ(τ, z) of two variables. In addition,

for any z ∈ C \ {0} and α ∈ C, we define log z and zα as log z := log |z| +√
−1 arg z with −π < arg z ≤ π and zα := exp(α log z), respectively.
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2 Modular forms of one variable
In this section, we review the theory of modular forms of one variable.

2.1 Definition of modular forms

First, we present definitions. Let SL2(Z) be the full modular group and H
the upper half plane:

SL2(Z) :=
{(

a b
c d

)
∈ Mat2(Z) | ad− bc = 1

}
,

H :=
{
τ = x+ y

√
−1 ∈ C | y > 0

}
.

The group SL2(Z) acts on H as (
(
a b
c d

)
, τ) 7→ (aτ + b)/(cτ + d). For N ∈ N,

we define the subgroups Γ0(N), Γ0
0(N) and Γ(N) of SL2(Z) as

Γ0(N) :=
{(

a b
c d

)
∈ SL2(Z) | c ≡ 0 (mod N)

}
,

Γ0
0(N) :=

{(
a b
c d

)
∈ Γ0(N) | b ≡ 0 (mod N)

}
,

Γ(N) :=
{(

a b
c d

)
∈ Γ0

0(N) | a ≡ d ≡ 1 (mod N)
}
.

A subgroup Γ of SL2(Z) is a congruence subgroup of level N if Γ(N) ⊂ Γ.
For example, the sets SL2(Z), Γ0(N), Γ0

0(N) and Γ(N) are congruence sub-
groups of level N. Especially, the set Γ(N) is called the principal congruence
subgroup of level N.

Let Γ be a congruence subgroup of level N and χ be a character on Γ. A
holomorphic function f is a modular form (or an elliptic modular form) of
weight k with character χ with respect to Γ if it satisfies the following two
conditions

• f
(
aτ+b
cτ+d

)
= χ(γ)(cτ + d)kf(τ) (for all γ =

(
a b
c d

)
∈ Γ and τ ∈ H),

• f(τ) is holomorphic at all cusps of Γ.

When −12 = ( −1 0
0 −1 ) ∈ Γ, because f satisfies f(τ) = χ(−12)(−1)kf(τ), we

see that f is identically zero if χ(−12) ̸= (−1)k. We denote by Mk(Γ, χ)
the C-vector space of modular forms of weight k with character χ with re-
spect to Γ. It is well-known that dimCMk(Γ, χ) < ∞. Then, we denote
by Sk(Γ, χ) the subspace of Mk(Γ, χ) consisting functions which vanish at
all cusps of Γ. An element in Sk(Γ, χ) is called a cusp form (or an ellip-
tic cusp form). If χ is the trivial character, we write Mk(Γ) (resp. Sk(Γ))
simply for Mk(Γ, χ) (resp. Sk(Γ, χ)). Moreover, if Γ = SL2(Z), we denote
Mk(SL2(Z))(resp. Sk(SL2(Z))) by Mk (resp. Sk).
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2.2 Examples of modular forms and quasimodular forms

Let us give examples of modular forms, modular functions and quasimodular
forms with respect to several congruence subgroups. These functions will be
used later (see Subsection 3.2).

First, we consider the case of level 1. Let Ek(τ) be the normalized Eisen-
stein series of weight k (∈ 2N) with respect to SL2(Z):

Ek(τ) := 1− 2k

Bk

∞∑
n=1

(∑
0<d|n

dk−1
)
qn,

where Bk is the kth Bernoulli number defined as the following generating
function

tet

et − 1
=

∞∑
n=0

Bn
tn

n!
.

It is well-known that 0 ̸= Ek ∈Mk for even integer k ≥ 4 and E2 satisfies

E2

(aτ + b

cτ + d

)
= (cτ + d)2E2(τ) +

6c(cτ + d)

π
√
−1

(1)

(for all
(
a b
c d

)
∈ SL2(Z) and τ ∈ H).

A homogeneous element in C[E2, E4, E6] of degree k is called a quasimodular
form of weight k with respect to SL2(Z). Here, we consider that the gen-
erators E2, E4 and E6 have degrees 2, 4 and 6, respectively. The Eisenstein
series E2 is a quasimodular form of weight 2 with respect to SL2(Z). Let

∆(τ) :=
E4(τ)

3 − E6(τ)
2

1728
= q − 24q2 + 252q3 − 1472q4 + · · ·

be the discriminant function. The function ∆(τ) is a cusp form of weight 12.
A meromorphic function f : H → C is a modular function with respect to a
congruence subgroup Γ if it satisfies the following two conditions

• f
(
aτ+b
cτ+d

)
= f(τ) (for all γ =

(
a b
c d

)
∈ Γ and τ ∈ H),

• f(τ) is meromorphic at all cusps of Γ.

For example, the modular invariant

j(τ) :=
E4(τ)

3

∆(τ)
=

1

q
+ 744 + 196884q + · · ·
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is a modular function with respect to SL2(Z).
Next, we consider the case of level 2. We define modular forms E(2)

2 (τ)

and ∆
(2)
4 (τ) and the modular function j(2)(τ) with respect to Γ0(2) as follows:

E
(2)
2 (τ) := 2E2(2τ)− E2(τ)

= 1 + 24
∞∑
n=1

(∑
0<d|n
d:odd

d
)
qn ∈M2(Γ0(2)),

∆
(2)
4 (τ) :=

η(2τ)16

η(τ)8
=

∞∑
n=1

(∑
0<d|n
d:odd

(n/d)3
)
qn ∈M4(Γ0(2)),

j(2)(τ) :=
E

(2)
2 (τ)2

∆
(2)
4 (τ)

=
1

q
+ 40 + 276q − 2048q2 + · · · .

Here

η(τ) := q
1
24

∞∏
n=1

(1− qn)

is the Dedekind eta function.
Let us consider the case of level 3. We define modular forms E(3)

1 (τ) and
∆

(3)
3 (τ) and the modular function j(3)(τ) with respect to Γ0(3) as follows:

E
(3)
1 (τ) := 1 + 6

∞∑
n=1

(∑
0<d|n

(d
3

))
qn = 1 + 6q + 6q3 + 6q4 + · · ·

∈M1(Γ0(3),
(d
3

)
),

∆
(3)
3 (τ) :=

η(3τ)9

η(τ)3
=

∞∑
n=1

(∑
0<d|n

(d
3

)
(n/d)2

)
qn

= q + 3q2 + 9q3 + 13q4 + · · · ∈M3(Γ0(3),
(d
3

)
),

j(3)(τ) :=
E

(3)
1 (τ)3

∆
(3)
3 (τ)

=
1

q
+ 15 + 54q − · · · ,

where (d
3
) is the Legendre symbol. (Note that Γ0(3) ∋ ( a b

c d ) 7→ (d
3
) ∈ {±1}

is a character on Γ0(3).)
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Finally, we consider the case of level 4. In the case, we have to treat
modular forms of half-integral weight. In order to describe modular forms of
half-integral weight, we need the automorphic factor J(γ, τ) on Γ0(4):

J(γ, τ) :=
θ(aτ+b

cτ+d
)

θ(τ)
= ϵc,d

√
cτ + d,

where γ = ( a b
c d ) ∈ Γ0(4), θ(τ) :=

∑
n∈Z q

n2 and

ϵc,d :=
( c
d

)
×

{
1 if d ≡ 1 (mod 4),

−i if d ≡ 3 (mod 4).

(The symbol ( c
d
) is the Kronecker symbol.) For k ∈ N, a holomorphic function

f : H → C is a modular form of weight k− 1/2 with respect to a congruence
subgroup Γ ⊂ Γ0(4) if it satisfies the following two conditions

• f
(
aτ+b
cτ+d

)
= J(γ, τ)2k−1f(τ) (for all γ =

(
a b
c d

)
∈ Γ and τ ∈ H),

• f(τ) is holomorphic at all cusps of Γ.

We denote by Mk−1/2(Γ) the C-vector space of modular forms of weight
k− 1/2 with respect to Γ. The theta series θ(τ) is a modular form of weight
1/2 with respect to Γ0(4). Further, we define the Kohnen plus space M+

k−1/2

[Ko80], which is closely connected to the space of Jacobi forms of index 1
(see Theorem 4.8):

M+
k− 1

2

:=

{
f(τ) =

∑
n≥0

c(n)qn ∈Mk− 1
2
(Γ0(4))∣∣∣∣ c(n) = 0 unless (−1)k−1n ≡ 0 or 1 (mod 4)

}
.

