
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Public key cryptosystems based on diophantine
equations

奥村, 伸也

https://doi.org/10.15017/1500515

出版情報：九州大学, 2014, 博士（数理学）, 課程博士
バージョン：
権利関係：全文ファイル公表済

Public key cryptosystems based
on diophantine equations

Shinya Okumura

A dissertation submitted to
Kyushu University
for the degree of

Doctor of Philosophy (Mathematics)
February 2015

Introduction

The purpose of this thesis is two-fold: one is to study the semi-regularity of
the equation systems arising from the section finding problem on algebraic
surfaces and the other is to propose a new public key cryptosystem based on
the difficulty of finding integral or rational solutions to diophantine equations.

After Diffie and Hellman proposed the concept of public key cryptog-
raphy ([16]), the theory of cryptography has been developed rapidly and
has contributed to the security of networks. This cryptosystem is based on
computationally hard problems, like factorization of large integers and com-
putation of discrete logarithm in large finite groups. The most famous public
key cryptosystems are the RSA cryptosystem ([43]) and elliptic curve cryp-
tosystem ([31], [38]). Although these cryptosystems are studied by many
researchers, efficient attacks have not been found in general. However, Shor
showed that factorization of integers and computation of discrete logarithm
can be done efficiently by using quantum computers ([45]). So it is important
to find new computationally hard problems which are intractable even with
quantum computers and can be used to construct cryptosystems. We expect
that the diophantine problem is one of such problems. This problem is to
find integral or rational solutions of a given multivariate polynomial with
integer coefficients. Despite many researchers’ endeavor (see e.g. [29]), this
problem is usually a very difficult problem. Moreover Matijasevič showed
that there is no general method which determines the solvability of an ar-
bitrary diophantine equation ([15]). On the other hand, for any integers
a1, a2, · · · , an, it is easy to find a polynomial X(x1, · · · , xn) ∈ Z[x1, · · · , xn]
with X(a1, a2, · · · , an) = 0 (see §4.6.1). So we can expect that diophantine
equations can be used to construct new public key cryptosystems. Indeed
some cryptosystems based on this problem have already been proposed ([50],
[30], [35]). But the one-wayness of the cryptosystem proposed in [35] was
broken ([14]). On the other hand, cryptosystems in [50] and [30] are inter-
esting in theory, but these cryptosystems can be used only a few times with
the same key ([30], Proposition 2).

We can also consider the diophantine problem over global function fields.

3

4

This problem is also difficult and it is proved that there is no general method
which determines the solvability of an arbitrary diophantine equation ([41]).
The Algebraic Surface Cryptosystem (ASC) proposed in [1] is based on the
difficulty of the section finding problem (SFP), which can be viewed as a
diophantine problem with 2 variables over Fp[t] (or Fp(t)). In Chapter 1, we
give a brief rivew of ASC and some attacks against its one-wayness.

In Chapter 2, we show that solving SFP for X ∈ Fp[x, y, t] can be reduced
to solving a certain multivariate equation system of high degree depending on
X and its section. We call this system the section equation system for X. In
order to make SFP infeasible for the security of ASC, we need to estimate the
complexity of solving the section equation system. One of the most famous
methods to solve the multivariate equation systems is the Gröbner basis
method. The semi-regularity is important to estimating the complexity of a
Gröbner basis computation. In Chapter 2, we describe the importance of the
semi-regularity and derive the criterion for semi-regularity to judge whether
the section equation system for a given X is semi-regular or not. We show
some experimental results on the semi-regularity of the section equation by
using this criterion.

Chapter 3 used to be a survey on diophantine problems. In particular,
there were recalled some known results on diophantine approximation and
integral/rational points on varieties over number fields. Recalled also was
Baker’s theorem on lower bounds for linear forms in logarithms, which pro-
vides effective upper bounds for integral solutions to certain types of diophan-
tine equations with two variables. However, as the contents are well-known
and can be found easily in the existing literature, we have decided not to
include them in the final version of this thesis.

In number theory, there are many analogous problems between number
fields and function fields. There are many cases where problems over func-
tion fields have been solved while the corresponding problems over number
fields have hardly been solved. For example, there is an algorithm to fac-
torize elements of Fp[t] in probabilistic polynomial time ([7], [12]), while the
best known algorithm (the general number field sieve) for factorization in Z
takes subexponential time O(e(c+o(1))(logN)

1
3 (log logN)

2
3), where c = (9

64
)
1
3 and

N is an integer which we want to factorize ([34]). The Riemann Hypothe-
sis for function fields was proved by André Weil ([49]), while the Riemann
Hypothesis for Z still seems far beyond our reach. The abc conjecture for
function fields (the Mason-Stothers Theorem) was proved in [47] and [37],
while a proof of the abc conjecture for Z was announced just a few years ago
by Shinichi Mochizuki ([39]).

In Chapter 4, we propose four public key cryptosystems based on the dif-

5

ficulty of finding integral or rational solutions to diophantine equations over
integers. Our method is similar to ASC. Our first cryptosystem is essentially
the same as ASC but we use diophantine equations with n ≥ 2 variables. In
this cryptosystem, a secret key is a := (a1, . . . , an) ∈ Zn and a public key is a
polynomial X ∈ Z[x] := Z[x1, . . . , xn] such that X(a) := X(a1, . . . , an) = 0.
In the encryption process, the sender constructs the following polynomials:

Fi = m+ sif + riX (i = 1, 2),

where m ∈ Z[x] is the plaintext polynomial and si, f and ri are polynomi-
als in Z[x] satisfying some conditions. Then the sender sends (F1, F2). In
decryption process, we use the secret key and some arithmetics to get m(a)
and recover m from it. This is our basic cryptosystem.

The one-wayness of ASC can be broken by the ideal decomposition attack
([23]). In this attack, one constructs an ideal which contains a few polynomi-
als with the same form as the plaintext polynomial except for the plaintext
polynomial by using a decomposition of a certain ideal (essentially, a resul-
tant or a Gröbner basis is used). The similar method is applicable against
our cryptosystem. So, we test the effectiveness of the ideal decomposition
attack for our cryptosystem by experiments. According to our experiments,
this attack works well if n = 2. On the other hand if n ≥ 3, then this attack
succeeds in constructing the proper ideal containing a plaintext polynomial
in low probability.

Our first idea to avoid the ideal decomposition attack is to translate the
public key into another polynomial that we can eliminate by using a secret
key and some simple arithmetics. Our second and third cryptosystems are
based on this idea. More precisely, the sender chooses an integer ℓ and
constructs X ′(x, t) so that X = X ′(x, ℓ). In the decryption process, we get ℓ
by using the secret key and decrypt the ciphertext. However, we cannot say
that these cryptosystems are safe because one can also get ℓ without finding
a secret key.

Our second idea is to twist the plaintext polynomial by using some modu-
lar arithmetic and use a polynomial of degree increasing type (see Definition
4.5.1) as a public key. (We think that using this type of special polynomi-
als does not affect the security of our cryptosystem; see Theorem 4.7.1). If
one can construct the ideal containing the twisted plaintext polynomial by
a method similar to the ideal decomposition attack, then this ideal contains
many polynomials having the same form as the twisted plaintext polynomial
and those coefficients are as large as those of the twisted plaintext polyno-
mial. Our fourth cryptosystem, which is the main result of Chapter 4, is
based on these ideas. In this cryptosystem, we use three polynomials as

6

ciphertext polynomials and the GCD computation to avoid using the factor-
ization of integers. There are some known attacks against the one-wayness of
ASC other than the ideal decomposition attack. We also analyze the effec-
tiveness of attacks similar to them (§4.7). Although we have not been able
to give a security proof, our analysis shows that our fourth cryptosystem has
resistance against the above possible attacks including the ideal decomposi-
tion attack. We have not been able to propose an effective attack against it.
Finally, we estimate the size of keys of our fourth cryptosystem for providing
128-bit security. Our estimation shows that if we use integers d, e and a dio-
phantine equation with n variables and total degree w as the public key, then
the size of the secret key is at most (⌈ 128

n−1
⌉+1)n+⌈log2 d−log2 φ(d)⌉ bits and

the size of the public key is at most (⌈ 128
n−1

⌉ + 76 + ⌈log2 d − log2 φ(d)⌉)w +
65 + ⌈log2 e⌉ bits. We also estimate the size of ciphertexts to be at most
3
2
(w2 + w)(129 + 130w + ⌈log2 w⌉) + 129 + 65(w − 1) bits. In §4.9 we give

some examples of the size of keys and ciphertexts together with the time it
took to encrypt and decrypt.

Acknowledgments

I am grateful to my supervisor Yuichiro Taguchi for comments, corrections,
and suggestions on this research. I am also grateful to Koichiro Akiyama,
Noriko Hirata-Kohno, Attila Pethő, Takakazu Sato and Tsuyoshi Takagi for
useful comments, suggestions and discussions.

7

Contents

1 The Algebraic Surface Cryptosystem 11
1.1 Notation . 11
1.2 The section finding problem on algebraic surfaces 12
1.3 An algorithm of ASC . 12

1.3.1 System parameters . 12
1.3.2 Key generation . 13
1.3.3 Encryption . 13
1.3.4 Decryption . 14
1.3.5 Construction of X(x, y, t) 15
1.3.6 Recommended parameters 15
1.3.7 Known attacks . 15

2 Semi-regularity 21
2.1 Notation . 21
2.2 General method of solving SFP 21
2.3 Regular systems and semi-regular systems 22

2.3.1 Definition and properties 23
2.3.2 Criterion for semi-regularity 25

2.4 Semi-regularity of section equation systems 28
2.4.1 Algorithm . 28
2.4.2 Parameters . 29
2.4.3 Experimental results 30

3 A Survey on diophantine problems 33

4 Our cryptosystem 35
4.1 Notation . 35
4.2 Our cryptosystem 1 . 36

4.2.1 Algorithm . 36
4.2.2 Sizes of the system parameters 43
4.2.3 Security analysis . 43

9

10 CONTENTS

4.3 Our cryptosystem 2 . 47
4.3.1 Algorithm . 48
4.3.2 Security analysis . 49

4.4 Our cryptosystem 3 . 50
4.4.1 Algorithm . 50
4.4.2 Security analysis . 52

4.5 Our cryptosystem 4 . 52
4.5.1 Polynomials of degree increasing type 52
4.5.2 Outline of our cryptosystem 53

4.6 Algorithm of our cryptosystem 53
4.6.1 Key generation . 54
4.6.2 Encryption . 55
4.6.3 Decryption . 56
4.6.4 Recovering Algorithm 56
4.6.5 Improvement in Recovering Algorithm 57

4.7 Security analysis . 59
4.7.1 Reduction to solving a multivariate equation system I . 59
4.7.2 Reduction to solving a multivariate equation system II 60
4.7.3 Reduction to solving a multivariate equation system III 60
4.7.4 Reduction by X . 61
4.7.5 Rational point attack (solving X = 0) 61
4.7.6 Solving X(x/d)dwX ≡ 0 (mod dwX+1) 63
4.7.7 Ideal decomposition attack 63

4.8 Sizes of keys and cipherpolynomials 65
4.9 Examples . 67
4.10 Conclusion . 69

Chapter 1

The Algebraic Surface
Cryptosystem

In this chapter, we give a review of the Algebraic Surface Cryptosystem
(ASC) and known attacks against the one-wayness of ASC. The ASC was
proposed by Akiyama, Goto and Miyake ([1]). This cryptosystem is based
on computationally hard problem in algebraic geometry. In [1], it is called
the finding section problem (SFP) on algebraic surface fibered on an affine
line. In general, there is no algorithm to solve it in polynomial time even
if a quantum computer is built. Solving SFP is reduced to solving a cer-
tain multivariate polynomial system of high degree over a finite field (see
Chapter 2). It is known to be NP-complete ([25]). We can also view SFP
as a diophantine problem over global function fields and it is proved that
there is no general method which determines the solvability of an arbitrary
diophantine equation ([41]). So, ASC is expected to have resistance against
quantum computers (such cryptosystems are called post-quantum public key
cryptosystems). In [1], it is pointed out that one of the advantages of ASC is
the small key size. It is one of the shortest keys of the known post-quantum
public key cryptosystems when ASC was announced (see §1.3.6).

1.1 Notation

Let p be a prime number and Fp a finite field with p elements. For a poly-
nomial g =

∑
i,j gij(t)x

iyj =
∑

i,j,k gijkx
iyjtk ∈ Fp[x, y, t] we define

Λ(p)
g := {(i, j) ∈ Z2 | gij(t) ̸= 0},

Γ(p)
g := {(i, j, k) ∈ Z3 | gijk ̸= 0}.

11

12 CHAPTER 1. THE ALGEBRAIC SURFACE CRYPTOSYSTEM

For two subsets Λ1, Λ2 ⊂ (Z≥0)
2 we define

Λ1Λ2 := {(i1 + i2, j1 + j2) | (i1, j1) ∈ Λ1, (i2, j2) ∈ Λ2}.

This means that if Λ
(p)
i = Λ

(p)
fi

for some fi ∈ Fp[x, y, t], then Λ1Λ2 = Λ
(p)
f1f2

.
For each ideal J = (f1, . . . , fn) ⊂ Fp[x, y, t], each polynomial g ∈ Fp[x, y, t]
and each monomial ordering <, there are polynomials h, r ∈ Fp[x, y, t] such
that h ∈ J , g = h+ r and that no monomial of r is in the ideal generated by
the leading monomials of fi for i = 1, . . . , n. The r may depend on the choice
of a system of generators of J , but is uniquely determined if we calculate it
using a Gröbner basis of J . Then this unique r is called the normal form of
g with respect to J and <, and we denote it by NFJ(g).

1.2 The section finding problem on algebraic

surfaces

Let p be a prime number. The ASC makes use of a section to a fibration of an
algebraic surface to the afine line over Fp. More precisely, let X ∈ Fp[x, y, t]
be a polynomial which defines a surface S with a fibration σS : S → A1

Fp
over

the affine t-line. Then a map τ : A1
Fp

→ S over Fp satisfying σS ◦ τ = idA1
Fp

is called a section of σS. The section finding problem (SFP) on the surface
S is to find a section of σS.

On the other hand, X also defines a curve over Fp(t). We denote it by
C. There is a bijection between the set of sections of σS and the set of Fp(t)-
rational point on C. Thus, the SFP is restated as follows: the SFP on the
surface S is to find ux(t), uy(t) ∈ Fp[t] such that X(ux(t), uy(t), t) = 0. It
implies that we can view the SFP as the diophantine problem over global
function fields.

1.3 An algorithm of ASC

1.3.1 System parameters

The system parameters in ASC are as follows:

1. p : size of a finite field Fp;

2. Λ
(p)
1 : a finite subset of (Z≥0)

2;

3. D1 := {d(1)ij | (i, j) ∈ Λ
(p)
1 } ⊂ Z≥0.

1.3. AN ALGORITHM OF ASC 13

1.3.2 Key generation

1. Secret key
Choose two random polynomials ux(t), uy(t) ∈ Fp[t] of degree d.

2. Public key
For k = 2, 3, choose finite subsets Λ

(p)
k ⊂ (Z≥0)

2 and Dk = {d(k)ij |
(i, j) ∈ Λ

(p)
k } ⊂ Z≥0 so that the following hold:

(i) Λ
(p)
2 ⊂ Λ

(p)
1 Λ

(p)
3 .

(ii) For any polynomial fk =
∑

(i,j)∈Λ(p)
k

f
(k)
ij (t)xiyj ∈ Fp[x, y, t] (k =

1, 2, 3) with Λ
(p)
fk

= Λ
(p)
k and deg f

(k)
ij (t) = d

(k)
ij , we have

degx f1 < degx f2 < degx f3,
degy f1 < degy f2 < degy f3,
degt f1 < degt f2 < degt f3,

(degx f2, degy f2, degt f2) ∈ Γ
(p)
f2
,

(degx f3, degy f3, degt f3) ∈ Γ
(p)
f3
.

(1.1)

Construct an X(x, y, t) =
∑

(i,j)∈Λ(p)
1

cij(t)x
iyj ∈ Fp[x, y, t] such that

X(ux(t), uy(t), t) = 0, deg cij(t) = d
(1)
ij and cij(t) ̸= 0 for (i, j) ∈ Λ

(p)
1 .

In §1.3.5 we give a method to construct such a polynomial. For i = 2, 3,
make X, Λ

(p)
i and Di public.

1.3.3 Encryption

Assume that the sender wants to send a polynomialm(x, y, t) =
∑

(i,j)∈Λ(p)
2

mij(t)x
iyj ∈

Fp[x, y, t] with degmij(t) = d
(2)
ij for (i, j) ∈ Λ

(p)
2 .

1. For k = 1, 2, choose random polynomials in Fp[x, y, t]:

sk =
∑

(i,j)∈Λ(p)
1

s
(k)
ij (t)xiyj,

rk =
∑

(i,j)∈Λ(p)
3

r
(k)
ij (t)xiyj,

f =
∑

(i,j)∈Λ(p)
3

fij(t)x
iyj,

14 CHAPTER 1. THE ALGEBRAIC SURFACE CRYPTOSYSTEM

such that deg s
(k)
ij (t) = d

(1)
ij and deg r

(k)
ij (t) = deg fij(t) = d

(3)
ij . Note

that from (1.1), we have

degx X < degx m < degx f,
degy X < degy m < degy f,
degt X < degt m < degt f,

(degx m, degy m, degt m) ∈ Γ
(p)
m ,

(degx f, degy f, degt f) ∈ Γ
(p)
f .

