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1 Introduction

In this paper, we study the following fourth order linear partial differential
equation related to Jacobi forms of weight £ and index m:

o7, 2) — 8m?0(r, 2) + P ) 2
+ 16m2¢(2) (1,2) — w@(r)qﬁ’(r, z)
_ 2
(2k —1)(2k+ 1)m EL(P)b(r, 2) = 0, (Bromn)

3

where k is a rational number, m a natural number, 7 a variable in the upper
half plane ), z a variable in the complex plane C, Ey(7) the Eisenstein series
of weight 2 with respect to the full modular group SLs(Z), the symbol ’
the differential operator (2my/—1)~'d/dr, ¢ = (2my/—1)""0"¢ /O™ and
Pl = (2m/=1)""0"¢/0z" for function ¢ = ¢(7,2) of two variables. If m =
1, we write (by) simply for (by1). This equation (by ) is a Jacobi form analog
of the following second order linear ordinary differential equation related to
elliptic modular forms:

- E mm e+ M D gm0 @)

The equation (f) was derived by Kaneko and Zagier in [KZ98|. We call the
equation (fiy) the Kaneko-Zagier differential equation (the K-Z equation, for
short).

The K-Z equation () is closely connected with several mathematical ar-
eas, for example, elliptic curves [KZ98|, modular forms of one variable [KZ98|,
[KKO03], [Gul5| and the conformal field theory [KNS13|. Among them, we
mention in particular a recent work of Guerzhoy [Gulb| who proved that
mixed mock modular forms [DMZ, §7.3| arise as solutions of the K-Z equa-
tion (f). It is possible that our equation (by,,) also admits a new type of
Jacobi form as a solution.

This paper is organized as follows. In Section 2, we review the theory of
modular forms of one variable. We outline a method for deriving the K-Z
equation (fx) (employing the Ramanujan-Serre derivative) and summarize
existing results on (f;) in Section 3. In Section 4, we review the theory of
Jacobi forms presented in [EZ85|. The equation (by ) is treated in Section 5.
Because Section 5 is a main part of the paper, we explain the contents of the
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section in detail. In Subsection 5.1, we consider the equation (by) for Jacobi
forms of index 1. After deriving the equation (by) (employing the modified
heat operator) and showing several properties of (by), we explicitly define a
series of Jacobi forms ¢ of weights k € Z>( with k =4 (mod 6) and prove
that ¢y is a solution of (bg). In Subsection 5.2, we consider the equation (b )
for Jacobi forms of general index m. We discuss a connection with (b ), (fx)
and the classical heat equation in Subsection 5.3.

Notation

For a commutative ring R with an identity element, we denote by Mat,, (R)
the set of square matrices of size n with entries in R. Throughout the pa-
per, the notations 7 and z mean variables in $) and C, respectively. Also,
we use the notations e(w) := exp(2my/—1w) for variable w, ¢ := e(7),
¢ =e(z), "= 2ry/-1)719/0r, ¢/ = (27y/—1)"0"¢/0r" and ¢ =
(2my/—1)"0"¢ /02" for function ¢ = ¢(, z) of two variables. In addition,
for any z € C\ {0} and o € C, we define log z and z* as log z := log |z| +
vV—Tlarg z with —7 < argz < 7 and 2® := exp(alog z), respectively.



2 Modular forms of one variable

In this section, we review the theory of modular forms of one variable.

2.1 Definition of modular forms

First, we present definitions. Let SLs(Z) be the full modular group and
the upper half plane:

SLy(Z) = {(2%) € Mato(Z) | ad — bc =1},
.:{T:a:+y\/—_€C|y>O}.

The group SLy(Z) acts on $ as ((24),7) — (ar + b)/(cT + d). For N € N,
we define the subgroups Lo(N), TY(N) and T'(N) of SLy(Z) as

={(%}) € SLy(Z)|c =0 (mod N)},
= {(2}) € Do(N)[b=0(mod N)},
—{(ZS)EFO N)la=d=1(mod N)}.

A subgroup I' of SLQ( ) is a congruence subgroup of level N if I'(N) C T
For example, the sets SLy(Z), To(N), T9(N) and T'(N) are congruence sub-
groups of level N. Especially, the set I'(N) is called the principal congruence
subgroup of level N.

Let I" be a congruence subgroup of level N and y be a character on I'. A
holomorphic function f is a modular form (or an elliptic modular form) of
weight k with character xy with respect to I' if it satisfies the following two
conditions

o f(Z2) =x(7)(er +d)*f(7) (forally=(24) €T and 7 € §),
e f(7) is holomorphic at all cusps of T

When —1; = (4 %) € T, because f satisfies f(7) = x(—12)(=1)*f(7), we
see that f is ident1cally zero if x(—13) # (—1)*. We denote by My(T,x)
the C-vector space of modular forms of weight k with character x with re-
spect to I'. It is well-known that dim¢c My (T, x) < oo. Then, we denote
by Sk(I', x) the subspace of My (T, x) consisting functions which vanish at
all cusps of I'. An element in Si(T', x) is called a cusp form (or an ellip-
tic cusp form). If x is the trivial character, we write Mg(I") (resp. Sk(I'))
simply for My (T, x) (resp. Sk(I', x)). Moreover, if I' = SLy(Z), we denote
My (SL2(Z))(resp. Sk(SL2(Z))) by My (resp. S).
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2.2 Examples of modular forms and quasimodular forms

Let us give examples of modular forms, modular functions and quasimodular
forms with respect to several congruence subgroups. These functions will be
used later (see Subsection 3.2).

First, we consider the case of level 1. Let Ey(7) be the normalized Eisen-
stein series of weight & (€ 2N) with respect to SLy(Z):

where By, is the kth Bernoulli number defined as the following generating

function .
tet 1k
t—1 Z B”H

n=0

It is well-known that 0 # Ej € M, for even integer k > 4 and E, satisfies

9 6c(er + d)
) = (CT+d> EQ(T)+7T—\/_—1

(for all (2%) € SLy(Z) and 7 € $).