We end this subsection by defining modular forms E(4)
2 (τ) and ∆

(4)
2 (τ) and

the modular function j(4)(τ) with respect to Γ0(4), which appear in Theorem

8



3.9:

E
(4)
2 (τ) :=

1

3
(4E2(4τ)− E2(τ))

= 1 + 8q + 24q2 + 32q3 + · · · ∈M2(Γ0(4)),

∆
(4)
2 (τ) :=

η(4τ)8

η(2τ)4
=

∞∑
n=1
n:odd

(∑
0<d|n

d
)
qn

= q + 4q3 + 6q5 + 8q7 + · · · ∈M2(Γ0(4)),

j(4)(τ) :=
E

(4)
2 (τ)

∆
(4)
2 (τ)

=
1

q
+ 8 + 20q − 62q3 + · · · .

Remark 2.1. The relations

E
(4)
2 (τ)

1
4 = θ(τ) = 1 + 2q + 2q4 + · · · ,

∆
(4)
2 (τ)

1
4 =

1

2

∑
n∈Z

q(n+
1
2
)2 = q

1
4 + q

9
4 + q

25
4 + · · · ∈M 1

2
(Γ0

0(4)),

hold.
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3 The K-Z equation (♯k) for modular forms
In this section, we consider the K-Z equation (♯k). We omit the proofs of
theorems in the section. (For further details, see [KZ98] and [KK03].)

3.1 A method for deriving (♯k)

As mentioned in Section 1, the K-Z equation (♯k) for modular forms was
derived by Kaneko and Zagier in [KZ98]. Let us review their method for
deriving the equation (♯k). First, we define the Ramanujan-Serre derivative

ϑk :=
1

2π
√
−1

d

dτ
− k

12
E2 :Mk −→Mk+2.

(We may drop the subscript k when the weight k is clear from the context.)
For k ∈ Z≥0 with k ≡ 0 or 4 (mod 6), we can consider the endomorphism

φk :=
1

E4

ϑk+2 ◦ ϑk :Mk −→Mk,

because dimCMk = dimCMk+4 and thus Mk+4 = E4·Mk. Looking at the
constant term of φk(f), we see that the value k(k + 2)/144 is an eigenvalue
of φk. Using E ′

2 = (E2
2 − E4)/12, we find that the equation

φk(f)(τ) =
k(k + 2)

144
f(τ)

is equivalent to the K-Z equation (♯k).

Remark 3.1. In general, a solution of (♯k) is not necessarily a modular form.

3.2 Existing results on (♯k), especially modular and quasi-
modular solutions

In this subsection, we summarize existing results concerning the K-Z equation
(♯k). A study on the K-Z equation (♯k) has originated with Kaneko and Zagier
[KZ98]. They found that the polynomial

ssp(X) :=
∏
E/Fp

supersingular

(X − j(E)) ∈ Fp[X],

where j(E) is the j-invariant of an elliptic curve E/Fp, is closely connected
to modular solutions of (♯k).
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Theorem 3.2. ([KZ98, Theorem 1]) Let p ≥ 5 be a prime number. Define
integers γ ∈ Z≥0, δ ∈

{
0, 1, 2

}
and ϵ ∈

{
0, 1

}
through the unique expression

p − 1 = 12γ + 4δ + 6ϵ. Take fp−1 ∈ Mp−1 such that fp−1 is a solution of
(♯p−1) and the constant term of the Fourier expansion of fp−1 is equal to
(−1)γ

( p
6
−1
γ

)
. Define Fp−1(X) ∈ Q[X] through the unique expression fp−1 =

∆γEδ
4E

ϵ
6Fp−1(j). Then we have

ssp(X) ≡ Xδ(X − 1728)ϵFp−1(X) (mod p).

The reason why Fp−1(X) ∈ Q[X] is that the Fourier expansion of j(τ) has
integral coefficients and Fp−1(j) is the unique polynomial solution of the
following Gauss hypergeometric differential equation:

j(j−1728)F ′′
p−1+{(1−ν1)j+(1−ν0)(j−1728)}F ′

p−1+γ(γ−ν∞)Fp−1 = 0, (2)

where ν0 := (1− 2δ)/3, ν1 := (1− 2ϵ)/2 and ν∞ := p/6. (The equation (2) is
obtained by transforming (♯k) in terms of j.)

Next, let us consider modular and quasimodular solutions of the equation
(♯k). Kaneko and Koike gave the explicit modular and quasimodular solutions
of the equation (♯k) for k ∈ Z≥0 and k ∈ Q≥0 with k ≡ 1/2 (mod 3) in
[KK03]. Recall the definition of the Gauss hypergeometric series

2F1(a, b, c;x) :=
∞∑
n=0

(a)n(b)n
(c)n

xn

n!
,

where

(a)n :=

{
1 if n = 0,

a(a+ 1) · · · (a+ n− 1) if n ≥ 1.

First, we consider the cases of all k ∈ Z≥0 except k ≡ 5 (mod 6).

Theorem 3.3. ([KK03, Theorem 1 (i) (ii) (iii)]) (i) For each k ∈ Z≥0 with
k ≡ 0 or 4 (mod 12), the modular form

E4(τ)
k
4 2F1

(
− k

12
,−k − 4

12
,−k − 5

6
;
1728

j(τ)

)
=

∑
0≤i≤ k

12

(− k
12
)i(−k−4

12
)i

(−k−5
6
)ii!

1728i∆(τ)iE4(τ)
k
4
−3i

= 1 +O(q) ∈Mk
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is a solution of (♯k).
(ii) For each k ∈ Z≥0 with k ≡ 6 or 10 (mod 12), the modular form

E4(τ)
k−6
4 E6(τ)2F1

(
−k − 6

12
,−k − 10

12
,−k − 5

6
;
1728

j(τ)

)
= E6(τ)

∑
0≤i≤ k−6

12

(−k−6
12

)i(−k−10
12

)i

(−k−5
6
)ii!

1728i∆(τ)iE4(τ)
k−6
4

−3i

= 1 +O(q) ∈Mk

is a solution of (♯k).
(iii) For each k ∈ Z≥0 with k ≡ 2 (mod 6), the modular forms

E
(2)
2 (τ)

k
2 2F1

(
−k
4
,−k − 2

4
,−k − 5

6
;

64

j(2)(τ)

)
=

∑
0≤i≤ k

4

(−k
4
)i(−k−2

4
)i

(−k−5
6
)ii!

64i∆
(2)
4 (τ)iE

(2)
2 (τ)

k
2
−2i

= 1 +O(q) ∈Mk(Γ0(2))

and

∆
(2)
4 (τ)

k+1
6 E

(2)
2 (τ)

k−2
6

2F1

(
−k − 2

12
,−k − 8

12
,−k + 7

6
;

64

j(2)(τ)

)
=

∑
0≤i≤ k−2

12

(−k−2
12

)i(−k−8
12

)i

(k+7
6
)ii!

64i∆
(2)
4 (τ)

k+1
6

+iE
(2)
2 (τ)

k−2
6

−2i

= q
k+1
6 +O(q

k+7
6 ) ∈Mk(Γ(2))

are solutions of (♯k).
(iv) For each k ∈ Z≥0 with k ≡ 1 or 3 (mod 6), the modular forms

E
(3)
1 (τ)

k

2F1

(
−k
3
,−k − 1

3
,−k − 5

6
;

27

j(3)(τ)

)
=

∑
0≤i≤ k

3

(−k
3
)i(−k−1

3
)i

(−k−5
6
)ii!

27i∆
(3)
3 (τ)iE

(3)
1 (τ)k−3i

= 1 +O(q) ∈Mk(Γ0(3),
(d
3

)
)
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and

∆
(3)
3 (τ)

k+1
6 E

(3)
1 (τ)

k−1
2

2F1

(
−k − 1

6
,−k − 3

6
,−k + 7

6
;

27

j(3)(τ)

)
=

∑
0≤i≤ k−1

6

(−k−1
6
)i(−k−3

6
)i

(k+7
6
)ii!

27i∆
(3)
3 (τ)

k+1
6

+iE
(3)
1 (τ)

k−1
2

−3i

= q +O(q
k+7
6 ) ∈Mk(Γ(3))

are solutions of (♯k).

Remark 3.4. The cases (i) and (ii) are contained in [KZ98, Theorem 5].

