
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A Study on 2D Shape Interpolation Using Affine
Maps

松下, 昂平

https://doi.org/10.15017/1500513

出版情報：九州大学, 2014, 博士（機能数理学）, 課程博士
バージョン：
権利関係：全文ファイル公表済

A Study on 2D Shape Interpolation Using Affine
Maps

A Dissertation Submitted to the Graduate School of Mathematics
in Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Functional Mathematics
Kyushu University

By

Kohei Matsushita

Supervisor: Associate Professor Yoshihiro Mizoguchi

2015

2

Abstract

In computer graphics (CG), shape interpolation techniques are widely used
for many applications. In several interpolation techniques, As-Rigid-As Pos-
sible Shape Interpolation (ARAP) proposed by Alexa is known as a interpo-
lation method which preserve rigidity of configurations. ARAP is suitable
for character animation from this characteristics, and various methods have
been proposed. There are many algorithm of shape interpolations, however,
it is not enough to discuss a goodness of a given shape interpolation. It is
an important issue to consider mathematical characterization of these im-
age representations and construct efficient and tractable mathematical mod-
els. Specifically, it is one of our goals to define conditions mathematically
and propose excellent interpolation methods by analyzing existing interpo-
lation techniques. We also investigate fast algorithm of shape interpolation
method.

In Chapter 2, we discuss a ”goodness” of a two-dimensional shape in-
terpolation. Although there are many interpolation methods, it appears
that mathematical discussion for ”goodness” of interpolations are not much.
Our motivation is to construct a useful formulation for 2D shape interpola-
tions. For a realization of a “good” interpolation, we examined and observed
properties of interpolations and transformation matrices for local and global
interpolations. 1) For a local interpolation, we define two “goodness” of in-
terpolations in considering area and norm transforms. We obtained the
mathematical conditions of the goodness for the known method according
to our definitions. 2) For a global interpolation, we formulated an energy
function which use different coordinate for each local transformation. As a
result, the optimal solution of the energy function does depend on a choice
of coordinates. To explain this fact, we show a example. We calculated a
locus of the origin of the coordinate which attains the same value of energy
functions.

In Chapter 3, we propose a faster algorithm of two-dimensional shape
interpolation. It is often useful to compute a lot of matrix exponentials in
computer graphics. The exponential of a matrix is used for the smooth de-
formation of 2D or 3D meshed CG objects [7, 2, 12, 1, 6]. Hence, we need to
compute a large number of the exponentials of 3×3 rotational matrices and
3× 3 real symmetric matrices. For rotational matrices, Rodrigues’ formula
[4] is known to compute their exponentials. We investigated the polynomial
methods introduced by Moler and Van Loan [9] to compute an exponential
of 3× 3 real symmetric matrices, and we introduce an algorithm for eigen-
values of 3× 3 real symmetric matrices. We introduce a simple formula for

i

the matrix exponential of a 3× 3 real symmetric matrix using a formula in
[6] and Viète’s Formula. Since our matrix exponential algorithm does not
use eigenvectors, we are able to reduce the computational cost using a fast
eigenvalue computation algorithm. Then, we incorporated our implementa-
tion into a shape deforming tool developed in [6]. As a result, we achieved
a notable performance improvement. In fact we show our algorithms for
matrix exponentials is about 4.2 times faster than a standard algorithm for
given 3 × 3 real symmetric matrices. For the deformation of a CG model,
our algorithm was about 1.2 times faster than a standard algorithm.

ii

Acknowledgments

I would like to express my deepest gratitude to Professor Yoshihiro Mi-
zoguchi for his continuous support, useful discussion, suggestion and en-
couragement. I am also grateful to K. Anjyo, H. Ochiai, S. Kaji for their
helpful comments. I would like to thank H. Hamada, S. Hirose, S. Yokoyama
for useful discussions and comments.

Finally, I would like to give my special thanks to my parents for their
love and support throughout my life.

iii

iv

Contents

1 Introduction 1

2 A “Good” Interpolation 5
2.1 2D shape interpolation . 5
2.2 A “good” interpolation . 6

2.2.1 Linear interpolation method 7
2.2.2 SVD interpolation method 9
2.2.3 Polar decomposition interpolation method 11
2.2.4 Example . 16

2.3 The gap of compositions . 16
2.4 Conclusions . 20

3 Computation of 3×3 Matrix Exponentials 23
3.1 Algorithm for Matrix Exponential 23

3.1.1 Algorithm1. Diagonalization 23
3.1.2 Algorithm2. Spectral Decomposition 24

3.2 Eigenvalues Using Viète’s Formula 26
3.3 Applications . 28
3.4 Experimentation . 28
3.5 Conclusions . 30

v

CONTENTS

vi

Chapter 1

Introduction

2D shape interpolation is widely used in computer graphics (CG) . To gener-
ate shape interpolations, Shoemake and Duff[10, 11] suggested a way using
transformation matrix. For a technique using transformation matrix, there
is a technique called morphing. This technique is introduced by Beier and
Neely [3] in 1992. For given two images, we define a method to trans-
fer one image to another one smoothly. This technique is used for many
visual effects. In 2000, Alexa and Xu suggested new algorithm preserving
rigidity[2, 14] for algorithm of this interpolation. These algorithm consists of
local interpolations and a global interpolation. In 2D shape interpolation,
the local interpolation means an interpolation between one triangle mesh
and another mesh. This deformation from one mesh to another one is de-
cided by a unique affine transformation, and this transformation is described
by a matrix representation. To generate intermediate shapes, we vary this
affine matrix over time. Then, these local interpolations are composed into
a global interpolation which minimizes the energy function defined on over-
all local interpolations. There are many algorithm of shape interpolations,
however, it is not enough to discuss a goodness of a given shape interpo-
lation. Even though “goodness” is a kind of sense, but we are trying to
formalize these sense using mathematical formulas.

In chapter 2, we propose a “good” interpolation for a local interpolation
and a “good” composition for a global interpolation. We start by deter-
mining a “good” interpolation between one triangle mesh and another one.
Then, we find conditional equations of a good local interpolation. Next, for
a global interpolation, we investigate a “good” composition. To construct
a global interpolation, we solve a minimization problem of a given energy
function. In this energy function, every triangle mesh has the same origin.

1

CHAPTER 1. INTRODUCTION

Generally, this origin is assumed the center of each triangle. On the other
hand, for convenience, we choose a same origin for all local interpolations in
the formula of an energy function of a global interpolation. The first prob-
lem we consider is that this small gap may cause different interpolations,
and we would like to clarify conditions of an initial and target configuration
which cause a critical errors for composing a global interpolation. We choose
a simple figure with two triangles which we call them the first triangle and
the second triangle. We consider the values of the global energy function
when we fix the origin of the first triangle to zero and vary the origin of
the second triangle. Then, we can show contours of the origin of the sec-
ond triangle are quadratic curves. This result shows an answer of our first
problem. The difference of origins cause a different global interpolations.