(1)

(a7’+b
2 ct +d

A homogeneous element in C[Es, Ey, Eg] of degree k is called a quasimodular
form of weight k with respect to SLs(Z). Here, we consider that the gen-
erators Fy, By and Eg have degrees 2,4 and 6, respectively. The Eisenstein
series Es is a quasimodular form of weight 2 with respect to SLy(Z). Let

Ey(7)® — Eg(7)?
1728

A(T) = = q — 24¢% + 252¢° — 1472¢* + - -

be the discriminant function. The function A(7) is a cusp form of weight 12.
A meromorphic function f: $ — C is a modular function with respect to a
congruence subgroup I' if it satisfies the following two conditions

o f(Z) = f(r) (forally=(24) el and 7€)

e f(7) is meromorphic at all cusps of T

For example, the modular invariant

, Ey(r)® 1
= =B 744 4 196884q 4+ - -
i) =% Gy =gt q—+



is a modular function with respect to SLy(Z).
Next, we consider the case of level 2. We define modular forms EéQ)(T)
and Af) (7) and the modular function j® (7) with respect to ['y(2) as follows:

E§2)(7') = 2F5(27) — Ex(T)

=14 24§:< Z d)q” € M(I'o(2)),

n=1 0<d|n
d:odd
n(27)" & 0
AP(r) = B0 Z( S (n/d)3)q € My(To(2)),
77(7-> n=1 0<d|n
d:odd
E(Q) 2 1
iD(r) = =2 ()7 _1 + 40 + 276¢ — 2048¢% + -+ - .
?)
A7 (1) q
Here o
L n
n(r) =g [J(1-¢")
n=1

is the Dedekind eta function.
Let us consider the case of level 3. We define modular forms E£3)(T) and

A:(,)S) (7) and the modular function j®(7) with respect to I'y(3) as follows:

B (7) 1=1+6§:<Z(g))q”=1+6q+6q3+6q4+---

n=1 0<dln
e My(ry(3). (5)).
3 o n(37)° _ - d 2\ n
a0 = 255 (5 ()
=q+3¢° +9¢° + 13¢" + - - - € M3(To(3), <C§l>),
3 EP ()1
iO(r) = Aég)(T) = 54—15—1—54(]—'-- )

where (%) is the Legendre symbol. (Note that I'o(3) 3 (24) — (2) € {£1}
is a character on I'y(3).)



Finally, we consider the case of level 4. In the case, we have to treat
modular forms of half-integral weight. In order to describe modular forms of
half-integral weight, we need the automorphic factor J(~,7) on I'g(4):

0(53) —
J(/-% 7-) = 8(7—) - Ec,d cT + d7

) -—<E>>< 1 ifd=1 (mod4),
“ \d —i ifd=3 (mod 4).

(The symbol () is the Kronecker symbol.) For k € N, a holomorphic function
f:$H — Cis a modular form of weight k£ — 1/2 with respect to a congruence
subgroup I' C T'y(4) if it satisfies the following two conditions

o f(ZZiS) = J(v,7)*7f(r) (forally=(2}) el and 7 € 9),

e f(7) is holomorphic at all cusps of I'.

We denote by Mj_y/2(I") the C-vector space of modular forms of weight
k — 1/2 with respect to I'. The theta series 6(7) is a modular form of weight
1/2 with respect to T'p(4). Further, we define the Kohnen plus space M," /2
[Ko80], which is closely connected to the space of Jacobi forms of index 1
(see Theorem 4.8):

M = {fm =3 en)q" € My_y(To(4))

n>0

c¢(n) = 0 unless (—1)*'n =0 or 1 (mod 4)}

We end this subsection by defining modular forms E§4) (1) and Agl) (1) and

the modular function j® (7) with respect to I'g(4), which appear in Theorem



3.9:

ESV(r) = %(4@(47) — By(7))

=14 8¢+ 24¢% +32¢° 4+ - -- € My(To(4)),

= T = 3 (3 a)r
o 0<dIn
= q+4¢° +6¢° +8¢" 4 - - € My(I'y(4)),
EYr) 1

J(r) =

=~ +8+20g—62¢°> + - - - .
NI

Remark 2.1. The relations

B ()i =0(r) =1+ 2q+2¢" + -,
1
AP =537 a™ 7 = i gt ¥ e My (DY),

nez

hold.



3 The K-Z equation (f;) for modular forms

In this section, we consider the K-Z equation (fx). We omit the proofs of
theorems in the section. (For further details, see [KZ98| and [KKO03|.)

3.1 A method for deriving (f)

As mentioned in Section 1, the K-Z equation (f;) for modular forms was
derived by Kaneko and Zagier in [KZ98|. Let us review their method for
deriving the equation (f;). First, we define the Ramanujan-Serre derivative

1 d k
I9k : _— = —EQ : Mk — Mk+2.

T om/—ldr 12
(We may drop the subscript & when the weight £ is clear from the context.)
For k € Z>o with k=0 or 4 (mod 6), we can consider the endomorphism

1
IES Eﬁk+2 oy : My — M,
4

because dim¢ My = dim¢e M4 and thus Mg,y = E4 M. Looking at the
constant term of ¢, (f), we see that the value k(k + 2)/144 is an eigenvalue
of . Using B} = (E2 — E4)/12, we find that the equation

el ir) = 2 g

is equivalent to the K-Z equation (f).

Remark 3.1. In general, a solution of (#) is not necessarily a modular form.

3.2 Existing results on (1), especially modular and quasi-
modular solutions
In this subsection, we summarize existing results concerning the K-Z equation

(£)- A study on the K-Z equation (%) has originated with Kaneko and Zagier
[KZ98|. They found that the polynomial

ssp(X) = H (X —J(E)) € Fp[X],
E/F,
supersingular

where j(FE) is the j-invariant of an elliptic curve E/F,, is closely connected
to modular solutions of (f).
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Theorem 3.2. (|[KZ98, Theorem 1|) Let p > 5 be a prime number. Define
integers v € Z>p, 0 € {O, 1, 2} and € € {O, 1} through the unique expression
p—1= 12y + 4 + 6e. Take f,_1 € M, such that f,_1 is a solution of
(fp—1) and the constant term of the Fourier expansion of f,—1 is equal to
(—1)“’(%;1). Define F,_1(X) € Q[X] through the unique expression f,—1 =
ATESESF, 1(j). Then we have

ss,(X) = XO(X — 1728)°F,_1(X) (mod p).

The reason why F,_1(X) € Q[X] is that the Fourier expansion of j(7) has
integral coefficients and F,_1(j) is the unique polynomial solution of the
following Gauss hypergeometric differential equation:

GG =1728)F)+{(1=11)j+(1=10) (j—1728) } F!_ +7(y—ves) Fpe1 = 0, (2)

where vy := (1 —26)/3,v1 := (1 —2¢)/2 and v = p/6. (The equation (2) is
obtained by transforming () in terms of j.)

Next, let us consider modular and quasimodular solutions of the equation
(fx). Kaneko and Koike gave the explicit modular and quasimodular solutions
of the equation (fy) for k € Zso and k € Qso with £ = 1/2 (mod 3) in
[KKO03|. Recall the definition of the Gauss hypergeometric series

o F1(a,b, c;x) :i

n=0

where
if n=0,

1
{a(a%—l)'--(a—i-n—l) if n > 1.
First, we consider the cases of all k € Z>( except k =5 (mod 6).