(1.2)

2. Put Fi := m+ sif + riX for i = 1, 2, and send (F1, F2).

1.3.4 Decryption

1. For i = 1, 2, compute

hi(t) := Fi(ux(t), uy(t), t)

= m(ux(t), uy(t), t)

+si(ux(t), uy(t), t)f(ux(t), uy(t), t).

2. Factorize h1 − h2 and find a factor h3 of it whose degree is equal to
deg f(ux(t), uy(t), t). Note that from (1.2), we have

deg f(ux(t), uy(t), t) = deg h3 > degm(ux(t), uy(t), t).

3. Compute h4 := h1 (mod h3). Note that if h3 divides s1(ux(t), uy(t), t)f(ux(t), uy(t), t),
then h4 = m(ux(t), uy(t), t).

4. Extract m(x, y, t) from h4 by solving the following linear equation

h4 =
∑

(i,j,k)∈Γ(p)
m

mijku
i
xu

j
yt

k,

in variables mijk for (i, j, k) ∈ Γ
(p)
m , and put

m′(x, y, t) :=
∑

(i,j,k)∈Γ(p)
m

mijkx
iyjtk.

5. We can verify whether m′ = m or not by a MAC (message authenti-
cation code) of m. If the verification fails, then go back to step 2 and
choose another factor of h1 − h2.

1.3. AN ALGORITHM OF ASC 15

1.3.5 Construction of X(x, y, t)

We describe a method to construct a polynomial X(x, y, t) ∈ Fp[x, y, t] such
that X(ux(t), uy(t), t) = 0 for given polynomials ux(t), uy(t) ∈ Fp[t].

1. Choose a finite subset (0, 0) ∈ Λ(p) ⊂ (Z≥0)
2 and D := {(dij | (i, j) ∈

Λ(p)} ⊂ Z≥0.

2. Choose random non-zero polynomials cij(t) of degree dij for (i, j) ∈
Λ(p) ∖ {(0, 0)}.

3. Compute c00(t) := −
∑

(i,j)∈Λ(p)∖{(0,0)} cij(t)u
i
xu

j
y.

4. Define

X :=
∑

(i,j)∈Λ(p)

cij(t)x
iyj.

1.3.6 Recommended parameters

The designers of ASC proposed the following parameters:

• p = 2;

• d is at least 50;

• degx,y X := max{i+ j | (i, j) ∈ Λ
(p)
X } is at least 5;

• #Λ
(p)
X is at least 3.

For these parameters the size of public key is about 500 bits (cf. [1], §6).

1.3.7 Known attacks

We describe four possible attacks against ASC. For more details, see [1], §5
and [23].

16 CHAPTER 1. THE ALGEBRAIC SURFACE CRYPTOSYSTEM

Reduction to solving a multivariate equation system

Let

f ′(x, y, t) =
∑

(i,j,k)∈Γ(p)
f

f ′
ijkx

iyjtk,

s′(x, y, t) =
∑

(i,j,k)∈Γ(p)
s1

s′ijkx
iyjtk,

r′(x, y, t) =
∑

(i,j,k)∈Γ(p)
r1

r′ijkx
iyjtk,

m′(x, y, t) =
∑

(i,j,k)∈Γ(p)
m

m′
ijkx

iyjtk, (1.3)

where f ′
ijk, s

′
ijk, r

′
ijk and m′

ijk are variables. If one can get f by solving the
following quadratic equation system

F1 − F2 = (s1 − s2)f + (r1 − r2)X = s′f ′ + r′X,

then one may get m by solving NFI(m
′) = 0, where I = (f,X) ⊂ Fp[x, y, t].

In [1], it is pointed out that if #Γ
(p)
f > 50 and #Γ

(p)
s1 > 50, then finding so-

lutions of this system becomes computationally intractable, even if the r′ijk’s
are eliminated by substituting rational points of X over a finite extension of
Fp.

Reduction by X

Since X is made public, one can try to divide F1 − F2 by X to find f in the
remainder. But f does not appear in the remainder because of (1.2).

Rational point attack

Let F (x, y, t) := F1 − F2. Let f ′(x, y, t) and s′(x, y, t) be as above. Let
g(x, y, t) := s′(x, y, t)f ′(x, y, t). We write

g(x, y, t) =
∑

(i,j,k)∈Γ(p)
g

gijkx
iyjtk,

where gijk are polynomials in the coefficients of s′ and f ′ for (i, j, k) ∈ Γ
(p)
g .

For a large positive integer L and ℓ = 1, . . . , L, if one can find rational points

1.3. AN ALGORITHM OF ASC 17

(xℓ, yℓ, tℓ) on X(x, y, t) = 0 over a certain extension field of Fp, then one may
be able to get (s1 − s2)f by solving the following linear equation system

g(xℓ, yℓ, tℓ) = F (xℓ, yℓ, tℓ) (ℓ = 1, . . . , L). (1.4)

Then one can find f by factorization. Then one may get m by solving
NF(f,X,F1)(m

′) = 0. However, one cannot determine f and m uniquely. If
g0(x, y, t) ∈ Fp[x, y, t] satisfies (1.4), then g0 + rX also satisfies (1.4) and has
the same form as g for any polynomial r(x, y, t) ∈ Fp[x, y, t] having the same

form as f . In [1], it is pointed out that if p#Γ
(p)
r = pΓ

(p)
f > 2100, then we may

avoid this attack.

Ideal decomposition attack

As mentioned above, we can design ASC to avoid the above three attacks.
However, in [23] Faugére and Spaenlehauer proposed a new attack called the
ideal decomposition attack and claimed that this attack can fully break ASC.
The idea of this attack is to reconstruct the ideal I := (m, f,X) in Fp[x, y, t]
or the ideal J := (m + z, f,X) in Fp(t)[x, y, z] or (Fp[t]/(P (t)))[x, y, z] from
the data (F1, F2, X) by using the ideal decomposition (F1 − F2, X) = ((s1 −
s2)f,X) = I1

∩
I2 for some ideals (f,X) ⊂ I1 and I2. Then the following

equality holds:

(F1 + z, F2 + z,X) + I1 = (m+ z, f,X).

(Note that essentially, a resultant was used to reconstruct J in [23]). Let m′

be as in (1.3). Then one can get m by solving NFI(m
′) = 0 or NFJ(m

′ +
z) = 0, where z is a new variable and P is an irreducible polynomial in
Fp[t]. There are three versions of this attack called the Level 1, the Level
2 and the Level 3 attack, respectively. The largest difference between these
attacks is the polynomial ring under consideration. In the Level 1 attack, the
polynomial ring Fp[x, y, t] is used, and they gave an algorithm to reconstruct
the ideal I ⊂ Fp[x, y, t]. The most time consuming computation in this
attack is to compute a Gröbner basis of I to solve NFI(m

′) = 0. In [23], it
is pointed out that the Level 1 attack is not efficient and cannot break ASC
for the recommended parameters. In the Level 2 attack, the polynomial ring
Fp(t)[x, y, z] is used. In this case they gave an algorithm (which is similar to
the Level 1 attack) to reconstruct the ideal J ⊂ Fp(t)[x, y, z]. Note that the
new variable z is necessary because the ideal (m, f,X) is generically equal
to Fp(t)[x, y] (see [23] §3.2). The key which accelerates the computation of
Gröbner basis is the following observation: the polynomials occuring in ASC
have a high degree in t and a low degree in x and y. Thus, it is natural

18 CHAPTER 1. THE ALGEBRAIC SURFACE CRYPTOSYSTEM

to regard these polynomials as elements of Fp(t)[x, y] rather than elements
of Fp[x, y, t]. To make this attack more practical, in the Level 3 attack a
modular arithmetic was used, i.e., the polynomial ring (Fp[t]/(P (t)))[x, y, z]
is used for an irreducible polynomial P (t) with degP > degt m. The degree
in t of the polynomials appearing in the computation of Gröbner basis is
bounded by degP (t) and so using a polynomial P of small degree, for example
degP = degt m+1, makes this attack becomes more efficient than the Level
2 attack. Moreover, it is also possible to use a polynomial P (t) =

∏
i Pi(t)

such that Pi(t)’s are distinct irreducible polynomials and
∑

i degPi > degt m.
In this case for each i we compute m (mod Pi) and get m by the Chinese
Remainder Theorem. Since degPi < degP , we may have more efficient
attack by using P having an appropriate number of irreducible factors and
degree if degt m is large. Now, we give an algorithm of the Level 3 attack.

1. Choose a constant C and an integer n ≈ degt(m) · log p/C. Choose
n irreducible polynomials P1, . . . , Pn of degree ≈ C/ log p such that∑

1≤i≤n degPi > degt m. Set i = 1.

2. Let Ki := Fp[t]/(Pi).

3. Let F
(Pi)
k := Fk (mod Pi) and X(Pi) := X (mod Pi). Compute Q(y) :=

Resx(F
(Pi)
1 − F

(Pi)
2 , X(Pi)) ∈ Ki[y], the resultant of F

(Pi)
1 − F

(Pi)
2 and

X(Pi) with respect to x.

4. Factor Q(y) and let Q0(y) be an irreducible factor of highest degree.

5. Compute a Gröbner basis of the ideal J := (F
(Pi)
1 +z, F

(Pi)
2 +z,X(Pi), Q0) ⊂

Ki[x, y, z] with respect to the graded reverse lexicographical ordering.

6. Using the above Gröbner basis solve the following linear equation sys-
tem over Ki to get m(Pi) := m (mod Pi)

NFJ(m
′ + z) = 0,

where m′ is as above. If the system has no solution, then go back to
step 4 and choose another factor of Q.

7. If i < n, then replace i by i+ 1 and go back to step 2.

8. Recover m from m(Pi) by using the Chinese Remainder Theorem.

In [40], Ogura studied the ideal decomposition attack and proved the follow-
ing two lemmas.

1.3. AN ALGORITHM OF ASC 19

Lemma 1.3.1 ([40], Lemma 7.3.3). Let X, f , F1 and F2 be as above. Then

Resx(f,X) | Resx(F1 − F2, X).

Lemma 1.3.2 ([40], Lemma 7.3.4). Let K be either Fp(t) or Fp[t]/(P (t))
for some irreducible polynomial P (t) ∈ Fp[t]. Let X, f , s1, s2, F1 and F2 be
as above. We consider these polynomials as elements of K[x,y,z]. Let A and
B be elements of K[x, y, z] satisfying Af + BX = Resx(f,X). If the ideal
(A, s1 − s2, X) coincides with K[x,y,z], then the following equality holds:

(Resx(f,X), X, F1 + z, F2 + z) = (m+ z, f,X).

Note that the existence of the polynomials A and B in Lemma 4.2.4 is ensured
by the property of the resultant ([13]). Geometrically, the condition (A, s1−
s2, X) = K[x, y, z] means that there are no common solutions to A = 0,
s1 − s2 = 0 and X = 0 in the algebraic closure of K. Instinctively, in many
cases it seems to be true and the experimental result in [40] shows that this
attack is efficient against ASC.

Chapter 2

Semi-regularity of section
equation systems

The results in this chapter are joint works with Koichiro Akiyama. In this
section, we study the semi-regularity of equation systems arising from SFP.
In §2.2, we show that solving SFP is reduced to solving a certain multivariate
polynomial system of high degree over a finite field depending on X. When
we compute a Gröbner basis to solve this system by using F4, F5 or matrix
version of F5 algorithm ([21], [22], [3]) and estimate its complexity, it is
important to estimate the maximal degree of the polynomials appearing in
a Gröbner basis computation with these algorithms. If a polynomial system
which we want to solve is a semi-regular system, then it is easy to estimate
the upper bounds of the maximum degree in matrix version of F5 algorithm
(cf. §2.3).

2.1 Notation

Let p be a prime number and Fp a finite field with p elements. Let R be a
polynomial ring over Fp. Let

Rd := {f ∈ R | f is homogeneous of total degree d} ∪ {0}.

For a homogeneous ideal I ⊂ R, we denote Rd ∩ I by Id. For a polynomial
f ∈ R we denote by fh the homogeneous part of highest degree of f .

2.2 General method of solving SFP

Let p be a prime number and X ∈ Fp[x, y, t] a polynomial which defines
a surface S with a fibration σS : S → A1

Fp
over the affine t-line. Recall

21

22 CHAPTER 2. SEMI-REGULARITY

that the SFP on the surface S is to find ux(t), uy(t) ∈ Fp[t] such that
X(ux(t), uy(t), t) = 0. The general method of solving SFP is as follows:
Let

ux(t) =
∑

1≤i≤dx

αit
i,

uy(t) =
∑

1≤i≤dy

βit
i,

where αi and βi are varibles. We assume dx ≥ d and dy ≥ d. By substituting
them into X, we have

X(ux(t), uy(t), t) =
∑
0≤i≤r

fit
i,

where r = max{idx+jdy+k | (i, j, k) ∈ Λ
(p)
X } and fi ∈ Fp[α0, . . . , αdx , β0, . . . , βdy].

Thus, solving SFP is reduced to solving the following multivariate equation
system:

f0(α0, . . . , αdx , β0, . . . , βdy) = 0,
...
fr(α0, . . . , αdx , β0, . . . , βdy) = 0,
αp
0 − α0 = 0,

...
βp
dy

− βdy = 0.

Note that we need to add the equations called the field equations αp
0 − α0 =

0, . . . , βp
dy
−βdy = 0 because we only need a solution in Fp rather than a solu-

tion in the algebraic closure of Fp for cryptographic applications. We call this
equation system the section equation system for X. There are several meth-
ods to solve multivariate equation systems over finite fields, for example the
XL algorithm ([44]), the Zhuang-Zi algorithm ([17]) and the Gröbner basis
method ([33]). In this paper, we only consider the Gröbner basis method.

2.3 Regular systems and semi-regular systems

Let R := Fp[x1, . . . , xn] be a polynomial ring with n variables over Fp. Sup-
pose that p is an odd prime number. In this section we give the definition
of a regular sequence and a semi-regular sequence of R, and some properties
which relate to a Gröbner basis computation.

2.3. REGULAR SYSTEMS AND SEMI-REGULAR SYSTEMS 23

2.3.1 Definition and properties

First, we define a regular sequence of R.

Definition 2.3.1. Let {fi}1≤i≤m be a sequence of homogeneous elements of
R. This sequence is regular if fi is not a zero-divisor of R/(f1, . . . , fi−1) for
i = 1, . . . ,m.

In order to characterize regular sequences and semi-regular sequences of
R, we need to define the Hilbert function and the Hilbert series.

Definition 2.3.2. Let I ⊂ R be a homogeneous ideal of R. The Hilbert
function HFI(·) and the Hilbert series HSI(z) of I are defined as follows:

HFI(d) := dimFp Rd − dimFp Id, (2.1)

HSI(z) :=
∑
d≥0

HFI(d)z
d. (2.2)

For d < 0, we define HFI(d) := 0.

The next proposition shows the characterization of regular sequences by
the Hilbert series and the importance of regular sequences for a Gröbner
basis computation.

Proposition 2.3.3. Let {fi}1≤i≤m be a sequence of homogeneous elements
of R. Let di be the total degree of fi. Then, the following holds:

(i) The sequence {fi}1≤i≤m is regular if and only if the Hilbert series of the
ideal (f1, . . . , fm) is given by∏

1≤i≤m(1− zdi)

(1− z)n
.

(ii) After a generic linear change of variables, the highest degree of ele-
ments of a Gröbner basis for the degree reverse lexicographic ordering
is bounded by the index of regularity∑

1≤i≤m

(di − 1) + 1.

(iii) The sequence {fi}1≤i≤m is regular if and only if there are no reduction
to 0 in F5 algorithm.

24 CHAPTER 2. SEMI-REGULARITY

Proof. For proof of the property (i), see [32], Theorem 6.6 (pp. 436) and [24],
pp. 137. The property (ii) is given by [33] and [26]. The property (iii) is
proved in [22].

Geometrically, the sequence {fi}1≤i≤m of homogeneous elements of R is
regular when the algebraic set defined by the ideal (f1, . . . , fi) has codimen-
sion i for i = 1, . . . ,m. This shows that if m > n, then {fi}1≤i≤m is not
regular for each sequence {fi}1≤i≤m of homogeneous elements of R since the
Krull dimension of R is n. The number of equations of a section equation sys-
tem is larger than the number of variables because we add the field equations.
So, we need a concept of semi-regularity.

Definition 2.3.4. Let {fi}1≤i≤m be a sequence of homogeneous elements of
R. This sequence is d-regular if gfi ∈ (f1, . . . , fi−1) and deg gfi < d implies
g ∈ (f1, . . . , fi−1) for i = 1, . . . ,m and g ∈ R.

Definition 2.3.5. Let I be a homogeneous ideal of R. Suppose that the
dimension of I is 0, i.e., the Krull dimension of R/I is zero. Then the degree
of regularity of I is defined by

dreg := min{d | dimFp Id = #{monomials of R with degree d}}.

In other words, the degree of regularity of I is the minimal integer d such
that Rd = Id.

The next lemma ([6], Theorem 6.54) ensures the existence of the degree
of regularity of the zero-dimensional ideal.