In chapter 3, we investigate a fast algorithm for matrix exponential com-
putations which have been used for many applications in computer graphics.
For example, mesh-based inverse kinematics provides a tool that simplifies
posing task [12]. In this algorithm, a matrix exponential is used to calcu-
late a deformation gradient of triangular meshes. Alexa investigated a new
interpolation between transformations using operations, addition and scalar
multiplication, which create weighted combination of transformations and
interpolation [1]. For 2D shape interpolation and deformation, there are
several algorithms that preserve rigidity [2, 5]. Kaji et al. improved those
algorithms by using matrix exponentials [7]. Matrix exponentials are also
used for smooth deformations of 2D or 3D meshed CG objects. Our goal
is to provide a fast computation of matrix exponentials. Our motivation
is to improve the performance of many applications using exponentials of
3 × 3 rotational matrices and 3 × 3 real symmetric matrices introduced in
[12, 7, 6]. For the rotational matrices, Rodrigues’ formula [4] is known to
compute their exponentials. We consider an improvement of an exponential
of a 3× 3 real symmetric matrix rather than a rotation matrix. In general,
there are many approaches for computing n×n matrix exponentials. Moler
and Van Loan provided several methods to compute the matrix exponen-
tials [9]. We focus on the matrix exponential of a special case such as 3× 3
real matrices used for the affine transformations [6, 8]. First, we investigate
the spectral decomposition method in [9] focusing on 3 × 3 real symmet-
ric matrices. Our algorithm needs only eigenvalues of a given matrix. We
note a method using diagonalization have to compute eigenvectors in addi-
tion to eigenvalues. Hence, our algorithm can compute matrix exponentials
efficiently. In addition, we consider a faster algorithm for computing the
eigenvalues of a 3×3 real symmetric matrix. For a given matrix, we need to
solve the characteristic equation of the matrix to calculate its eigenvalues.

2

We use Viète’s formula to compute the eigenvalues of a 3×3 real symmetric
matrix. As a result, we introduce simple formulas of eigenvalues just using
the trace and determinant of a given matrix. To evaluate the performance
of our algorithm, we compare the average runtimes for matrix exponentials
and eigenvalues. We show some experimental results to show the advantage
of our algorithm.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

A “Good” Interpolation

In this chapter, we investigate useful formulations for 2D shape interpola-
tions. For a local interpolation, we define two “good” interpolations from
the view points of the changes of “area” and “norm”. We consider conditions
for a given initial and target configuration where the interpolation of this
configuration is “good” in our sense. Next, we define a global interpolation
as a minimum of an energy function defined by a sum of energies of local
interpolations. Then, we consider the values of the global energy function
when we fix the origin of triangles.

2.1 2D shape interpolation

For 2D shape interpolation, we follow the As-Rigid-As-Possible Shape In-
terpolation (ARAP) algorithm [2]. Figure 2.1 shows a example of 2D shape
interpolation using the ARAP method. For a given input data which con-
sists of a source and target configuration, this algorithm generate smooth
intermediate configurations between this source and target configuration.
This algorithm preserves rigidity of input configurations, and ARAP is use-
ful for character animations. The ARAP algorithm consists of the following
3 steps.

1. Compatible triangulation: Two input shape data (source and tar-
get) are triangulated, and the meshes between the source and the
target have a one-to-one correspondence.

2. Local interpolation: Let the source vertices be P = (p1,p2,p3) and
the target vertices be Q = (q1, q2, q3) , where vertices with the same

5

CHAPTER 2. A “GOOD” INTERPOLATION

Figure 2.1: Example of 2D shape interpolation. Left: input configurations.
Right: output configurations. They are intermediate configurations between
an initial (source) and target configuration.

index correspond. We get an affine map denoted by A. In this pa-
per, Aff+(2) is defined by a set of affine maps which have positive
determinant. Then, we construct a homotopy between the 2×2 iden-
tity matrix and A. This homotopy A(t) is parameterized by t ∈ R.
A(t) satisfies A(0) = I and A(1) = A. We follow [6], that is a local
interpolation using the polar decomposition.

AE(t) := Rt
θS

t.

3. Global interpolation: Since most of vertices corresponding to more
than one triangles, a mapping of all vertices could not (in general)
be conforming with all the individual ideal transformations. The col-
lection of local interpolations does not directly assign an ideal global
interpolation. To construct a global interpolation, we use the mini-
mizer of the energy function:

Et(B) :=
m∑
i=1

Ei(Ai(t),B(t)) + C(v1(t), . . . ,vn(t)),

where C is a constant function.

In this chapter, we assume that input configurations are already trian-
gulated compatibly. For the next section, we denote a “good” interpolation
and consider conditions.

2.2 A “good” interpolation

In this section, we consider conditions for a given source and target con-
figuration where a local interpolation of this configuration is “good” in our

6

2.2. A “GOOD” INTERPOLATION

sense. We define two“good” interpolations from the viewpoints of the change
of “area” and “norm”.

Definition 2.2.1. Let A(t) be a given local interpolation. A(t) is called a
“good” interpolation for the change of area if detA(t) is a monotone function
and detA(t) > 0 for 0 ≤ t ≤ 1.

Definition 2.2.2. Let A(t) be a given local interpolation, v ∈ R2 and
‖v‖ = 1. A(t) is called a “good” interpolation for the change of norm if the
norm ‖A(t)v‖ is a monotone function over 0 ≤ t ≤ 1.

As a result, we obtain conditions of “goodness” for each known methods
such as linear interpolation, SVD interpolation and polar decomposition
interpolation.

2.2.1 Linear interpolation method

A linear interpolation method is a simple way to construct a local interpo-
lation between a given initial and target configuration. This interpolation
is defined as follows.

Definition 2.2.3. Let A ∈ Aff+(2) and I the identity matrix. A linear
interpolation Al(t) is defined by

Al(t) = (1− t)I + tA.

In this method, we obtain a condition of “good” interpolation from the
viewpoint of the change of “area”.

Theorem 2.2.1. A linear interpolation Al(t) is a good interpolation for the
change of area if and only if Al(t) satisfies

(trA ≥ detA + 1) ∨ (2detA ≤ trA < 2) ∨ (2 ≤ trA < 2detA).

Proof. The determinant of Al(t) is

detAl(t) =

∣∣∣∣1− t+ ta tb
tc 1− t+ tc

∣∣∣∣
= (1− t)2 + (1− t)(ta+ td) + t2ad− t2bc
= t2(1− a− d+ ad− bc) + t(a+ d− 2) + 1

= (1− trA + detA)t2 + (trA− 2)t+ 1.

7

CHAPTER 2. A “GOOD” INTERPOLATION

We note detAl(0) = 1, detAl(1) = detA > 0. The derivative of detAl(t)
with respect to t is,

d

dt
detAl(t) = 2(1− trA + detA)t+ trA− 2

(i) In the case of 1−trA+detA = 0, detAl(t) is a linear function. Then,
detAl(t) is a monotone function and detAl(t) > 0 for 0 ≤ t ≤ 1. Therefore,
trA = detA + 1 is a condition that detAl(t) is a monotone function.

(ii) Next, in the case of 1− trA + detA > 0, assume
d

dt
detAl(t0) = 0.

Then, we have

t0 =
2− trA

2(1− trA + detA)
.

Since 0 ≤ t ≤ 1, we have

(t0 ≤ 0) ∨ (t0 ≥ 1)⇔ (2 ≤ trA) ∨ (2 detA ≤ trA).