(a)n :=

Theorem 3.3. ([KK03, Theorem 1 (i) (ii) (iii)]) (i) For each k € Z>o with
k=0 or4 (mod 12), the modular form

k k—4 k—5 1728
By F — :
U“( 127 127 6 ’j(7)>
- o (r) E(r)}
0<i< ( 6 )Z

11



is a solution of (fx).
(i) For each k € Z>o with k =6 or 10 (mod 12), the modular form

ks k-6 k—10 k-5 1728
Ea(7) E6(T)2F1<_ 2 12 6 ’j(7)>

=Es(r) > ( 22_%)_' T8I A(T) By (1) T

P

— k6 (_k10y,

.~ k—6
0<i< 557

is a solution of (8).
(iii) For each k € Z>¢ with k =2 (mod 6), the modular forms

k ( k_k—Z_k—S_ 64 )
N OS]

_ (_g)i(_%)i iA(2) N p(2) N\ E—2i
= Y e AR () B ()

_k=5y 1
0<i<k ( 0 )Z.
=1+ 0(q) € My(T'x(2))
and
B+l k2 k—2 k-8 k+7 64
AP () CEP(r) T LF (— - B >
4 (7—) 2 (7—) 241 19 12’ 6 7j(2)(7')
(—ﬂi—@)i A (2), \EELL G (2) k=2 o
= = .11 64'Ay (1) & By (1)
ogig% (T)il.
k+1 k+7

=q° +0(q+)eM((2)

are solutions of (f).
(iv) For each k € Z>o with k =1 or 3 (mod 6), the modular forms

k k k—1 k-5 27
1 (7') 2471 3 ) 3 ) 6 ) ](3) (7_)

ot

=2 —<_<§_)2<_;§ Lor A (e B (-
d

=14 0(q) € My(To(3), <§>)

C7)|

0<i<k

12



kE+1
@ —3 k4T 2T
B37(7) ( G ’j(3)(7))
_ (_%)1 Tg) ' 271A(3) k+1+zE(3) —3i
- Y () ED ()5

=¢+0(¢) € Mi(T(3)
are solutions of (f).
Remark 3.4. The cases (i) and (ii) are contained in [KZ98, Theorem 5].

Then, let us consider the case of k € Z>o with K =5 (mod 6). In the case,
the equation () has quasimodular solutions of weight k+1. To describe this,
we need the following polynomials:

Ap(X) =1, Bo(X) =0, Ai(X) =X, Bi(X) =1,
Api1(X) 1= XAL(X) + poAn (X) (n>1),
B (X) == XB,(X) + puBp-1(X) (n>1),

where

(6n 4+ 1)(6n +5)
n(n+1)
The first few examples of the polynomials and p,, are
Ay(X) = X2 +462, By(X) = X,
A3(X) = X3 + 904X, B3(X) = X2 + 442,
Ay(X) = X* 4+ 1341X% 4201894, By(X) = X? + 879X,
p1 =462, py =442, p3 = 437.

(n>1).

Pn =12

Remark 3.5. By the definitions of the polynomials and the induction on
n > 0, we find that deg A,,(X) = n (resp. deg B,(X) =n—1) and A,(X) is
even or odd (resp. B,(X) is odd or even) according to whether n is even or
odd.

Theorem 3.6. (|[KKO03, Theorem 2|) For each k € Z>o with k =5 (mod 6),
the quasimodular form

NO AM( Eo(7) )E;i()) AT B (E_U)

A(T) A(T)
of weight k + 1 is a solution of (#).

13



Remark 3.7. Noting Remark 3.5 and E/, = (E,Ey — Eg)/3, we see that v/A
in the definition of the above equation cancels out and therefore the above
function is an element in Q[Es, E4, E¢].

From Theorem 3.3 and Theorem 3.6, we obtain the following theorem:

Theorem 3.8. For all k € Z>, there exist modular or quasimodular solu-
tions of (f).

Finally, we consider the case of k € Qs with £ = 5 (mod 3).

1
2

Theorem 3.9. ([KK03, Theorem 1 (iv)]) For each k € Qs¢ with k = 3
(mod 3), the modular forms

k 2k—1 k k-5 16
@2 — T T
Ey7 (1) 2F1< 6 ' 20 6 ’j(4)(7-))
> CEE )i A (i ()
(Ehat TR

and
ke ko1 2k—1 k—2 k+7 16
(4) 6 (4) 6 _ B .
folln) - B el e e g ’j<4)(7)>
<_2k6_1)i(_%)i A (4), NEEL L (4), \26=1
- Z (7).l 16"Ay " () & T Ey (1)@
0<i<2h=l 6 /*

are solutions of ().

Using Theorem 3.8 and Theorem 3.9, we can construct solutions of (b ).
(See Subsection 5.3.)
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4 Jacobi forms with respect to SLy(Z)

Here, we summarize the theory of Jacobi forms. (For further details, see
[EZ85].)

First, we define Jacobi forms. A holomorphic function ¢ : $ x C — C is
a Jacobi form of weight k£ (€ Z) and index m (€ Z) with respect to SLy(Z)
if it satisfies the following conditions

* gb(g:j-_fl’ c7‘j—d) = (CT + d)ke(%)¢<77 Z)

(for all (¢%) € SLy(Z) and (1,2) € $ x C),
o O(T,2+ AT+ ) = e(=\>m7 — 2Amz)P(T, 2)
(for all (A, p) € Z? and (7,2) € H x C),

e ¢(7,z) has a Fourier expansion of the form

o(rz)= Y cln,r)g"¢".

n,reZ
Amn>r?

We denote by Jj ,,, the C-vector space of Jacobi forms of weight k£ and index
m with respect to SLy(Z). If m = 1, we write J;, for J;. A Jacobi form
¢ € Jy.m that satisfies the stronger condition c(n,r) = 0 if 4mn = r? is called
a Jacobi cusp form.

Theorem 4.1. (|[EZ85, Theorem 1.1, Corollary of Theorem 9.2|) The space
Jem 18 finite dimensional. Further, if k > m > 1, then we have

(f m m V2
E dime M9, — E — if k is even,
4m
v=0 v=0

dim@ Jka = (3)

m—l m—l 2
3 dime Myso,1— Y L”—W if k is odd,
m

\ v=1 v=1

where [x] is the smallest integer n > x.

15



A basic example of Jacobi forms is the Jacobi-Eisenstein series Ej ,,(7, 2)
of weight k > 4 and index m > 1:

Ek,m(Tvz) :% Z (CT+d)_kZe</\2maTj:2+2)\m z _ cmz? )

el v cT ct+d cer+d

To describe the Fourier expansion of Ej (7, 2), we define
92—k k—3

mAIT (k= 5)C(k = 1)

2

QU = (—1)2

where I'(s) is the gamma function and ((s) is the Riemann zeta function.

Theorem 4.2. (|[EZ85, Theorem 2.1]) The Fourier expansion of Ej (T, 2)
15 given by

Epm(T,2) = Z ekm(n,r)g"C".

n,reZ
Amn>r?
Here
(1 if 4mn = r% and r = 0 (mod 2m),
0 if 4mn =12 and r #Z 0 (mod 2m),
ekm(n,r) =
= Ny(m,r,n)
2Nk—3 a L) 2
Qg m(dmn —1r?) 2ZT if dmn > 1,

\ a=1

where N,(m,r,n) represents the order of the set {\(mod a) | mA*+rA+n =0
(mod a)}.

Remark 4.3. Using Cohen’s function (cf. [C75] and [Z77, Proposition 3]), we
can compute the Fourier coefficients ey ,,(n, r) of Ej (7, 2) more explicitly.