Then, let us consider the case of k ∈ Z≥0 with k ≡ 5 (mod 6). In the case,
the equation (♯k) has quasimodular solutions of weight k+1. To describe this,
we need the following polynomials:

A0(X) := 1, B0(X) := 0, A1(X) := X, B1(X) := 1,

An+1(X) := XAn(X) + ρnAn−1(X) (n ≥ 1),

Bn+1(X) := XBn(X) + ρnBn−1(X) (n ≥ 1),

where
ρn := 12

(6n+ 1)(6n+ 5)

n(n+ 1)
(n ≥ 1).

The first few examples of the polynomials and ρn are

A2(X) = X2 + 462, B2(X) = X,

A3(X) = X3 + 904X, B3(X) = X2 + 442,

A4(X) = X4 + 1341X2 + 201894, B4(X) = X3 + 879X,

ρ1 = 462, ρ2 = 442, ρ3 = 437.

Remark 3.5. By the definitions of the polynomials and the induction on
n ≥ 0, we find that degAn(X) = n (resp. degBn(X) = n− 1) and An(X) is
even or odd (resp. Bn(X) is odd or even) according to whether n is even or
odd.

Theorem 3.6. ([KK03, Theorem 2]) For each k ∈ Z≥0 with k ≡ 5 (mod 6),
the quasimodular form√

∆(τ)
k−5
6 A k−5

6

(
E6(τ)√
∆(τ)

)
E ′

4(τ)

240
−
√

∆(τ)
k−5
6

+1
B k−5

6

(
E6(τ)√
∆(τ)

)
.

of weight k + 1 is a solution of (♯k).
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Remark 3.7. Noting Remark 3.5 and E ′
4 = (E2E4−E6)/3, we see that

√
∆

in the definition of the above equation cancels out and therefore the above
function is an element in Q[E2, E4, E6].

From Theorem 3.3 and Theorem 3.6, we obtain the following theorem:

Theorem 3.8. For all k ∈ Z≥0, there exist modular or quasimodular solu-
tions of (♯k).

Finally, we consider the case of k ∈ Q≥0 with k ≡ 1
2
(mod 3).

Theorem 3.9. ([KK03, Theorem 1 (iv)]) For each k ∈ Q≥0 with k ≡ 1
2

(mod 3), the modular forms

E
(4)
2 (τ)

k
2

2F1

(
−2k − 1

6
,−k

2
,−k − 5

6
;

16

j(4)(τ)

)
=

∑
0≤i≤ 2k−1

6

(−2k−1
6

)i(−k
2
)i

(−k−5
6
)ii!

16i∆
(4)
2 (τ)iE

(4)
2 (τ)

k
2
−i

= 1 +O(q) ∈Mk(Γ0(4))

and

∆
(4)
2 (τ)

k+1
6 E

(4)
2 (τ)

2k−1
6

2F1

(
−2k − 1

6
,−k − 2

6
,
k + 7

6
;

16

j(4)(τ)

)
=

∑
0≤i≤ 2k−1

6

(−2k−1
6

)i(−k−2
6
)i

(k+7
6
)ii!

16i∆
(4)
2 (τ)

k+1
6

+iE
(4)
2 (τ)

2k−1
6

−i

= q
k+1
6 +O(q

k+7
6 ) ∈Mk(Γ

0
0(4))

are solutions of (♯k).

Using Theorem 3.8 and Theorem 3.9, we can construct solutions of (♭k,m).
(See Subsection 5.3.)
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4 Jacobi forms with respect to SL2(Z)
Here, we summarize the theory of Jacobi forms. (For further details, see
[EZ85].)

First, we define Jacobi forms. A holomorphic function ϕ : H× C → C is
a Jacobi form of weight k (∈ Z) and index m (∈ Z) with respect to SL2(Z)
if it satisfies the following conditions

• ϕ
(
aτ+b
cτ+d

, z
cτ+d

)
= (cτ + d)ke( cmz2

cτ+d
)ϕ(τ, z)

(for all
(
a b
c d

)
∈ SL2(Z) and (τ, z) ∈ H× C),

• ϕ(τ, z + λτ + µ) = e(−λ2mτ − 2λmz)ϕ(τ, z)

(for all (λ, µ) ∈ Z2 and (τ, z) ∈ H× C),

• ϕ(τ, z) has a Fourier expansion of the form

ϕ(τ, z) =
∑
n,r∈Z

4mn≥r2

c(n, r)qnζr.

We denote by Jk,m the C-vector space of Jacobi forms of weight k and index
m with respect to SL2(Z). If m = 1, we write Jk for Jk,1. A Jacobi form
ϕ ∈ Jk,m that satisfies the stronger condition c(n, r) = 0 if 4mn = r2 is called
a Jacobi cusp form.

Theorem 4.1. ([EZ85, Theorem 1.1, Corollary of Theorem 9.2]) The space
Jk,m is finite dimensional. Further, if k ≥ m ≥ 1, then we have

dimC Jk,m =



m∑
ν=0

dimCMk+2ν −
m∑

ν=0

⌈
ν2

4m

⌉
if k is even,

m−1∑
ν=1

dimCMk+2ν−1 −
m−1∑
ν=1

⌈
ν2

4m

⌉
if k is odd,

(3)

where ⌈x⌉ is the smallest integer n ≥ x.
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A basic example of Jacobi forms is the Jacobi-Eisenstein series Ek,m(τ, z)
of weight k ≥ 4 and index m ≥ 1:

Ek,m(τ, z) =
1

2

∑
(c,d)=1

(cτ + d)−k
∑
λ∈Z

e
(
λ2m

aτ + b

cτ + d
+ 2λm

z

cτ + d
− cmz2

cτ + d

)
.

To describe the Fourier expansion of Ek,m(τ, z), we define

αk,m := (−1)
k
2

22−kπk− 1
2

mk−1Γ
(
k − 1

2

)
ζ(k − 1)

,

where Γ(s) is the gamma function and ζ(s) is the Riemann zeta function.

Theorem 4.2. ([EZ85, Theorem 2.1]) The Fourier expansion of Ek,m(τ, z)
is given by

Ek,m(τ, z) =
∑
n,r∈Z

4mn≥r2

ek,m(n, r)q
nζr.

Here

ek,m(n, r) :=



1 if 4mn = r2 and r ≡ 0 (mod 2m),

0 if 4mn = r2 and r ̸≡ 0 (mod 2m),

αk,m(4mn− r2)k−
3
2

∞∑
a=1

Na(m, r, n)

ak−1
if 4mn > r2,

where Na(m, r, n) represents the order of the set {λ(mod a) | mλ2+rλ+n ≡ 0
(mod a)}.

Remark 4.3. Using Cohen’s function (cf. [C75] and [Z77, Proposition 3]), we
can compute the Fourier coefficients ek,m(n, r) of Ek,m(τ, z) more explicitly.

For example,

E4,1(τ, z) = 1 + (ζ−2 + 56ζ−1 + 126 + 56ζ + ζ2)q

+ (126ζ−2 + 576ζ−1 + 756 + 576ζ + 126ζ2)q2 + · · · ,
E6,1(τ, z) = 1 + (ζ−2 − 88ζ−1 − 330− 88ζ + ζ2)q

+ (−330ζ−2 − 4224ζ−1 − 7524− 4224ζ − 330ζ2)q2 + · · · .

16



They are important, because they are generators of the space J∗,1 :=
⊕

k Jk
of Jacobi forms of index 1 that is a free module of rank 2 over the ring
M∗ :=

⊕
kMk:

Theorem 4.4. ([EZ85, Theorem 3.5]) (i) We have

J∗,1 =M∗E4,1 ⊕M∗E6,1.

(ii) We have the isomorphism

Jk ∼= Mk ⊕ Sk+2.

Next, let us describe theta expansions of Jacobi forms. The following
lemma about Fourier coefficients of Jacobi forms plays an important role in
theta expansions:

Lemma 4.5. ([EZ85, Theorem 2.2]) Let ϕ =
∑
c(n, r)qnζr be a Jacobi form

of weight k and index m with respect to SL2(Z). If r ≡ r′ (mod 2m) and
4mn− r2 = 4mn′ − r′2, then c(n, r) = c(n′, r′).

