
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Efficient Algorithms to Solve the Elliptic
Curve Discrete Logarithm Problem over Finite
Fields of Characteristic Two

黄, 筠茹

https://doi.org/10.15017/1500510

出版情報：九州大学, 2014, 博士（機能数理学）, 課程博士
バージョン：
権利関係：全文ファイル公表済

Graduate	School	of	Mathematics, Kyushu	University

Ph.D.	Thesis

九州大学大学院数理学府数理学専攻

博士論文

Efficient	Algorithms	to	Solve	the	Elliptic	Curve	Discrete	Logarithm	Problem

over	Finite	Fields	of	Characteristic	Two

標数 有限体上 楕円曲線離散対数問題 効率的 解法

黃　筠茹

Yun-Ju	Huang

指導教員 高木 剛 博士

Advisor：Tsuyoshi	Takagi, Ph.D.

平成 年 月

January, 2015

Acknowledgement

Abstract

In the last two decades, elliptic curves have become increasingly important. In 2009, the

American National Security Agency (NSA) to advocate the use of elliptic curves for public key

cryptography [Nat09], which are based on the hardness of elliptic curve discrete logarithm

problem (ECDLP) or other hardness problem on elliptic curves. Elliptic curves used in prac-

tice are de ined either over a prime ield Fp or over a binary ield F2n . Like any other discrete

logarithmproblem, ECDLP can be solvedwith generic algorithms such as Baby-step Giant-step

algorithm, Pollard's ρ method and their variants [Sha71, Pol75, Bre80, Pol00]. These algo-

rithms can be parallelized very ef iciently, but the parallel versions still have an exponential

complexity in the size of the parameters. Better algorithms based on the index calculus frame-

work have long been known for discrete logarithm problems over multiplicative groups of i-

nite ields or hyperelliptic curves, but generic algorithms have remained the best algorithms

for solving ECDLP until recently.

A key step of an index calculus algorithm for solving ECDLP is to solve the point decomposi-

tion problem. In 2004, Semaev introduced the summationpolynomials (also knownas Semaev's

polynomials) to solve this problem. Solving Semaev's polynomials is not a trivial task in gen-

eral, in particular if K is a prime ield. At Eurocrypt 2012, Faugère, Perret, Petit and Renault

re-analized Diem's attack [Die11] in the case F2n (denoted as FPPR in this work), and showed

that the systems arising from the Weil descent on Semaev's polynomials are much easier to

solve than generic systems [FPPR12]. Later at Asiacrypt 2012, Petit and Quisquater provided

heuristic evidence that ECDLP is subexponential for that very important family of curves, and

would beat generic algorithms when n is larger than about 2000 [PQ12]. In 2013, Shantz and

Teske provided further experimental results using the so-called ``delta method'' with smaller

factor basis to solve the FPPR system. [ST13b, FPPR12].

Even though these recent results suggest that ECDLP is weaker than previously expected

ii

for binary curves, the attacks are still far from being practical. This is mainly due to the large

memory and time required to solve the polynomial systems arising from the Weil descent in

practice. In particular, the experimental results presented in [PQ12] for primes nwere limited

to n = 17. In order to validate the heuristic assumptions taken in Petit and Quisquater's anal-

ysis and to estimate the exact security level of binary elliptic curves in practice, experiments

on larger parameters are de initely required.

In this paper, we introduced several variants to solve ECDLP. In our irst approach, we fo-

cus onDiem's version of index calculus for ECDLP over a binary ield of prime extension degree

n [Die11, FPPR12, PQ12]. In that case, the Weil descent is performed on a vector space that

is not a sub ield of F2n , and the resulting polynomial system cannot be re-written in terms

of symmetric variables only. We introduce a different method to take advantage of symme-

tries even in the prime degree extension case [HPST13]. While Shantz and Teske use the same

multivariate system as FPPR [ST13b, FPPR12], in this work we re-write the system with both

symmetric and non-symmetric variables. The total number of variables is increased compared

to [FPPR12, PQ12], but we limit this increase as much as possible thanks to an appropriate

choice of the vector space V . On the other hand, the use of symmetric variables in our system

allows reducing the degrees of the equations signi icantly. Our experimental results show that

our systems can be solved faster than the original systems of [FPPR12, PQ12] as long as n is

large enough.

In our second approach, we focus on the new method to calculate the Semaev's summa-

tion polynomial by breaking it down into several pieces of smaller Semaev's summation poly-

nomial. In this case, we limited the degree of Semaev's summation polynomial as well as the

degree of regularity of the new system by introducing more intermediate variables. By this

new method, we can solve larger Semaev's summation polynomial to at least seven variables,

while the irst approach [HPST13] can only solved the Semaev's summation polynomial with

iii

at most four variables. Our experimental results show that our systems can be solved faster

than the irst approach.

For a further discussion in the related topic, we also introduced more variants to solve

ECDLP based on the idea to break the Semaev's summation polynomial down into several

smaller pieces. We claim that the new algorithm can solve elliptic curve subset sum problem

(ECSSP) as well by showing the reduction to ECSSP. The ef iciency is also shown by the given

experimental results.