Lemma 2.3.6. Let I ⊂ R be a homogeneous ideal. Then the dimension of
I is 0 if and only if dimFp R/I =

∑
d≥0 dimFp Rd/Id is finite.

For a homogeneous ideal I ⊂ R, Rd = Id implies Rk = Ik for k > d, i.e.,
HFI(d) = 0 implies HFI(k) = 0 for k > d. So, the degree of regularity of I is
degHSI(z)+1 if the dimension of I is 0. Now we can define the semi-regular
sequences of R.

Definition 2.3.7. Let {fi}1≤i≤m be a sequence of homogeneous elements of
R. Suppose that the dimension of the ideal (f1, . . . , fm) is 0. Let dreg be
the degree of regularity of the ideal (f1, . . . , fm) ⊂ R. Then {fi}1≤i≤m is
semi-regular if it is dreg-regular.

Definition 2.3.8. Let {fi}1≤i≤m be a sequence of elements of R. The se-
quence {fi}1≤i≤m is semi-regular if {fh

i }1≤i≤m is semi-regular.

2.3. REGULAR SYSTEMS AND SEMI-REGULAR SYSTEMS 25

The next theorem shows the importance of semi-regularity to estimate
the complexity of a Gröbner basis computation.

Theorem 2.3.9. Let {fi}1≤i≤m be a semi-regular sequence of homogeneous
elements of R. Suppose that the dimension of the ideal (f1, . . . , fm) is 0. Let
di be the total degree of fi. Let∏

1≤i≤m(1− zdi)

(1− z)n
=
∑
i≥0

aiz
i.

Then, the following statements hold:

(i) For m ≤ n, the sequence {fi}1≤i≤m is regular if and only if it is semi-
regular.

(ii) The degree of regularity of the ideal (f1, . . . , fm) is given by

dreg = min{i | ai ≤ 0}.

(iii) Let dreg be the degree of regularity of the ideal (f1, . . . , fm). We assume
that the sequence {fi}1≤i≤m is semi-regular. Then there is no reduc-
tion to 0 in matrix version of F5 algorithm for degrees smaller than
dreg during computations of a Gröbner basis of the ideal (f1, . . . , fm).
Moreover, the total number of arithmetic operations in Fp performed by
matrix version of F5 algorithm is bounded by

O

((
n+ dreg

n

)ω)
,

where the exponent ω < 2.39 is the exponent in the complexity of matrix
multiplication.

Proof. See [4] for the proof of statements (i) and (ii). For statement (iii) see
[3], Theorem 3.2.10.

2.3.2 Criterion for semi-regularity

We derive the criterion for semi-regularity to judge the semi-regularity of the
section equation systems. Our criterion is the same as the criterion proposed
in [4] or [3] but we give more detailed description.

Theorem 2.3.10. Let {fi}1≤i≤m be a sequence of homogeneous elements of
R and I(i) := (f1, . . . , fi) (we define I(0) as the zero ideal (0)). Let di be

26 CHAPTER 2. SEMI-REGULARITY

the total degree of fi. Suppose that the dimension of I(m) is 0. Then, the
sequence {fi}1≤i≤m is d-regular if and only if the following holds:

HFI(i)(d
′) = HFI(i−1)(d′)−HFI(i−1)(d′−di) (for i = 1, . . . ,m and 0 ≤ d′ < d).

In particular, the sequence {fi}1≤i≤m is semi-regular if and only if the fol-
lowing holds:

HFI(i)(d
′) = HFI(i−1)(d′)−HFI(i−1)(d′−di) (for i = 1, . . . ,m and 0 ≤ d′ < dreg),

where dreg is the degree of regularity of I(m).

Proof. For an integer d′ ≥ di we consider the linear map of Fp-vector spaces

ϕd′,i : Rd′−di/I
(i−1)
d′−di

−→ Rd′/I
(i−1)
d′

given by g (mod I
(i−1)
d′−di

) 7→ gfi (mod I
(i−1)
d′). Then we have

(Rd′/I
(i−1)
d′)/Imϕd′,i

∼= (Rd′/I
(i−1)
d′)/((Rd′−difi + I

(i−1)
d′)/I

(i−1)
d′)

∼= Rd′/(Rd′−difi + I
(i−1)
d′) = Rd′/I

(i)
d′ .

It implies

dimFp Rd′/I
(i)
d′ = HFI(i)(d

′) = dimFp Rd′/I
(i−1)
d′ − dimFp Imϕd′,i

= HFI(i−1)(d′)− dimFp Imϕd′,i.

For i = 1, . . . ,m, because Imϕd′,i ≤ dimFp Rd′−di/I
(i−1)
d′−di

, we have

HFI(i)(d
′) ≥ HFI(i−1)(d′)−HFI(i−1)(d′ − di). (2.3)

The sequence {fi}1≤i≤m is d-regular (d > di) if and only if ϕd′,i is injective
for i = 1, . . . ,m and di ≤ d′ < d, i.e.,

dimFp ϕd′,i = dimFp Rd′−di/I
(i−1)
d′−di

= HFI(i−1)(d′ − di).

Thus, the sequence {fi}1≤i≤m is d-regular (d > di) if and only if the following
equality holds:

HFI(i)(d
′) = HFI(i−1)(d′)−HFI(i−1)(d′ − di),

for i = 1, . . . ,m and di ≤ d′ < d. This equation is satisfied for 0 ≤ d′ < di
because HFI(i−1)(d′ − di) = 0 and I

(i)
d′ = I

(i−1)
d′ are satisfied for d′ < di. Thus,

we have proved this theorem.

2.3. REGULAR SYSTEMS AND SEMI-REGULAR SYSTEMS 27

This theorem implies that we have to compute various Hilbert functions
to judge the semi-regularity of the sequence {fi}1≤i≤m. If we compute Hilbert
functions of I(i) by using the method proposed in [5], we have to compute a
Gröbner basis of I(i).

Next, we derive the more efficient criterion for semi-regularity from this
theorem.

Theorem 2.3.11. Let {fi}1≤i≤m, di and I(i) be as above. Suppose that the
dimension of I(m) is 0. Let

Sm,n(z) :=

∏
1≤i≤m(1− zdi)

(1− z)n
.

Then, the sequence {fi}1≤i≤m is d-regular if and only if the following holds:

∑
0≤d′<d

HFI(m)(d′)zd
′
= ⌈Sm,n(z)⌉d, (2.4)

where ⌈
∑

i≥0 aiz
i⌉d =

∑
0≤i<d aiz

i. In particular, the sequence {fi}1≤i≤m is
semi-regular if and only if the following holds:

HSI(m)(z) = ⌈Sm,n(z)⌉dreg = [Sm,n(z)] , (2.5)

where dreg is the degree of regularity of I(m) and
[∑

i≥0 aiz
i
]
=
∑

i≥0 biz
i with

bi = ai if aj > 0 for 0 ≤ j ≤ i and bi = 0 otherwise.

Proof. The inequality (2.3) implies that there are integers ai,d′ ≥ 0 such that

HFI(i)(d
′) = HFI(i−1)(d′)−HFI(i−1)(d′ − di) + ai,d′ ,

for i = 1, . . . ,m and d′ ≥ 0. Multiplying the above equality by zd
′
and

summing over d′ ≥ 0 leads to

∑
d′≥0

HFI(i)(d
′)zd

′
=
∑
d′≥0

HFI(i−1)(d′)zd
′ −
∑
d′≥0

HFI(i−1)(d′− di)z
d′ +

∑
d′≥0

ai,d′z
d′ ,

28 CHAPTER 2. SEMI-REGULARITY

for i = 1, . . . ,m. So, we have

HSI(m)(z) = (1− zdm)HSI(m−1)(z) +
∑
d′≥0

am,d′z
d′

= (1− zdm)

(
(1− zdm−1)HSI(m−2)(z) +

∑
d′≥0

am−1,d′z
d′

)
+
∑
d′≥0

am,d′z
d′

...

=
∏

1≤i≤m

(1− zdi)HS(0)(z) +
∑

2≤i≤m

(∏
i≤j≤m

(1− zdj)
∑
d′≥0

ai−1,d′z
d′

)
+
∑
d′≥0

am,d′z
d′

= Sm,n(z) +
∑

2≤i≤m

(∏
i≤j≤m

(1− zdj)
∑
d′≥0

ai−1,d′z
d′

)
+
∑
d′≥0

am,d′z
d′ .

Note that HS(0)(z) = (
∑

i≥0 z
i)n = 1

(1−z)n
because by definition, we have

HF(0)(d) = dimFp Rd =

(
n+ d− 1

d

)
.

Proposition 2.3.10 implies that the sequence {fi}1≤i≤m is d-regular if and
only if ai,d′ = 0 for i = 1, . . . ,m and 0 ≤ d′ < d. This proves (2.4) and
the first equality of (2.5). The second equality of (2.5) is obtained from
HFI(m)(dreg) = 0 and ai,d′ ≥ 0. Thus, we have proved this theorem.

The second criterion (Theorem 2.3.11) implies that we only have to com-
pute the Hilbert function of I(m) to determine the d-regularity or semi-
regularity of the sequence {fi}1≤i≤m.

2.4 Semi-regularity of section equation sys-

tems

In this section we give the experimental results on the semi-regularity of the
section equation systems for X(x, y, t) ∈ Fp[x, y, t].

2.4.1 Algorithm

In order to determine the semi-regularity of the section equation systems for
X, we take the following steps:

2.4. SEMI-REGULARITY OF SECTION EQUATION SYSTEMS 29

1. For a given X ∈ Fp[x, y, t], construct the section equation system for
X:

f0(α0, . . . , αdx , β0, . . . , βdy) = 0,
...
fr(α0, . . . , αdx , β0, . . . , βdy) = 0,
αp
0 − α0 = 0,

...
βp
dy

− βdy = 0.

(2.6)

Note that deg fi = degx,y X for i = 1, . . . , r.

2. Let I := (fh
1 , . . . , f

h
r , α

p
0, . . . , β

p
dy
). Note that the dimension of I is

0 because any prime ideal of Fp[α0, . . . , αdx , β0, . . . , βdy] cantaining I
contains the maximal ideal (α0, . . . , βdy).

3. Let

Sm,n(z) :=
∏

1≤i≤r

(1− zdegx,y X)(1− zp)2+dx+dy/(1− z)n

= (1− zdegx,y X)r(1− zp)2+dx+dy/(1− z)n.

4. Compute HSI(z) and compare it with [Sm,n(z)].

2.4.2 Parameters

We use the following parameters:

• p : the number of elements of a base finite field;

• w : degx,y X; degree of X with respect to x and y;

• NonRed-Monos (nrm) : the number of distinct monomials in (2.6) other
than the field equations;

• dc : deg cij(t) for (i, j) ∈ Λ
(p)
X ∖ {(0, 0)}, where cij(t) is a coefficient of

a monomial xiyj of X, i.e., X =
∑

(i,j)∈Λ(p)
X

cij(t)x
iyj;

• dx : deg ux(t), where ux(t) =
∑

0≤i≤dx
αit

i;

• dy : deg uy(t), where uy(t) =
∑

0≤i≤dy
βit

i;

• dreg : the degree of regularity of the ideal (fh
1 , . . . , f

h
r , α

p
0, . . . , β

p
dy
);

30 CHAPTER 2. SEMI-REGULARITY

• dsemi : the degree of regularity of the ideal (f
h
1 , . . . , f

h
r , α

p
0, . . . , β

p
dy
) when

the section equation system is semi-regular, i.e., dsemi = deg ([Sm,n(z)])+
1;

• dmax : the maximal degree of polynomials appearing in the Gröbner ba-
sis computation except for the polynomials arising from section equa-
tion systems.

2.4.3 Experimental results

For each set of parameters, we construct a random X ∈ Fp[x, y, t] with its
section and the section equation system for X. Then we determine the
semi-regularity of the section equation system for X by using the above
algorithm. We use the computer algebra system Magma ([10]) to perform
those processes. We also collect the maximal degree reached during the
Gröbner basis computation by applying Magma function Groebner and its
Verbose output. We repeat each experiment 1000 times for each parameter.

In the following we show the experimental results on the semi-regularity of
the section equation system for X. We also show the values of dreg, dsemi and
dmax together with their frequencies. Our result shows that in many cases,
the section equation systems are not semi-regular for small w and d. As nrm
and dc increase, dsemi is a good approximation to dmax and the variations of
dreg and dmax decrease.

We think that these results are interesting and it is necessary to exper-
iment on the semi-regularity of the section equation systems for large pa-
rameters. It is also important to find parameters such that there is at least
one section equation system which is semi-regular, or prove that there are
infinitely many parameters or only finite parameters such that there is at
least one section equation system which is semi-regular.

2.4. SEMI-REGULARITY OF SECTION EQUATION SYSTEMS 31

Table 2.4.1: Semi-regularity of section equation systems

p d w nrm dc frequency (times) dreg dsemi dmax

11 2 3 84 0 0 31 (916 times) 8 2 (1 times)
33 (76 times) 3 (1 times)
35 (8 times) 4 (4 times)

5 (74 times)
6 (920 times)

11 2 3 84 1 838 7 (838 times) 7 5 (2 times)
8 (71 times) 6 (160 times)
9 (10 times) 7 (838 times)
31 (81 times)

11 2 3 84 2 0 7 (987 times) 6 5 (5 times)
21 (2 times) 6 (995 times)
31 (11 times)

11 2 3 84 3 824 6 (896 times) 6 5 (4 times)
7 (104 times) 6 (996 times)

32 CHAPTER 2. SEMI-REGULARITY

Table 2.4.2: Semi-regularity of section equation systems (continuation)

p d w nrm dc frequency (times) dreg dsemi dmax

11 2 4 100 2 0 9 (134 times) 8 5 (3 times)
11 (130 times) 6 (366 times)
31 (336 times) 7 (353 times)
33 (329 times) 8 (278 times)
35 (71 times)

11 2 4 155 2 0 9 (416 times) 8 6 (14 times)
10 (2 times) 7 (240 times)

31 (558 times) 8 (746 times)
33 (24 times)

11 2 4 210 2 0 9 (992 times) 8 7 (3 times)
31 (8 times) 8 (997 times)

11 2 4 100 3 0 9 (134 times) 8 5 (3 times)
11 (131 times) 6 (376 times)
31 (336 times) 7 (367 times)
33 (329 times) 8 (254 times)
35 (70 times)

11 2 4 155 3 0 9 (413 times) 8 5 (2 times)
31 (539 times) 6 (30 times)
33 (48 times) 7 (390 times)

8 (578 times)
11 2 4 210 3 0 9 (997 times) 8 7 (5 times)

31 (3 times) 8 (995 times)
11 2 4 100 4 0 9 (130 times) 8 5 (11 times)

11 (119 times) 6 (387 times)
31 (351 times) 7 (602 times)
33 (335 times)
35 (65 times)

11 2 4 155 4 0 8 (308 times) 8 6 (14 times)
9 (130 times) 7 (986 times)
31 (536 times)
33 (36 times)

11 2 4 210 4 0 8 (921 times) 8 7
9 (79 times)

Chapter 3

A Survey on diophantine
problems

This chapter used to be a survey on diophantine problems. However, as the
contents are well-known and can be found easily in the existing literature,
we have decided not to include them in the final version of this thesis.

33

Chapter 4

Our cryptosystem

In this chapter we give four cryptosystems based on the difficulty of finding
solutions of diophantine equations.

4.1 Notation

We denote by Z[x] := Z[x1, . . . , xn] the polynomial ring with n variables.
For a vector i := (i1, . . . , in) ∈ (Z≥0)

n we write xi := xi1
1 · · · xin

n and
∑

i :=∑
1≤j≤n ij. For a finite subset Λ ⊂ (Z≥0)

n and a polynomial

f =
∑

(i1,...,in)∈Λ fi1···inx
i1
1 · · · xin

n =
∑

i fix
i ∈ Z[x] we define

Λf := {i ∈ (Z≥0)
n | fi ̸= 0},

Γf := {(i, bi) ∈ Λf × Z>0 | 2bi−1 ≤ |fi| < 2bi}.

We call Λf the support of f . For two finite subsets Λ1, Λ2 ⊂ (Z≥0)
n, we

define the product of Λ1 and Λ2 as follows:

Λ1Λ2 := {i1 + i2 | i1 ∈ Λ1, i2 ∈ Λ2}.

This means that if Λi = Λfi for some polynomials fi ∈ Z[x], then Λ1Λ2 =
Λf1f2 . For example, for f1 = 5x4

1x
2
2x3 − 13x2

1x2 +7x3 +2 and f2 = 8x2
1x

2
2x3 −

9x1x
2
2 + 6x3 − 11, we have

Λf1 := {(4, 2, 1), (2, 1, 0), (0, 0, 1), (0, 0, 0)},
Γf1 := {(4, 2, 1, 3), (2, 1, 0, 4), (0, 0, 1, 3), (0, 0, 0, 2)},
Λf2 := {(2, 2, 1), (1, 2, 0), (0, 0, 1), (0, 0, 0)},
Γf2 := {(2, 2, 1, 4), (1, 2, 0, 4), (0, 0, 1, 3), (0, 0, 0, 4)}.