By Lemma 4.5, for all µ ∈ Z/2mZ and N ∈ Z≥0,

cµ(N) :=

{
c(N+r2

4m
, r) if N ≡ −r2 (mod 4m) with r ≡ µ (mod 2m),

0 otherwise

is well-defined. Here r ≡ µ (mod 2m) represents r ∈ µ. Then we have

ϕ(τ, z) =
∑
n,r∈Z

4mn≥r2

c(n, r)qnζr

=
∑
r∈Z

∑
n∈Z

4mn≥r2

c(n, r)qnζr

=
∑

µ(mod 2m)

∑
r∈Z

r≡µ(mod 2m)

∑
n∈Z

4mn≥r2

c(n, r)qnζr

=
∑

µ(mod 2m)

∑
r∈Z

r≡µ(mod 2m)

∑
N≥0

cµ(N)q
N+r2

4m ζr

=
∑

µ(mod 2m)

hµ(τ)θm,µ(τ, z), (4)

17



where
hµ(τ) :=

∑
N≥0

cµ(N)q
N
4m ,

and
θm,µ(τ, z) :=

∑
r∈Z

r≡µ(mod 2m)

q
r2

4m ζr.

We call the expansion (4) the theta expansion of ϕ(τ, z). Note that θm,µ(τ, z)
are independent of ϕ(τ, z).

As an application of theta expansions of Jacobi forms, we mention The-
orem 4.7. First, we prove the transformation laws of θm,µ(τ, z) and hµ(τ):

Proposition 4.6. Under the above notations, we have

(i) θm,µ(τ + 1, z) = e
( µ2

4m

)
θm,µ(τ, z),

(ii) θm,µ

(
−1

τ
,
z

τ

)
=

( τ

2m
√
−1

) 1
2
e
(mz2

τ

) ∑
ν (mod 2m)

e
(
− µν

2m

)
θm,ν(τ, z),

(iii) hµ(τ + 1) = e
(
− µ2

4m

)
hµ(τ),

(iv) hµ

(
−1

τ

)
=

τ k(
2mτ√
−1

) 1
2

∑
ν (mod 2m)

e
( µν
2m

)
hν(τ),

where e( ξ· ) := e(x· ) for ξ = x(mod ∗) ∈ Z/∗Z.

Proof. The assertion (i) is easy from the definition of θm,µ(τ, z). Using the
Poisson summation formula, we obtain the assertion (ii). From (i) (resp. (ii))
and the invariance of ϕ under (τ, z) 7→ (τ+1, z) (resp. the transformation law
of ϕ under (τ, z) 7→ (−1/τ, z/τ)), we obtain the assertion (iii) (resp. (iv)).
This completes the proof of Proposition 4.6.

Theorem 4.7. ([EZ85, Theorem 5.1]) The theta expansion (4) gives an
isomorphism between Jk,m and the C-vector space of vector-valued modular
forms (hµ)µ(mod 2m) with respect to SL2(Z) satisfying Proposition 4.6 (iii) and
(iv) and bounded as y = Im(τ) → ∞.

Proof. Because the group SL2(Z) is generated by the matrices
(
1 1
0 1

)
and(

0 1
−1 0

)
, we arrive at the claim from Proposition 4.6.
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Further, when k is an even integer and m = 1, using Theorem 4.7, we obtain
the following theorem:

Theorem 4.8. ([EZ85, Theorem 5.4]) Let k be an even integer. Then we
have the isomorphism

M+
k− 1

2

∼= Jk

∈ ∈∑
N≥0

N≡0or3 (mod 4)

c(N)qN 7→
∑
n,r∈Z
4n≥r2

c(4n− r2)qnζr,

where M+
k−1/2 is the Kohnen plus space appearing in subsection 2.2.

Remark 4.9. The above isomorphism is compatible with the Peterson scalar
products, with the actions of Hecke operators, and with the structures of
M2∗−1/2 :=

⊕
k:evenMk−1/2 and J∗,1 as modules over M∗.
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5 The equation (♭k,m) for Jacobi forms
In this section, we study the equation (♭k,m) which is a Jacobi form analog
of the K-Z equation (♯k). Some of the results given in this section are based
on [Ki14].

5.1 The case of m = 1

In this subsection, we consider the equation

ϕ[4](τ, z)− 8ϕ[2](1)(τ, z) +
2k + 1

3
E2(τ)ϕ

[2](τ, z)

+ 16ϕ(2)(τ, z)− 4(2k + 1)

3
E2(τ)ϕ

′(τ, z)

+
(2k − 1)(2k + 1)

3
E ′

2(τ)ϕ(τ, z) = 0. (♭k)

5.1.1 A method for deriving (♭k) and properties of (♭k)

The equation (♭k) for Jacobi forms of index 1 is derived in a similar manner
to the K-Z equation (♯k). In order to derive the equation (♭k), we define the
heat operator L and the modified heat operator ∂k [R09]:

L :=
1

(2π
√
−1)2

(
8π

√
−1

∂

∂τ
− ∂2

∂z2

)
,

∂k := L− 2k − 1

6
E2 : Jk −→ Jk+2.

(We shall often drop the subscript k as with ϑk.) Note that for f ∈ Mk and
ϕ ∈ Jl, the Leibniz rule

∂k+l(fϕ) = 4ϑk(f)ϕ+ f∂l(ϕ)

holds (note the factor 4 on the right). Combining this rule with ∆′ = ∆E2

(i.e. ϑ(∆) = 0), we have

∂12+l(∆ϕ) = ∆∂l(ϕ).

These relations will be used later.
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Let us derive the equation (♭k) for Jacobi forms of index 1. From Theorem
4.4 (ii) and the well-known dimension formulas for spaces of modular forms
and cusp forms, for even integer k ≥ 4, we have

dimC Jk =



2γ if k ≡ 0 (mod 12),

2γ + 1 if k ≡ 4, 6 or 8 (mod 12),

2γ + 2 if k ≡ 2 or 10 (mod 12),

where γ ∈ Z≥0 is defined through the unique expression k = 12γ+4δ+6ϵ (δ ∈{
0, 1, 2

}
, ϵ ∈

{
0, 1

}
). Using this dimension formula, we can easily check that

dimC Jk = dimC Jk+4 and thus Jk+4 = E4·Jk if k ≡ 4 (mod 6). Therefore, for
k ∈ Z≥0 with k ≡ 4 (mod 6), we can define the endomorphism

ϖk :=
1

E4

∂k+2 ◦ ∂k : Jk −→ Jk.

(We may use Theorem 4.1 to check the well-definedness of ϖk.) Because the
constant term of ϖk(ϕ) is κk := (2k− 1)(2k+3)/36 times the constant term
of ϕ, the map ϖk preserves the codimension 1 subspace of Jacobi cusp forms
(cf. [EZ85, a paragraph before Theorem 2.3]). It follows that the value κk
is an eigenvalue of ϖk. Then, using E ′

2 = (E2
2 − E4)/12, we find that the

equation
ϖk(ϕ)(τ, z) = κkϕ(τ, z)

is equivalent to the equation (♭k).

Remark 5.1. In general, a solution of (♭k) is not necessarily a Jacobi form
of index 1.

Although there exist other eigenvalues of ϖk in general, the following
proposition suggests that the value κk is basic among the eigenvalues of ϖk.

Proposition 5.2. For each l ∈ Z≥0 with l ≡ 4 (mod 6), choose an eigenvec-
tor ϕl ∈ Jl with eigenvalue κl. Then the form ∆iϕk−12i ∈ Jk is an eigenvector
of ϖk with eigenvalue κk−12i for each i (0 ≤ i ≤ γ).
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Proof. Since ∂(∆iϕ) = ∆i∂(ϕ), we have

ϖk(∆
iϕk−12i) =

1

E4

∆i∂2(ϕk−12i)

= ∆iϖk−12i(ϕk−12i)

= κk−12i∆
iϕk−12i.

This completes the proof of Proposition 5.2.

We end this subsection by proving two propositions on (♭k). The first
proposition represents that the space of solutions of (♭k) is closed under the
actions of SL2(Z) and Z2:

Proposition 5.3. If ϕ(τ, z) is a solution of (♭k), then the two functions

(cτ + d)−ke
( −cz2

cτ + d

)
ϕ
(aτ + b

cτ + d
,

z

cτ + d

)
and e(λ2τ + 2λz)ϕ(τ, z + λτ + µ)

are also solutions of (♭k) for all
(
a b
c d

)
∈ SL2(Z) and (λ, µ) ∈ Z2.