For example,

Eyi(r,2) =14+ (2 +56¢7" + 126+56C+C2)

+ (126{ + 576¢" + 756 + 576¢ + 126¢*)g* + - - ,
Eoi(7,2) =1+ (¢"2 —88¢™ — 330 — 88¢ + (g

+ (—330¢ 7% — 4224¢" — 7524 — 4224¢ — 330¢?)¢* +

16



They are important, because they are generators of the space J, 1 := @, Ji

of Jacobi forms of index 1 that is a free module of rank 2 over the ring
M, =@, My:

Theorem 4.4. (|[EZ85, Theorem 3.5]) (i) We have
Ji1=M.Es1 © M,Eg,.
(ii) We have the isomorphism
Jip = My, @ Siqa-

Next, let us describe theta expansions of Jacobi forms. The following
lemma about Fourier coefficients of Jacobi forms plays an important role in
theta expansions:

Lemma 4.5. (|[EZ85, Theorem 2.2|) Let ¢ = > c(n,r)q"¢" be a Jacobi form
of weight k and index m with respect to SLy(Z). If r = 7' (mod 2m) and
dmn —r? = dmn’ —r%, then c(n,r) = c(n’,r").

By Lemma 4.5, for all pn € Z/2mZ and N € Z>y,

am

c(B2 ) if N = =12 (mod 4m) with r = p (mod 2m),
0 otherwise

is well-defined. Here r = p (mod 2m) represents r € u. Then we have

o(r,2) = > cln,r)g"¢"

n,rez
4mn2r2
=2 2 ¢
reZ n€Z
Amn>r?
= > X 2 e
p(mod 2m) reZ nez

r=p(mod 2m) 4mn>r?

=Y Y Yamewc

p(mod 2m) reZ N>0
r=p(mod 2m)

= > h(Mnu(r2), (4)

w(mod 2m)

17



where

and

O pu(T,2) = Z qm (.

rEL
r=p(mod 2m)

We call the expansion (4) the theta expansion of ¢(7, ). Note that 6,, ,(7, 2)
are independent of ¢(7, z).

As an application of theta expansions of Jacobi forms, we mention The-
orem 4.7. First, we prove the transformation laws of 6,, ,(7, z) and h,(7):

Proposition 4.6. Under the above notations, we have
(1) (7 +1,2) = (4 ) Oun(7.2)
- ; am ) VAT 2

9001 ) = () o) X oAt

v(mod 2m)

2

(iii) hy(r + 1) :e< a )hu(T),

dm

n() - T (e

2mT \ 2
<\/?1) v(mod 2m)

where e(8) == e(2) for £ = x(mod ) € Z/+Z.

Proof. The assertion (i) is easy from the definition of 6,,,(7, z). Using the
Poisson summation formula, we obtain the assertion (ii). From (i) (resp. (ii))
and the invariance of ¢ under (7, z) — (741, 2) (resp. the transformation law
of ¢ under (7,z) — (—1/7,2/7)), we obtain the assertion (iii) (resp. (iv)).
This completes the proof of Proposition 4.6. m

Theorem 4.7. (|EZ85, Theorem 5.1|) The theta expansion (4) gives an
isomorphism between Ji ,, and the C-vector space of vector-valued modular
forms (hy) u(mod 2m) with respect to SLo(Z) satisfying Proposition 4.6 (iii) and
(iv) and bounded as y = Im(7) — 0.

Proof. Because the group SLo(Z) is generated by the matrices ((1) %) and
(,01 (1)), we arrive at the claim from Proposition 4.6. O
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Further, when k is an even integer and m = 1, using Theorem 4.7, we obtain
the following theorem:

Theorem 4.8. (|[EZ85, Theorem 5.4|) Let k be an even integer. Then we
have the isomorphism

w W
> e(N)gY = > cldn —r)q ¢,
N>0 n,rez
N=0or3 (mod 4) An>r2

where M}j—uz 1s the Kohnen plus space appearing in subsection 2.2.

Remark 4.9. The above isomorphism is compatible with the Peterson scalar
products, with the actions of Hecke operators, and with the structures of
My _1)2 = Di..cven Mj._1/2 and J,; as modules over M,.
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5 The equation (b;,,) for Jacobi forms

In this section, we study the equation (by ) which is a Jacobi form analog
of the K-Z equation (f). Some of the results given in this section are based
on [Kil4].

5.1 The case of m =1

In this subsection, we consider the equation

2k +1

¢[4] (7_7 Z) - 8¢[2](1) (7-7 Z) + E2(T)¢[2} (7_7 Z)

+ 160> (,2) — w

3
N (2k — 1)3(2/€ + 1)E§(T)¢(Ta z) = 0. (bk)

By (T)¢/(Tv Z)

5.1.1 A method for deriving (b;) and properties of (b;)

The equation (by) for Jacobi forms of index 1 is derived in a similar manner
to the K-Z equation (f;). In order to derive the equation (by), we define the
heat operator L and the modified heat operator d; [R09:

1 0 0?
L= ey (8mv=T5; — 5):

2k —1
8k::L—

FEs Jk — Jk+2.

(We shall often drop the subscript k as with ¥.) Note that for f € M} and
¢ € J;, the Leibniz rule

Oh1(fo) = 40, (f)o + fOi(9)

holds (note the factor 4 on the right). Combining this rule with A" = AE,
(i.e. ¥(A) = 0), we have

d1241(A¢) = Adi(¢).

These relations will be used later.
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Let us derive the equation (by) for Jacobi forms of index 1. From Theorem
4.4 (ii) and the well-known dimension formulas for spaces of modular forms
and cusp forms, for even integer k > 4, we have

p

27y if k=0 (mod 12),

dime Jy =2y+1 ifk=4, 6o0r8 (mod 12),

(27 +2 ifk=2o0r10 (mod 12),

where v € Z>¢ is defined through the unique expression k = 12y+40+6¢ (0 €
{0, 1, 2}, €€ {O, 1}) Using this dimension formula, we can easily check that
dim¢ Jy = dime Jg14 and thus Jyy = FEy-Ji if E =4 (mod 6). Therefore, for
k € Z>o with k =4 (mod 6), we can define the endomorphism

Wi = iak_;,_g o 8k Sy — Ji.
Ey

(We may use Theorem 4.1 to check the well-definedness of wy.) Because the
constant term of wy(¢) is Kk := (2k — 1)(2k + 3) /36 times the constant term
of ¢, the map wy, preserves the codimension 1 subspace of Jacobi cusp forms
(cf. [EZ85, a paragraph before Theorem 2.3|). It follows that the value ry
is an eigenvalue of wy. Then, using F), = (E3 — E4)/12, we find that the
equation

@k (9)(T; 2) = Fr(T, 2)

is equivalent to the equation (by).

Remark 5.1. In general, a solution of (b;) is not necessarily a Jacobi form
of index 1.

Although there exist other eigenvalues of w; in general, the following
proposition suggests that the value x; is basic among the eigenvalues of wy.