Keywords: elliptic curve cryptography, discrete logarithm problem, index calculus method,

multivariate polynomial system, Gröbner basis

iv

Contents

Acknowledgement i

Abstract ii

Table of Contents v

List of Algorithms viii

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Thesis Organization . 4

2 Notation 6

3 Preliminary 7

3.1 Elliptic Curve Discrete Logarithm Problem . 7

3.2 Index Calculus Method . 11

3.2.1 Generic Index Calculus Method . 11

3.2.2 Semaev's summation polynomial . 13

v

3.3 FPPR method . 16

3.4 Groebner Basis . 18

3.4.1 Order . 19

3.4.2 Groebner basis . 21

3.4.3 Buchberger Algorithm . 24

3.4.4 Faugère's algorithm (F4) . 28

4 First Approach 31

4.1 Use of Symmetries in Previous Works . 32

4.2 Using Symmetries with Prime Extension Degrees 34

4.2.1 A New System with both Symmetric and Non-Symmetric Variables . . . 34

4.2.2 A Special Vector Space . 37

4.2.3 New Decomposition Algorithm . 38

4.3 Experimental Results . 38

4.3.1 Relation Search . 39

4.3.2 Whole ECDLP Computation . 45

5 Second Approach 47

5.1 Splitting up the Resultant . 48

5.2 Application to ECDLP . 49

5.3 Experimental results . 50

5.3.1 Splitting up Semaev 4 . 51

5.3.2 Splitting up Semaev 5 . 51

5.3.3 Splitting up Semaev 6 and 7 . 52

5.3.4 Generic resultant polynomials . 52

vi

6 Extension Discussion 61

6.1 New binary ECDLP and DLP Algorithms . 62

6.1.1 Binary ECDLP Algorithm . 62

6.1.2 Binary DLP Algorithm, First Variant . 63

6.1.3 Binary DLP Algorithm, Second Variant . 65

6.2 Reduction to binary ECSSP . 65

6.3 Experimental results . 67

6.3.1 New Binary ECDLP Algorithm . 67

6.3.2 New Binary DLP Algorithms . 68

7 Conclusion 70

7.1 Future work . 71

Bibliography 78

vii

List of Algorithms

3.1 Index Calculus of ECDLP [Sem04] . 12

3.2 Decompose function with sm+1 . 16

3.3 Decompose function with binary multivariable polynomial system [FPPR12] . 18

3.4 Pseudocode of Buchberger Algorithm . 25

3.5 Pseudocode of SelectPair function in Buchberger Algorithm 25

3.6 Pseudocode of UpdateGP function . 26

3.7 Pseudocode of F4 Algorithm . 29

3.8 Pseudocode of SelectPairs function in F4 . 30

4.1 Decompose functionwith binarymultivariable polynomial systemand symmet-

ric elementary functions (ImpAppr1) . 39

viii

List of Tables

4.1 Comparison for different multivariate polynomial system 38

4.2 Comparison of the relation search (m = 3, n′ = 3) with two strategies, ImpFPPR and ImpAppr1.

Dreg , var, poly and mono are the degree of regularity, the number of variables, the number of

polynomials and the number ofmonomials in the system. ttrans and tgroe are the transformation

time and solving Gröbner basis time (seconds). men is thememory consumptions for solving the

system (MB). 40

4.3 Comparison of the relation search (m = 3, n′ = 4) with two strategies, ImpFPPR and ImpAppr1.

Dreg , var, poly and mono are the degree of regularity, the number of variables, the number of

polynomials and the number ofmonomials in the system. ttrans and tgroe are the transformation

time and solving Gröbner basis time (seconds). men is thememory consumptions for solving the

system (MB). 41

4.4 Comparison of the relation search (m = 3, n′ = 5) with two strategies, ImpFPPR and ImpAppr1. 42

4.5 Comparison of the relation search (m = 3, n′ = 6) with two strategies, ImpFPPR and ImpAppr1. 43

4.6 Comparison of two ECDLP strategies, ImpFPPR and ImpAppr1. The last two columns are com-

puting time in seconds. 45

4.7 Trade-off for choosingm and n′. N : total number of variables. Dreg: degree of

regularity. 45

5.1 Comparison FPPR [FPPR12], the irst approach [HPST13] and the second approach whenm = 3 54

ix

5.2 Comparison FPPR [FPPR12], the irst approach [HPST13] and the second approach whenm = 3 55

5.3 Experiment results for the splitting strategy whenm = 4 55

5.4 Experiment results for the splitting strategy whenm > 4 56

6.1 Comparison of ECDLP algorithms . 68

6.2 Comparison of the DLP variants . 69

x

List of Figures

3.1 Illustration of the arithmetic operation on elliptic curve 9

3.2 Illustration of the scalar multiplication on elliptic curve 10

3.3 Example of MatrixM andM_ in Algorithm 3.1 13

3.4 Simple sketch of Groebner Basis . 22

3.5 Transformation between matrix and polynomials 27

5.1 Experiments for the splitting strategy with generic resultant polynomial (t = 1,m = 1). 57

5.2 Experiments for the splitting strategy with generic resultant polynomial (t = 1,m = 2). 58

5.3 Experiments for the splitting strategy with generic resultant polynomial (t = 2,m = 1). 59

5.4 Experiments for the splitting strategy with generic resultant polynomial for larger t andm. . . 60

xi

Chapter 1

Introduction

In the last twodecades, elliptic curves have become increasingly important. In 2009, theAmer-

ican National Security Agency (NSA) to advocate the use of elliptic curves for public key cryp-

tography [Nat09], which are based on the hardness of elliptic curve discrete logarithmproblem

(ECDLP) or other hardness problem on elliptic curves. Given an elliptic curve E de ined over

a inite ield K , some rational point P of E and a second point Q ∈ ⟨P ⟩ ⊂ E, elliptic curve

discrete logarithm problem (ECDLP) requires inding an integer k such that Q = [k]P . Ellip-

tic curves used in practice are de ined either over a prime ield Fp or over a binary ield F2n .