35

36 CHAPTER 4. OUR CRYPTOSYSTEM

We also have

Λf1Λf2 = {(6, 4, 2), (5, 4, 1), (4, 3, 1), (4, 2, 2), (4, 2, 1), (3, 3, 0), (2, 2, 2), (2, 2, 1),
(2, 1, 1), (2, 1, 0), (1, 2, 1), (1, 2, 0), (0, 0, 2), (0, 0, 1), (0, 0, 0)} = Λf1f2 .

We denote by wf the total degree of f . Define

Cn(f) := {fi | i ∈ Λf ,
∑

i = n},
H(f) := max{|fi| | i ∈ Λf}.

We call the elements of Cn(f) the coefficients of f of degree n. For a vector
b := (b1, . . . , bn) ∈ Qn, we denote by f(b) the value of f at b. For an integer
d, we denote by b/d the vector (b1

d
, . . . , bn

d
). For each ideal J ⊂ Q[x], each

polynomial f ∈ Q[x] and each monomial ordering <, we denote by NFJ(f)
a normal form of f with respect to J and <. For a polynomial f ∈ Z[x] and
an integer m, we denote by f

(m)
the polynomial f (mod m) ∈ (Z/mZ)[x].

4.2 Our cryptosystem 1

First, we try to construct a similar cryptosystem to ASC. However, there are
no algorithms to factorize integers in polynomial time. So this cryptosystem
is not efficient. Moreover, we show that if n = 2, 3, the attack which is
similar to the ideal decomposition attack can break the one-wayness of this
cryptosystem.

4.2.1 Algorithm

System parameters

The system parameters in our cryptosystem are as follows:

1. n : the number of variables of the polynomials in our cryptosystem;

2. b : bit length of a secret key;

3. w : the total degree of a public key;

4. Λ1 : a finite subset of (Z≥0)
n;

5. D1 := {d(1)i | i ∈ Λ1} ⊂ Z≥0.

For the size of b, see §4.2.2.

4.2. OUR CRYPTOSYSTEM 1 37

Key generation

1. Secret key
Choose a vector a = (a1, . . . , an) ∈ Zn such that 2b−1 ≤ |ai| < 2b for
i = 1, . . . , n. Make them secret.

2. Public key
For k = 2, 3, choose finite subsets Λk ⊂ (Z≥0)

n and Dk = {d(k)i | i ∈
Λk} ⊂ Z≥0 so that the following holds:

(i) Λ2 ⊂ Λ1Λ3.

(ii) For any polynomial fk =
∑

i∈Λk
f
(k)
i xi ∈ Z[x] (k = 1, 2, 3) with

Λfk = Λk and 2d
(k)
i −1 ≤ f

(k)
i < 2d

(k)
i , we have

degx1
f1 < degx1

f2 < degx1
f3,

...
degxn

f1 < degxn
f2 < degxn

f3,

max{d(1)i | i ∈ Λ1} < max{d(2)i | i ∈ Λ2} < max{d(3)i | i ∈ Λ3},
(degx1

f2, . . . , degxn
f2,max{d(2)i | i ∈ Λ2}) ∈ Γf2 ,

(degx1
f3, . . . , degxn

f3,max{d(3)i | i ∈ Λ3}) ∈ Γf3 .

(4.1)

Construct an irreducible polynomial X(x) ∈ Z[x] such that X(a) = 0

and ΓX = {(i, d(1)i) | i ∈ Λ1}. For i = 2, 3, make X, Λi and Di public.

We give a method to construct a public key X with X(a) = 0.

1. Choose a finite subset Λ ⊂ (Z≥0)
n containing 0.

2. For i ∈ Λ′ := Λ∖ {0}, choose random non-zero integers ci.

3. Let c0 := −
∑

i∈Λ′ cia
i and define

X :=
∑
i∈Λ

cix
i.

Encryption

Assume that the sender wants to send a polynomial m(x) =
∑

i∈Λ2
mix

i ∈
Z[x] with Γm = {(i, d(2)i) | i ∈ Λ2}.

38 CHAPTER 4. OUR CRYPTOSYSTEM

1. For k = 1, 2, choose random polynomials

sk =
∑
i∈Λ1

s
(k)
i xi,

rk =
∑
i∈Λ3

r
(k)
i xi,

f =
∑
i∈Λ3

fix
i,

in Z[x] such that Γsk = ΓX and Γrk = Γf = {(i, d(3)i) | i ∈ Λ3}. Note
that from (4.1), we have

degx1
X < degx1

m < degx1
f,

...
degxn

X < degxn
m < degxn

f,

max{d(1)i | i ∈ ΛX} < max{d(2)i | i ∈ Λm} < max{d(3)i | i ∈ Λf},
(degx1

m, . . . , degxn
m,max{d(2)i | i ∈ Λm}) ∈ Γm,

(degx1
f, . . . , degxn

f,max{d(3)i | i ∈ Λf}) ∈ Γf .

(4.2)

2. Put Fi := m+ sif + riX for i = 1, 2, and send (F1, F2).

Decryption

1. For i = 1, 2, compute

hi := Fi(a) = m(a) + si(a)f(a).

2. Factorize h1 − h2. Find a factor h3 of it whose bit length is equal to
bit(f) := max{d(3)i | i ∈ Λ3}+log2 a

k bits, where k is the element of Λf

such that
∑

k = wf . If there is no such a factor, then we let h3 be the
largest factor having bit length close to bit(f). Note that from (4.2),
we can expect that h3 and f(a) have the same bits and h3 > m(a).

3. Compute h4 := h1 (mod h3). Note that if h3 divides s1(a)f(a), then
h4 = m(a).

4. Extract m(x) from h4. Then we assume that we obtain m′(x) (cf.
§4.2.1).

5. We can verify whether m′ = m or not by a MAC (message authenti-
cation code) of m. If the verification fails, then go back to step 2 and
choose another factor of h1 − h2.

4.2. OUR CRYPTOSYSTEM 1 39

Recovering m from m(a)

We consider the conditions to recover m from m(a) uniquely. More precisely,
we consider the following problem:

Problem : For a given vector b ∈ Zn and a map σb : Z[x] −→ Z by g 7→ g(b),
find a subset S ⊂ Z[x] such that σb|S is injective.

Let S be a subset of (Z[x] such that σa|S is injective. If m ∈ S, then we can
recover m from m(a) uniquely. We give some examples of such subsets.

Proposition 4.2.1. Let a and σa be as above and amin := min{|a1|, . . . , |an|}.
Define

Λ = {i1, . . . , ik} ⊂ (Z≥0)
n
(∑

ij ≤
∑

ij+1

)
,

SΛ,1 :=

g ∈ Z≥0[x] | Λg = Λ, |aij | > H(g)
∑

i∈{i1,...,ij−1}

|ai| for j = 1, . . . , k

 .

If ij,ℓ ≤ ij+1,ℓ for j = 1, . . . , k − 1 and ℓ = 1, . . . , n, then we define

SΛ,2 := {g ∈ Z≥0[x] | Λg = Λ, H(g) < amin},

where ij = (ij,1, . . . , ij,n). If d := gcd(a1, . . . , an) > 1, gcd
(∏

1≤i≤n ai

dn
, d
)
= 1

and
∑

ij <
∑

ij+1 for j = 1, . . . , k − 1, then we define

SΛ,3 := {g ∈ Z≥0[x] | Λg = Λ, H(g) < d}.

Then σa|SΛ,i
is injective for i = 1, 2, 3.

Proof. We assume that σa|SΛ,1
is not injective. Let g

(1)
1 =

∑
g
(1)
1,i x

i and g
(1)
2 =∑

g
(1)
2,i x

i be distinct elements of SΛ,1 such that g
(1)
1 (a) = g

(1)
2 (a). Without loss

of generality, we may assume H
(
g
(1)
1

)
≥ H

(
g
(1)
2

)
. Let j1 := max{j | g(1)1,ij

̸=

g
(1)
2,ij

}. Then

g
(1)
1 (a)− g

(1)
2 (a) =

∑
1≤j≤j1

(
g
(1)
1,ij

− g
(1)
2,ij

)
aij = 0.

Thus we have∣∣∣∣∣ ∑
1≤j≤j1−1

(
g
(1)
1,ij

− g
(1)
2,ij

)
aij

∣∣∣∣∣ =
∣∣∣(g(1)2,ij1

− g
(1)
1,ij1

)
aij1
∣∣∣

>
∣∣∣(g(1)2,ij1

− g
(1)
1,ij1

)∣∣∣H (g(1)1

) ∑
1≤j≤j1−1

∣∣aij ∣∣ .

40 CHAPTER 4. OUR CRYPTOSYSTEM

It implies∑
1≤j≤j1−1

∣∣∣(g(1)1,ij
− g

(1)
2,ij

)aij
∣∣∣ > ∣∣∣(g(1)2,ij1

− g
(1)
1,ij1

)∣∣∣H (g(1)1

) ∑
1≤j≤j1−1

∣∣aij ∣∣ .
This is a contradiction because

∣∣∣g(1)1,ij
− g

(1)
2,ij

∣∣∣ ≤ ∣∣∣(g(1)2,ij1
− g

(1)
1,ij1

)∣∣∣H (g(1)1

)
.

We assume that σa|SΛ,2
is not injective even if ij,ℓ ≤ ij+1,ℓ for j = 1, . . . , k−

1 and ℓ = 1, . . . , n. Let g
(2)
1 =

∑
g
(2)
1,i x

i and g
(2)
2 =

∑
g
(2)
2,i x

i be distinct

elements of SΛ,2 such that g
(2)
1 (a) = g

(2)
2 (a). Let j2 := min{j | g(2)1,ij

̸= g
(2)
2,ij

}.
Then we have

g
(2)
1 (a)− g

(2)
2 (a) =

∑
j2≤j≤k

(
g
(2)
1,ij

− g
(2)
2,ij

)
aij = 0.

Our assumption implies that aij is divisible by aij2 for j = j2+1, . . . , k. Thus
we have

g
(2)
1,ij2

− g
(2)
2,ij2

= −
∑

j2+1≤j≤k

(
g
(2)
1,ij

− g
(2)
2,ij

)
aij−ij2 .

The right hand side of the above equation is divisible by a
ij,ℓ−ij2,ℓ
ℓ for some

ℓ because of our assumption. On the other hand, we have
∣∣∣g(2)1,ij2

− g
(2)
2,ij2

∣∣∣ <
|amin| by definition of S2. Thus we have a contradiction.

Finally, we assume that σa|SΛ,3
is not injective even if d := gcd(a1, . . . , an) >

1, gcd
(∏

1≤i≤n ai

dn
, d
)

= 1 and
∑

ij <
∑

ij+1 for j = 1, . . . , k − 1. Let

g
(3)
1 =

∑
g
(3)
1,i x

i and g
(3)
2 =

∑
g
(3)
2,i x

i be distinct elements of SΛ,3 such that

g
(3)
1 (a) = g

(3)
2 (a). Let j3 := min{j | g(3)1,ij

̸= g
(3)
2,ij

}. Then we have

g
(3)
1 (a)− g

(3)
2 (a) =

∑
j3≤j≤k

(
g
(3)
1,ij

− g
(3)
2,ij

)
aij = 0.

It implies (
g
(3)
1,ij3

− g
(3)
2,ij3

)
aij3 = −

∑
j3+1≤j≤k

(
g
(3)
1,ij

− g
(3)
2,ij

)
aij .

The right hand side of the above equation is divisible by d
∑

ij3+1 . On the other
hand, the left hand side is not divisible by d

∑
ij3+1 because of

∑
ij3 <

∑
ij3+1

and
∣∣∣g(3)1,ij3

− g
(3)
2,ij3

∣∣∣ < d. This is a contradiction. Thus we have proved this

proposition.

4.2. OUR CRYPTOSYSTEM 1 41

Algorithms

Let Λ, SΛ,1, SΛ,2 and SΛ,3 be as in Proposition 4.2.1. For g ∈ SΛ,i, we can
recover g from g(a) by solving the following linear diophantine equation:∑

i∈Λ

gia
i − g(a) = 0,

where gi’s are variables. This equation has infinitely many solutions. How-
ever, Proposition 4.2.1 implies that we can recover g uniquely if an upper
bound of H(g) is given. In the following, we also give another algorithm to
recover g ∈ SΛ,i from g(a).

An algorithm for SΛ,1 : We assume ai > 0 for i ∈ Λ and an upper bound
of H(g) is given by M ∈ Z. Let g =

∑
i∈Λ gix

i ∈ SΛ,1.

1. First, we find gik by using the following formula:

gik =

{
M if Maik ≤ g(a),

g′ik if g′ika
ik ≤ g(a) < (g′ik + 1)aik .

2. For 1 ≤ j < k we find gij by using the following inductive formula:

gij =

{
M if Maij ≤ g(a)−

∑
j+1≤ℓ≤k giℓa

iℓ ,

g′ij if g′ija
ij ≤ g(a)−

∑
j+1≤ℓ≤k giℓa

iℓ < (g′ij + 1)aij .

An algorithm for SΛ,2 : We assume ij,ℓ ≤ ij+1,ℓ for j = 1, . . . , k − 1 and
ℓ = 1, . . . , n, where ij = (ij,1, . . . , ij,n) for j = 1, . . . , k. Let g =

∑
i∈Λ gix

i ∈
SΛ,2.

1. First, we find gi1 by using the following formula:

g1 :=
g(a)

ai1
= gi1 +

∑
2≤j≤k

gija
ij−i1 ,

gi1 = g1 (mod ai2−i1).

2. For 2 ≤ j ≤ k we find gij by using the following inductive formula:

gj :=
g(a)−

∑
1≤ℓ≤j−1 giℓa

iℓ

aij
= gij +

∑
j+1≤ℓ≤k

giℓa
iℓ−ij ,

gij = gj (mod aij+1−ij).

42 CHAPTER 4. OUR CRYPTOSYSTEM

An algorithm for SΛ,3 : We assume d := gcd(a1, . . . , an) > 1, gcd
(∏

1≤i≤n ai

dn
, d
)
=

1 and
∑

ij <
∑

ij+1 for j = 1, . . . , k − 1. Let bi :=
ai
d
for i = 1, . . . , n and

b := (b1, . . . , bn). Let g =
∑

i∈Λ gix
i ∈ SΛ,3.

1. First, we find gi1 by using the following formula:

g1 :=
g(a)

d
∑

i1
= gi1b

i1 +
∑

2≤j≤k

gijb
ijd

∑
(ij−,i1),

gi1 = g1b
−i1 (mod d).

2. For 2 ≤ j ≤ k we find gij by using the following inductive formula:

gj :=
g(a)−

∑
1≤ℓ≤j−1 giℓa

iℓ

d
∑

ij
= gijb

ij +
∑

j+1≤ℓ≤k

giℓb
iℓd

∑
(iℓ−ij),

gij = gjb
−ij (mod d).

Proposition 4.2.2. Let Λ, SΛ,1, SΛ,2 and SΛ,3 be as above. The above algo-
rithms for SΛ,i are correct.

Proof. The correctness of the algorithms for SΛ,2 and SΛ,3 are clear. We
prove the correctness of the algorithm for SΛ,1. Let g =

∑
i∈Λ gix

i ∈ SΛ,1. We
assume gij ̸= M, g′ij for some j. Let j1 := max{j | gij ̸= M, g′ij}. We note that

gij1 is smaller than M and g′ij1
. We assume Maij1 ≤ g(a)−

∑
j1+1≤j≤k gija

ij .

Then we have

g(a)−
∑

j1+1≤j≤k

gija
ij −Maij1 = (gij1 −M)aij1 +

∑
1≤j≤j1−1

gija
ij > 0.

This is a contradiction because of aij1 > H(g)
∑

1≤j≤j1−1 a
ij . Similarly, we

can derive a contradiction when

g′ij1
aij1 ≤ g(a)−

∑
j1+1≤j≤k

gija
ij < (g′ij1

+ 1)aij1 .

Thus we have proved this proposition.

We return to recovering the plaintext m. If we choose Λ2 = Λm so that
SΛm,i ̸= ∅ and choose m ∈ SΛm,i for some i, we can recover m uniquely.
However, in many cases amin and d (= gcd(a1, . . . , an)) are smaller than
H(X). Then any elements of SΛm,2 and SΛm,3 do not satisfy the condition

4.2. OUR CRYPTOSYSTEM 1 43

H(m) > H(X). On the other hand, it is easy to choose Λi for i = 1, 2, 3 such
that Λ2 ⊂ Λ1Λ3 and {g ∈ SΛ2,1 | H(g) > H(X)} ̸= ∅. For example, choose
k1 := (k1,1, . . . , k1,n) ∈ (Z≥0)

n so that k1,i > degxi
X and |ak1 | > H(X) + 1.

Let k2 := (k1,1 + 1, . . . , k1,n + 1), (Λm =)Λ2 := {k1, 0} and (Λf =)Λ3 :=
{k1, k2, 0}. Then we have the desired subsets of (Z≥0)

n.

4.2.2 Sizes of the system parameters

For the sizes of n and w, see §4.7.5. We assume 128-bit security. We estimate
the size of b to achieve 128-bit security. A typical brute force attack is
as follows: One chooses a random vector (b1, . . . , bn−1) and factorize the
polynomial X(b1, . . . , bn−1, xn) in xn. If X(b1, . . . , bn−1, xn) has a factor of
the form (xn − bn) for some integer bn, then (b1, . . . , bn) is a solution to
X = 0. So we should choose a secret key a = (a1, . . . , an) such that |ai| is
sufficiently large for i = 1, . . . , n to avoid the brute force attack. Since the
number of choices of the vector (b1, . . . , bn−1) which satisfies 2b−1 ≤ |bi| < 2b

is 2(n−1)(b−1)+1 (we may use bi < 0). Thus we should choose the system
parameter b so that

(n− 1)(b− 1) + 1 ≥ 128, (4.3)

to achieve 128-bit security.