Proposition 5.2. For each | € Z>q with | =4 (mod 6), choose an eigenvec-
tor ¢, € J; with eigenvalue ;. Then the form A'¢y_19; € Ji, is an eigenvector
of wy with eigenvalue Ky_12; for each i (0 < i < 7).
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Proof. Since O(A'¢) = A'D(¢), we have

. 1 )
wk(Al%fm’) = EA@Q(%A%)

= A"y 12i(Pr—12:)
= Hk—lziAi%—lQi-
This completes the proof of Proposition 5.2. m

We end this subsection by proving two propositions on (by). The first
proposition represents that the space of solutions of (by) is closed under the
actions of SLy(Z) and Z*:

Proposition 5.3. If ¢(7, z) is a solution of (bg), then the two functions

—cz? ) (aT—l—b z

ct +d cr+d er+d

(e + d)fke( ) and e(N*7 + 2\2)P(T, 2 + AT + p)

are also solutions of (by) for all (%) € SLy(Z) and (A, ) € Z2.
Proof. Define

(7, 2) = (e + d)_ke(c;Cde>¢<Z;—j—_2’ CTj— d)’

X(7,2) = e(N2T +202) (T, 2 + AT + p).
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By direct calculations, we have

2k+1

YA(1, 2) — 8YBEW (7 2) + By (1) (1, 2) + 169@) (1, 2)

D gy, )+ B D )
cz?
= (er+d) e~ =)
% {¢[4]<g:——i-i_2’ CTj‘ d) B 8¢[2K1)<z;j—_z’ c¢j—d>

P n (e (i ara)
#1607 (T )
a 4(2]{:34r 1)E2<Z:iz) (Z:ifl CTi d)
PR (T ()

=0,

and

2k + 1
L B ()X B (7, 2) + 16X, 2)

(2k — 1)(2k + 1)
3

XM(T’ Z) - 8X[2}(1)(7—7 Z) +

42k +1
-2 b, 2) +
= e(\'7T +2)\2)
X {(;5[4] (1,2 + A7+ ) — 8P W (7, 2 4 A7 + 1)

2k +1

Ey()x(7, 2)

Bo(1)oP (1,2 + M + p)

+ 160 (1,2 4+ A7 + )
42k + 1)

- TEQ(TN)/(T, 2+ AT+ )

L (@ 1)3(2k: +1)

+

Ey(T)p(T, 2 + AT + u)}
=0.

Therefore, the two functions (7, z) and x(7, z) are also solutions of (b;). O
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The second proposition describes a characterization of the equation (by).
Let us consider the following differential equation for holomorphic functions

¢(t,z) on H x C:
(7, 2) + As(7)¢P D (7, 2) + Aa (7)1 (7, 2)
+ As(1)p P (7, 2) + Ay(1)¢ (7, 2) + As(T) (T, 2) = 0, (5)

where A;(7) (1 < i < 5) are holomorphic functions on $). Further, fixing an
integer k, we impose the following condition on the equation (5):

Condition 5.4. (i) If ¢(7, 2) is a solution of (5), then the two functions
—cz? ) (aT +b oz

d—k<
(7 +d)"e cr +d cr+d er+d

are also solutions of (5) for all (¢Y) € SLy(Z) and (X, p) € Z2.
(ii) The functions A;(T) (1 <i <5) are bounded when y = Im(71) — 0.

Proposition 5.5. The differential equation (5) satisfying Condition 5.4 is
essentially the equation (by). More precisely, if a function ¢ is a solution of
the equation (5) satisfying Condition 5.4, then the function AP for a suitable
constant 5 is a solution of the equation (b12p+k)-

) and e(N*T +2X2)¢(T, 2 + AT + p)

Proof. First, define x(7, 2) := e(A*7 4+ 2X\2)é(7, 2 + A7 + ). From Condition
5.4 (i), we have

0=e(— )\7‘—2)\2){ 4 (7, 2) + Ay ()P (7, 2) + Ao ()2 (7, 2)

+ As(IXP (7, 2) + Ad(r)X (7, ) + As(T)x(7,2) }
= ¢ (r 2+ M4 ) + A (D) PO (7, 2 + A7 + 1)
+ (2402 + 5N2AL (1) + Ax(1) + N2 A5(7) 0P (7, 2 + AT + 1)
+ As(1)dP (7, 2 4+ AT + p)
+ (4N A1 (7) + 202 A3(7) + Au(7)) (1,2 + AT + p)
+ (16AT + 4N AL (T) + 4X2 Ay (1) + N As(7)
+ N AL(7) + As(7)B(7, 2 + AT + p)
+ (X 4+ AAL(T) B (7, 2 + AT + )
+ (32X% + 8X3 A1 (7) + 4N Ao (T) + 20> A3(7)
+ A7) (7, 2 + A7 + 1)
+ (4NA1(7) 4 20 A5 (7)oM) (7, 2 4+ A7 + ).
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Comparing this equation with

O, 2+ A1 4 1) + AL (7) P D (1, 2 + AT + )
+ A2(7)¢[2] (T, 2+ AT+ ) + A3(7)¢(2)(7, 24+ AT+ p)
+ Ay(T)P' (1, 2 + AT 4+ ) + As(T) (7, 2 + AT+ 1) = 0,

we have

A4(7’) == —4A2(’7')
Therefore, the equation (5) becomes

o7, 2) — 8PV (7, 2) + Aa(7)¢P)(7, 2)
+16¢17 (7, 2) — 445(7)¢' (7, 2) + As(1)p(7,2) = 0. (6)

Then, define (7, 2) := (¢ + d)_ke(;ii)gb(z:is, —-). From Condition 5.4
(i), we have
c2?

_ k4
0= (et +4d) e(m’—i—d

){#(r,2) = 80O (7, 2) + Ap(r)ll (7. 2)
16937, 2) = 44 ()8 (7, 2) + As(T)6(7, 2) |

:¢[4]<a7'—|—b z >_8¢[2](1)(a7'+b z )

ct+d et +d ct+d et +d
STV o W ST
atr+b =z
+ 166 (CT —_i-'—d’ cT + d)
_ 4{(07 +d)?Ay(1) + 2(:k—\/—_i__11)c(07 + d)}ﬁb,(Z:i—Z, CTi d)
+{(er+ d) As(r) + i’EC(CT + d)* Aa(7)
2k —1)(2k+1) ,

ar +b z )

¢ler +d)2}¢<c7’ +d er+d

(r/ -1
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Comparing this equation with

[4] CL7—+b z —8 [2](1) a7+b 4
¢ (c¢+d’CT—|—d> ¢ (c¢—|—d’c¢+d>

a7+b) [2]<a7+b z )

et +d cr+d et +d
ar +b z

CT—i-d’CT—i—d)

ar +b\ ,fatr+b =z

CT—i—d) <c7'+d’c7'—|—d>

ar +b ar +b z
() o o) =
+ 4 cT+d ¢ ct+d et +d

+A2<

+ 166

-—4A2(

we have
2(2k + 1)
TV —1
) 2% — 1 ,
> = (et +d)*As(7) + 7“/__10(07 + d)° As(7)
2k —1)(2k+1
( - )_51)2 )62(07+d)2. (8)
Define A(71) := Ay(7) — (2k + 1)Ey(7)/3. From (7) and the transformation
formula (1) of Ey(7), we have