Like any other discrete logarithm problem, ECDLP can be solved with generic algorithms such

as Baby-step Giant-step algorithm, Pollard's ρmethod and their variants [Sha71, Pol75, Bre80,

Pol00]. These algorithms can be parallelized very ef iciently, but the parallel versions still have

an exponential complexity in the size of the parameters. Better algorithms based on the index

calculus framework have long been known for discrete logarithm problems overmultiplicative

groups of inite ields or hyperelliptic curves, but generic algorithms have remained the best

algorithms for solving ECDLP until recently.

A key step of an index calculus algorithm for solving ECDLP is to solve the point decom-

position problem. Given a prede ined factor basis F ⊂ E and a random point R ∈ E, this

1

problem asks the existence of points Pi ∈ F such that R =
∑

i Pi. In 2004, Semaev intro-

duced the summation polynomials (also known as Semaev's polynomials) to solve this prob-

lem. The Semaev's polynomial sr is a polynomial in r variables such that sr(x1, . . . , xr) = 0

if and only if there exist r points Pi := (xi, yi) ∈ E such that ∑r
i=1 Pi = O. For a factor ba-

sis FV := {(x, y)|x ∈ V } where V ⊂ K , the point decomposition problem now amounts to

computing all xi satisfying sr+1(x1, · · · , xr, x(R)) = 0 for the x-coordinate x(R) of the given

point R. Semaev's polynomials therefore reduce the decomposition problem on the elliptic

curve E to algebraic problem over the base ield K . Solving Semaev's polynomials is not a

trivial task in general, in particular ifK is a prime ield. For extension ieldsK = Fqn , Gaudry

and Diem [Die06, Gau09] independently proposed to de ine V as the sub ield Fq and to apply

aWeil descent to further reduce the resolution of Semaev's polynomials to the resolution of a

polynomial system of equations over Fq . Diem generalized these ideas by de ining V as a vec-

tor subspace of Fqn [Die11]. Using generic complexity bounds on the resolution of polynomial

systems, these authors provided attacks that can beat generic algorithms and can even have

subexponential complexity for speci ic families of curves [Die06]. At Eurocrypt 2012, Faugère,

Perret, Petit and Renault re-analized Diem's attack [Die11] in the case F2n (denoted as FPPR in

this work), and showed that the systems arising from theWeil descent on Semaev's polynomi-

als are much easier to solve than generic systems [FPPR12]. Later at Asiacrypt 2012, Petit and

Quisquater provided heuristic evidence that ECDLP is subexponential for that very important

family of curves, and would beat generic algorithms when n is larger than about 2000 [PQ12].

In 2013, Shantz and Teske provided further experimental results using the so-called ``delta

method'' with smaller factor basis to solve the FPPR system. [ST13b, FPPR12].

Even though these recent results suggest that ECDLP is weaker than previously expected

for binary curves, the attacks are still far from being practical. This is mainly due to the large

memory and time required to solve the polynomial systems arising from the Weil descent in

2

practice. In particular, the experimental results presented in [PQ12] for primes nwere limited

to n = 17. In order to validate the heuristic assumptions taken in Petit and Quisquater's anal-

ysis and to estimate the exact security level of binary elliptic curves in practice, experiments

on larger parameters are de initely required.

Hybrid methods (involving a trade-off between exhaustive search and polynomial system

solving)havebeenproposed topractically improve the resolutionof thepolynomial systems [JV11a].

More importantly, the special structure of these systems can be exploited. When n is compos-

ite and the Weil descent is performed on an intermediary sub ield, Gaudry already showed

in [Gau09] how the symmetry of Semaev's polynomials can be exploited to accelerate the res-

olution of the polynomial system in practice. In that case, the whole system can be re-written

with new variables corresponding to the fundamental symmetric polynomials, therefore re-

ducing the degrees of the equations and improving their resolution. In the particular cases of

twisted Edward curves and twisted Jacobi curves, Faugère et al. also exploited additional sym-

metry coming from the existence of a rational 2-torsion point to further reduce the degrees of

the equations [FGHR12].

In this paper, we introduced several variants to solve ECDLP. In our irst approach, we fo-

cus onDiem's version of index calculus for ECDLP over a binary ield of prime extension degree

n [Die11, FPPR12, PQ12]. In that case, the Weil descent is performed on a vector space that is

not a sub ield ofF2n , and the resulting polynomial systemcannot be re-written in termsof sym-

metric variables only. We introduce a different method to take advantage of symmetries even

in the prime degree extension case. While Shantz and Teske use the samemultivariate system

as FPPR [ST13b, FPPR12], in this work we re-write the system with both symmetric and non-

symmetric variables. The total number of variables is increased compared to [FPPR12, PQ12],

but we limit this increase as much as possible thanks to an appropriate choice of the vector

space V . On the other hand, the use of symmetric variables in our system allows reducing the

3

degrees of the equations signi icantly. Our experimental results show that our systems can be

solved faster than the original systems of [FPPR12, PQ12] as long as n is large enough.