4.2.3 Security analysis

The ideal decomposition attack is the attack against ASC. A similar attack
is applicable to our cryptosystem 1. So we need to test the effectiveness of
this attack. We give an algorithm of the ideal decomposition attack of Level
3.

1. Choose k prime numbers p1, . . . , pk such that
∏

1≤i≤k pi ≥ 2max{d(2)i |i∈Λ2} >
H(m). Set i = 1.

2. Let Ki := Z/piZ.

3. Compute Q(x2, . . . , xn) := Resx1

(
F

(pi)

1 − F
(pi)

2 , X
(pi)
)
∈ Ki[x2, . . . , xn]

the resultant of F
(pi)

1 −F
(pi)

2 and X
(pi)

with respect to x1. (Recall that

F
(pi)

j := Fj (mod pi)).

4. Factor Q(x2, . . . , xn) and let Q0(x2, . . . , xn) be an irreducible factor of
highest degree.

44 CHAPTER 4. OUR CRYPTOSYSTEM

5. Compute a Gröbner basis of the ideal J := (F
(pi)

1 +z, F
(pi)

2 +z,X
(pi)

, Q0) ⊂
Ki[x] with respect to the graded reverse lexicographical ordering.

6. Using the above Gröbner basis, solve the following linear equation sys-
tem over Ki to get m(pi):

NFJ

∑
i∈Λm

m′
ix

i + z

 = 0,

where m′
i’s are variables. If the system has no solution, then go back

to step 4 and choose another factor of Q.

7. If i < n, then replace i by i+ 1 and go back to step 2.

8. Recover m from m(pi) by using the Chinese Remainder Theorem.

We give the analogue of Lemma 1.3.1 and Lemma 1.3.2 for our case.
Essensially, their proofs are the same as Lemma 7.3.3 and Lemma 7.3.4 in
[40], respectively.

Lemma 4.2.3. Let X, f , F1 and F2 be as above. Then for i = 1, . . . , n, we
have

Resxi
(f,X) | Resxi

(F1 − F2, X).

Lemma 4.2.4. Let K be either Q or Z/pZ for some prime number p. Let
X, f , s1, s2, F1 and F2 be as above. We consider these polynomials as
elements of K[x,z]. Let Ai and Bi be elements of K[x] satisfying Aif+BiX =
Resxi

(f,X). If the ideal (Ai, s1−s2, X) coincides with K[x], then the following
equality holds:

(Resxi
(f,X), X, F1 + z, F2 + z) = (m+ z, f,X).

These lemmas justify taking step 4, step 5 and step 6 in the above algo-
rithm.

Experimental results

To test the effectiveness of the ideal decomposition attack against our cryp-
tosystem, we take following steps.

1. Choose positive integers n, w, b, bc, df and dm. We assume n ≥ 2 and
dm < df .

4.2. OUR CRYPTOSYSTEM 1 45

2. Choose a secret key a := (a1, . . . , an) ∈ Z such that 2b−1 ≤ |ai| < 2b for
i = 1, . . . , n.

3. Let Λ1 := {i ∈ (Z≥0)
n |
∑

i ≤ w}.

4. Choose non-zero random integers ci for i ∈ Λ′
1 := Λ1 ∖ {0} such that

2bc−1 ≤ |ci| < 2bc .

5. Let c0 := −
∑

i∈Λ′
1
cia

i. Define

X(x) :=
∑
i∈Λ1

cix
i.

6. Let ki,m = degxi
X + dm for i = 1, . . . , n and km := (k1,m, . . . , kn,m).

7. Let Λ2 := {xkm , 0}. If {g ∈ SΛ2,1 | H(X) < H(g)} ̸= ∅, then construct
m :=

∑
i∈Λ2

mix
i so that m ∈ SΛ2,1, mkm

= H(m) ≤ 2H(X) and

H(m) < akm . Otherwise, go back to the step 1 and choose other
parameters.

8. Let ki,f = degxi
X + df for i = 1, . . . , n and kf := (k1,f , . . . , kn,f).

9. Let Λ3 := {(i1, . . . , in) ∈ (Z≥0)
n | ij ≤ kj,f (j = 1, . . . , n)}.

10. Let fkf be a random integer such that 2H(X) < |fkf | ≤ 4H(X).

11. Choose non-zero random integers fi for i ∈ Λ2∖{k} such that 2H(X) <
|fi| ≤ |fkf |. Define

f(x) :=
∑
i∈Λ2

fix
i.

Note that the above f , m and X satisfy the condition (4.2).

12. Put Fi := m + sif + riX for i = 1, 2, where si and ri are random
polynomials in Z[x] such that Γsi = ΓX and Γri = Γf .

13. Choose an integer e. Let p1, . . . , pk be prime numbers such that the
following hold:

(i)

p1 ≥

{
⌊(2H(X))

1
e ⌋ if 2H(X) < akm ,

⌊akm/e⌋ if 2H(X) ≥ akm .

(ii) If 2H(X) < akm , then
∏

1≤i≤k−1 pi ≤ 2H(X) <
∏

1≤i≤k pi. Other-

wise,
∏

1≤i≤k−1 pi ≤ akm <
∏

1≤i≤k pi.

46 CHAPTER 4. OUR CRYPTOSYSTEM

(iii) For i = 1, . . . , k − 1, pi+1 is the next prime number of pi

14. Apply the ideal decomposition attack described above with F1 and F2

by using p1, . . . , pk.

We use a computer Windows 8.1 Pro 64 bit with Intel(R) Core(TM) i7-
3840QM CPU 2.80 GHz, with 8 GB of RAM. We implemented in Magma
V2.19-7 ([10]). For each parameter, we experiment 10 times. In Table 4.2.1,
we show their averages when n = 2. We see that if n = 2, then this at-
tack is efficient. On the other hand, experimentally, if n ≥ 3, then this at-

tack failed in constructing the ideal
(
m(pi) + z, f

(pi)
, X

(pi)
)
with high prob-

ability. Moreover, even if this attack succeeded in constructing the ideal(
m(pi) + z, f

(pi)
, X

(pi)
)
, it coincides with the whole ring Fpi [x, z]. Then any

polynomials having the same form as m(pi)+z are contained in the ideal. So,
there is no meaning for this attack.

The next Proposition and Lemma 4.2.4 may show the reason why it hap-
pens.

Proposition 4.2.5. Let K be either Q or Z/pZ for some prime number p.
Let X, f , s1, s2, F1 and F2 be as above. We consider these polynomials
as elements of K[x,z]. Let Ai and Bi be the elements of K[x] satisfying
Aif +BiX = Resxi

(f,X). Let

V (Ai, s1 − s2, X) := {c ∈ K
n | Ai(c) = s1(c)− s2(c) = X(c) = 0},

V (f) := {c ∈ K
n | f(c) = 0}.

Assume that V (Ai, s1 − s2, X) ̸⊂ V (f). Then the following equality

(Resxi
(f,X), X, F1 + z, F2 + z) = (m+ z, f,X),

implies (Ai, s1 − s2, X) = K[x], where K is the algebraic closure of K.

Proof. The equality (Resxi
(f,X), X, F1 + z, F2 + z) = (m + z, f,X) implies

that there are four polynomials g1, g2, g3 and g4 in K[x, z] satisfying

f = g1(Aif +BiX) + g2(F1 + z) + g3(F2 + z) + g4X

= (Aig1 + s1g2 + s2g3)f + (g2 + g3)(m+ z) (4.4)

+(Big1 + r1g2 + r2g3 + g4)X.

We assume (Ai, s1 − s2, X) ̸= K[x]. Then V (Ai, s1 − s2, X) ̸⊂ V (f) implies
that there is at least one element c ∈ V (Ai, s1 − s2, X) such that f(c) ̸= 0.
By substituting c for (4.4) into x, we have

f(c) = s1(c)(g2(c, z) + g3(c, z))f(c) + (g2(c, z) + g3(c, z))(m(c) + z)

= (g2(c, z) + g3(c, z))(m(c) + s1(c)f(c) + z).

4.3. OUR CRYPTOSYSTEM 2 47

It implies that m(c) + s1(c)f(c) + z divides f(c). This is a contradiction
because degz(m(c)+s1(c)f(c)+z) = 1. Thus we have proved this proposition.

In order to improve this attack, we consider the polynomial ring Fp(xi1)[xi2 , xi3]
or (Fp[xi1]/(P))[xi2 , xi3] for some irreducible polynomial P (xi1) ∈ Fp[xi1]
({i1, i2, i3} = {1, 2, 3}) as in the Level 2 or the Level 3 attack described in
§1.3.7 when n = 3. Then this attack works well. In Table 4.2.2, we show the
experimental results when n = 3 and we use the ring (Fp[x1]/(P (x1)))[x2, x3]
for some irreducible polynomial P ∈ Fp[x1]. When w = 3, 5, we use a ran-
dom irreducible polynomial of degree 5, two random irreducible polynomials
of degree 3 and degree 4, respectively. Note that in this case, we compute

Resx2(F
(pi)

1 − F
(pi)

2 , X
(pi)

) instead of Resx1(F
(pi)

1 − F
(pi)

2 , X
(pi)

) in the step 3
of the ideal decomposition attack algorithm.

Table 4.2.1: The effectiveness of the ideal decomposition attack for 2 variables
n wX b bc df dm Time(sec)
2 5 129 10 2 1 3.114
2 5 129 100 2 1 4.176
2 10 129 100 2 1 243.764

Table 4.2.2: The effectiveness of the ideal decomposition attack for 3 variables
n wX b bc df dm Time(sec)
3 3 65 10 2 1 106.1796
3 3 65 100 2 1 152.8076
3 5 65 10 2 1 11740.008
3 5 65 100 2 1 13853.562

4.3 Our cryptosystem 2

To avoid the ideal decomposition attack, our first idea is to transform X
and m into another polynomial X ′ and m′, respectively so that if we know
a solution a to X = 0, then we can recover X and m from X ′ and m′,
respectively. For example, the sender chooses an integer ℓ and constructs
X ′(x, t) and m′(x, t) so that X = X ′(x, ℓ) and m = m′(x, ℓ) are satisfied.
For any polynomial X2 ∈ Z[x] the sender computes F (x2, . . . , xn, t, z) :=
Resx1(X

′, X2− z). Then we can get ℓ by factorizing F (a2, . . . , an, t, X2(a)) if
we know X2.

48 CHAPTER 4. OUR CRYPTOSYSTEM

4.3.1 Algorithm

We propose the following cryptosystem based on the above idea.

System parameters

The system parameters in our cryptosystem are as follows:

1. n : the number of variables of the polynomials in our cryptosystem;

2. b : bit length of a secret key;

3. w : the total degree of a public key;

4. Λ1 : a finite subset of (Z≥0)
n;

5. D1 := {d(1)i | i ∈ Λ1} ⊂ Z≥0.

For the size of b, see §4.2.2.

Key generation

1. Secret key
Choose a vector a = (a1, . . . , an) ∈ Zn such that 2b−1 ≤ |ai| < 2b for
i = 1, . . . , n. Make them secret.

2. Public key
For k = 2, 3, choose finite subsets Λk ⊂ (Z≥0)

n and Dk = {d(k)i | i ∈
Λk} ⊂ Z≥0 such that Λ2 ⊂ Λ1Λ3. Choose an irreducible polynomial

X1(x) ∈ Z[x] such that X1(a) = 0 and ΓX1 = {(i, d(1)i) | i ∈ Λ1}.
Choose an arbitrary polynomial X2(x) ∈ Z[x]. For i = 2, 3, make X1,
X2, Λi and Di public.

Encryption

Assume that the sender wants to send a polynomial m(x) =
∑

i∈Λ2
mix

i ∈
Z[x] with Γm = {(i, d(2)i) | i ∈ Λ2}.

1. Choose an integer ℓ and construct polynomials X ′(x, t) and m′(x, t) so
that X1(x) = X ′(x, ℓ) and m(x) = m′(x, ℓ).

2. Choose a random polynomial r ∈ Z[x] such that Γr = {(i, d(3)i) | i ∈
Λ3}.

4.3. OUR CRYPTOSYSTEM 2 49

3. Put F1 := m′ + rX ′ and F2 := Resx1(X
′, X2 − z), where z is a new

variable. Send (F1, F2).

We give a method to construct X ′ by using X1 and ℓ.

1. Let X1 =
∑

i∈ΛX1
cix

i.

2. For i ∈ ΛX1 , choose random polynomials gi(t) ∈ Z[t].

3. Let c′i(t) := gi(t− ℓ) + ci for i ∈ ΛX1 .

4. Define

X ′ :=
∑
i∈ΛX1

c′i(t)x
i.

The step 3 implies X1(x) = X ′(x, ℓ). Similarly, we construct m′(x, t).

Decryption

1. Compute h2(t) := F2(a, t,X2(a)).

2. Factorize h2(t) and find its factors of degree 1; {(t− ℓ1), . . . , (t− ℓk)}.
Because X1 = 0 and X2−X2(a) = 0 have the same solution a, we have
h2(ℓ) = 0. So ℓ = ℓi for some i.

3. Compute h1,i := F (a, ℓi) for i = 1, . . . , k.

4. Extract m(x) from h1,i and assume that we obtain m′
i(x) for i =

1, . . . , k.

5. We can verify whether m′
i = m or not by a MAC (message authentica-

tion code) of m for i = 1, . . . , k. Note that ℓ = ℓj implies m(a) = h1,j

and m′
j = m.

4.3.2 Security analysis

We show that the one-wayness of this cryptosystem can be broken because
one can get ℓ without solving X1 = 0. Because X1 and X2 are made public,
one can compute F3 := Resx1(X1, X2 − z). Let F := F2 − F3. The condition
X1(x) = X ′(x, ℓ) implies F (x, ℓ, z) = 0. It means that F is divisible by
(t− ℓ). So one can find ℓ by factorizing F . If one gets ℓ, one may get m by
using the ideal I := (F1(x, ℓ), X1) and the normal form NFI(·).

50 CHAPTER 4. OUR CRYPTOSYSTEM

Remark 4.3.1. To avoid this attack, let F2 := Resx1((sX1)
′, X2 − z), where

sX1 = (sX1)
′(x, ℓ) for some s ∈ Z[x]. Then F := F2 − F3 is not divisible by

(t − ℓ). However, in this case one can also get ℓ in probabilistic polynomial
time. We assume that an upper bound of ℓ is given by L. Let p1, . . . , pk be
prime numbers with

∏
1≤i≤k pi > L and ℓi an integer such that ℓi ≤ pi and

ℓi ≡ ℓ (mod pi) for i = 1, . . . , k. If we find solutions ai ∈ Zn to X1 ≡ 0
(mod pi) for i = 1, . . . , k, then sX1 ≡ 0 (mod pi) and X2 −X2(ai) ≡ 0 (mod
pi) have the common solution ai for i = 1, . . . , k. Thus ℓi is the solution to

h(t) := F2(ai, t, X2(ai)) ≡ 0 (mod pi). This means that h
(pi)

(t) is divisible by
(t− ℓi). If one can find ℓi for i = 1, . . . , k, then one can get ℓ by the Chinese
Remainder Theorem.

4.4 Our cryptosystem 3

Our next cryptosystem is based on the following idea: let X be a polynomial
in Z[x] and a ∈ Zn a solution to X = 0. Let X ′ and ℓ be as above. The
condition X1(x) = X ′(x, ℓ) implies that X ′(a, t) is divisible by (t − ℓ). Let
F := m′(t− ℓ) + rX ′. Then F (a, t) is divisible by (t− ℓ) and so we can get
ℓ without using resultants.

4.4.1 Algorithm

We propose the following cryptosystem based on the above idea.

System parameters

The system parameters in our cryptosystem are as follows:

1. n : the number of variables of the polynomials in our cryptosystem;

2. b : bit length of a secret key;

3. w : the total degree of a public key;

4. Λ1 : a finite subset of (Z≥0)
n;

5. D1 := {d(1)i | i ∈ Λ1} ⊂ Z≥0.

For the size of b, see §4.2.2.

4.4. OUR CRYPTOSYSTEM 3 51

Key generation

1. Secret key
Choose a vector a = (a1, . . . , an) ∈ Zn such that 2b−1 ≤ |ai| < 2b for
i = 1, . . . , n. Make them secret.

2. Public key
For k = 2, 3, choose finite subsets Λk ⊂ (Z≥0)

n and Dk = {d(k)i | i ∈
Λk} ⊂ Z≥0 such that Λ2 ⊂ Λ1Λ3. Choose an irreducible polynomial

X(x) ∈ Z[x] such that X(a) = 0 and ΓX = {(i, d(1)i) | i ∈ Λ1}. For
i = 2, 3, make X, Λi and Di public.

Encryption

Assume that the sender wants to send a polynomial m(x) =
∑

i∈Λ2
mix

i ∈
Z[x] with Γm = {(i, d(2)i) | i ∈ Λ2}.