In the case of detA ≤ 1, we have trA < 2 since detA + 1 ≤ 2. Therefore,
2detA ≤ trA < 2 is a condition that detAl(t) is a monotone function. In the
case of detA > 1, we have 2detA > trA since 2detA > detA+1. Therefore,
2 ≤ trA < 2detA is a condition that detAl(t) is a monotone function.

(iii) Finally, in the case of 1− trA+ detA < 0, assume
d

dt
detAl(t0) = 0.

In the same way, we have

t0 =
2− trA

2(1− trA + detA)
.

Since 0 ≤ t ≤ 1, we have

(t0 ≤ 0) ∨ (t0 ≥ 1)⇔ (2 ≤ trA) ∨ (2 detA ≤ trA).

In the case of detA ≤ 1, we have 2detA ≤ detA + 1 < trA since (detA +
1) − 2detA = 1 − detA ≥ 0. Therefore, trA > detA + 1 is a condition
that detAl(t) is a monotone function. In the case of detA > 1, we have
2 < detA + 1 < trA since (detA + 1) − 2 = −1 + detA > 0. Therefore,
trA > detA + 1 is a condition that detAl(t) is a monotone function.

According to (i), (ii) and (iii), we have

(trA ≥ detA + 1) ∨ (2detA ≤ trA < 2) ∨ (2 ≤ trA < 2detA).

8

2.2. A “GOOD” INTERPOLATION

2.2.2 SVD interpolation method

Let A ∈ Aff+(2) and Rθ be a 2×2 rotation matrix for θ rotations. Then, A
is decomposed into two rotation matrices and a diagonal matrix as below.

A = RαDRβ,

where D =

(
x 0
0 y

)
, x > 0, y > 0 and α, β ∈ [0, 2π). This decomposition is

called as the singular value decomposition (SVD). By the SVD method, we
define a SVD interpolation as follows.

Definition 2.2.4. Let A ∈ Aff+(2) and I the identity matrix. A SVD
interpolation As(t) is defined by

As(t) = Rtα((1− t)I + tD)Rtβ,

where R is a rotation matrix, and D is a diagonal matrix.

In this method, we obtain conditions of “good” interpolation from the
viewpoints of the change of “area” and “norm”.

Theorem 2.2.2. As(t) is a good interpolation for the change of area if and
only if A satisfies

(trD ≥ detA + 1) ∨ (2detA ≤ trD < 2) ∨ (2 ≤ trD < 2detA).

Proof. The determinant of As(t) is

detAs(t) = (detRtα)(det ((1− t)I + tD))(detRtβ)

= det ((1− t)I + tD).

This corresponds to the case of the linear interpolation of D. From The-
orem 2.2.1, a condition of detAs(t) which satisfies a monotone and positive
function in the range of 0 ≤ t ≤ 1 is

(trD ≥ detD + 1) ∨ (2detD ≤ trD < 2) ∨ (2 ≤ trD < 2detD).

Then,
detA = (detRα)(detD)(detRβ) = detD.

Therefore,

(trD ≥ detA + 1) ∨ (2detA ≤ trD < 2) ∨ (2 ≤ trD < 2detA).

9

CHAPTER 2. A “GOOD” INTERPOLATION

Theorem 2.2.3. As(t) is a good interpolation for the change of norm if
and only if A satisfies

((x ≥ 1) ∧ (y ≥ 1)) ∨ ((0 < x ≤ 1) ∧ (0 < y ≤ 1)),

where, D =

(
x 0
0 y

)
, x > 0, y > 0.

Proof.

‖As(t)v‖2 = ‖((1− t)I + tD)v‖2

= ((x− 1)t+ 1)2 cos2 θ + ((y − 1)t+ 1)2 sin2 θ

Therefore,

1

2

d

dt
‖As(t)v‖2 = ((x− 1)2 cos2 θ + (y − 1)2 sin2 θ)t

+(x− 1) cos2 θ + (y − 1) sin2 θ.

For all θ ∈ [0, 2π], ‖As(t)v‖ is a monotone function if

((x− 1) cos2 θ + (y − 1) sin2 θ ≥ 0) ∨

(
d‖As(t)v‖2

dt

∣∣∣∣
t=1

≤ 0

)

For the equation ((x − 1) cos2 θ + (y − 1) sin2 θ ≥ 0), we assume x ≥ y.
Then,

(x− 1) cos2 θ + (y − 1) sin2 θ ≥ (y − 1)(sin2 θ + cos2 θ)

= y − 1

Hence, ‖As(t)v‖ is a monotone function if y ≥ 1. In the same way, in
the case of y ≥ x, ‖As(t)v‖ is a monotone function if x ≥ 1.

Therefore
(x ≥ 1) ∧ (y ≥ 1).

We assume x ≥ y.

1

2

d‖As(t)v‖2

dt

∣∣∣∣
t=1

= (x− 1)x cos2 θ + (y − 1)y sin2 θ

≤ (x− 1)x(cos2 θ + sin2 θ)

= (x− 1)x

10

2.2. A “GOOD” INTERPOLATION

Then, ‖As(t)v‖ is a monotone function if 0 < x ≤ 1. In the case of
y ≥ x, ‖As(t)v‖ is a monotone function if 0 < y ≤ 1 in the same way.

(0 < x ≤ 1) ∧ (0 < y ≤ 1).

Therefore,

((x ≥ 1) ∧ (y ≥ 1)) ∨ ((0 < x ≤ 1) ∧ (0 < y ≤ 1)).

2.2.3 Polar decomposition interpolation method

From the SVD,

A = RαDRβ = (RαRβ)(RT
βDRβ).

We put Rγ = RαRβ and S = RT
βDRβ. Then, A is decomposed into a

rotation matrix and a positive definite symmetric matrix as below.

A = RγS,

where S =

(
x h
h y

)
, x > 0, y > 0 and h ∈ R. This decomposition is

called as the polar decomposition. By this decomposition, we define a polar
decomposition interpolation as follows.

Definition 2.2.5. Let A ∈ Aff+(2) and I the identity matrix. We define a
linear interpolation Ap(t) as follows:

Ap(t) = Rtγ((1− t)I + tS),

where R is a rotation matrix, and S is a positive definite symmetric matrix.

In this method, we obtain conditions of “good” interpolation from the
viewpoints of the change of “area” and “norm”.

Theorem 2.2.4. Ap(t)is a good interpolation for the change of area if and
only if A satisfies

(trS ≥ detA + 1) ∨ (2detA ≤ trS < 2) ∨ (2 ≤ trS < 2detA).

where S =

(
x h
h y

)
, x > 0, y > 0, h ∈ R.

11

CHAPTER 2. A “GOOD” INTERPOLATION

Proof.

detAp(t) = (detRtγ)(det ((1− t)I + tS))

= det ((1− t)I + tS)

This equation corresponds to the case of a linear interpolation of S.
From the result of Theorem 2.2.1,

(trS ≥ detS + 1) ∨ (2detS ≤ trS < 2) ∨ (2 ≤ trS < 2detS).

Then,

detA = (detRγ)(detS) = detS

Therefore,

(trS ≥ detA + 1) ∨ (2detA ≤ trS < 2) ∨ (2 ≤ trS < 2detA).