Proof. Define

ψ(τ, z) := (cτ + d)−ke
( −cz2

cτ + d

)
ϕ
(aτ + b

cτ + d
,

z

cτ + d

)
,

χ(τ, z) := e(λ2τ + 2λz)ϕ(τ, z + λτ + µ).
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By direct calculations, we have

ψ[4](τ, z)− 8ψ[2](1)(τ, z) +
2k + 1

3
E2(τ)ψ

[2](τ, z) + 16ψ(2)(τ, z)

− 4(2k + 1)

3
E2(τ)ψ

′(τ, z) +
(2k − 1)(2k + 1)

3
E ′

2(τ)ψ(τ, z)

= (cτ + d)−k−4e
(
− cz2

cτ + d

)
×

{
ϕ[4]

(aτ + b

cτ + d
,

z

cτ + d

)
− 8ϕ[2](1)

(aτ + b

cτ + d
,

z

cτ + d

)
+

2k + 1

3
E2

(aτ + b

cτ + d

)
ϕ[2]

(aτ + b

cτ + d
,

z

cτ + d

)
+ 16ϕ(2)

(aτ + b

cτ + d
,

z

cτ + d

)
− 4(2k + 1)

3
E2

(aτ + b

cτ + d

)
ϕ′
(aτ + b

cτ + d
,

z

cτ + d

)
+

(2k − 1)(2k + 1)

3
E ′

2

(aτ + b

cτ + d

)
ϕ
(aτ + b

cτ + d
,

z

cτ + d

)}
= 0,

and

χ[4](τ, z)− 8χ[2](1)(τ, z) +
2k + 1

3
E2(τ)χ

[2](τ, z) + 16χ(2)(τ, z)

− 4(2k + 1)

3
E2(τ)χ

′(τ, z) +
(2k − 1)(2k + 1)

3
E ′

2(τ)χ(τ, z)

= e(λ2τ + 2λz)

×
{
ϕ[4](τ, z + λτ + µ)− 8ϕ[2](1)(τ, z + λτ + µ)

+
2k + 1

3
E2(τ)ϕ

[2](τ, z + λτ + µ)

+ 16ϕ(2)(τ, z + λτ + µ)

− 4(2k + 1)

3
E2(τ)ϕ

′(τ, z + λτ + µ)

+
(2k − 1)(2k + 1)

3
E ′

2(τ)ϕ(τ, z + λτ + µ)
}

= 0.

Therefore, the two functions ψ(τ, z) and χ(τ, z) are also solutions of (♭k).
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The second proposition describes a characterization of the equation (♭k).
Let us consider the following differential equation for holomorphic functions
ϕ(τ, z) on H× C:

ϕ[4](τ, z) + A1(τ)ϕ
[2](1)(τ, z) + A2(τ)ϕ

[2](τ, z)

+ A3(τ)ϕ
(2)(τ, z) + A4(τ)ϕ

′(τ, z) + A5(τ)ϕ(τ, z) = 0, (5)

where Ai(τ) (1 ≤ i ≤ 5) are holomorphic functions on H. Further, fixing an
integer k, we impose the following condition on the equation (5):

Condition 5.4. (i) If ϕ(τ, z) is a solution of (5), then the two functions

(cτ + d)−ke
( −cz2

cτ + d

)
ϕ
(aτ + b

cτ + d
,

z

cτ + d

)
and e(λ2τ + 2λz)ϕ(τ, z + λτ + µ)

are also solutions of (5) for all
(
a b
c d

)
∈ SL2(Z) and (λ, µ) ∈ Z2.

(ii) The functions Ai(τ) (1 ≤ i ≤ 5) are bounded when y = Im(τ) → ∞.

Proposition 5.5. The differential equation (5) satisfying Condition 5.4 is
essentially the equation (♭k). More precisely, if a function ϕ is a solution of
the equation (5) satisfying Condition 5.4, then the function ∆βϕ for a suitable
constant β is a solution of the equation (♭12β+k).

Proof. First, define χ(τ, z) := e(λ2τ + 2λz)ϕ(τ, z + λτ + µ). From Condition
5.4 (i), we have

0 = e(−λ2τ − 2λz)
{
χ[4](τ, z) + A1(τ)χ

[2](1)(τ, z) + A2(τ)χ
[2](τ, z)

+ A3(τ)χ
(2)(τ, z) + A4(τ)χ

′(τ, z) + A5(τ)χ(τ, z)
}

= ϕ[4](τ, z + λτ + µ) + A1(τ)ϕ
[2](1)(τ, z + λτ + µ)

+ (24λ2 + 5λ2A1(τ) + A2(τ) + λ2A3(τ))ϕ
[2](τ, z + λτ + µ)

+ A3(τ)ϕ
(2)(τ, z + λτ + µ)

+ (4λ2A1(τ) + 2λ2A3(τ) + A4(τ))ϕ
′(τ, z + λτ + µ)

+ (16λ4 + 4λ4A1(τ) + 4λ2A2(τ) + λ4A3(τ)

+ λ2A4(τ) + A5(τ))ϕ(τ, z + λτ + µ)

+ (8λ+ λA1(τ))ϕ
[3](τ, z + λτ + µ)

+ (32λ3 + 8λ3A1(τ) + 4λA2(τ) + 2λ3A3(τ)

+ λA4(τ))ϕ
[1](τ, z + λτ + µ)

+ (4λA1(τ) + 2λA3(τ))ϕ
[1](1)(τ, z + λτ + µ).
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Comparing this equation with

ϕ[4](τ, z + λτ + µ) + A1(τ)ϕ
[2](1)(τ, z + λτ + µ)

+ A2(τ)ϕ
[2](τ, z + λτ + µ) + A3(τ)ϕ

(2)(τ, z + λτ + µ)

+ A4(τ)ϕ
′(τ, z + λτ + µ) + A5(τ)ϕ(τ, z + λτ + µ) = 0,

we have

A1(τ) = −8,

A3(τ) = 16,

A4(τ) = −4A2(τ).

Therefore, the equation (5) becomes

ϕ[4](τ, z)− 8ϕ[2](1)(τ, z) + A2(τ)ϕ
[2](τ, z)

+ 16ϕ(2)(τ, z)− 4A2(τ)ϕ
′(τ, z) + A5(τ)ϕ(τ, z) = 0. (6)

Then, define ψ(τ, z) := (cτ + d)−ke
(−cz2

cτ+d

)
ϕ
(
aτ+b
cτ+d

, z
cτ+d

)
. From Condition 5.4

(i), we have

0 = (cτ + d)k+4e
( cz2

cτ + d

){
ψ[4](τ, z)− 8ψ[2](1)(τ, z) + A2(τ)ψ

[2](τ, z)

+ 16ψ(2)(τ, z)− 4A2(τ)ψ
′(τ, z) + A5(τ)ψ(τ, z)

}
= ϕ[4]

(aτ + b

cτ + d
,

z

cτ + d

)
− 8ϕ[2](1)

(aτ + b

cτ + d
,

z

cτ + d

)
+
{
(cτ + d)2A2(τ) +

2(2k + 1)

π
√
−1

c(cτ + d)
}
ϕ[2]

(aτ + b

cτ + d
,

z

cτ + d

)
+ 16ϕ(2)

(aτ + b

cτ + d
,

z

cτ + d

)
− 4

{
(cτ + d)2A2(τ) +

2(2k + 1)

π
√
−1

c(cτ + d)
}
ϕ′
(aτ + b

cτ + d
,

z

cτ + d

)
+
{
(cτ + d)4A5(τ) +

2k − 1

π
√
−1

c(cτ + d)3A2(τ)

+
(2k − 1)(2k + 1)

(π
√
−1)2

c2(cτ + d)2
}
ϕ
(aτ + b

cτ + d
,

z

cτ + d

)
.
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Comparing this equation with

ϕ[4]
(aτ + b

cτ + d
,

z

cτ + d

)
− 8ϕ[2](1)

(aτ + b

cτ + d
,

z

cτ + d

)
+ A2

(aτ + b

cτ + d

)
ϕ[2]

(aτ + b

cτ + d
,

z

cτ + d

)
+ 16ϕ(2)

(aτ + b

cτ + d
,

z

cτ + d

)
− 4A2

(aτ + b

cτ + d

)
ϕ′
(aτ + b

cτ + d
,

z

cτ + d

)
+ A5

(aτ + b

cτ + d

)
ϕ
(aτ + b

cτ + d
,

z

cτ + d

)
= 0,

we have

A2

(aτ + b

cτ + d

)
= (cτ + d)2A2(τ) +

2(2k + 1)