1. Choose an integer ℓ and construct polynomials X ′(x, t) and m′(x, t) so
that X1(x) = X ′(x, ℓ), X ′(a, t) is divisible by (t−ℓ)2 and m = m′(x, ℓ).

2. Choose a random polynomial r =
∑

i∈Λ3
ri(t)x

i ∈ Z[x, t] such that

ri(t) ̸= 0 and deg ri = d
(3)
i for i ∈ Λ3.

3. Put F := m′(t− ℓ) + rX ′. Send F .

We give a method to construct X ′ by using X1 and ℓ.

1. Let X =
∑

i∈ΛX1
cix

i.

2. For i ∈ ΛX , choose random non-zero polynomials gi(t) ∈ Z[t].

3. Let c′i(t) := gi(t− ℓ)2 + ci for i ∈ ΛX .

4. Define

X ′ :=
∑
i∈ΛX

c′i(t)x
i.

The step 3 implies that X1(x) = X ′(x, ℓ) and X ′(a, t) is divisible by (t −
ℓ)2. Note that we may construct m′(x, t) by the method described in §4.3.1
because the condition that m′(a, t) − m(a) is divisible by (t − ℓ)2 is not
necessary for this cryptosystem.

52 CHAPTER 4. OUR CRYPTOSYSTEM

Decryption

1. Compute h(t) := F (a, t).

2. Factorize h(t) and find its factors of degree 1; {(t − ℓ1), . . . , (t − ℓk)}.
Because X ′(a, t) is divisible by (t− ℓ)2, ℓ = ℓi for some i.

3. Let hi(t) := h(t)/(t− ℓi) and compute hi(ℓi) for i = 1, . . . , k. Note that
if ℓi = ℓ, then hi(ℓi) = m(a).

4. Extract m(x) from hi(ℓi) and assume that we obtain m′
i(x) for i =

1, . . . , k.

5. We can verify whether m′
i = m or not by a MAC (message authentica-

tion code) of m for i = 1, . . . , k.

4.4.2 Security analysis

We show that the one-wayness of this cryptosystem can be broken because
one can get ℓ without solving X = 0 and construct an ideal containing
m(t − ℓ). The construction of X ′ described in §4.4.1 implies X ′ = X +∑

i∈ΛX
gi(t)(t−ℓ)2. SoNF(X)(X

′) is divisible by (t−ℓ)2. BecauseNF(X)(m
′(t−

ℓ)) is also divisible by (t − ℓ), one can get ℓ by factorizing NF(X)(F) =
NF(X)(m

′(t − ℓ)) + NF(X)(rX
′). We show that the ideal (F,X, (t − ℓ)2)

contains m(t − ℓ). The construction of m′ described in §4.3.1 implies m′ =
m+mt(t− ℓ) for some mt ∈ Z[x, t]. Thus, we have

m(t− ℓ) = F −mt(t− ℓ)2 − r

X +
∑
i∈ΛX

gi(t)(t− ℓ)2

 ∈ (F,X, (t− ℓ)2).

So one would get m by solving NF(F,X,(t−ℓ)2)(
∑

i∈Λm
m′

ix
i(t− ℓ)) = 0, where

m′
i’s are variables.

4.5 Our cryptosystem 4

4.5.1 Polynomials of degree increasing type

Before we describe our cryptosystem, we define the following notion which is
one of our key ideas to construct our cryptosystem.

Definition 4.5.1. Define a map σ : Zn −→ Z by i 7→
∑

i. A polynomial
X ∈ Z[x] is of degree increasing type if σ|ΛX

is injective. In other words, X

4.6. ALGORITHM OF OUR CRYPTOSYSTEM 53

is of degree increasing type if and only if for each k ∈ Z, X has at most one
term of degree k.

Example 4.5.2. If X(x, y) := 5x3y2 + 12xy2 + 7xy + 6x + 5, then X is of
degree increasing type.

Let X ∈ Z[x] be a polynomial of degree increasing type. Then we can
define the total order in Λf as follows: for i1, i2 ∈ Λf , we define i1 ≥ i2 if∑

i1 ≥
∑

i2. Since Λf is finite, there is a maximal element k. We call the
coefficient of degree

∑
k of X the leading coefficient of X and denote it by

ld(X).

4.5.2 Outline of our cryptosystem

We use an analogous method to ASC. More precisely, we use a polynomial
X(x) ∈ Z[x] of degree increasing type and a solution a = (a1

d
, . . . , an

d
) ∈ Qn

to X = 0 as a public key and a secret key, respectively. A plaintext is given
as a polynomial m ∈ Z[x]. We use the following polynomials in Z[x] as cipher
polynomials in our cryptosystem:

Fi(x) := m̃+ sif + riX (i = 1, 2, 3),

where m̃, si, f and ri are polynomials in Z[x] with ΛX = Λm̃ = Λf = Λsi =
Λri . The polynomial m̃ is constructed from a plaintext polynomial m ∈ Z[x]
and has large coefficients (see §4.6.2). We need to have ΛX = Λm̃ = Λf =
Λsi = Λri and translate m into m̃ to avoid the ideal decomposition attack
and other attacks (see §4.7). It is the lagest difference between ASC and
our cryptosystem. Recall that wX is the total degree of X. We compute
hi := Fi(a), H1 := (F1(a) − F2(a))d

2wX , H2 := (F1(a) − F3(a))d
2wX and

g := gcd(H1, H2) to get m̃(a)dwX . Unlike factorizing a polynomial in Fp[t],
it is hard to factorize integers and so we use three polynomials as cipher
polynomials and a GCD computation to get f(a)dwX . If g = f(a)dwX and
g > m̃(a)dwX , then we can get m̃(a)dwX by computing H := h1d

2wX (mod
d) and Hd−wX (mod d). If we can get m̃(a)dwX , then we can recover m by
the Recovering Algorithm (RA) described in §4.6.4. In order to use RA, m̃
must be of degree increasing type (see §4.6.4) and for security reasons (§4.7),
an X must have the same support as m̃. So we use X which is of degree
increasing type.

4.6 Algorithm of our cryptosystem

Now, we describe our cryptosystem.

54 CHAPTER 4. OUR CRYPTOSYSTEM

System parameters

The system parameters in our cryptosystem are as follows:

1. n : the number of variables of the polynomials in our cryptosystem;

2. w : the total degree of a public key;

3. d : a positive integer.

For the size of n and w, see §4.7.5. For the size of d, see §4.7.7.

4.6.1 Key generation

1. Secret key
Choose a vector a = (a1, . . . , an) ∈ Zn of a suitable size1 such that
gcd(ai, d) = 1 for i = 1, . . . , n. Make them secret.

2. Public key
Choose an integer e of a suitable size2 such that gcd(e, φ(d)) = 1.
Choose an irreducible polynomial X(x) ∈ Z[x] of degree increasing
type such that X(a/d) = 0 and #ΛX ≤ w = wX . Make e, X (and ΛX)
public.

We give a method to construct a public key X of degree increasing type
with X(a/d) = 0.

1. Choose a finite subset Λ ⊂ (Z≥0)
n such that #{

∑
i | i ∈ Λ} = #Λ.

2. Let k = (k1, . . . , kn) be the maximal element of Λ. For i ∈ Λ′ :=
Λ∖ {0, k}, choose random non-zero integers ci.

3. Choose c0 and ck so that

cka
k + c0d

w

dw
= −

∑
i∈Λ′ cia

idw
′−

∑
i

dw′ ,

where w′ = max{
∑

i | i ∈ Λ′}, by solving the linear diophantine
equation

cka
k + c0d

w = −
∑
i∈Λ′

cia
idw−

∑
i. (4.5)

1The size of ai should be |ai| ≥ 2
⌈ 128
n−1

⌉+1
d

φ(d) for i = 1, . . . , n, where φ(·) is the Euler

function. (For the reason of this choice, see §4.8.)
2The size of e should be e ≥ 129 + 65w. (For the reason of this choice, see §4.8.)

4.6. ALGORITHM OF OUR CRYPTOSYSTEM 55

4. Define
X :=

∑
i∈Λ

cix
i.

The condition on Λ (step 1 above) means that X is of degree increasing type.
The equation (4.5) means that X(a/d) = 0.

Remark 4.6.1. Let s = (s1, . . . , sn) ∈ Zn be a vector such that si ̸= 0 for
i = 1, . . . , n and gcd(

∏
i ai,

∏
i si) = 1. It is possible to construct X such

that X(a1
s1d

, . . . , an
snd

) = 0. In this case, one must search for a secret key in Q
instead of Z ⊂ Q. Thus, finding a secret key or a solution to X = 0 may be
complicated. Let k′ = (k′

1, . . . , k
′
n) be the maximal element of Λ′. We assume

that k′
i ≤ ki for i = 1, . . . , n. In this case we must choose c0 and ck so that

cka
k + c0d

wsk

dwsk
= −

∑
i∈Λ′ cia

is
k′1−i1
1 · · · sk

′
n−in

n dw
′−

∑
i

dw′sk′
,

where i = (i1, . . . , in), by solving the linear diophantine equation

cka
k + c0d

wsk = −
∑
i∈Λ′

cia
isk1−i1

1 · · · skn−in
n dw−

∑
i. (4.6)

If we define
X :=

∑
i∈Λ

cix
i,

then the equation (4.6) means that X(a1
s1d

, . . . , an
snd

) = 0.

4.6.2 Encryption

Assume that the sender wants to send a polynomial m(x) =
∑

i∈Λm
mix

i ∈
Z[x] (1 < mi < d and gcd(mi, d) = 1) with Λm = ΛX .

1. Choose a positive integer N such that Nd is larger than the absolute
value of each coefficient of X. We assume that an upper bound of N
is given.

2. Construct a polynomial m̃(x) with Λm̃ = Λm as follows:
Let m̃i be an integer such that 0 < m̃i < Nd and m̃i ≡ me

i (mod Nd),
and put m̃(x) =

∑
i∈Λm

m̃ix
i.

3. Choose a random polynomial f ∈ Z[x] with Λf = ΛX such thatH(m̃) <
ld(f) < Nd and ld(f) is relatively prime to d. We also assume that all
coefficients of f except ld(f) are also as large as the coefficients of m̃.

56 CHAPTER 4. OUR CRYPTOSYSTEM

4. Choose random polynomials si and ri in Z[x] with Γsi = ΓX and Γri =
Γf for 1 ≤ i ≤ 3.

5. Put Fi := m̃+ sif + riX for 1 ≤ i ≤ 3 and send (F1, F2, F3, N).

4.6.3 Decryption

1. Compute hi := Fi(a/d) = m̃(a/d)+si(a/d)f(a/d), H1 := (h1−h2)d
2wX

and H2 := (h1 − h3)d
2wX . Note that H1, H2 ∈ Z.

2. Compute g := gcd(H1, H2) > 0, the greatest common divisor of H1 and
H2. If gcd(g, d) > 1 and gcd(g, d)α || g, then we replace g by g

gcd(g,d)α
.

Note that if g = f(a/d)dwX , then gcd(g, d) = 1 (cf. Remark 4.6.4.3).

3. Compute H := h1d
2wX (mod g) and µ̃ := Hd−wX (mod g). Note that

if |g| > |m̃(a/d)dwX | and g divides s1(a/d)f(a/d)d
2wX , then we have

m̃(a/d)dwX =

{
µ̃ if m̃(a/d)dwX > 0,

µ̃− g if m̃(a/d)dwX < 0.

Note that m̃(a/d)dwX ̸= 0 (cf. Remark 4.6.4.4).

4. Recover m(x) from µ̃ or µ̃− g by RA which we will describe below.

4.6.4 Recovering Algorithm

We describe a method to recover m(x) from µ̃. Let N , d, e and ΛX be as
above.

Input : µ̃, N , d, e and ΛX .

Output : m′(x) ∈ Z[x] or “false”.

1. Compute
e′ := e−1 (mod φ(d)).

2. Let k be the maximal element of ΛX . Compute

m′
k := (µ̃a−k)e

′
(mod d) (0 < m′

k < d),

m̃′
k := (m′

k)
e (mod Nd) (0 < m̃′

k < Nd).

3. If Λ′
X := ΛX ∖ k = ∅, then return m′(x) =

∑
i∈ΛX

m′
ix

i. Otherwise, let

k′ be the maximal element of Λ′
X . Let w

′
X :=

∑
k′. Put µ̃′ :=

µ̃−m̃′
ka

k

d
wX−w′

X
.

If µ̃′ ∈ Z then replace µ̃, k and ΛX by µ̃′, k′ and Λ′
X , respectively.

Otherwise, return “false”.

4.6. ALGORITHM OF OUR CRYPTOSYSTEM 57

4. Go back to step 2.

Proposition 4.6.2. If µ̃ = m̃(a/d)dwm̃, then RA returns m(x).

Proof. We assume that µ̃ = m̃(a/d)dwm̃ = ld(m̃)ak+
∑

i∈ΛX∖{k} m̃ia
id

∑
k−

∑
i.

Because m̃ is of degree increasing type, we have
∑

k −
∑

i ≥ 1. It implies
that

m′
k ≡ ld(m̃)e

′ ≡ mee′

k ≡ mk (mod d),

m̃′
k ≡ m̃k (mod Nd).

Because ld(m) < d, we have

mk = m′
k,

m̃k = m̃′
k.

Thus, µ̃′ = m̃k′a
k′ +

∑
i∈Λ′

X∖{k′} m̃ia
id

∑
k′−

∑
i. Because m̃ is of degree in-

creasing type, we have
∑

k′ −
∑

i ≥ 1. It implies that we can get mk′ as
above. Similarly, we can get mi for i ∈ ΛX ∖ {k, k′}.

Remark 4.6.3. We give some remarks on our cryptosystem.

1. Suppose we want to construct a polynomial X by the method de-
scribed in Remark 4.6.1. Let s be as in Remark 4.6.1. Then it is
necessary to make a little change in the decryption process and as-
sume gcd(d,

∏
i si) = 1, because we must compute the inverse of si in

(Z/dZ)× in the decryption process.

2. If d = p is a prime number, we may choose e = p and e′ = 1.

4.6.5 Improvement in Recovering Algorithm

In step 2 of the decryption process we can write g = f(a/d)dwX t (t ∈ Z). If
|t| > 1, then, in step 3, g may not divide s1(a/d)f(a/d)d

2wX . If so, both µ̃
and µ̃−g are not equal to m̃(a/d)dwX . Then RA will return “false” with high
probability because d is large, ♯ΛX ≤ wX and hence wX − w′

X becomes ≥ 2
in the middle of the process of RA. In this case we must take the following
steps:

1. If RA returned “false”, then we choose a positive integer M and con-
struct the set F (g,M) := {x ∈ Z | 2 ≤ x ≤ M,x|g} ⊂ Z.

2. If F (g,M) ̸= ∅, then we choose an element x ∈ F (g,M) and remove
x from F (g,M). Otherwise, go back to step 1 and choose an integer
which is larger than M .

58 CHAPTER 4. OUR CRYPTOSYSTEM

3. Compute g′ := g
x
, H ′ := h1d

2wX (mod g′) and µ̃′ := H ′d−wX (mod g′)
and recover m(x) from µ̃′.

4. If RA returned “false” again, then go back to step 2.

We describe the reason why RA return “false” with high probability if we do
not get m̃(a/d)dwX . Because ♯ΛX = wX + 1 implies wX − w′

X = 1, dwX−w′
X |

(M − m̃′
ka

−k) is always satisfied. Thus in this case RA does not return
“false” even if we do not get m̃(a/d)dwX . On the other hand if ♯ΛX ≤ wX ,
then wX − w′

X ≥ 2 is satisfied in the middle of the process of RA and then
RA returns “false” with high probability, if we do not get m̃(a/d)dwX .

Remark 4.6.4. 1. In step 3 of the decryption process, we require that
|g| > |m̃(a/d)dwX | to get m̃(a/d)dwX . To satisfy this condition we
impose the condition of step 3 in the encryption process on ld(f). Note
that the fact that X is of degree increasing type also helps to satisfy
|g| > |m̃(a/d)dwX |, because O(f) = O(xk) = O(m̃) as x1, . . . , xn → ∞
(
∑

k = wX), if X is of degree increasing type. Thus, if fk > m̃k and
|a1|, . . . , |an| ≫ d, then |f(a/d)dwX | > |m̃(a/d)dwX | is satisfied with
high probability because |a1

d
|, . . . , |an

d
| ≫ 1. We also note that we can

estimate whether m̃(a/d)dwX > 0 or not by the same reason with high
probability.

2. If |a1|, . . . , |an| ≈ d or |a1|, . . . , |an| ≪ d, then the argument in Remark
4.6.4.1 is not correct because |a1

d
|, . . . , |an

d
| ≈ 1 or |a1

d
|, . . . , |an

d
| ≪ 1. So

in this case a and f should be chosen so that a1, . . . , an > 0 and, for
each i ∈ Λf , the absolute value of the i-th coefficient of f is larger than
that of the monomial xi of m̃ to satisfy |f(a/d)dwX | > |m̃(a/d)dwX |.

3. We need to have gcd(f(a/d)dwX , d) = 1 to compute the inverse element
of d (mod g). We show that this condition is satisfied. Let k be the
maximal element of Λf . It follows from the expression

f(a/d)dwX = fka
k +

∑
i∈Λf∖{k}

fia
idwX−

∑
i,

that if gcd(f(a/d)dwX , d) = d′ > 1, then fk is divisible by d′ because
gcd(ak, d) = 1 is satisfied, and

∑
i∈Λf∖{k} fia

idwX−
∑

i is divisible by d.