In our second approach, we focus on the new method to calculate the Semaev's summa-

tion polynomial by breaking it down into several pieces of smaller Semaev's summation poly-

nomial. In this case, we limited the degree of Semaev's summation polynomial as well as the

degree of regularity of the new system by introducing more intermediate variables. By this

new method, we can solve larger Semaev's summation polynomial to at least seven variables,

while the irst approach can only solved the Semaev's summation polynomialwith atmost four

variables. Our experimental results show that our systems can be solved faster than the irst

approach, especially in the case that thenumber of variables similar to thenumber of extension

degree .

For a further discussion in the related topic, we also introduced more variants to solve

ECDLP based on the idea to break the Semaev's summation polynomial down into several

smaller pieces. We claim that the new algorithm can solve elliptic curve subset sum problem

(ECSSP) as well by showing the reduction to ECSSP. The ef iciency is also shown by the given

experimental results.

1.1 Thesis Organization

The rest of this thesis is organized as follows. In the next chaper, Chapter 2, we will de ine the

common notation used frequently in this thesis. In Chapter 3, we will go through the required

preliminary, including the basic introdution of the elliptic curve, the basic idea of the index

calculus method as well as the Semaev's summation polynomial, the FPPR method which we

are trying to improve in our irst approach in this thesis, and the F4 algorithm for computing

Gröwner basis. In Chapter 4, we introduce our irst approach to improve the FPPR method

using the symmetry property of the Semaev's summation polynomial and the speci ic vector

4

space. We also show the experimental evidence that our approach is more ef icient than FPPR

method. In Chapter 5, we further improve the ef iciency of solving Semaev's summation poly-

nomial by rewrite the Semaev's summation polynomial into several small pieceswith interme-

diate unknown variables. We also show the experimental evidence that our approach is more

ef icient than the irst approach. In Chapter 6, we give further discussion by proposing the

new algorithm based on our second approach and claim it can solve the ECSSP as well. Last,

we conclude this thesis and point out some future work in Chapter 7.

5

Chapter 2

Notation

In this work, we are interested in solving the elliptic curve discrete logarithm problem on a

curve E de ined over a inite ield F2n , where n is a prime number. We denote by Eα,β the

elliptic curve over F2n de ined by the equation y2 + xy = x3 + αx2 + β. For a given point

P ∈ E, we use x(P) and y(P) to indicate the x-coordinate and y-coordinate of P respectively.

From now on, we use the speci ic symbols P , Q and k for the parameters and solution of the

elliptic curve discrete logarithm problem (ECDLP): P ∈ E,Q ∈ ⟨P ⟩, and k is the smallest non-

negative integer such that Q = [k]P . Without loss of generality, we assume that the order of

⟨P ⟩ is prime here. We identify the ieldF2n asF2[ω]/h(ω), whereh is an irreducible polynomial

of degreen. Any element e ∈ F2n can thenbe representedaspoly(e) := c0+c1ω+...+cn−1ω
n−1

where ci ∈ F2. For any setS, we use the symbol #S tomean the order ofS. Weuse sm to denote

the Semaev's summation polynomial withm variables. We denote the degree of regularity as

Dreg .

6

Chapter 3

Preliminary

Before going through the detailed work of this paper, in order to have deeper insight of our

research, suf icient background study about the elliptic curve discrete logarithm problem we

are working on are necessary. In this chapter, we will introduce the preliminary knowledge

required for our thesis. In the irst Section 3.1, wewill introduce the basic de initions and oper-

ations of elliptic curve and the discrete logarithm problem on the curve. And in Section 3.2, we

will introduce the generic index calculus method to solve the elliptic curve discrete logarithm

problem. In Section 3.3, we will introduce the FPPR method which is proposed by Faugère,

Perret, Petit and Renault on Eurocrypt 2012 [FPPR12] and proved to be sub-exponential by

Petit and Quisquater [PQ12]. In Section 3.4, we introduce some extra knowledge about the

Gröbner basis.

3.1 Elliptic Curve Discrete Logarithm Problem

Public-key cryptography, also known as asymmetric cryptography, is one of the most impor-

tant part of cryptography nowadays. It allows two person encrypt and decrypt amessagewith

a pair of keys, a public key and a private key, which public key is not a secret. In such manner,

7

a secret channel to share the symmetric key is not required anymore. Not only an encryption

scheme, many well-known application were therefore developed based on the public-key sys-

tem, for example, the key exchange scheme and the signature scheme. Before the development

of elliptic curve cryptography, denoted as ECC, the most famous public-key scheme was RSA.