π
√
−1

c(cτ + d), (7)

A5

(aτ + b

cτ + d

)
= (cτ + d)4A5(τ) +

2k − 1

π
√
−1

c(cτ + d)3A2(τ)

+
(2k − 1)(2k + 1)

(π
√
−1)2

c2(cτ + d)2. (8)

Define A(τ) := A2(τ) − (2k + 1)E2(τ)/3. From (7) and the transformation
formula (1) of E2(τ), we have

A
(aτ + b

cτ + d

)
= (cτ + d)2A(τ). (9)

Next, define B(τ) := A5(τ)− (2k − 1)A′
2(τ). From (8) and

A′
2

(aτ + b

cτ + d

)
= (cτ + d)4A′

2(τ) +
c(cτ + d)3

π
√
−1

A2(τ) +
2k + 1

(π
√
−1)2

c2(cτ + d)2,

we have

B
(aτ + b

cτ + d

)
= (cτ + d)4B(τ). (10)

Hence, from (9), (10) and Condition 5.4 (ii), we have

A(τ) ∈M2 =
{
0
}
, i.e. A2(τ) =

2k + 1

3
E2(τ),

B(τ) ∈M4 = C·E4, i.e. A5(τ) =
(2k − 1)(2k + 1)

3
E ′

2(τ) + αE4(τ)
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with some constant α ∈ C, and therefore the equation (6) becomes

ϕ[4](τ, z)− 8ϕ[2](1)(τ, z) +
2k + 1

3
E2(τ)ϕ

[2](τ, z)

+ 16ϕ(2)(τ, z)− 4(2k + 1)

3
E2(τ)ϕ

′(τ, z)

+
{(2k − 1)(2k + 1)

3
E ′

2(τ) + αE4(τ)
}
ϕ(τ, z) = 0. (11)

Let β be a solution of

16β2 +
4(2k + 1)

3
β + α = 0.

We see by a direct calculation that if ϕ is a solution of (11), then ∆βϕ is
a solution of (♭12β+k). Therefore, without loss of generality, we may assume
that α = 0.

5.1.2 Jacobi form solutions

In this subsection, we present the main result of the paper (Theorem 5.8).
First, as preparation, we define the polynomials Pn(X), Qn(X), Rn(X) and
Sn(X) (n ≥ 0) as follows:

P0(X) := 1, Q0(X) := 0, R0(X) := 1, S0(X) := 1,

Pn+1(X) := (X − 1728)Rn(X) + λ2n+1Pn(X) (n ≥ 0),

Qn+1(X) := Sn(X) + λ2n+1Qn(X) (n ≥ 0),

Rn+1(X) := Pn+1(X) + λ2n+2Rn(X) (n ≥ 0),

Sn+1(X) := (X − 1728)Qn+1(X) + λ2n+2Sn(X) (n ≥ 0),

where

λn :=


5472

7
if n = 1,

48
(12n− 1)(12n+ 7)

(4n− 1)(4n+ 3)
if n ≥ 2.
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The first few examples of the polynomials and λn are

P1(X) = X − 6624

7
, Q1(X) = 1, R1(X) = X − 5520

11
, S1(X) = X − 98832

77
,

P2(X) = X2 − 1792X +
4981248

11
, Q2(X) = X − 5920

7
,

R2(X) = X2 − 25776

19
X +

48982272

209
, S2(X) = X2 − 284400

133
X +

120043776

133
,

P3(X) = X3 − 60960

23
X2 +

8655213312

4807
X − 43547369472

209
,

Q3(X) = X2 − 274368

161
X +

1637722368

3059
,

R3(X) = X3 − 19952

9
X2 +

306732544

253
X − 66933919744

627
,

S3(X) = X3 − 188912

63
X2 +

58720768

23
X − 699840458752

1311
,

λ2 =
34224

77
, λ3 =

4816

11
, λ4 =

8272

19
, λ5 =

189744

437
, λ6 =

89744

207
.

The sequence {λn}n≥1 is related to the hypergeometric series 2F1:

Proposition 5.6. We have

2F1(
31
24
, 19
24
, 7
4
; 1728

j
)

2F1(
7
24
, 19
24
, 7
4
; 1728

j
)
=

1

1−
λ1j

−1

1−
λ2j

−1

1−
λ3j

−1

1− · · ·

.

Proof. For simplicity of notation, we use F := 2F1. Let us define the sequence
{an}n≥1 as follows:

a2n−1 : = −(24n− 1)(24n+ 7)

36(8n− 1)(8n+ 3)
,

a2n : = −(24n+ 11)(24n+ 19)

36(8n+ 3)(8n+ 7)
.

28



By a direct calculation, we have

F (31
24
, 19
24
, 7
4
; x)

F ( 7
24
, 19
24
, 7
4
; x)

=
F (31

24
, 19
24
, 7
4
; x)

F (31
24
, 19
24
, 7
4
;x)− 19x

42
F ( 7

24
+ 1, 19

24
+ 1, 7

4
+ 1; x)

=
1

1−
19x
42

F (31
24
, 19
24
, 7
4
;x)

F (31
24
, 19
24

+ 1, 7
4
+ 1; x)

=
1

1−
19x
42

1 +
a1x

1 +
a2x

1 + · · ·

, (12)

where we use Gauss’s contiguous relation

F (a+ 1, b, c;x)− F (a, b, c;x) =
bx

c
F (a+ 1, b+ 1, c+ 1; x)

[Ga1812, the equation (18) in §11] at the first equality and Gauss’s formula
for the continued fraction expansion of a quotient of Gauss hypergeometric
series

F (a, b, c; x)

F (a, b+ 1, c+ 1; x)
= 1 +

d1x

1 +
d2x

1 +
d3x

1 + · · ·

,

d2k−1 := −(a+ k − 1)(c− b+ k − 1)

(c+ 2k − 2)(c+ 2k − 1)
, d2k := − (b+ k)(c− a+ k)

(c+ 2k − 1)(c+ 2k)

[Ga1812, the equation (25) in §12] at the third equality. Substituting x =
1728/j into the equation (12), we obtain the claim.

From the definitions of the polynomials, we find that degPn(X) = degRn(X) =
deg Sn(X) = n (n ≥ 0) and degQn(X) = n−1 (n ≥ 1), and the polynomials
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satisfy the three-term recursions

Pn+1(X) = (X − an)Pn(X)− bnPn−1(X) (n ≥ 1),

Qn+1(X) = (X − an)Qn(X)− bnQn−1(X) (n ≥ 1),

Rn+1(X) = (X − cn)Rn(X)− dnRn−1(X) (n ≥ 1),

Sn+1(X) = (X − cn)Sn(X)− dnSn−1(X) (n ≥ 1),

where an, bn, cn, dn (n ≥ 1) are defined as

an := 1728− λ2n − λ2n+1 = 96
576n2 + 432n− 83

(8n− 1)(8n+ 7)
,

bn := λ2n−1λ2n =


187273728

539
if n = 1,

2304
(24n− 13)(24n− 5)(24n− 1)(24n+ 7)

(8n− 5)(8n− 1)2(8n+ 3)
if n ≥ 2,

cn := 1728− λ2n+1 − λ2n+2 = 96
576n2 + 1008n+ 277

(8n+ 3)(8n+ 11)
,

dn := λ2nλ2n+1 = 2304
(24n− 1)(24n+ 7)(24n+ 11)(24n+ 19)

(8n− 1)(8n+ 3)2(8n+ 7)
.

Remark 5.7. We may adopt these recursions as definitions of the polyno-
mials, because polynomials are uniquely determined by the above recursions
with initial conditions P0(X) = R0(X) = S0(X) = 1, Q0(X) = 0, P1(X) =
X − 6624/7, Q1(X) = 1, R1(X) = X − 5520/11 and S1(X) = X − 98832/77.

Let us describe the main result of the paper. For each k ∈ Z≥0 with k ≡ 4
(mod 6), we define the Jacobi form ϕk ∈ Jk as follows:

ϕk :=


∆nPn(j)E4,1 +

7

11
∆n−1E4E6Qn(j)E6,1 if k = 4 + 12n (n ∈ Z≥0),

∆nE6Rn(j)E4,1 +
7

11
∆nE4Sn(j)E6,1 if k = 10 + 12n (n ∈ Z≥0).