) = (7 + d)?As(7) + cler +d), (7)

at +b
A(S) = (er + dPAR). (9)
Next, define B(r) := As(7) — (2k — 1)A}(7). From (8) and
,(at +by 4 c(er +d)? 2k+1 9
2<m> = (CT + d) AQ(T) + 77—\/__1142(7—) + mc (CT + d) s
we have
at +b
<B<CT_%d):=(CT4-df£xT) (10)
Hence, from (9), (10) and Condition 5.4 (ii), we have
241

A(r) € My = {0}, ie. Ay(1) = 3 Ey(7),

(2k — 1)(2k + 1)
3

B(t) € My =C-Ey, ie. As5(T) = Ey(7) + aE4(1)
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with some constant a € C, and therefore the equation (6) becomes

2k +1

925[4] (T’ Z) - 8¢[2](1) (7-7 Z) + EQ(T)Qbm (7_7 Z)

4
+ 166 (7, 2) — 42kt 1)

) 3
(2 — 1)(2k + 1)
*'{ 3

Let 3 be a solution of

A2k + 1)

1632 + 3

B+ a=0.

(11)

We see by a direct calculation that if ¢ is a solution of (11), then AP¢ is
a solution of (b12p1x). Therefore, without loss of generality, we may assume

that o = 0.

5.1.2 Jacobi form solutions

]

In this subsection, we present the main result of the paper (Theorem 5.8).
First, as preparation, we define the polynomials P, (X), @,(X), R,(X) and

Sp(X) (n > 0) as follows:

Py(X) =1, Qo(X):=0, Ro(X):=1, Sp(X) :=1,
Pon(X) = (X — 1728) R(X) + Aoyt Pa(X) (n>
@n1(X) = 5n(X) + A1 @n(X) (n =
Rn-i-l(X) = Pn+1(X) + )‘2n+2Rn(X) (TL >
Sn1(X) == (X = 1728)Q41(X) + Aapt2Sn(X) (n >
where
5472 .
— ifn=1,
Ay =
(20-D(2n+7)

(4n — 1)(4n + 3)
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The first few examples of the polynomials and \,, are

6624 5520 98832
P1<X> X—T Q1< )—1, R1< ) X— 11 ; Sl<X>:X—7,
4981248 5920
fyxyzx?—lnmx+u—Tr—,QxX) XZ——73
25776 48982272 284400 120043776
X)=X?— X) = X2 _
Ra(X) 19 T 00 52(X) 133 T 133
4354
}%()()::)(3__60960)(2+_8655213312)(__ 35 73694727
23 4807 209
274368 1637722368
X)=X?- X
@s(X) 61 T 300
}i&)()::)(g__19952)(2+_306732544)(__66933919744’
9 253 627
188912 9 40458752
Sa(X) = X° 889 [ 58720768 | 69984045875 |
63 23 1311
L3224 4816, 8272 189744 | 89744
2T o T o T 19 0 P 437 0 T8 T 907

The sequence {\, },>1 is related to the hypergeometric series o F7:

Proposition 5.6. We have

2F1(
2F1(

Rlo|Ele
b —-
u‘s

0
N~—
—_

u>|“' 4>|w
INESIFNEN]
—
~
N
']
N—
|
>
=
<
L

|
—
|

Agj

Proof. For simplicity of notation, we use F' := o F}. Let us define the sequence
{an}n>1 as follows:

(24n — 1)(24n + 7)

@2n=1 = 736080 — 1)(8n + 3)
(24n 4 11)(24n + 19)
Aoy @ = — .

? 36(8n + 3)(8n +7)
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By a direct calculation, we have

31 19 7 31 19 7,
F(5 50 13%) _ F(55 510 4:%)
7 19 7 31 19 7. 19 7
F(ﬂ7ﬂzx) F(ﬂ7ﬂaza )__xF( +1,24—}—1,4+15L‘)
- 19z
L= 31 4129 7
F(24724>4;x)
F(5p 5+ 1,1+ 12)
1
= o , (12)
1— 42
a1 xr
1+
QAo
1+
1+---

where we use Gauss’s contiguous relation
bz
Fla+1,b,c;z) — F(a,b,c;x) = —F(a+ 1,b+ 1,¢+ 1;2)
c

|Gal812, the equation (18) in §11] at the first equality and Gauss’s formula
for the continued fraction expansion of a quotient of Gauss hypergeometric
series

F(a,b,c;x) 14 dyx
Fla,b+1,c+1;2) dox
1
14 dgl’
1+---
(a+k—1)(c—b+k—1)  (bFEk)c—a+k)

doj—1 == —

(c+2k—=2)(c+2k—1)" (4 2k —1)(c + 2k)

[Gal812, the equation (25) in §12] at the third equality. Substituting x =
1728/7 into the equation (12), we obtain the claim. O

From the definitions of the polynomials, we find that deg P, (X) = deg R, (X) =
deg S, (X) =n (n>0) and deg @, (X) =n—1 (n > 1), and the polynomials
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satisfy the three-term recursions

Prt(X) = (X — a2) Pa(X) — buPuy(X) (n > 1),
Qn—i—l(X) (X - an)Qn(X) - ann—l(X> (n > 1)7
Ry (X) = (X = cn) Ro(X) — dy Rp1(X) (n 2 1),
Sp41(X) = (X — )0 (X) = dpSp-1(X) (n > 1),

where a,, b,, ¢,,d, (n > 1) are defined as

576n2 + 432n — 83
8n—1)8n+T7) "’

ayp = 1728 — )\gn - )\2n+1 = 96

187273728 .
R — ifn=1,
539
by == Aap—1Aan =
24n — 13)(24n — 5)(24n — 1)(24 7
5304 241 — 13)(24n — 5)(24n — 1)(24n + 7) itn>o
(8n —5)(8n — 1)2(8n + 3)
576n2 + 1008n + 277
(8n+3)(8n+11) ’
(24n — 1)(24n + 7)(24n + 11)(24n + 19)

(8n —1)(8n +3)2(8n +7)

Cp = 1728 — )\2n+1 — )\2n+2 =96

dn = )\Qn/\2n+1 = 2304

Remark 5.7. We may adopt these recursions as definitions of the polyno-
mials, because polynomials are uniquely determined by the above recursions

with initial conditions Py(X) = Ro(X) = So(X) = 1,Qp(X) = 0, P (X) =
X —6624/7, Q1(X) = 1, Ry(X) = X — 5520/11 and S, (X) = X — 98832/77.