However, the large key size becomes a problem of RSA scheme. An elliptic curve cryptography

was therefore introduced to meet such requirement. Compared to the RSA scheme with the

same security level, the key size of a elliptic-curve-based RSA scheme is much smaller. For ex-

ample, for the 112-bit security level, it requires 2048-bit key size for RSA while it takes rough

224-bit key size for an ECC system. The development of elliptic curve cryptography not only

provided an option for the public-key cryptography and the pseudo-number generator, but

also makes a new application using the pairing system embedded on the elliptic curve, for ex-

ample, the identity-based cryptography. Nowadays, the elliptic curve cryptography is one of

the most important research area in cryptography. We will simply introduced the de inition

of the elliptic curve used in the cryptography and the group and arithmetic operation on the

curve in this section.

In cryptography, an elliptic curve is usually de ined as an smooth plane curve over a inite

ield instead of the real numbers in the algebraic mathematics for the calculation purpose. In

suchmanner, the abelian groupde ined on the curve are inite aswell. Although there aremany

families of elliptic curves, for the generic Galois ieldFq that the characteristic is not 2 or 3, the

most popular equation for a curve is the Weierstrass equation:

Eα,β : y2 = x3 + αx+ β,

where α and β ∈ Fq are the parameters of the curve such that−16(4α3 + 27β2) ̸= 0.

For curvewith characteristic 2 or 3, to avoid the singularity, the curve is commonly de ined

by the corresponding curve equation respectively:

Eα,β : y2 + xy = x3 + αx2 + β,

8

and

Eα,β : y2 = 4x3 + αx2 + β,

where α and β ∈ Fq are the parameters such that the curve is non-singular. In this paper, we

are focus on the elliptic curve with characteristic 2.

(a) Inverse (b) Addition (c) Double multiplication

Figure 3.1: Illustration of the arithmetic operation on elliptic curve

The abelian group de ined on the curve are the point set of those points P (x, y) where

x, y ∈ Fq satis ied the curve equation along with an additive identity point O, which is also

known as the point of in inity. If two points P1, P2 on the curve have the same x-coordinate, as

shown in Figure 3.1(a), we said thatP2 = −P1. Supposewehave three pointsP1, P2, P3 line up

in the line, as shown in Figure 3.1(b), we de ined thatP1+P2+P3 = O and thereforeP1+P2 =

−P3. For a point P1, 2P1 is de ined by the tangent line of P1, which meets another point P2 on

the curve, as shown in Figure 3.1(c). Therefore, 2P1 + P2 = O and 2P1 = −P2. From the

de inition above, we can give the formula of−P1, P1 + P2 and 2P1 respectively corresponding

to the corresponded curve equation.

As long as we de ine the arithmetic operation on the curve, for any point P on the elliptic

curve, we can de ine the scalar operation kP , where k is an integer. Figure 3.2 shows the exam-

9

Figure 3.2: Illustration of the scalar multiplication on elliptic curve

ple of the scalarmultiplication. As shown in the igure, we can igure out that the point kP gen-

erated by P for different k is irregular and non-predictive. This fact induces the famous hard

problem on the elliptic curve, the elliptic curve discrete logarithm problem (ECDLP), which is

the foundation of the security of the elliptic curve cryptography.

LetE be a curve de ined over a base ieldF , andP is a point on the curve. LetQ is the point

generated by P , the elliptic curve discrete logarithm problem is to ind out the smallest non-

negative integer [k] such thatQ = [k]P . There are several famous algorithm to solved ECDLP,

for example, Baby-step Giant-step algorithm, Pollard's ρ method and their variants [Sha71,

Pol75, Bre80, Pol00]. These algorithms are ef iciently and easily parallelized, however, they

still have an exponential complexity in the size of the parameters. Better algorithms based

on the index calculus framework have long been known for discrete logarithm problems over

multiplicative groups of inite ields or hyperelliptic curves, but generic algorithms have re-

mained the best algorithms for solving ECDLP until recently. We are going to introduce the

index calculus method in the next section.

10

3.2 Index Calculus Method

Index calculusmethod had beenwell-known in solving the generic discrete logarithmproblem

(DLP) over generic Galois ield. There were also many variants of index calculus method such

as number ield sieve (NFS) or function ield sieve. However, these well-known algorithm do

not work with the ECDLP. Let Eα,β be a curve de ined over Fq , a point P ∈ Eα,β , and a point

Q ∈ ⟨P ⟩. Our target is to ind out the smallest non-negative integer k such that Q = [k]P .

Like the other algorithms in the family of the index calculus method, the most important part

in the index calculus method solving ECDLP is how to ind out the equivalency between the

combination of a factor base and the combination of P and Q as soon as possible and as much

as possible. In this section, we make more detailed introduction of index calculus to solve

ECDLP as well as how to decompose a pointR = aP + bQwith random integers a and b on the

elliptic curve Eα,β intom points belongs to the factor base Fv using the Semaev's summation

polynomial, which is the most important and dif icult part of the algorithm.

3.2.1 Generic Index Calculus Method

Firstwe give a rough shape of the index calculusmethod. The pseudo code of the index calculus

algorithm is in Algorithm 3.1.

The inputs are the elliptic curveEα,β , the point P ∈ E and another pointQ ∈ ⟨P ⟩. For the

irst step in Algorithm 3.1, we select a subset of the point on the curve to be the factor base Fv .