Theorem 5.8. The Jacobi form ϕk is a solution of the equation (♭k).

30



Theorem 5.8 is proved in Subsection 5.1.4. We end this subsection by giving
the first few examples of ϕk:

ϕ4 = E4,1,

ϕ10 = E6E4,1 +
7

11
E4E6,1,

ϕ16 = ∆
(
j − 6624

7

)
E4,1 +

7

11
E4E6E6,1 =

19E3
4 + 23E2

6

42
E4,1 +

7

11
E4E6E6,1,

ϕ22 = ∆E6

(
j − 5520

11

)
E4,1 +

7

11
∆E4

(
j − 98832

77

)
E6,1

=
281E3

4 + 115E2
6

396
E6E4,1 +

713E3
4 + 2059E2

6

4356
E4E6,1,

ϕ28 = ∆2
(
j2 − 1792j +

4981248

11

)
E4,1 +

7

11
∆E4E6

(
j − 5920

7

)
E6,1

=
817E6

4 + 5230E3
4E

2
6 + 1081E4

6

7128
E4,1 +

193E3
4 + 185E2

6

594
E4E6E6,1.

5.1.3 Key proposition

In order to prove Theorem 5.8, we need a proposition, namely, Proposition
5.11 given below. In this subsection, we prove the proposition. First, we define
Rankin-Cohen brackets for modular forms and Jacobi forms [I12, p.60]. For
f ∈Mk and ϕ ∈ Jl, the Rankin-Cohen bracket [f, ϕ] ∈ Jk+l+2 is defined as

[f, ϕ] := kfL(ϕ)− 2(2l − 1)f ′ϕ

= kf∂l(ϕ)− 2(2l − 1)ϑk(f)ϕ.

Lemma 5.9. Let ϕk be a solution of (♭k). Then we have

(i) ∂k+6([E4, ϕk]) =
2k − 9

9
[E6, ϕk],

(ii) ∂k+8([E6, ϕk]) =
2k − 13

4
E4[E4, ϕk],

(iii) the function [E4, ϕk]/∆ is a solution of (♭k−6).

(Here, in the brackets, ϕk is regarded as being weight k and index 1.)

Proof. Note that ϕk satisfies the relation

∂2(ϕk) = κkE4ϕk, (13)
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where κk = (2k− 1)(2k+3)/36. Using ϑ(E4) = −E6/3 and ϑ(E6) = −E2
4/2,

we obtain the assertions (i) and (ii). Since ∂(ϕ/∆) = ∂(ϕ)/∆, the assertion
(iii) is easily obtained from (i) and (ii).

Lemma 5.10. Assume that ψk and ψk−6 are solutions of (♭k) and (♭k−6),
respectively. Define ψk+6 := E6ψk + ∆ψk−6. Then the function ψk+6 is a
solution of (♭k+6) if and only if the relation

[E4, ψk] = −4(2k + 1)

3
∆ψk−6

holds.

Proof. Using

∂(E6ψk) = 4ϑ(E6)ψk + E6∂(ψk)

=
1

6
[E6, ψk]−

2k + 11

6
E2

4ψk,

∂(E2
4ψk) = 4ϑ(E2

4)ψk + E2
4∂(ψk)

=
E4

4
[E4, ψk]−

2k + 15

6
E4E6ψk

and Lemma 5.9 (ii), we have

∂2(ψk+6) = ∂2(E6ψk) + ∂2(∆ψk−6)

= ∂
(1
6
[E6, ψk]−

2k + 11

6
E2

4ψk

)
+∆∂2(ψk−6)

=
1

6
∂([E6, ψk])−

2k + 11

6
∂(E2

4ψk) + ∆∂2(ψk−6)

=
2k − 13

24
E4[E4, ψk]−

2k + 11

6

(E4

4
[E4, ψk]−

2k + 15

6
E4E6ψk

)
+∆∂2(ψk−6)

= −E4[E4, ψk] + κk+6E4E6ψk + κk−6∆E4ψk−6.

Hence, we obtain

∂2(ψk+6)− κk+6E4ψk+6 = −E4

{
[E4, ψk] +

4(2k + 1)

3
∆ψk−6

}
. (14)

The lemma follows from (14) together with (13) (for k + 6).
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Proposition 5.11. Let ϕk be a solution of (♭k). Define the functions ϕk+6i (i =
−1, 1, 2, 3, · · · ) as

ϕk−6 := − 2k − 11

576(2k − 9)(2k − 1)

[E4, ϕk]

∆
,

ϕk+6i+6 := E6ϕk+6i + µ
(k)
i ∆ϕk+6i−6 (i = 0, 1, 2, · · · ),

where

µ
(k)
i := 432

(2k + 12i− 9)(2k + 12i− 1)

(2k + 12i− 11)(2k + 12i+ 1)
(i = 0, 1, 2, · · · ).

Then the function ϕk+6i is a solution of (♭k+6i) for every i ≥ −1.

Proof. From the assumption that ϕk is a solution of (♭k) and Lemma 5.9 (iii),
it is sufficient to show that ϕk+6i is a solution of (♭k+6i) for every i ≥ 1. We
prove this claim by induction on i ≥ 1. When i = 1, by a direct calculation,
we have

[E4, ϕk] = −4(2k + 1)

3
∆(µ

(k)
0 ϕk−6).

Hence, from the relation and Lemma 5.10, the function ϕk+6 = E6ϕk +

µ
(k)
0 ∆ϕk−6 is a solution of (♭k+6). Next, assume that i ≥ 1 and ϕk+6h is a

solution of (♭k+6h) for every 1 ≤ h ≤ i. We show that ϕk+6i+6 = E6ϕk+6i +

µ
(k)
i ∆ϕk+6i−6 is a solution of (♭k+6(i+1)). From the assumption that ϕk+6i =

E6ϕk+6i−6+µ
(k)
i−1∆ϕk+6i−12 is a solution of (♭k+6i) and Lemma 5.10, we obtain

the relation

µ
(k)
i−1∆ϕk+6i−12 = − 3

4
{
2(k + 6i)− 11

} [E4, ϕk+6i−6].
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Then, using this relation, we have

[E4, ϕk+6i] = [E4, E6ϕk+6i−6] + [E4, µ
(k)
i−1∆ϕk+6i−12]

= [E4, E6ϕk+6i−6]−
3

4
{
2(k + 6i)− 11

} [E4, [E4, ϕk+6i−6]]

= −8E3
4ϕk+6i−6 + 4E4E6∂(ϕk+6i−6) +

2
{
2(k + 6i)− 1

}
3

E2
6ϕk+6i−6

− 4E4E6∂(ϕk+6i−6)−
{
2(k + 6i)− 21

}{
2(k + 6i)− 13

}
3
{
2(k + 6i)− 11

} E3
4ϕk+6i−6

−
{
2(k + 6i)− 13

}{
2(k + 6i)− 1

}
3
{
2(k + 6i)− 11

} E2
6ϕk+6i−6

= −
{
2(k + 6i)− 9

}{
2(k + 6i)− 1

}
3
{
2(k + 6i)− 11

} (E3
4 − E2

6)ϕk+6i−6

= −576

{
2(k + 6i)− 9

}{
2(k + 6i)− 1

}{
2(k + 6i)− 11

} ∆ϕk+6i−6

= −
4
{
2(k + 6i) + 1

}
3

∆(µ
(k+6i)
0 ϕk+6i−6).

Therefore, using Lemma 5.10 again, we see that E6ϕk+6i+µ
(k+6i)
0 ∆ϕk+6i−6 is

a solution of (♭k+6(i+1)). Because µ(k+6i)
0 = µ

(k)
i , we arrive at the claim.

5.1.4 Proof of Theorem 5.8

Let us prove Theorem 5.8. First, note that the Jacobi forms ϕk satisfy the
recursion

ϕ4+6(i+1) = E6ϕ4+6i + λi∆ϕ4+6(i−1) (i = 1, 2, · · · ). (15)

From Proposition 5.11, to prove Theorem 5.8, we only need to show that
(i) ϕ4 = E4,1 is a solution of (♭4),
(ii) ϕ16 is a solution of (♭16) and

ϕ10 = − 2 · 16− 11

576(2 · 16− 9)(2 · 16− 1)

[E4, ϕ16]

∆
,

and
(iii) ϕ22+6i = E6ϕ16+6i + µ

(16)
i ∆ϕ10+6i (i = 0, 1, 2, · · · ).
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Since dimC J4 = 1 and thus J4 = C·E4,1, the assertion (i) is obvious. Using
∂(E4,1) = −7E6,1/6 and ∂(E6,1) = −11E4E4,1/6, we obtain the assertion (ii).
Because the identity

µ
(16)
i = 48

(12i+ 23)(12i+ 31)

(4i+ 7)(4i+ 11)
= λi+2 (i ≥ 0)

and the recursion (15) hold, we obtain the assertion (iii). This completes the
proof of Theorem 5.8.