Let us describe the main result of the paper. For each k € Z>( with k = 4
(mod 6), we define the Jacobi form ¢, € J; as follows:

7
Anpn(j)E471 —+ ﬁAn_IELLE()‘Qn(j)EG,l k=4 + 12n (77, € Zzo),

7
AnEGRn(j)EAL]_ + ﬁAnE4Sn(j)E671 if k=10 + 12n (7’L S ZZO)‘

Theorem 5.8. The Jacobi form ¢y is a solution of the equation (by,).
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Theorem 5.8 is proved in Subsection 5.1.4. We end this subsection by giving
the first few examples of ¢y:

¢4 = E4,17
7
10 = EgEyq + 11 1Fs 1,
6624 7 19E3 + 23 F2 7
16 = A(] - T)E4,1 + ﬁ 4E6E6,1 = #E&l + ﬁE4E6E611’
5520 7 98832
— AE (——)E LAE (——)E
P22 6(J 11 41+ 11 4\ 77 6,1
281E3 + 115E2 T13E3 + 2059E3
— EE
396 6fia1 + 4356 46,1
. 4981248 7 5920
O = A (2 = 1792) + ——— ) By + 17 AE By (j — =) Eaa
817ES + 5230E3E2 + 1081 E2 193E3 + 185 F2
= 4 3l ] 6 E471 + 1 6 E4E6E6,1-

7128 594

5.1.3 Key proposition

In order to prove Theorem 5.8, we need a proposition, namely, Proposition
5.11 given below. In this subsection, we prove the proposition. First, we define
Rankin-Cohen brackets for modular forms and Jacobi forms [I12, p.60]. For
f € My and ¢ € J;, the Rankin-Cohen bracket [f, @] € Jiii40 is defined as

[f,¢] == kfL(¢) — 202l = 1) f'¢
= kfoi(¢) —2(20 = 1)0k(f)o.
Lemma 5.9. Let ¢y be a solution of (by). Then we have

2k — 9
9 [E67 ¢k]7

2k — 13
(ii) Orys([Es, dr]) = 1 E4Ey, ¢4,

(iii) the function [E4, ¢r)/A is a solution of (br—g).

(1) Okto([Eas or]) =

(Here, in the brackets, ¢y is regarded as being weight k and index 1.)

Proof. Note that ¢, satisfies the relation
0*(¢) = KrEadr, (13)
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where r = (2k — 1)(2k + 3)/36. Using 9(F,) = —E¢/3 and ¥(Es) = —E?%/2,
we obtain the assertions (i) and (ii). Since d(¢/A) = 0(¢)/A, the assertion
(iii) is easily obtained from (i) and (ii). O

Lemma 5.10. Assume that 1y and 1x_¢ are solutions of (bg) and (bx—g),
respectively. Define Y16 = FEgp + Ag_¢. Then the function ¢ is a
solution of (bxre) if and only if the relation

4(2k +1)

[E47 ¢k] == 3

Athy_g
holds.

Proof. Using

O(Eebr) = 49(Es )Yy, + EsO(Yy)
1 2k + 11

= E[Eﬁywk] - 6 Ez¢ka
O(Eive) = 40(ED ) + EF0 ()
=%ﬁ&wﬂ—2k+wﬂmw%

and Lemma 5.9 (ii), we have

*(Yr+6) = O (Egiby) + 0*(Atbr—s)
= o(lmsw) - 21

h éa([E6>¢k]) - O(ELn) + A0 (k)
_2k-13 2k+11<E4 2k 415

54 Ey[Ey, ) — 5 I[sz,%] -

+ AD* (V)
= —Ey[Ey, Vi) + Rir6 EaBetr + Kp—¢ A B4y _¢.

E3k) + A0 (i)
2k +11

EqFgt)

Hence, we obtain

4(2k + 1)
3

The lemma follows from (14) together with (13) (for k + 6). O

0*(Vrv6) — Ko Eatbrse = —54{[E4, Vi) + Awk,G}. (14)
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Proposition 5.11. Let ¢y, be a solution of (by). Define the functions ¢rie; (i =
-1,1,2,3,---) as

o 2k — 11 [Ey, ¢1]
Pr-6 = C576(2k —9)(2k—1) A

Ok+6i+6 ‘= EePrtei + ,Uz('k)A¢k+6i76 (i=0,1,2,---),

where

(2k 4+ 12i — 9)(2k + 12i — 1)
(2k + 120 — 11)(2k + 12i + 1)

p® = 432 (i=0,1,2,---).

Then the function ¢rie; is a solution of (bgiei) for every i > —1.

Proof. From the assumption that ¢y, is a solution of (by) and Lemma 5.9 (iii),

it is sufficient to show that ¢x.¢; is a solution of (by,4;) for every i > 1. We

prove this claim by induction on ¢ > 1. When ¢ = 1, by a direct calculation,
we have 22k 4+ 1)

+ k

[Ea, 0n) = ===5 A1y d-o).

Hence, from the relation and Lemma 5.10, the function ¢p.¢ = FEgdp +

u(()k)Aqbk_G is a solution of (bgig). Next, assume that ¢ > 1 and ¢piep is a

solution of (bgiepn) for every 1 < h < i. We show that ¢pi6ir6 = Fedriei +

,ugk)Am%i,t; is a solution of (byy6(i+1)). From the assumption that ¢p e =

E¢tri6i—s —i—ugﬁ)lAngGi_u is a solution of (by46;) and Lemma 5.10, we obtain

the relation

_ 3 [
4{2(k + 61) — 11}

k
M,(_)lAﬁbks—i-&‘—lQ = Ey, ¢k+6z‘—6]-
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Then, using this relation, we have

(B4, Srrei] = [Es, Bsbrrois) + [Ea 1™ Adpsei 1)
3

= [Ey, Esr16i—6] — 4{2(k T 6i) = 11}[

2{2(k + 6i) — 1}

E4; [E47 ¢k+6i76]]

= _8E2¢k+6i—6 + 4E,E60(¢r16i—6) + 3 E62<Z5k+6z'—6
{2(k + 6i) — 21 }{2(k + 6i) — 13} _,
—A4FE,Eg0 i—6) — FE i
4156 <¢k+6 6) 3{2(k—|—6’l>—11} 4¢k+6 6
{2(k +6i) — 13}{2(k +6i) — 1}
— E§bri6i—6

3{2(k + 6i) — 11}
{2k +60) -9} {2(k+6i) -1} ., |
o 3{2(k + 61) — 11} (B — E§)Prroi-6
{2(k + 61) — 9} {2(k + 6i) — 1}
{2(k + 61) — 11}
_4{2k +36i) +1} AGE D o).

= —576

k+6i—6

Therefore, using Lemma 5.10 again, we see that Eg¢p6; + uék+6i)A¢k+6i,6 is

a solution of (bj1¢(i11)). Because u(()k%i) = ul(-k), we arrive at the claim. [

5.1.4 Proof of Theorem 5.8

Let us prove Theorem 5.8. First, note that the Jacobi forms ¢; satisfy the
recursion

Puye(i+1) = FeParei + NiDbayei-1y) (1 =1,2,---). (15)

From Proposition 5.11, to prove Theorem 5.8, we only need to show that
(1) ¢4 = E4; is a solution of (by),
(ii) ¢16 is a solution of (bi5) and

- 2.16 — 11 [Ey, d16]
576(2-16 — 9)(2-16—1) A

P10 =

and
(i) Pootei = Eedr6+6i + N£16)A¢10+6i (i=0,1,2,---).
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Since dim¢ Jy = 1 and thus J; = C-E, ;, the assertion (i) is obvious. Using
O(Ey1) = —TEg1/6 and 0(Es1) = —11E,4E, /6, we obtain the assertion (ii).
Because the identity

ae) o (12i+23)(12i + 31)
Mo = i T (i + 1)

= Ait2 (2 = O)

and the recursion (15) hold, we obtain the assertion (iii). This completes the
proof of Theorem 5.8.