The sieving step between line 3 to line 7 is the most important part of this algorithm. It

dominates the ef iciency of the computation of the algorithm. In this step, irst we computed

two random integers a and b in the range [0,#⟨P ⟩)where ab ̸= 0, then computedR = aP+bQ.

Later, we try to decomposeR intom elements in the factor base Fv ifR is F (m)
v -smooth. That

is, we want to ind P ′
j ∈ Fv , 1 ≤ j ≤ m such that P ′

1 + P ′
2 + ... + P ′

m + R = O. The function

Decomposewill return all the possible decomposition solutions ofRwith respect to Fv .

11

Algorithm 3.1 Index Calculus of ECDLP [Sem04]
Input: elliptic curveEα,β , point P ∈ Eα,β , pointQ ∈ ⟨P ⟩

1 Fv ←− a subset ofEα,β

2 M ←−matrix with #Fv + 2 columns

3 whileRank(M) < #Fv + 1 do

4 R←− aP + bQ, a, b are random integers in (0,#P)

5 sol(Set)m ←− Decompose(R,Fv)

6 M ←− AddRelationToMatrix(sol(Set)m)

7 end

8 M_ ←− ReducedRowEchelonForm(M)

9 a′, b′ ←− last two column entries of last row

10 k ←− −a′/b′

Output: k, whereQ = [k]P

After we get the decomposition of R with respect to factor base Fv , we may put the row

meaning the decomposition into the matrix M using AddRelationToMatrix function. What

this function do is illustrated in the Matrix in Figure 3.3. We use the irst column to present

the coef icient of P1, the second column as coef icient of P2, and so on. The last two columns

present the coef icients of P and Q respectively. Each row present a relation P ′
1 + P ′

2 + ... +

P ′
m + R = O, that is P ′

1 + P ′
2 + ... + P ′

m + aP + bQ = O. We put the coef icients into the

corresponding entries and left other entries 0.

If the rank ofM is #Fv + 1, then we can break the loop of sieving. The ReducedRowEch-

elonForm function in line 8 makes M into a reduced row echelon form M_ as shown in the

lowermatrix in Figure 3.3. The last two columns of the last row inM_ would be a′P+b′Q = O.

This means that k = −a′/b′.

There are somanyways to implement theDecompose function. The simplest way is doing

the exhaustive search with Fv and ind out all the solutions. But it is not a practicable idea.

12

P1 P2 … P#Fv P Q

1 0 1 a1 b1

0 1 0 a2 b2

...

1 1 . . . 1 aj bj

⇓ reduced row echelon form

1 0 0

0 1 0
...

0 0 . . . 1

0 0 0 a′ b′

Figure 3.3: Example of MatrixM andM_ in Algorithm 3.1

In the next subsection, we will show how to decompose a point on the curve using Semaev's

summation polynomial.

3.2.2 Semaev's summation polynomial

No matter how to de ine an elliptic curve Eα,β , the fact that the operation over Eα,β is much

slower than the operation over its base ieldwill not change. If we can represent the decompo-

sition of a point onEα,β as the computation consisting of only operations of a inite ield, it will

help saving a lot of efforts in computing de initely. Semaev's proposed Semaev's summation

polynomial to ful ill such property [Sem04].

13

De inition 1 Them-th Semaev's summation polynomial sm for Eα,β with characteristic 2 is

de ined as follows:

s2 = x1 + x2,

s3 = (x1x2 + x1x3 + x2x3)
2 + x1x2x3 + β,

form ≥ 4,

sm = ResX(sj+1(x1, ..., xj , X), sm−j+1(xj+1, ..., xm, X)),

2 ≤ j ≤ m− 2.

Semaev's summation polynomials have the following property:

Property 1 We said that a polynomial sm withm inputs is a Semaev's summation polynomial

ofEα,β if

sm(x1, x2, ..., xm) = 0 iff P ′
1 + P ′

2 + ...+ P ′
m = O,

where P ′
j ∈ E, x(P ′

j) = xj .

According to Property 1, to ind the decomposition of a given pointR = aP +bQ, such that

P ′
1 + P ′

2 + ...+R = O, we just need to ind the solution of

sm+1(x1, x2, ..., xm, x(R)) = 0 in F2n at irst and ind the corresponding points P ′
j ∈ Fv later.

14

We mention the computation of the Semaev's summation polynomials. The s2 and s3 are

decided by De inition 1. Form ≥ 4, we use the recursive de inition. For example,

s4 = ResX(S3(x1, x2, X), S3(X,x3, x4))

= (x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)
4+

(x1x2x3x4)
2(x1 + x2 + x3 + x4)

2+

x1x2x3x4((x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)
2+

β(x1 + x2 + x3 + x4)
2)+

β(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)
2+

β2(x1 + x2 + x3 + x4)
4.

The degree of each variable in sm is 2m−2. For the detail of the construction of Semaev's sum-

mation polynomial, readers can read the paper of Semaev [Sem04].