5.2 The case of general index m

In this subsection, we consider the equation (♭k,m) which is a generalization
of (♭k). First, let us derive the equation (♭k,m). In order to derive (♭k,m), we
define the modified heat operator ∂k,m of weight k (∈ Z) and index m [R09]:

Lm :=
1

(2π
√
−1)2

(
8π

√
−1m

∂

∂τ
− ∂2

∂z2

)
,

∂k,m := Lm − (2k − 1)m

6
E2 : Jk,m −→ Jk+2,m.

Note that the Leibniz rule

∂k+l,m(fϕ) = 4mϑk(f)ϕ+ f∂l,m(ϕ) for f ∈Mk and ϕ ∈ Jl,m (16)

holds (note the factor 4m on the right). Using the dimension formulas (3) for
Jk,m, for k ≥ m ≥ 1, we see that the endomorphism

ϖk,m :=
1

E4

∂k+2,m ◦ ∂k,m : Jk,m −→ Jk,m

is well-defined only if k ≡ 1 (mod 6) and m = 1, k ≡ 3 (mod 6) and m ∈{
1, 2, 3

}
, k ≡ 4 (mod 6) and m = 1, or k ≡ 5 (mod 6) and m ∈

{
1, 2

}
. But,

because the codimension of subspace of Jacobi cusp forms of odd weight and
index m ∈

{
1, 2, 3

}
is 0 (cf. [EZ85, a paragraph before Theorem 2.3]), we

can not assert that the value κk,m := (2k− 1)(2k+3)m2/36 is an eigenvalue
of ϖk,m by the argument used in Subsection 5.1.1 unless k ∈ Z≥0 with k ≡ 4
(mod 6) andm = 1. However, extending the domain Jk,m ofϖk,m to the space
of holomorphic functions ϕ(τ, z) on H× C, we can consider the equation

ϖk,m(ϕ)(τ, z) = κk,mϕ(τ, z).
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Then, using E ′
2 = (E2

2−E4)/12, we find that the above equation is equivalent
to the equation (♭k,m).

We mention two propositions on the equation (♭k,m). The first proposition
is an extension of Proposition 5.3 to the case of general index m:

Proposition 5.12. If ϕ(τ, z) is a solution of (♭k,m), then the two functions

(cτ + d)−ke
(−cmz2
cτ + d

)
ϕ
(aτ + b

cτ + d
,

z

cτ + d

)
and e(λ2mτ + 2λmz)ϕ(τ, z + λτ + µ)

are also solutions of (♭k,m) for all
(
a b
c d

)
∈ SL2(Z) and (λ, µ) ∈ Z2.

Proposition 5.5 is also extended to the case of general index m, which de-
scribes a characterization of the equation (♭k,m). Let us consider the equation
(5) appearing in Subsection 5.1.1. For fixed integers k and m, we impose the
following condition on the equation (5):

Condition 5.13. (i) If ϕ(τ, z) is a solution of (5), then the two functions

(cτ+d)−ke
(−cmz2
cτ + d

)
ϕ
(aτ + b

cτ + d
,

z

cτ + d

)
and e(λ2mτ+2λmz)ϕ(τ, z+λτ+µ)

are also solutions of (5) for all
(
a b
c d

)
∈ SL2(Z) and (λ, µ) ∈ Z2.

(ii) The functions Ai(τ) (1 ≤ i ≤ 5) are bounded when y = Im(τ) → ∞.

Proposition 5.14. If a function ϕ is a solution of the equation (5) satisfying
Condition 5.13, then the function ∆βϕ for a suitable constant β is a solution
of the equation (♭12β+k,m).

Proposition 5.12 (resp. Proposition 5.14) is proved in a similar way to Propo-
sition 5.3 (resp. Proposition 5.5), so we omit the proof.

5.3 A connection with (♭k,m), (♯k) and the heat equation

In this subsection, we consider a connection with (♭k,m), (♯k) and the heat
equation

Lm(ψ) = ∂ 1
2
,m(ψ) = 0 (17)

on the space of holomorphic functions ψ : H×C → C. Using Proposition 5.16
given below, solutions of (17) (i.e. the theta series θm,µ(τ, z)) and solutions
of (♯k) in Subsection 3.2, we can construct a solution of (♭k,m). Let us start
with an easy lemma.
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Lemma 5.15. Let f : H → C be a holomorphic function and ψ : H×C → C
be a solution of the heat equation (17). Then we have

∂k+ 1
2
,m(fψ) = 4mϑk(f)ψ,

and thus
ϖk+ 1

2
,m(fψ) = 16m2φk(f)ψ.

Proof. The lemma follows from the Leibniz rule (16) immediately.

Proposition 5.16. Let ψi : H×C → C (1 ≤ i ≤ N) be linearly independent
over the ring of holomorphic functions on H. For holomorphic functions fi :
H → C (1 ≤ i ≤ N), define the function

ϕ :=
N∑
i=1

fiψi.

If the functions ψi (1 ≤ i ≤ N) are solutions of the heat equation (17),
then the function ϕ is a solution of the equation (♭k+1/2,m) if and only if the
function fi is a solution of the K-Z equation (♯k) for all i.

Proof. Using the linearity of ϖk+1/2,m, Lemma 5.15, κk+1/2,m = k(k+2)m2/9
and the linear independence of ψi, we have

ϕ is a solution of (♭k+ 1
2
,m) ⇐⇒ ϖk+ 1

2
,m(ϕ) = κk+ 1

2
,mϕ

⇐⇒
N∑
i=1

ϖk+ 1
2
,m(fiψi) = κk+ 1

2
,m

N∑
i=1

fiψi

⇐⇒
N∑
i=1

{
16m2φk(fi)−

k(k + 2)m2

9
fi

}
ψi = 0

⇐⇒ φk(fi)−
k(k + 2)

144
fi = 0 (1 ≤ i ≤ N)

⇐⇒ fi is a solution of (♯k) (1 ≤ i ≤ N).

This completes the proof of Proposition 5.16.
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We end the paper by proving two theorems on solutions of (♭k,m). First,
we prove the existence of Fourier series solutions of the equation (♭k,m) for
suitable k ∈ Q and all m ∈ N:

Theorem 5.17. (i) For all k ∈ Z≥0 with k ≡ 1 (mod 3) and m ∈ N, there
exists a solution ϕ(τ, z) of (♭k,m) having a Fourier expansion of the form

ϕ(τ, z) =
∑
n,r∈Z

4mn≥r2

c(n, r)qnζr.

(ii) For all k ∈ Z≥0 and m ∈ N, there exists a solution ϕ(τ, z) of (♭k+1/2,m)
having a Fourier expansion of the form

ϕ(τ, z) =
∑
n,r∈Z

4mn≥r2

c(n, r)qnζr.

Proof. (i) By Theorem 3.9, we can take the solution fk−1/2 of (♯k−1/2) such
that fk−1/2 = 1 + O(q). Using Proposition 5.16 for N = 1, we see that the
function fk−1/2θm,0 is a solution of (♭k,m), where

θm,0(τ, z) =
∑
n∈Z

qmn2

ζ2mn

is the theta series introduced in Section 4.
(ii) Using Theorem 3.8 and the same argument as in the proof of (i), we
arrive at the claim. This completes the proof of Theorem 5.17.

Next, let us consider the following formal expression in terms of the theta
series:

ϕ(τ, z) :=
∑

µ(mod 2m)

hµ(τ)θm,µ(τ, z),

where hµ : H → C are holomorphic functions. Because θm,µ are solutions of
(17) and linearly independent, we obtain the following theorem from Propo-
sition 5.16:

Theorem 5.18. The function ϕ is a solution of the equation (♭k+1/2,m) if
and only if the function hµ is a solution of the K-Z equation (♯k) for all µ
(mod 2m).
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