Theorem 2.2.5. Ap(t) is a good interpolation for the change of norm if
and only if A satisfies

((x− 1)(y − 1) ≥ h2) ∧ ((x+ y ≥ 2) ∨ ((0 < x ≤ 1) ∧ (0 < y ≤ 1))).

where S =

(
x h
h y

)
, x > 0, y > 0, h ∈ R.

Proof.

‖Ap(t)v‖2 = ‖((1− t)I + tS)v‖2

= (((x− 1)t+ 1) cos θ + th sin θ)2 + (th cos θ + ((y − 1)t+ 1) sin θ)2

Then,

1

2

d

dt
‖Ap(t)v‖2 = (((x− 1) cos θ + h sin θ)2 + (h cos θ + (y − 1) sin θ)2)t

+ (x− 1) cos2 θ + h sin 2θ + (y − 1) sin2 θ.

For all θ ∈ [0, 2π],

(x− 1) cos2 θ + h sin 2θ + (y − 1) sin2 θ ≥ 0 (2.1)

12

2.2. A “GOOD” INTERPOLATION

or

d‖Ap(t)v‖2

dt

∣∣∣∣
t=1

≤ 0 (2.2)

satisfies the condition of a monotone function.

For equation (2.1), we assume x ≥ y.

(x− 1) cos2 θ + h sin 2θ + (y − 1) sin2 θ

= (x− 1)
1 + cos 2θ

2
+ (y − 1)

1− cos 2θ

2
+ h sin 2θ

=
x+ y − 2

2
+

(x− y)

2
cos 2θ + h sin 2θ

=
x+ y − 2

2
+

√
(x− y)2

4
+ h2 cos(2θ + α)

≥ x+ y − 2

2
−
√

(x− y)2

4
+ h2.

Then, ‖Ap(t)v‖ is a monotone function if the following equation is sat-
isfied:

x+ y − 2

2
≥
√

(x− y)2

4
+ h2 ⇔ (x+ y − 2)2 ≥ (x− y)2 + 4h2

⇔ 4xy − 4(x+ y) + 4 ≥ 4h2

⇔ (x− 1)(y − 1) ≥ h2.

Therefore,

((x− 1)(y − 1) ≥ h2) ∧ (x+ y ≥ 2).

13

CHAPTER 2. A “GOOD” INTERPOLATION

For equation (2.2), we assume x ≥ y.

1

2

d‖Ap(t)v‖2

dt

∣∣∣∣
t=1

= (x− 1)x cos2 θ + (y − 1)y sin2 θ + h2 + h(x+ y − 1) sin 2θ

= (x− 1)x
1 + cos 2θ

2
+ (y − 1)y

1− cos 2θ

2

+ h2 + h(x+ y − 1) sin 2θ

=
(x− 1)x− (y − 1)y

2
cos 2θ +

(x− 1)x+ (y − 1)y

2

+ h2 + h(x+ y − 1) sin 2θ

=
(x− y)(x+ y − 1)

2
cos 2θ + h(x+ y − 1) sin 2θ

+ h2 +
(x− 1)x+ (y − 1)y

2

= (x+ y − 1)

(√
(x− y)2

4
+ h2 cos(2θ + α)

)

+ h2 +
(x− 1)x+ (y − 1)y

2

≤ |x+ y − 1|
√

(x− y)2

4
+ h2 + h2 +

(x− 1)x+ (y − 1)y

2

≤ 0.

Then,

|x+ y − 1|
√

(x− y)2

4
+ h2 ≤ −h2 − (x− 1)x+ (y − 1)y

2

⇔ (x+ y − 1)2
(

(x− y)2

4
+ h2

)
≤
(
h2 +

(x− 1)x+ (y − 1)y

2

)2

⇔ h4 + (x+ y − 2xy − 1)h2 + (x− 1)(y − 1)xy ≥ 0

⇔ (h2 − xy)(h2 + x+ y − xy − 1) ≤ 0

⇔ h2 + x+ y − xy − 1 ≤ 0

⇔ h2 ≤ xy − x− y + 1

⇔ h2 ≤ (x− 1)(y − 1). (2.3)

In addition, we need

h2 +
(x− 1)x+ (y − 1)y

2
≤ 0⇔ h2 ≤ −(x− 1)x+ (y − 1)y

2
. (2.4)

14

2.2. A “GOOD” INTERPOLATION

If x > 1, y ≥ 1 from (2.3). On the other hand, this condition does not
satisfy the condition (2.4). In the same way, y > 1 does not satisfy the
condition (2.3) and (2.4).

Therefore, we need

(0 < x ≤ 1) ∧ (0 < y ≤ 1). (2.5)

Then,

(x− 1)(y − 1) +
(x− 1)x+ (y − 1)y

2
= xy − x− y + 1 +

x2 + y2 − x− y
2

=
1

2
(x2 + y2 − 3x− 3y + 2xy + 2)

=
1

2
((x+ y − 2)(x+ y − 1)).

We have x + y ≤ 2 by (2.5). If x + y ≥ 1, the condition (2.3) satisfies the
condition (2.4) automatically.

In the case of x+ y < 1, the condition (2.4) satisfies the condition (2.3)
automatically.

However,

−(x− 1)x+ (y − 1)y

2
− xy = −1

2
((x+ y)2 − (x+ y))

= −1

2
((x+ y)(x+ y − 1))

> 0.

Since S ∈ Aff+(2), the determinant S is positive, i.e. xy−h2 > 0. Therefore,

h2 < xy < −(x− 1)x+ (y − 1)y

2
.

This inequality shows that the condition (2.4) is always satisfied.
As a result, the condition which satisfies ‖Ap(t)v‖ is a monotone function

for all v ∈ S1 is

((x− 1)(y − 1) ≥ h2) ∧ ((x+ y ≥ 2) ∨ ((0 < x ≤ 1) ∧ (0 < y ≤ 1))).

From the above results, there is a relation between the SVD method and
the polar decomposition method.

15

CHAPTER 2. A “GOOD” INTERPOLATION

Theorem 2.2.6. For a given A ∈ Aff+(2), the following are equivalent:

1. the SVD interpolation method As(t) is a good interpolation for the
change of area.

2. the polar decomposition interpolation method Ap(t) is a good inter-
polation for the change of area.

Proof. By Theorem 2.2.2 and 2.2.4, it is enough to show trD = trS. In
Section 2.2.3, we have S = RT

βDRβ, where D is a diagonal matrix. R

is a rotation matrix. β ∈ [0, 2π). Then, we have trS = tr(RT
βDR). By

tr(XY) = tr(Y X) for all X and Y , tr(RT
βDR) = tr(RRT

βD) = trD
Hence, trS = trD.

2.2.4 Example

For two given triangles P = (p1,p2,p3) and Q = (q1, q2, q3), we com-
pare results of interpolations using linear, SVD and polar decomposition
methods. Let p1 = (0, 0), p2 = (0, 3) and p3 = (2, 0), q1 = (0, 0),
q2 = (−9

√
3/4,−15/4) and q3 = (−1/2, 3

√
3/2). Then, an affine map

A from P to Q is
(
−1/4 −3

√
3/4

3
√
3/4 −5/4

)
. Let Asvd be a SVD of A and Apd

be a polar decomposition of A. Then, Asvd = Rπ/3

(
2 0
0 1

)
R−5π/3 and

Apd = R−4π/3

(
5/4 −

√
3/4

−
√
3/4 7/4

)
.