5.2 The case of general index m

In this subsection, we consider the equation (by,,) which is a generalization
of (bg). First, let us derive the equation (by ). In order to derive (b.,), we
define the modified heat operator d ,, of weight k (€ Z) and index m [R09]:

1
L, = m (8%\/—_1m

2k — 1)m
B = Ly~ =

o 0
o 92)

E2 : Jk,m — Jk+2,m-
Note that the Leibniz rule

Optim (f@) = 4mVy(f)o + fOLm(¢) for f € My and ¢ € Jp (16)

holds (note the factor 4m on the right). Using the dimension formulas (3) for
Jkm, for k > m > 1, we see that the endomorphism

Wkm = LakJer Oakm : ka — ka
: £, : : : :

is well-defined only if £ = 1 (mod 6) and m = 1, k = 3 (mod 6) and m €
{1,2,3}, k=4 (mod 6) and m=1,or k=5 (mod 6) and m € {1,2}. But,
because the codimension of subspace of Jacobi cusp forms of odd weight and
index m € {1,2,3} is 0 (cf. [EZ85, a paragraph before Theorem 2.3|), we
can not assert that the value kg, := (2k — 1)(2k + 3)m?/36 is an eigenvalue
of @y, by the argument used in Subsection 5.1.1 unless k € Z>( with k = 4
(mod 6) and m = 1. However, extending the domain Jy ,, of wy ,, to the space
of holomorphic functions ¢(7, z) on $) x C, we can consider the equation

wk,m(Qb) (7_7 Z) - /‘ik7m¢(7—, Z)
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Then, using £ = (E3— E,)/12, we find that the above equation is equivalent
to the equation (b ).

We mention two propositions on the equation (b, ). The first proposition
is an extension of Proposition 5.3 to the case of general index m:

Proposition 5.12. If ¢(7, z) is a solution of (bg.m), then the two functions

—cmzz) (CLT +b z

et +d cr+d et +d

(e + d)*ke( ) and e(N*m7 + 22mz2) (T, 2 + A7 + p)

are also solutions of (bkm) for all (@Y%) € SLy(Z) and (N, p) € Z2.

Proposition 5.5 is also extended to the case of general index m, which de-
scribes a characterization of the equation (b, ). Let us consider the equation
(5) appearing in Subsection 5.1.1. For fixed integers k and m, we impose the
following condition on the equation (5):

Condition 5.13. (i) If ¢(7, 2) is a solution of (5), then the two functions

—cm22> <a7’ +b oz

d—k
(e7+d) e<CT+d ct+d et +d

) and e(Nm7+2 mz2) (T, 2T+ 1)
are also solutions of (5) for all (¢Y) € SLy(Z) and (X, p) € Z2.
(ii) The functions A;(1) (1 <1 <5) are bounded when y = Im(71) — oc.

Proposition 5.14. If a function ¢ is a solution of the equation (5) satisfying
Condition 5.13, then the function AP for a suitable constant 3 is a solution
of the equation (b128+k.m)-

Proposition 5.12 (resp. Proposition 5.14) is proved in a similar way to Propo-
sition 5.3 (resp. Proposition 5.5), so we omit the proof.

5.3 A connection with (bz,,), (fx) and the heat equation

In this subsection, we consider a connection with (bx,,), (fx) and the heat
equation

Lon(W) = 9y () = 0 (17)

on the space of holomorphic functions ¢ : $ x C — C. Using Proposition 5.16
given below, solutions of (17) (i.e. the theta series 6,, (T, z)) and solutions
of (f;) in Subsection 3.2, we can construct a solution of (by,,). Let us start
with an easy lemma.
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Lemma 5.15. Let f : § — C be a holomorphic function and ¢ : H§x C — C
be a solution of the heat equation (17). Then we have

and thus
Dy m(S0) = 16m2 ()0,

Proof. The lemma follows from the Leibniz rule (16) immediately. O]

Proposition 5.16. Let ¢; : H$ X C — C (1 < i < N) be linearly independent
over the ring of holomorphic functions on $). For holomorphic functions f; :
$H — C (1 <i < N), define the function

N
¢:=>_ [
i=1

If the functions i; (1 < i < N) are solutions of the heat equation (17),
then the function ¢ is a solution of the equation (bj41/2,,) if and only if the
function f; is a solution of the K-Z equation (f;) for all i.

Proof. Using the linearity of @y1/2,m, Lemma 5.15, Kgi1/2.m = k(k+2)m?/9
and the linear independence of 1;, we have

¢ is a solution of (I),H%,m) = wk+%7m(q§) = Fpplm®

N N
— Z D2 (i) = K1 Z fii
i=1 i=1

al k(k 2

= Z{lﬁm%k(fi) - %ﬁ}m =0
=1

a2 Ds g a<icw)

<= f; is a solution of (#;) (1 <i< N).

This completes the proof of Proposition 5.16. O
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We end the paper by proving two theorems on solutions of (b ). First,
we prove the existence of Fourier series solutions of the equation (by,,) for
suitable £ € Q and all m € N:

Theorem 5.17. (i) For all k € Zso with k =1 (mod 3) and m € N, there
ezists a solution ¢(7,2) of (bgm) having a Fourier expansion of the form

o(r,2) = Y eln,r)g"¢".

n,reZ
Amn>r?

(ii) For all k € Z>o and m € N, there exists a solution ¢(,z) of (Dri1/2,m)
having a Fourier expansion of the form

(1, 2) = Z c(n,r)g"¢".
n,reZ
Amn>r?

Proof. (i) By Theorem 3.9, we can take the solution fi_1/5 of (§x-1/2) such
that fy_1/2 = 1 4+ O(q). Using Proposition 5.16 for N = 1, we see that the
function fiy_1/20m, is a solution of (by ), where

9m70(7_’ Z) _ Z qmn2 Can

nel

is the theta series introduced in Section 4.
(ii) Using Theorem 3.8 and the same argument as in the proof of (i), we
arrive at the claim. This completes the proof of Theorem 5.17. n

Next, let us consider the following formal expression in terms of the theta

series:
o(1,2) = Z By ()0 (T, 2),
p(mod 2m)
where h,, : § — C are holomorphic functions. Because ¢,,, are solutions of
(17) and linearly independent, we obtain the following theorem from Propo-
sition 5.16:

Theorem 5.18. The function ¢ is a solution of the equation (Dyi1/2.m) if
and only if the function h, is a solution of the K-Z equation (f) for all p
(mod 2m).
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