This contradicts our assumption because we assume gcd(fk, d) = 1 in
step 3 of the encryption process.

4. We also need to have m̃(a/d)dwX ̸= 0 to recover m. We show that this
condition is satisfied. Let k be as above. It follows from the expression

m̃(a/d)dwX = m̃ka
k +

∑
i∈Λm̃∖{k}

m̃ia
idwX−

∑
i,

4.7. SECURITY ANALYSIS 59

that if m̃(a/d)dwX = 0, then m̃k is divisible by d. This is a contradiction
because gcd(mk, d) = 1 implies gcd(m̃k, d) = 1.

5. Experimentally, we can expect that t is small. So we can get m̃(a/d)dwX

in practical time.

4.7 Security analysis

In this section although we have not been able to give a security proof, we
analyze the effectiveness of some possible attacks for the one-wayness of our
cryptosystem. We also discuss the sizes of d, e and N to achieve 128-bit
security. First, we note that the attacks against ASC described in §1.3.7 are
applicable also to our cryptosystem.

4.7.1 Reduction to solving a multivariate equation sys-
tem I

Let

f ′(x) =
∑
i∈Λf

f ′
ix

i,

s′(x) =
∑
i∈Λs1

s′ix
i,

r′(x) =
∑
i∈Λr1

r′ix
i,

where f ′
i , s

′
i and r′i are variables. One may be able to get f by solving the

following quadratic equation system

F1 − F2 = (s1 − s2)f + (r1 − r2)X = s′f ′ + r′X. (4.7)

The number of variables of the system is smaller than that of the system
in §1.3.7, but experimentally a Gröbner basis of the ideal generated by the
coefficients of F1−F2−(s′f ′+r′X) consists of quadratic polynomials and there
is no known general algorithm to solve a multivariate quadratic equation
system over Z or Q in polynomial time. So solving the system would not be
easy. Moreover, if Λs1 = Λf = Λr1 = ΛX , then the equalities

s′f ′ + r′X = s′(f ′ + tX) + (r′ − ts′)X

= (s′ + sX)f ′ + (r′ − sf ′)X,

where s and t are any integers, show that there are many solutions of the
system (4.7). So we may avoid this attack.

60 CHAPTER 4. OUR CRYPTOSYSTEM

4.7.2 Reduction to solving a multivariate equation sys-
tem II

Let f ′(x) =
∑

i∈Λf
f ′
ix

i, s′(x) =
∑

i∈Λs1
s′ix

i and r′(x) =
∑

i∈Λr1
r′ix

i be as in

§4.7.1. Let

m̃′(x) :=
∑
i∈Λm̃

m̃′
ix

i,

F ′ := m̃′ + s′f ′ + r′X,

where m̃′
i are variables. Let a1 = (a11, . . . , a1n), · · · , aℓ = (aℓ1, . . . , aℓn) ∈ Zn

be n-tuples of integers. Then we have the following multivariate equation
system in f ′

i , s
′
i, r

′
i and m̃′

i:
G1(m

′
c0, · · · , r′k) := F ′(a1)− F1(a1) = 0

...
Gℓ(m

′
c0, · · · , r′k) := F ′(aℓ)− F1(aℓ) = 0.

(4.8)

One of the methods of solving (4.8) is to use the Gröbner basis technique.
However, if {g1, · · · , gh} is a Gröbner basis of the ideal (G1, · · · , Gℓ), exper-
imentally, gi is a cubic or a quadratic polynomial with rational coefficients
having large denominators and numerators. Thus, as mentioned in §4.7.1, it
would not be easy to solve (4.8). Moreover, for any integers s and t we have

F ′ = (m̃′ + ts′ + sX) + s′(f ′ − t) + (r′ − s)X

= m̃′ + s′(f ′ + tX) + (r′ − ts′)X.

Noting that ΛX = Λm̃ = Λf = Λs1 , Γsi = ΓX and Γri = Γf for 1 ≤ i ≤ 3, we
see that there are many possible solutions of (4.8). Hence, we would conclude
that this attack is not efficient if Nd is sufficiently large, say Nd > 2128H(X)
(then the number of possible solutions is larger than 2128). Note that it is
also possible to compare F ′(ai)− m̃′(ai) and F1(ai)− F2(ai) to get f , but it
would be hard because of the same reason.

4.7.3 Reduction to solving a multivariate equation sys-
tem III

The following attack was suggested by Professor Attila Pethő. Let f ′, s′, r′

and m̃′ be as in §4.7.2. Let S :=
∑

i∈Λf ′s′
Six

i and define

F ′′ := m̃′ + S + r′X,

4.7. SECURITY ANALYSIS 61

where Si’s are variables. Then one can apply the similar attack in §4.7.2 to
F ′′. However, we would also conclude that this attack is not efficient if Nd is
sufficiently large, say Nd > 2128H(X). To see this, let r ∈ Z[x] be a random
polynomial with Λr = ΛX . Then we have

F ′′ = m̃′ + (S + rX) + (r′ − r)X

= (m̃′ − r) + (S + r) + r′X.

It implies that the number of possible solutions is larger than 2128. Note that
S + rX has the same form as S, and r′ − r, m̃′ − r and S + r have the same
form as r′, m̃′ and S, respectively.

4.7.4 Reduction by X

Since X is made public, one can try to divide F1 − F2 by X to find f in
the remainder. But f does not appear in the remainder if Λf = ΛX and the
absolute values of coefficients of f are larger than those of X. So this attack
would not be effective.

4.7.5 Rational point attack (solving X = 0)

This attack is equivalent to solving the diophantine equation X(x) = 0.
Although it is hard in general as mentioned in introduction, one may won-
der if the diophantine equation X(x) = 0 may be solvable for X of degree
increasing type. However, we think that in general, using polynomials of
degree increasing type does not affect the security of our cryptosystem. For
instance, in [36], it was proved that the problem for determining whether
there are positive integer solutions for

ax2
1 + bx2 − c = 0,

where a, b and c are positive integers, is NP-complete. Moreover, we can
prove the following theorem.

Theorem 4.7.1. There is no general method to solve an arbitrary diophan-
tine equation of degree increasing type in Z.

Proof. Let T ∈ Z[x] be an arbitrary polynomial. We claim that by making a
change of variables xi 7→ xqi

i with suitable qi’s, we can make T (xq1
1 , . . . , x

qn
n) of

degree increasing type. We prove this claim by induction on n ≥ 2. First, we
assume n = 2. Let q1 and q2 be positive integers which are relatively prime
to each other. We assume that q1 > max{|i2− j2| | (i1, i2), (j1, j2) ∈ ΛT} and

62 CHAPTER 4. OUR CRYPTOSYSTEM

q2 > max{|i1 − j1| | (i1, i2), (j1, j2) ∈ ΛT}. For (i1, j1), (i2, j2) ∈ ΛT , if i1q1 +
i2q2 = j1q1 + j2q2, then (i1, j1) = (i2, j2) because of the above assumptions
on q1 and q2. Thus T (x

q1
1 , x

q2
2) is of degree increasing type. Next, we assume

that our claim is true for n − 1 ≥ 1. By our inductive hypothesis, there
are positive integers q1, . . . , qn−1 such that T (xq1

1 , . . . , x
qn−1

n−1 , 1) is of degree
increasing type. Let qn be a positive integer. We assume that

qn > max{|(i1 − j1)q1 + · · ·+ (in−1 − jn−1)qn−1| | (i1, . . . , in), (j1, . . . , jn) ∈ ΛT}.

For (i1, . . . , in), (j1, . . . , jn) ∈ ΛT , we assume that the following equality
holds:

i1q1 + · · ·+ inqn = j1q1 + · · ·+ jnqn.

It implies that (i1 − j1)q1 + · · · + (in−1 − jn−1)qn−1 = (jn − in)qn. Since
T (xq1

1 , . . . , x
qn−1

n−1 , 1) is of degree increasing type, if in = jn then (i1, . . . , in) =
(j1, . . . , jn). On the other hand, if in ̸= jn then this is a contradiction to the
assumption on qn. Thus T (xq1

1 , . . . , x
qn
n) is of degree increasing type. So we

have proved the claim.
Now we prove this theorem. Let q1, . . . , qn be positive integers such that

T inc := T (xq1
1 , . . . , x

qn
n) is of degree increasing type. We assume that there

is a general method to solve T inc = 0 in Z. Let (b1, . . . , bn) be its solution.
Then (bq11 , . . . , b

qn
n) is an integral solution to T = 0. Thus if there is a method

to solve an arbitrary diophantine equation of degree increasing type, then it
can solve an arbitrary diophantine equation, which contradicts Matijasevič’s
result ([15]). So we have proved this theorem.

Next, we discuss more general diophantine problems. If one can find a
vector a such that X(a/d) = 0, then one can get m by the same process
of decryption. The solution a/d is not an integral solution but a rational
solution. (Using rational solutions is suggested by Professor Noriko Hirata-
Kohno.) However, finding such rational solutions is equivalent to finding
integral solutions of G(x) := X(x/d)dwX = 0. (If we do not know the
denominator d, finding rational solutions of G(x) = 0 is reduced to finding
integer solutions of the equation G(x1

z
, . . . , xn

z
)zwX = 0 in n + 1 variables.)

If n = 2 and G(x) = 0 defines a curve of genus 0, 1 or a hyperelliptic
curve, then there are explicit algorithms to find all integral solutions ([48],
[42], [11]). Otherwise, in special cases there are some algorithms to find
all integral points ([8], [9]). Moreover, it is believed that in many cases,
diophantine equations with two variables are solvable. Theoretically, using
Baker’s method and its improvements, explicit upper bounds of the size of
solutions to special equations with two variables are known. (see [27] and
the references given there). Note that if solutions of a diophantine equation

4.7. SECURITY ANALYSIS 63

are sufficiently large, then Baker’s method is not practical in general, but we
want to use a solution which is as small as possible. However, no efficient
methods are known to find integral solutions of diophantine equations of
n variables with n ≥ 3. So we should use a diophatine equations with at
least 3 variables as a public key of our cryptosystem. Note that in case of 3
variables, our experience in arithmetic geometry suggests to use X of degree
at least 5, because then the hypersurface in the projective 3-space defined by
(the homogenized form of) X is of general type if it is non-singular (cf. [29],
Example F.5.1.7 and §F.5.2).

4.7.6 Solving X(x/d)dwX ≡ 0 (mod dwX+1)

If we use a single cipher polynomial F := m̃+ rX, where r is an integer or a
polynomial in Z[x] such that rX is of degree increasing type, and Λm̃ = ΛrX ,
then it can be broken by finding a solution to the congruence equation

X(x/d)dwX ≡ 0 (mod dwrX+1), (4.9)

which can be computable in probabilistic polynomial time. Let b be a solution
of (4.9) and k the maximal element of ΛrX . Then the same method as RA
is applicable as follows:

M := F (b/d)dwrX := m̃(b/d)dwrX + r(b/d)X(b/d)dwrX

= m̃(b/d)dwrX + r(b/d)dwrX(b/d)dwX ,

mk = (Mb−k)e
′
(mod d),

m̃k = me
k (mod Nd).

Similarly, we can compute the other coefficients of m. However, using cipher
polynomials of the form

Fi := m̃+ sif + riX (i = 1, 2, 3),

we may avoid this weakness because sif obstructs to get m̃(b/d)dwX (mod
d).

4.7.7 Ideal decomposition attack

By using the resultant as in §1.3.7, it is also possible in our case to reconstruct

the ideals I := (m̃, f,X) ⊂ Z[x], J := (m̃ + z, f,X) ⊂ Q[x, z] or J
(ℓ)

:=

(m̃
(ℓ)

+ z, f
(ℓ)
, X

(ℓ)
) ⊂ (Z/ℓZ)[x, z] from the data (F1, F2, X), where z is a

new variable and ℓ is a prime number. If one can get m̃, then one can get

64 CHAPTER 4. OUR CRYPTOSYSTEM

m. A simple method to avoid this attack is to let Λm̃ = Λf = ΛX and
the coefficients of m̃ be larger than H(X). Then m̃ cannot be determined
uniquely because m̃′ + z ∈ J implies m̃′ + z + sX + tf ∈ J for any s, t ∈ Z
(note that Λm̃ = Λf = ΛX). However, in general, we cannot determine m̃
from m̃(a/d)dwX uniquely even if we know the secret key a. This reason is as
follows: for any t ∈ Z, m̃(x) and m̃(x) + tX(x) have the same value at a/d.
So, we use modular exponentiation to transform m into m̃ and use Euler’s
theorem as in the RSA cryptosystem to recover m from m̃(a/d)dwX in RA.
This is the main idea to avoid this attack.

Now, we analyze the effectiveness of the ideal decomposition attack in
detail. Note that as mentioned in §4.2.3, this attack only works well when
n = 2. However, experimentally, this attack sometimes succeeds in con-
structing the proper ideal containing m̃ for n ≥ 3. So, we need to discuss
the effectiveness of this attack. We analyze only the Level 2 and the Level
3 attacks because, experimentally, the Level 1 attack is not efficient. First,
we analyze the effectiveness of the ideal decomposition attack of Level 2 (see
[23], §3.2), which uses the ideal decomposition

(F1 − F2, X) = ((s1 − s2)f,X) = I1 ∩ I2 ⊂ Q[x],

(f,X) ⊂ I1,

to reconstruct an ideal J ⊂ Q[x, z] which coincides with (m̃ + z, f,X) from
the data (F1, F2, X). To get m̃, we use the fact that if a Gröbner basis of J is
computed, then m̃′+z ∈ J if and only if NFJ(m̃

′+z) = 0 (see §1.3.7 for more
detail). But, if m̃′+z ∈ J , then for any integers s and t, m̃′+z+sX+tf ∈ J
is also satisfied. If the number of choices of the pairs (s, t) ∈ Z2 is larger than
2128, we may avoid this attack. All coefficients of m̃ and f are smaller than
Nd, but in many cases they are as large as Nd, if me

i > Nd. So the possible
choices of t may be only 0 , 1 or 2. But, if Nd > 2128H(X), the number of
the possible choices of s may be larger than 2128. So N should be chosen
so that Nd > 2128H(X) and e should be so large that me

i ≥ 2e > Nd for
i ∈ Λm. In this case, this attack is not assumed to be effective. Note that
because the absolute value of coefficients of f are as large as those of m̃,
the above argument implies that choosing N satisfying Nd > 2128H(X) may
complicate finding f from the ideal J or I1.

Next, we analyze the effectiveness of the ideal decomposition attack of
Level 3 (see [23], §3.3). We assume that d is a prime number. We note that

if one got m̃
(d)
, then one can get m. So one does not need to get m̃. It

is possible to reconstruct an ideal J
(d) ⊂ (Z/dZ)[x, z] which coincides with

(m̃
(d)

+ z, f
(d)
, X

(d)
) from tha data (F1, F2, X) (see the algorithm in 1.3.7).

Let m̃′(x) :=
∑

i∈Λm̃
m̃′

ix
i, where m̃′

i are variables for i ∈ Λm̃. Assume that a

4.8. SIZES OF KEYS AND CIPHERPOLYNOMIALS 65

Gröbner basis of J
(d)

is computed. Let J be the ideal of (Z/dZ)[m′
c0, · · · , m̃′

k]
generated by the coefficients of NF

J
(d)(m̃′+z). Let {g1, · · · , gh} be a Gröbner

basis of J . Then gi is linear with respect to its variables for each 1 ≤ i ≤ h.
So we can use linear algebra techniques to solve NF

J
(d)(m̃′ + z) = 0. Let A

be the coefficient matrix of the equation system g1 = · · · = gh = 0. Let D
be the dimension of the kernel of the linear map F#Λm̃

d → Fh
d defined by A.

Then the number of polynomials in J
(d)

having the same form as m̃
(d)

+ w
is dD. So if dD > 2128, the Level 3 attack is not effective. Experimentally,
D is at least 2. Thus, this attack is not assumed to be effective if d2 ≥ 2128

(d ≥ 264).

Next, we assume that d =
∏

1≤i≤k pi (k ≥ 2 and pi are distinct prime

numbers for 1 ≤ i ≤ k). If one got m̃
(pi) for 1 ≤ i ≤ k, then one can get m̃

(d)

and m by the Chinese Remainder Theorem. However, because of the above
argument we may also avoid this attack, if d is sufficiently large, for example
d2 > 2128. Note that if d =

∏
1≤i≤k p

ei
i and ei ≥ 2 for some i, this attack

may not be directly applicable, because Z/peiZ is not a domain if ei ≥ 2.

But, it is possible to lift a polynomial m̃
(pi) ∈ (Z/piZ)[x] to a polynomial

m̃
(p

ei
i) ∈ (Z/peii Z)[x] for 1 ≤ i ≤ n. There are pei−1

i ways of such a lifting. So
we may also avoid this attack, if d is sufficiently large, for example d ≥ 264.