Figure 2.2, 2.3 and 2.4 are interpolation results from a triangle P to
a triangle Q using linear, SVD and polar decomposition method. In this
example, a linear interpolation method is not a “good” interpolation for the
changes of area and norm. Figure 2.5 shows values of detAs(t) over 0 ≤ t ≤ 1
for a linear interpolation method. However, a SVD interpolation method is
a “good” interpolation for the change of area. On the other hand, a polar
decomposition is a “good” interpolation for not only the change of area
but also the change of norm. This result show that a polar decomposition
interpolation method is the best way from the perspective of our definitions
of “good” interpolations.

2.3 The gap of compositions

For a global interpolation, we define a global interpolation as a minimum
of an energy function defined by a sum of energies of local interpolations.
Generally, we choose the origin of the local transformation as the center of

16

2.3. THE GAP OF COMPOSITIONS

p1

p2

p3

q1

q2

q3

Figure 2.2: A interpolation result using a linear interpolation method.

p1

p2

p3

q1

q2

q3

Figure 2.3: A interpolation result using a SVD interpolation method.

the source triangle. On the other hand, for convenience, we choose the same
origin for each local transformation in the formula of an energy function of a
global transformation. We consider that this small gap may cause different
interpolations, and we would like to clarify conditions of a source and target
configuration which cause a critical error with the global interpolation. In
this section, we consider a simple figure consisting of a pair of triangles.

Let T1 and T2 be this pair of triangles. A1 and A2 are affine maps with
respect to T1 and T2. we call T1 and T2 as the first triangle and the second
triangle.

We assume the values of origins of the first triangle and the second
triangle are zero. Then, we define an energy function E1 as following.

Definition 2.3.1 (The origin is zero). Let A1,A2 ∈ Aff+(2). The energy
function E1 is defined by

E1(A1,A2,B1,B2) := ‖A1 −B1‖2F + ‖A2 −B2‖2F ,

where ‖ · ‖F is the Frobenius norm.

Next, we consider a case if two triangles have different origins. Then, we
define a new energy function E2 as following.

Definition 2.3.2 (The origins are o1 and o2). Let A1,A2 ∈ Aff+(2), o1 be
the origin’s coordinates of the first triangle and o2 be the origin’s coordinates
of the second triangle. Suppose that o1 and o2 are represented by column

17

CHAPTER 2. A “GOOD” INTERPOLATION

p1

p2

p3

q1

q2

q3

Figure 2.4: A interpolation result using a polar decomposition interpolation
method.

Figure 2.5: A graph of detAl(t) for a linear interpolation method.

vectors. Then, the energy function E2 is defined by

E2(A1,A2,B1,B2,o1,o2) := E1(T (A1,−o1), T (A2,−o2), T (B1,−o1), T (B2,−o2)).

That is,

E2(A1,A2,B1,B2,o1,o2) = ‖T (A1,−o1)−T (B1,−o1)‖2F +‖T (A2,−o2)−T (B2,−o2)‖2F ,

where ‖ · ‖F is the Frobenius norm and

T (Ai,oi) :=

(
I oi
0 1

)
Ai

(
I −oi
0 1

)
.

18

2.3. THE GAP OF COMPOSITIONS

We investigate relations between two energies E1 and E2. Then, we have
the following problem.

Problem 2.3.1. Let A1,A2 ∈ Aff+(2) and o1 = (x, y) a point which satis-
fies the following equation. Does the equation

min
B1,B2

E1(A1,A2,B1,B2) = min
B1,B2

E2(A1,A2,B1,B2,o1,o1)

hold or not?

We show a counter example which shows the above equation does not
hold. We assume that the source and target configurations consist of four
vertices and two triangles. For an intermediate configuration between the
source and target configurations, this vertices are v1, v2, v3 and v4. Then,
the coordinates of vi are described by vi = (vix, viy) Let A1 be an affine map
of the first triangle from a source configuration to a target configuration
and A2 be an affine map of the second triangle between them. In addition,
B1 and B2 are affine maps of the first and second triangles from a source
configuration to an intermediate configuration. Then, we have

A1 =

 0 2 −x+ 2y
−2 0 4− 2x− y
0 0 1

 ,A2 =

 1 2 2y
−1 0 3− x− y
0 0 1

 ,

B1 =

−v1x + v2x −v1x + v3x b11
−v1y + v2y −v1y + v3y b12

0 0 1

 ,B2 =

−v3x + v4x −v2x + v4x b21
−v3y + v4y −v2y + v4y b22

0 0 1

 ,

where

b11 = −x+ v1x + x(−v1x + v2x) + y(−v1x + v3x),

b12 = −y + v1y + x(−v1y + v2y) + y(−v1y + v3y),

b21 = −x+ v2x + v3x − v4xx(−v3x + v4x) + y(−v2x + v4x),

b22 = −y + v2y + v3y − v4yx(−v3y + v4y) + y(−v2y + v4y).

19

CHAPTER 2. A “GOOD” INTERPOLATION

A solution of this minimization problem is

v1x =
1 + x(−1 + x+ y)

2(x2 + 2xy + y2 − 2x− 2y + 3)
,

v1y =
1

2

(
7 +

1 + (x− 1)(−1 + x+ y)

x2 + 2xy + y2 − 2x− 2y + 3

)
,

v2x =
1

2
,

v2y = 2,

v3x = 2,

v3y =
7

2
,

v4x =
1

2

(
5 +

1 + x(−1 + x+ y)

x2 + 2xy + y2 − 2x− 2y + 3

)
,

v4y =
1

2

(
4 +

1 + (x− 1)(−1 + x+ y)

x2 + 2xy + y2 − 2x− 2y + 3

)
.

Then, a minimum value of E2 is given by

min
B1,B2

E2(A1,A2,B1,B2,o1,o1) =
2 + (x− 1)x+ (y − 1)y

x2 + 2xy + y2 − 2x− 2y + 3
.

Hence, o1 = (x, y) which satisfies minB1,B2 E1 = minB1,B2 E2 is

x2 − 4xy + y2 + x+ y − 1

4
= 0.

In this result, we show that the contour of the origin which satisfies

min
B1,B2

E1(A1,A2,B1,B2) = min
B1,B2

E2(A1,A2,B1,B2,o1,o1)

is a quadratic curve (Figure 2.6) . On the other hand, this result shows that
the difference of origins cause a different global interpolation (Figure 2.7) .

2.4 Conclusions

We investigate useful formulations for 2D shape interpolations. For a local
interpolation, we defined two “good” interpolations from the viewpoints
of the changes of “area” and “norm”. We consider conditions for given
source and target configurations where the interpolation of this configuration
is “good” in our sense. We obtained conditions of “goodness” for each

20

2.4. CONCLUSIONS

Figure 2.6: Contours of the origin which satisfies minB1,B2 E1(A1, A2, B1, B2) =

minB1,B2 E2(A1, A2, B1, B2, o1, o1) .

known methods such as linear interpolation, SVD interpolation and polar
decomposition interpolation.