According to De inition 1, for m ≥ 4, there are several ways to divide m into two parts

[1, ..., j], [j + 1, ...,m]. For different j, we may have different sj+1 and sm−j+1 for the resultant

calculation. Nevertheless, the sm would always be the same for ixedEα,β despite of the inputs

of the resultant are different. This fact can be easily proved by Property 1. However, different j

of sm costs different computing time. The best choice of j is ⌈m/2⌉, due to the size of Sylvester

matrix used to calculate the resultant of two polynomials. Considering the recursively con-

struction of the Semaev's summation polynomial, the degree and the number of monomials of

the polynomials grows rapidly. Using the fact that the Semaev's polynomial is symmetric helps

to decrease the complexity in computing Semaev's summation polynomials. Antoine Joux and

Vanessa Vitse proposed such technique in calculating sm [JV11a]. Since this is not the main

topic of this work, we left the rest details for readers.

TheDecompose functionwith Semaev's summationpolynomial is inAlgorithm3.2. Notice

that in elliptic curve Eα,β , there are at most two points shared the same x-coordinate. Thus,

there are2m possible solution inEα,β corresponding toone solutionof sm+1(x1, x2, ..., xm, x(R)) =

0. We have to check this in line 5. The naive method to perform the computation in line 4 is

15

Algorithm 3.2 Decompose function with sm+1

Input: R = aP + bQ, factor base Fv

1 Setm ←− {F ′
v | F ′

v ⊂ Fv,#F ′
v = m}

2 sol(Set)m ←− {}

3 for e = {P ′
1, P

′
2, .., P

′
m} ∈ Setm do

4 if sm+1(x(P
′
1), x(P

′
2), ..., x(P

′
m), x(R)) = 0 then

5 if P ′
1 + P ′

2 + ...+ P ′
m +R = O then

6 sol(Set)m ←− sol(Set)m join e

7 end

8 end

9 end

Output: sol(Set)m conatains the decomposition elements ofRw.r.t. Fv

is exhaustive search. There is still no systematic method to ind the solution of sm+1 until the

FPPR method using Gröbner basis was proposed in Eurocrypt 2012 [FPPR12]. We are going

to give a simple introduction of the method in the following section.

3.3 FPPRmethod

In Eurocrypt 2012, Faugère, Perret, Petit and Renault gave a new vision in solving Semaev's

summation polynomials over elliptic curves Eα,β speci ically with characteristic 2 [FPPR12].

The main idea is that transforming Semaev's summation polynomial sm+1 to a binary multi-

variable polynomial system F .

The transformation is doing as followed. First, we can easily transformed an element x(Pi)

in F2n , where Pi is an arbitrary point in Fv , into a binary polynomial form :

poly(x(Pi)) = c̄0 + c̄1ω + ...+ c̄n−1ω
n′−1, c̄l is known.

16

Equivalently, we can rewrite all the variables xj in sm+1 |xm+1=x(R) with their binary poly-

nomial notation poly(xj) as followed:

xj = cj,0 + cj,1ω + ...+ cj,n′−1ω
n′−1, cj,l are variables.

xm+1 = r0 + r1ω + ...+ rn−1ω
n−1, rl is known,

where 1 ≤ j ≤ m.

Describing sm+1 with variables cj,l by the above equation between xj and cj,l, we have that

sm+1 = f0 + f1ω + ...+ fn−1ω
n−1,

where f0, f1, ..., fn−1 are binary polynomials, 1 ≤ j ≤ m, 0 ≤ l ≤ n′ − 1.

Thus, sm+1 |xm+1=x(R)= 0 if and only if each binary coef icient polynomial fl with respect

to ω is equal to 0. Now we have a binary multivariable polynomial system

F :

f0(c1,0, ..., cj,l, ..., cm,n′−1) = 0,

f1(c1,0, ..., cj,l, ..., cm,n′−1) = 0,

...

fm(c1,0, ..., cj,l, ..., cm,n′−1) = 0,

where 1 ≤ j ≤ m, 0 ≤ l ≤ n′ − 1.

To solve the Semaev's summation polynomial sm+1 is equivalent to solve the binary multi-

variable polynomial system F now.

The Decompose function using binary multivariable polynomial system is described in

Algorithm ??. First, we substitute x(R) into the variable xm+1 in sm+1, which is the known

information. TheTransFromSemaevToBinaryWithSym function transform sm+1 |xm+1=x(R)

to F as mentioned above.

To solve the systemF , we compute Gröbner basis forF with respect to lexicographic order

by an algorithm such as F4 [Fau99] or F5 [Fau02]. In lexicographic order, there is always a

univariate polynomial gbt(cj,l) in GB(F) for some t. From the roots of gbt(cj,l), we obtain all

17

Algorithm 3.3 Decompose function with binary multivariable polynomial sys-

tem [FPPR12]
Input: R = aP + bQ, factor base Fv

1 F ←− TransFromSemaevToBinary(sm+1 |xm+1=x(R))

2 GB(F)←− GroebnerBasis(F,≺lex)

3 sol(F)←− GetSolutionFromGroebnerBasis(GB(F))

4 sol(Set)m ←− {}

5 for e = {P ′
1, P

′
2, .., P

′
m} ∈ sol(F) do

6 if P ′
1 + P ′

2 + ...+ P ′
m +R = O then

7 sol(Set)m ←− sol(Set)m join e

8 end

9 end

Output: sol(Set)m contains the decomposition elements ofRw.r.t. Fv

the solutions of F . However, since it is much ef icient for a Gröbner basis solver running in the

graded-reversed lexicographic order than in lexicographic order, user can solve the system F

in graded-reverse lexicographic order irst and change the computed Gröbner basisGB(F) to

lexicographic order by FGLM algorithm [FGLM93] later. After getting the solutions of F , we

will ind the corresponding solution over Eα,β . Again, we have to check the statement P ′
1 +

P ′
2+ ...+P ′

m+R = O in line 6 due to the same reason in Section 3.2.2. In the next section, we

will mention more detail about the Gröbner basis.