4.8 Sizes of keys and cipherpolynomials

In this section we estimate the sizes of keys and cipherpolynomials so that our
cryptosystem can be expected to have 128-bit security. First, we estimate
the size of a secret key and a public key. A typical brute force attack is
as follows: One chooses a random vector (b1, . . . , bn−1) and factorize the
polynomial X(b1

d
, . . . , bn−1

d
, xn) in xn. If X(b1

d
, . . . , bn−1

d
, xn) has a factor of the

form (xn − bn
d
) for some integer bn, then (b1

d
, . . . , bn

d
) is a solution to X = 0.

If gcd(
∏

i bi, d) = 1, then using the solution (b1
d
, . . . , bn

d
), one can get m by

taking the same steps as the decryption process. So we should choose a secret
key a = (a1, . . . , an) such that |ai| is sufficiently large for i = 1, . . . , n to avoid
the brute force attack. Since the probability that a random integer b is prime
to d is φ(d)

d
(φ(·) is the Euler’s function), the number of choices of the vector

(b1, . . . , bn−1) which satisfies 2
⌈ 128
n−1 ⌉

d
φ(d)

≤ |bi| < 2
⌈ 128
n−1 ⌉+1

d
φ(d)

and gcd(
∏

i bi, d) = 1

is at least 2⌈
128
n−1

⌉(n−1) ≥ 2128. Thus we should choose a secret key so that

2⌈
128
n−1

⌉d

φ(d)
≤ |ai| <

2⌈
128
n−1

⌉+1d

φ(d)
(4.10)

66 CHAPTER 4. OUR CRYPTOSYSTEM

for i = 1, . . . , n. We assume (4.10). Let k be an element of ΛX such that
k = wX and Λ′

X be as in §4.6.1. We assume that X is constructed by the
method described in §4.6.1. There are infinitely many solutions of (4.5).
We claim that we can choose a solution (c0, ck) such that |c0| ≤ |ak| and
|ck| ≤ dwX , if the following inequality is satisfied:

|akdwX | >

∣∣∣∣∣∣
∑
i∈Λ′

X

cia
idwX−

∑
i

∣∣∣∣∣∣ . (4.11)

To see this, let A :=
∣∣∣∑i∈Λ′

X
cia

idwX−
∑

i
∣∣∣. If (x0, y0) is a solution to

|ak|x+ dwXy = A,

then all solutions are given by (x0 + kdwX , y0 − kak) for k ∈ Z. Looking at
the first lattice point (x, y) on the line |ak|x+ dwXy = A with x > 0, we find
a solution (x, y) such that x ≤ dwX and y ≤ ak. Thus, we have proved the
above claim.

In many cases the minimum size of the solutions of (4.5) satisfies c0 ≈ ak

and ck ≈ dwX . If the |ci|’s are so small that (4.11) is satisfied, then we may
assume that

H(X) =

c0 ≈ ak <

(
2
(⌈ 128

n−1 ⌉+1)
d

φ(d)

)wX

if ak ≫ dwX ,

ck ≈ dwX if ak ≪ dwX .

On the other hand, as mentioned in §4.7.7, N , d and e should be chosen so
that Nd > 2128H(X), d ≤ 264 and 2e > Nd, respectively. We must determine
an upper bound of Nd and d to estimate the size of e and ck, respectively.
We assume that H(X) = ck, 2

64 ≤ d < 265 and 2128H(X) ≤ 2128dwX <
2128+65wX ≤ Nd. Then ck ≤ 265wX and N ≥ 2128+65(wX−1). If we assume that
2128+65(wX−1) ≤ N < 2128+65(wX−1)+1 = 2129+65(wX−1), then we should choose
e so that e ≥ 129 + 65wX because Nd < 2129+65wX . It remains to estimate
the size of |ci| for i ∈ Λ′

X . We think that the size of these coefficients may
be small enough to keep the size of the public key reasonable even though
we cannot prove it. For example, if |ci| < 210, then the size of X, that is∑

i∈ΛX
(bit length of ci), is at most (⌈ 128

n−1
⌉ + 1 + ⌈log2 d − log2 φ(d)⌉)wX +

65wX + 10(#ΛX − 2) = (⌈ 128
n−1

⌉+ 66+ ⌈log2 d− log2 φ(d)⌉)wX + 10#Λ′
X bits

under the above assumptions. If wX ≈ #ΛX = Λ′
X + 2, then the size of X

≈ (⌈ 128
n−1

⌉+76+ ⌈log2 d− log2 φ(d)⌉)wX bits. Then the size of the secret key

and the public key is at most (⌈ 128
n−1

⌉ + 1)n + ⌈log2 d − log2 φ(d)⌉ bits and

(⌈ 128
n−1

⌉+ 76 + ⌈log2 d− log2 φ(d)⌉)wX + 65 + ⌈log2 e⌉ bits, respectively.

4.9. EXAMPLES 67

Next, we estimate the size of Fi for i = 1, 2, 3. We may assume that the
size of Fi is about the same as that of 2sif because Γf = Γri and Γsi = ΓX .
Since ΛX = Λf = Λsi , #ΛX ≤ wX , H(f) < Nd < 2129+65wX and H(si) ≈
H(X) < 265wX , we have

H(sif) ≤ #ΛXH(f)H(si) < 2129+130wXwX .

It implies that the size of 2sif is at most (130 + 130wX + ⌈log2 wX⌉)#Λsif

bits. So, it is important to estimate #Λsif , explicitly. We assume Λf = Λsi =
{k1, . . . , k#Λf

}. Then we can write

sif =

∑
j∈Λsi

s
(i)
j xj

∑
j∈Λf

f
j
xj

=

∑
j

s
(i)
kj
f
kj
x2kj +

∑
j ̸=h

(
s
(i)
kj
f
kh

+ s
(i)
kh
f
kj

)
xkj+kh .

It implies that

#Λsif ≤
#Λ2

f −#Λf

2
+ #Λf ≤ w2

X − wX

2
+ wX .

Thus, the size of 2sif is at most

(
w2

X − wX

2
+ wX)(130 + 130wX + ⌈log2 wX⌉)

=
1

2
(w2

X + wX)(129 + 130wX + ⌈log2 wX⌉)

bits. Since 2128+65(wX−1) ≤ N < 2129+65(wX−1), we conclude that the size of
ciphertext is at most

3

2
(w2

X + wX)(129 + 130wX + ⌈log2wX⌉) + 129 + 65(wX − 1)

bits.

4.9 Examples

In Table 1 and Table 2 we give examples of the size of keys and cipher-
texts. In Table 3 we also give examples of the time which it took to encrypt
and decrypt. We use a computer Windows 8.1 Pro 64 bit with Intel(R)
Core(TM) i7-3840QM CPU 2.80 GHz, with 8 GB of RAM. We implemented
in Magma V2.19-7 ([10]) and the source code of our cryptosystem (file name:
crypto-okumura.txt) is available at
http://www2.math.kyushu-u.ac.jp/ ˜ s-okumura/.

68 CHAPTER 4. OUR CRYPTOSYSTEM

Table 4.9.1: Size of keys of our cryptosystem.
No. n wX #ΛX secret key (bit) public key (bit)

1 3 5 4 198 739
2 3 5 5 198 747
3 3 7 4 198 1000
4 3 7 7 198 1031
5 3 10 4 198 1393
6 3 10 7 198 1420
7 3 10 10 198 1450

Table 4.9.2: Size of ciphertext of our cryptosystem.
No. n wX #ΛX F1 (bit) F2 (bit) F3 (bit) N (bit)

1 3 5 4 7442 7443 7440 387
2 3 5 5 10755 10748 10752 390
3 3 7 4 9946 9942 9947 521
4 3 7 7 23907 23915 23917 515
5 3 10 4 13685 13684 13688 717
6 3 10 7 33658 33659 33667 717
7 3 10 10 57740 57749 57767 719

Table 4.9.3: Encryption time and decryption time.
No. n wX #ΛX enc. time (ms) dec. time (ms)

1 3 5 4 39 34
2 3 5 5 38 33
3 3 7 4 38 34
4 3 7 7 38 34
5 3 10 4 39 34
6 3 10 7 39 36
7 3 10 7 40 40

4.10. CONCLUSION 69

4.10 Conclusion

In this chapter we proposed a new public key cryptosystem based on dio-
phantine equations and analyzed its security. It is a number field analogue
of the ASC, incorporating a key idea, to avoid some attacks, of “twisting” the
plaintext by using some modular arithmetic and Euler’s theorem as in the
RSA cryptosystem. Another key idea is to use a polynomial, as the public
key, of degree increasing type to recover the plaintext.

Bibliography

[1] K. Akiyama, Y. Goto and H. Miyake, An Algebraic Surface Cryp-
tosystem, In Proc. of PKC’09, Vol. 5443 (2009), 425–442.

[2] A. Baker, Transcendental Number Theory, Cambridge Univ. Press,
1975.

[3] M. Bardet, Étude des systèmes algébriques surdéterminés. Appli-
cations aux codes correcteurs et à la cryptographie, PhD thesis,
Université Paris VI, Décembre 2004.

[4] M. Bardet, J.-C. Faugére, B. Salvy, and B. Y. Yang, Asymptotic
behaviour of the degree of regularity of semi-regular polynomial sys-
tems, Proce. of MEGA 2005, 2005.

[5] D. Bayer and M. Stillman, Computation of Hilbert Functions, J.
Symbolic Comp. 14, (1992), no. 1, 31–50.

[6] T. Becker and V. Weispfenning, Gröbner Bases: A Computational
Approach to Commutative Algebra, Graduate Texts in Mathemat-
ics, Vol. 141, Springer New York, 1993.

[7] E.R. Berlekamp, Factoring Polynomials over Large Finite Fields,
Math. of Computation 24 (1970), 713–735.

[8] F. Beukers and S. Tengely, An implementation of Runge’s method
for Diophantine equations, available at arXiv:math/0512418.

[9] Y. Bilu, Effective analysis of integral points on algebraic curves,
Israel J. Math. 90 (1995), 235–252.

[10] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra sys-
tem. I. The user language, J. Symbolic Comput. 24 (1997), 235–265.

71

72 BIBLIOGRAPHY

[11] Y. Bugeaud, M. Mignotte, S. Siksek, M. Stoll and S. Tengely, In-
tegral points on hyperelliptic curves, Algebra Number Theory 2
(2008), 859–885.

[12] D.G. Cantor and H. Zassenhaus, On Algorithms for Factoring Poly-
nomials over Finite Fields, Math. of Computation 36 (1981), 587–
592.

[13] D. Cox, J. Little and D. O’Shea Ideals, Varieties, and Algo-
rithms: An Introduction to Computational Algebraic Geometry and
Commutative Algebra, 3rd., Undergraduate Texts in Mathematics,
Springer Verlag 2007.

[14] T. W. Cusick, Cryptoanalysis of a public key system based on dio-
phantine equations, Inform. Processing Letters, 56 (1995), 73–75.

[15] M. Davis, Y. Matijasevič and J. Robinson, Hilbert’s tenth problem,
Diophantine equations: positive aspects of a negative solution, in:
Mathematical Developments Arising from Hilbert Problems, Ed.:
F.E. Browder, Symp. in Pure Math., (1974), AMS, Providence,
RI., (1976), pp. 323–378.

[16] W. Diffie and M. Hellman, New direction in cryptography,Trans. on
Information Theory, 22 (1976), 644–654.

[17] J. Ding, J. E. Gower and D. Schmidt, Zhuang-Zi: A new algorithm
for solving multivariate polynomial equations over a finite field,
In: PQCrypto 2006: International Workshop on Post-Quantum
Cryptography, May 23-26. Katholieke Universiteit Leuven, Belgium
(2006).

[18] G. Faltings, Endlichkeitssätze für abelsche Varietäten über
Zahlkörpern, Invent. Math. 73 (1983), 349–366.

[19] G. Faltings, Diophantine approximation on abelian varieties, An-
nals of Math. 133 (1991), 549–576.

[20] G. Faltings, The general case of Lang’s conjecture, In Symposium
in Algebraic geometry, Barsotti, eds., Acad. Press, 1994, 175–182.

[21] J.-C. Faugére, A new efficient algorithm for computing Gröbner
basis (F4), Journal of Pure and Applied Algebra 139, 1-3 (1999),
61–88.

BIBLIOGRAPHY 73

[22] J.-C. Faugére, A new efficient algorithm for computing Gröbner
basis without reduction to zero (F5), In T. Mora, editor, Proceedings
of ISSAC, 75–83. ACM Press, July 2002.

[23] J.-C. Faugére and P.-J. Spaenlehauer, Algebraic Cryptanalysis of
the PKC’2009 Algebraic Surface Cryptosystem, Proc. of PKC’10,
Vol. 6056 (2010), 35–52

[24] R. Fröberg, An introduction to Gröbner bases, Pure and Applied
Mathematics. John Wiley and Sons Ltd., Chichester, 1997.

[25] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W.H. Freeman, New York
(1979).

[26] M. Giusti, Some effectivity problems in polynomial ideal theory, In
Proc. Int. Symp. on Symbolic and Algebraic Computation EU-
ROSAM 84, Cambridge (England), Vol. 174 of LNCS, 159–171,
(1984) Springer.

[27] K. Győry, Solving Diophantine equations by Baker’s theory, In
A panorama of number theory of the view from Baker’s garden
(Zürich, 1999), 38–72, Cambridge Univ. Press, 2002.

[28] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathemat-
ics Vol. 52 (1977), Springer New York.

[29] M. Hindry and J. H. Silverman Diophantine Geometry: An Intro-
duction, Graduate Texts in Mathematics, Vol. 201, Springer New
York 2000

[30] N. Hirata-Kohno and A. Pethő, On a key exchange protocol based
on Diophantine equations, Infocommunications Journal, 5 (2013),
17–21.

[31] N. Koblitz, Elliptic curve cryptosystems, Math. of Computation 48
(1987), 203-209.

[32] S. Lang, Algebra, 3rd ed., Graduate Texts in Mathematics, Vol. 211,
Springer, New York, 2002.

[33] D. Lazard, Gaussian Elimination and Resolution of Systems of
Algebraic Equations, In Proc. EUROCAL 83, Vol. 162 of LNCS,
(1983) 146–157.

74 BIBLIOGRAPHY

[34] A. K. Lenstra and H. W. Lenstra, Jr. (eds.), The Development
of the Number Field Sieve, Lecture Notes in Mathematics, 1554,
Springer-Verlag, Berlin, 1993.

[35] C. H. Lin, C. C. Chang and R. C. T. Lee, A New Public-Key Cipher
System Based Upon the Diophantine Equations, IEEE Trans. Comp.
44 (1995), 13–19.

[36] K. Manders and L. Adleman, NP-complete decision problems for
binary quadratics, J. Comput. System Sci. 16 (1978), no. 2, 168–
184.

[37] R. C. Mason, Diophantine Equations over Function Fields, London
Mathematical Society Lecture Note Series, 96, Cambridge, Eng-
land: Cambridge University Press.

[38] V.S. Miller, Use of elliptic curves in cryptography, Abstracts for
Crypto. ‘85. Lecture Notes in Computer Science, 218 (1986), 417–
426.

[39] S. Mochizuki Inter-universal Teichmüller Theory I: Construction
of Hodge Theaters, II: Hodge-Arakelov-theoretic Evaluation, II
I: Canonical Splittings of the Log-theta-lattice, IV: Log-volume
Computations and Set-theoretic Foundations, available in
http://www.kurims.kyoto-u.ac.jp/

∼motizuki/papers-english.html.

[40] N. Ogura, On Multivariate Public-key cryptosystems, PhD thesis,
Tokyo Metropolitan University.

[41] T. Pheidas, Hilbert’s tenth problem for fields of rational functions
over finite fields, Invent. Math. 103 (1991), no. 1, 1–8.

[42] D. Poulakis and E. Voskos, On the practical solution of genus zero
Diophantine equations, J. Symbolic Comput. 30 (2000), 573-582.

[43] R. L. Rivest, A. Shamir and L. Adleman, A method for obtaining
digital signatures and public key cryptosystems, Commununications
of the ACM, 21 (1987), 120–126.

[44] A. Shamir, J. Patarin, N. Courtois and A. Klimov, Efficient Algo-
rithms for solving Overdefined Systems of Multivariate Polynomial
Equations, Eurocrypt ’2000, LNCS 1807, Springer, 392-407.

BIBLIOGRAPHY 75

[45] P. Shor, Algorithms for Quantum Computation: Discrete Loga-
rithm and Factoring, Proc. 35th Annual Symposium on Founda-
tions of Computer Science (1994), 124–134 and SIAM J. Comput.
26 (1997), 1484–1509.

[46] J. H. Silverman, The arithmetic of elliptic curves, 2nd ed., Graduate
Texts in Mathematics, Vol. 106, Springer 2009.

[47] W. W. Stothers, Polynomial identities and hauptmoduln, Quart. J.
Math. Oxford Ser. (2) 32 (1981), no. 127, 349–370.

[48] R. J. Stroeker and N. Tzanakis, Computing all integer solutions of
a genus 1 equation, Math. Comp. 72 (2003), 1917–1933.

[49] A. Weil, Sur les courbes algébriques et les variétés qui s’en
déduisent, Actualités Sci. Ind., no. 1041 = Publ. Inst. Math. Univ.
Strasbourg 7 (1945). Hermann et Cie., Paris, 1948. iv+85 pp.

[50] H. Yosh, The key exchange cryptosystem used with higher order
Diophantine equations, International Journal of Network Security
& Its Applications 3 (2011), 43–50.