In ARAP method, we define a global interpolation as a minimum of an
energy function defined by a sum of energies of local interpolations. Gen-
erally, we choose the origin of the local interpolation as the center of the
source configuration. On the other hand, for convenience, we choose the
same origin for each local interpolation in the formula of an energy function
of a global interpolation. The first problem we consider is that this small
gap may cause different interpolations, and we would like to clarify condi-
tions of the source and target configuration which cause a critical error with
the ARAP method. We choose a simple figure with two triangles which we
call them the first triangle and the second triangle. We consider the values
of the global energy function when we fix the origin of the first triangle to
zero and vary the origin of the second triangle. Then, we can show contours
of the origin of the second triangle are quadratic curves. This result shows

21

CHAPTER 2. A “GOOD” INTERPOLATION

Figure 2.7: Results of global interpolations. Red: origins of two triangles
are zero. Green: each origin of two triangles is barycenter of each triangle.

an answer of our first problem. The difference of origins cause a different
global interpolations.

22

Chapter 3

Computation of 3×3 Matrix
Exponentials

In this chapter, we investigate fast algorithms for the matrix exponentials
and eigenvalues of matrix exponentials and eigenvalues of 3×3 real symmet-
ric matrices. We show that matrix exponentials and eigenvalues of the 3×3
real symmetric matrix can be represented by specific formulas. Then, we
achieve a notable performance improvement using our algorithm.

3.1 Algorithm for Matrix Exponential

Let Mn(R) be the set of n× n matrices.

Definition 3.1.1. The set of 3 × 3 real symmetric matrices is defined by
Sym(3) := {S | S = tS ∈M3(R)}, where tS is the transpose of S.

Definition 3.1.2. For S ∈ Sym(3), the matrix exponential of S is defined
by

exp(S) =
∞∑
k=0

Sk

k!
.

Although the sum of the infinite series converges, their rate of conver-
gence may not be so high. So we can not have an efficient algorithm by
direct computations.

3.1.1 Algorithm1. Diagonalization

First, we introduce the method using diagonalization. This method helps
to compute their exponential easily.

23

CHAPTER 3. COMPUTATION OF 3×3 MATRIX EXPONENTIALS

Proposition 3.1.1. Let S be a real symmetric matrix. Then, S is de-
composed by an orthogonal matrix P and a diagonal matrix D, and S is
described as S = PDtP .

Proposition 3.1.2. Let S be an element of Sym(3). Then, the matrix
exponential of S is exp(S) = P exp(D)tP , where P is an orthogonal matrix
and D is a diagonal matrix. P and D satisfy S = PDtP .

Proof. Since S is a real symmetric matrix, S is also diagonalized with an
orthogonal matrix P and a diagonal matrix D such that S = PDtP .

From definition (3.1.2), exp(S) is

exp(S) = exp(PDtP) =

∞∑
k=0

(PDtP)k

k!

= P

(∞∑
k=0

Dk

k!

)
tP = P exp(D)tP.

So we can make an algorithm of a matrix exponential using the diagonal-
ization. The algorithm needs to compute eigenvalues (D) and eigenvectors
(P) to compute the matrix exponential. The computational cost of eigen-
vectors however is more expensive than the cost of eigenvalues. Next, we
review the faster algorithm in [6] to improve this drawback. This method
does not need to compute eigenvectors and is faster than the method using
diagonalization.

3.1.2 Algorithm2. Spectral Decomposition

We describe the algorithm using spectral decomposition [6, 8]. Let λ1, λ2 and
λ3 be the eigenvalues of S ∈ Sym(3). They are the roots of the characteristic
polynomial of S. The characteristic polynomial of S is defined as follows.

Definition 3.1.3. Let φS(λ) be the characteristic polynomial of S ∈ Sym(3).
φS(λ) is defined as φS(λ) = det (λE − S), where det is the determinant op-
eration.

From the Cayley-Hamilton theorem, the following proposition is satis-
fied.

Proposition 3.1.3. Let φS(λ) be the characteristic polynomial of S ∈
Sym(3) and we substitute S for λ and the identity matrix for 1 in this
polynomial. Then, φS(S) is equal to 0.

24

3.1. ALGORITHM FOR MATRIX EXPONENTIAL

Since φS(λ) is a third degree polynomial in λ, φS(S) is also a third degree

polynomial in S. Therefore Sk

k! can be described as Sk

k! = QkφS(S) + Rk,
where Qk is a polynomial in S, and Rk is an at most second degree polyno-
mial in S. Hence, exp(S) =

∑∞
k=0 (QkφS(S) +Rk). Then,

∑∞
k=0QkφS(S) is

equal to 0 from the Cayley-Hamilton theorem, and
∑∞

k=0Rk is an at most
second degree polynomial in S. As a result, exp(S) can be described as
exp(S) = xS2 + yS+ zE, where E is the 3× 3 identity matrix, and x, y and
z are elements of R.

Hence, exp(S) can be represented by a second degree polynomial in S.
Next step is to decide x, y, z ∈ R to compute exp(S). In Proposition 3.1.2,
exp(S) can be described as exp(S) = P exp(D)tP .

On the other hand, xS2 + yS + zE is described as xS2 + yS + zE =
P (xD2 + yD + zE)tP . Therefore, exp(D) = xD2 + yD + zE.

Let λ1, λ2 and λ3 be the eigenvalues of S. The elements of D are the
eigenvalues of S. Then, we have

exp(D) =

eλ1 0 0
0 eλ2 0
0 0 eλ3

 ,

xD2 + yD + zE =

xλ21 + yλ1 + z 0 0
0 xλ22 + yλ2 + z 0
0 0 xλ23 + yλ3 + z

 .

Hence, we can decide x, y and z to solve the following equation.eλ1eλ2

eλ3

 =

λ21 λ1 1
λ22 λ2 1
λ23 λ3 1

xy
z

 .

The values of x, y and z depend on multiplicity of the eigenvalues of S.
We consider two eigenvalues λ and λ′ are same if |λ− λ′| < 10−6.

Case 1. When all the three eigenvalues are same, put

x = y = 0, z = exp(λ1).

Case 2. When two of them are same, that is λ1 = λ2, put

x = 0, y = s− t, z = tλ2 − sλ3,

where

s =
exp(λ2)

λ2 − λ3
, t =

exp(λ3)

λ2 − λ3
.

25

CHAPTER 3. COMPUTATION OF 3×3 MATRIX EXPONENTIALS

Case 3. When all of them are distinct, put

x = s+ t+ u,

y = −s(λ2 + λ3) + t(λ3 + λ1) + u(λ1 + λ2),

z = sλ2λ3 − tλ3λ1 − uλ1λ2,

where

s =
exp(λ1)

(λ1 − λ2)(λ1 − λ3)
, t =

exp(λ2)

(λ2 − λ3)(λ1 − λ2)
, u =

exp(λ3)

(λ2 − λ3)(λ3 − λ1)
.

Therefore, we have a simple formula for x, y and z. Our algorithm needs
to compute only eigenvalues of a 3 × 3 real symmetric matrix so that we
can compute a matrix exponential more efficiently than the algorithm using
diagonalization.

Next, we will discuss an efficient algorithm for eigenvalues for this matrix
in the next section.

3.2 Eigenvalues Using Viète’s Formula

In this section, we investigate an algorithm using Viète’s formula. This
algorithm achieves a fast computation of eigenvalues in comparison with
the algorithm using diagonalization.

If S ∈ Sym(3) is given, we need to solve the characteristic equation of S.
Let λ1, λ2 and λ3 be the eigenvalues of S. Then, the characteristic equation
is (x− λ1)(x− λ2)(x− λ3) = 0. This equation is expanded into

x3 − (λ1 + λ2 + λ3)x
2 + (λ1λ2 + λ2λ3 + λ3λ1)x− λ1λ2λ3 = 0.

Therefore, the characteristic equation of S is described as

x3 − (trS)x2 +
(trS)2 − ‖S‖2F

2
x− detS = 0,

where trS is the trace of S, ‖S‖F is the Frobenius norm of S.

This equation can be solved by using Viète’s formula. For a given S ∈
Sym(3), let λ1, λ2 and λ3 be the eigenvalues of S. Those are the roots of
the characteristic equation of S:

x3 − (trS)x2 +
(trS)2 − ‖S‖2F

2
x− detS = 0.

26

3.2. EIGENVALUES USING VIÈTE’S FORMULA

Let a, b, c, and y be a = −trS, b =
(trS)2−‖S‖2F

2 , c = −detS and y = x+ a
3 .

Then,

y3 +

(
b− 1

3
a2
)
y +

(
2

27
a3 − 1

3
ab+ c

)
= 0.

Let p and q be p = b− 1
3a

2 and q = 2
27a

3− 1
3ab+ c. Since all eigenvalues

of real symmetric matrices are real numbers, the solutions are also real
numbers. Hence, the discriminant satisfies −(4p3 + 27q2) ≥ 0, especially
p ≤ 0. If p = 0, then we find q = 0. Then, λ1, λ2 and λ3 are equal to trS

3 . So

we consider the case of p < 0. Let t =
√
−4p

3 , u = y
t and k = −4q

t3
. Then,

the equation is described as

4u3 − 3u− k = 0.

Since 4p3 + 27q2 ≤ 0, we have |q| ≤
√
−4p3/27, |4q| ≤ t3 and |k| ≤ 1.

To solve the equation, we use the cosine’s Triple-angle formula cos 3θ =
4 cos3 θ − 3 cos θ. Let u1, u2 and u3 be the roots of the equation, and set
θ = 1

3 arccos(k). From this formula, the roots are

u1 = cos

(
1

3
arccos k

)
, u2 = cos

(
1

3
arccos k +

2

3
π

)
, u3 = cos

(
1

3
arccos k +

4

3
π

)
.

From y = x+ a
3 , u = y

t , the eigenvalues of S are λi = tui− a
3 (i = 1, 2, 3).

Therefore, we find a simple formula for the eigenvalues of a 3× 3 symmetric
matrix.

λ1 =
r cos

(
arccos(k)

3

)
+ trS

3
, λ2 =

r cos
(
arccos(k)+2π

3

)
+ trS

3
,

λ3 =
r cos

(
arccos(k)+4π

3

)
+ trS

3
,

where

r = 3t =
√
−12p, k = −108q

r3
,

p =
(trS)2 − 3 ‖S‖2F

6
, q =

5

54
(trS)3 − 1

6
trS ‖S‖2F − detS.

As a result, we obtain the eigenvalues of S. We note that the eigenvalues
of S can be represented by a simple formula using the trace, determinant

27

CHAPTER 3. COMPUTATION OF 3×3 MATRIX EXPONENTIALS

and Frobenius norm of S. The proposed method for computing eigenvalues
involves computation of cosine and arccosine. Cosine is implemented in the
Eigen library. The function comes from Julien Pommier’s SSE math library
which is known as an accurate math library, and arccosine is implemented
in the C++ Standard Library. We consider the speed and accuracy of these
functions are acceptable.

3.3 Applications

We incorporated our implementation of the algorithm discussed above into
the shape deforming tools developed in [6]. For example, Cage-based de-
former gives a target shape and a “cage” surrounding it. The cage can be
any triangulated polyhedron wrapping the target shape. We want to de-
form the target shape by manipulating not directly on it but through the
proxy cage. Essentially this deformation is based on polar decompositions
and matrix exponentials of 3×3 real symmetric matrices. We examined our
improvements replacing the exponential part in this deformation program.

3.4 Experimentation

In this section, we compared the computation times of our algorithms with
standard techniques. We use a Intel Core i7 1.9 GHz CPU with 4 GB of
RAM and Windows 8 (64bit) OS. In the experimentations, we implemented
our algorithms in C++ programming language (Microsoft Visual Studio
2010 Ultimate), and the optimization option (/O2) of this compiler was
maximization of the execution speed. Our implementation used the Eigen
library which provides many functions of matrix operations.

First we compared our algorithm for the computation of the eigenvalues
of a 3× 3 real symmetric matrix with the QR algorithm [13] which uses the
QR decomposition. This algorithm is implemented in the Eigen library as
a class member function which computes the eigenvalues. Before call the
function, we need to create an instance of this class by specifying the size
of matrix. Then, the QR algorithm is restricted to 3× 3 matrix. For given
107 three dimensional real symmetric matrices randomly, we compared the
running times for the computation of eigenvalues of all given matrices. In
the applications of CG, the eigenvalues of the given matrices should be more
than 0. Hence, we need to obtain positive semi-definite matrices. The way
of generating these matrices randomly is the following. First, we generate
a real matrix M and choose the elements of M from the range [−1, 1].

28

3.4. EXPERIMENTATION

Next, we compute S = tMM to obtain a real symmetric matrix. Then, the
eigenvalues of S are more than 0 because S is a positive semi-definite matrix.
Figure 3.1 shows a comparison of the computation of the eigenvalues using
the QR algorithm and our algorithm using Viète’s formula. Our algorithm
is about 3.2 times faster than the QR algorithm.

The Eigen library provides an algorithm computing the eigenvalues using
Viète’s formula. However, we implemented our algorithm independently
using our formalized formula using the trace, determinant and Frobenius
norm.

Figure 3.1: Computation time of the eigenvalues of the 3×3 real symmetric
matrix. Upper: using the QR algorithm. Lower: using our algorithm.

Next, we compared our algorithm for the computation of the matrix
exponential of a 3 × 3 real symmetric matrix with an algorithm based on
diagonalization. For given 107 three dimensional real symmetric matrices
chosen randomly by the same method in the previous experimentation, we
compared the average running times for computing the matrix exponentials
using the algorithm based on diagonalization (Diag), spectral decomposition

29

CHAPTER 3. COMPUTATION OF 3×3 MATRIX EXPONENTIALS

(SD) and improved spectral decomposition (improved SD) which includes
our algorithm for the computation of the eigenvalues. Figure 3.2 shows a
comparison of the computation of the matrix exponentials using the three
algorithms. As a result, improved SD is the best algorithm among those
algorithms and achieved about 4.2 times faster than Diag.

We consider eigenvalues between 0 and 3, because a transformation ma-
trix induced by an interactive motion does not have large eigenvalues. By
our experiments, the error rate is less than 10−6 and it is acceptable for
making a deformation of computer graphics. Our method using Viète’s for-
mula may produce small numerical errors, but we have benefits of computing
time using our exponential matrix without computing eigenvectors. Since we
consider λ ≤ 3, the error rate of the difference of cases in our algorithm are
bounded. Experimentally, the computation of deformations are acceptable.

Finally we incorporated the implementations of Diag and improved SD
into the Cage-based deformer algorithm in [6]. For a dragon model with
50,000 vertices, 100,000 triangles, we compared the average running times
of deforming this model using two algorithms. Figure 3.3 shows the com-
parison of the computation times, and the average runtime of improved
SD is about 1.2 times faster than Diag. Compared with the result for the
eigenvalues, this improvement in speed for the application may not look like
significant. This is because the application has other heavy computations.
In more detail, the application computes affine transformations for all trian-
gular meshes of a given model and logarithms of matrices obtained from the
affine transformations. In addition, the application needs a weighted sum
calculation to decide the shape deformation.

Therefore, our algorithm can be useful for a practical deformation tool.

3.5 Conclusions

We investigate fast algorithms for the matrix exponentials and eigenvalues
of 3 × 3 real symmetric matrices. We show that the matrix exponential
and eigenvalues of the 3 × 3 real symmetric matrix can be represented by
specific formulas using the trace, determinant and Frobenius norm of the
matrix. Our algorithms are implemented in C++ programming language
as functions which compute the matrix exponential and eigenvalues of the
3× 3 real symmetric matrix. For the computation time of the matrix expo-
nential, we compare our algorithm with other algorithms. In addition, we
incorporate the implementations into a practical deformation tool. Using
the deformation tool, we evaluate the computation time of our algorithm

30

3.5. CONCLUSIONS

8469

7852

2467

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Diag SD improved SD

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
m

ill
i s

e
co

n
d

s)

Figure 3.2: A comparison of average runtimes for the computation of the ma-
trix exponential of 3× 3. Left: using diagonalization (Diag). Center: using
spectral decomposition (SD). Right: using the improved spectral decompo-
sition (improved SD) which includes our algorithm for the computation of
the eigenvalues.

for the deformation of a given model.

In conclusion, we achieve a notable performance improvement using our
algorithm. In fact, we compare the computation of the eigenvalues using
the QR algorithm and our algorithm using Viète’s formula. Our algorithm
is about 3.2 times faster than the QR algorithm. Next, we compare the
computation of the matrix exponentials using an algorithm based on di-
agonalization, our algorithm based on spectral decomposition and our im-
proved algorithm which includes our algorithm computing the eigenvalues
using Viète’s formula. Then, our improved algorithm is the best algorithm
among those algorithms and achieved about 4.2 times faster than the al-
gorithm using diagonalization. Finally we incorporate the implementations
of the algorithm using diagonalization and our improved algorithm into the

31

CHAPTER 3. COMPUTATION OF 3×3 MATRIX EXPONENTIALS

67.16

54.46

0

10

20

30

40

50

60

70

80

Diag improved SD

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
m

ill
i s

e
co

n
d

s)

Figure 3.3: A comparison of average runtimes for the deformation of a
dragon model. Left: using diagonalization (Diag). Right: using improved
spectral decomposition (improved SD) which includes our algorithm for the
computation of the eigenvalues.

Cage-based deformer. For a dragon model, we compare average running
times of deforming this model using two algorithms. As a result, the aver-
age runtime of our improved algorithm is about 1.2 times faster than the
algorithm based on the diagonalizaion.

We have not estimated the accurate numerical error of our matrix expo-
nential algorithm. In this paper, we just show that the benefits of compu-
tational costs and acceptable results of applications of deformations.

32

Bibliography

[1] Marc Alexa. Linear combination of transformations. In Proc. the 29th
Annual Conference on Computer Graphics and Interactive Techniques,
pages 380–387. ACM, 2002.

[2] Marc Alexa, Daniel Cohen-Or, and David Levin. As-rigid-as-possible
shape interpolation. In Proc. the 27th Annual Conference on Com-
puter Graphics and Interactive Techniques, pages 157–164. ACM
Press/Addison-Wesley Publishing Co., 2000.

[3] Thaddeus Beier and Shawn Neely. Feature-based image metamorphosis.
In Proceedings of the 19th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’92, pages 35–42, New York, NY,
USA, 1992. ACM.

[4] Roger W. Brockett. Robotic manipulators and the product of exponen-
tials formula. In P.A. Fuhrmann, editor, Proc. the MTNS-83 Interna-
tional Symposium, pages 120–129. Springer Berlin Heidelberg, 1983.

[5] Takeo Igarashi and Yuki Igarashi. Implementing as-rigid-as-possible
shape manipulation and surface flattening. J. Graphics, GPU, & Game
Tools, 14(1):17–30, 2009.

[6] Shizuo Kaji, Sampei Hirose, Hiroyuki Ochiai, and Ken Anjyo. A Lie
theoretic parameterization of affine transformations. In Proc. Sympo-
sium MEIS2013: Mathematical Progress in Expressive Image Synthesis,
volume 50 of MI Lecture Note, pages 134–140. Kyushu University, 2013.

[7] Shizuo Kaji, Sampei Hirose, Shigehiro Sakata, Yoshihiro Mizoguchi,
and Ken Anjyo. Mathematical analysis on affine maps for 2d shape
interpolation. In Proc. the ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, pages 71–76. Eurographics Association, 2012.

33

BIBLIOGRAPHY

[8] Kohei Matsushita, Hiroyasu Hamada, and Genki Matsuda. A fast com-
putation of matrix exponential and its application in cg. In Proc. Fo-
rum “Math-for-Industry” 2013, volume 51 of MI Lecture Note, page 92.
Kyushu University, 2013.

[9] Cleve Moler and Charles Van Loan. Nineteen dubious ways to compute
the exponential of a matrix, twenty-five years later. SIAM Review,
45(1):3–49, 2003.

[10] Ken Shoemake. Animating rotation with quaternion curves. In Pro-
ceedings of the 12th annual conference on Computer graphics and in-
teractive techniques, SIGGRAPH ’85, pages 245–254, New York, NY,
USA, 1985. ACM.

[11] Ken Shoemake and Tom Duff. Matrix animation and polar decomposi-
tion. In Proceedings of the conference on Graphics interface ’92, pages
258–264, San Francisco, CA, USA, 1992. Morgan Kaufmann Publishers
Inc.

[12] Robert W. Sumner, Matthias Zwicker, Craig Gotsman, and Jo-
van Popović. Mesh-based inverse kinematics. ACM Trans. Graph.,
24(3):488–495, 2005.

[13] James H. Wilkinson, editor. The Algebraic Eigenvalue Problem. Oxford
University Press, Inc., 1988.

[14] Dong Xu, Hongxin Zhang, Qing Wang, and Hujun Bao. Poisson shape
interpolation. In Proceedings of the 2005 ACM symposium on Solid and
physical modeling, SPM ’05, pages 267–274, New York, NY, USA, 2005.
ACM.

34