3.4 Groebner Basis

Solving a multivariate polynomial system is always an improtant topic, no matter in mathe-

matics, or in the cryptography, for example, the algebraic attack for the cryptanalysis. Sup-

pose we have a set of variables X = {x1, x2, ..., xn} and a multivariate polynomial system

18

F (X) = {f1(X), f2(X), ..., fm(X)}. To solve a system F is equivalent to solve F (X) to getX ,

or any xi ∈ X . Indeed, if we get the value of some xi, then we can substitute xi with its value

and get a smaller multivariate polynomial system. Thus, we can solve the systems recursively

and getX . Now, the problem is that how can we get the solution of some speci ic xi.

The F4 algorithm we are going to use in this thesis is one of the famous algorithms in solv-

ing a multivariate polynomials system. Basically, the F4 algorithm is an algorithm calculat-

ing Gröbner basis of an ideal. In the multivariate polynomial system F , consider the ideal I

spanned by the polynomials F and its Gröbner basis G of I . Due to the property of Groebner

basis, there is usually a univariate polynomial in G, which is easier to solve than multivariate

polynomial equations. Thus, we can solve F (X) and get each xi by calculating its Groebner

basis repeatedly.

In the text of the following subsections, we will introduce the the basic de inition and the-

orem of polynomial ring, Gröbner basis as well as the F4 algorithm.

First we de ine some symbols. Let X = {x1, x2, ..., xn}, R = Fpk[X] be a multivariate

polynomial ring, and F = {f1, f2, ..., fm} be the set of polynomials in R. Ideal I ⊂ R =

⟨f1, f2, ..., fm⟩ is an ideal initely generated by F .

3.4.1 Order

It is easy to give an order between monomials in a univariate polynomial ring, for example,

x7 > x5 > 1. However, the problem is how to determine the order in amultivariate polynomial

ring, for example, xy > z or xy < z for xy, z ∈ GF2[x, y, z].

To give an order in a multivariate polynomial ring, we need to de ine an order among x1

to xn irst. Without loss of generality, we de ine x1 > x2 > ... > xn. After having the order

among variables, now we can construct the order among monomials.

An order is a relation satisfying:

19

• x = x

• x > y then y < x

• x > y and y > z then x > z

• x > y then c∗x > c∗y, c ̸= 0

Wenowcande ine order amongmonomials inR. There are several orders in amultivariate

polynomial ring. We shows some common orders here. Note that we denote the head term of

a polynomial f as HT(f).

• Lexical order (lex)

This order is what we usually do with words in dictionary. For a monomialm1,m2, if the

degree of x1 inm1 is more thanm2, thenm1 > m2. If the degree of x1 inm1 equal tom2,

then we compare the degree of x2, and so on.

For example, x12 > x1x3
7 > x2

3x3
5 > x2

2x3
6 > x2

2x3
4

• Graded Lexical order (grlex)

This order is a little different with lexical order. First we compare the total degree ofm1

andm2. If deg(m1)> deg(m2),m1 > m2. If deg(m1)= deg(m2) thenwe check the order

ofm1 andm2 using lexical order.

For example, x1x37 > x2
3x3

5 > x2
2x3

6 > x2
2x3

4 > x1
2

• Graded Reverse Lexical order (grvlex)

Like graded lexical order, we compare the total degree of m1 and m2. If deg(m1) >

deg(m2), m1 > m2. If deg(m1) = deg(m2) then we check the degree of xn in m1 and

m2. The higher the degree of xn is, the less it is. If the degree of xn in m1 equal to m2,

then we compare the degree of xn−1, and so on.

For example, x23x35 > x2
2x3

6 > x1x3
7 > x2

2x3
4 > x1

2

20

Notice that we do not care about the coef icient of monomials, that is, two terms are the

same if they have the samemonomials, no matter what the coef icients are. For example, 3x12

have the same order with x1
2.

After de ining order inmonomial, thenwe can easily tell the order among polynomials. Let

f1 and f2 be two polynomials in R. First we make the monomials in f1 and f2 in order and

compare the head term of these two polynomials. If HT(f1)> HT(f2), then f1 > f2. If HT(f1)

equal to HT(f2), thenwe check the nextmonomials. For example, x23x35+1 > x2
2x3

6+x3
2+

1 > x2
2x3

6 + x3 + 1 in graded reverse lex order.

3.4.2 Groebner basis

De inition 2 Groebner basis

LetG be a basis of I = <f1, f2, ..., fm>, thenG is a Groebner Basis if and only if ∀f ∈ I, ∃ g ∈ G,

such that HT(g) | HT(f)

For example, <8, 6>=<2> inZ . {8, 6} is not aGroebnerbasis, while{2} is. Another example

in GF2[x, y], <x2+y, x+y> and <x+y,y2+y> represent the same ideal, however {x2+y, x+y}

is not a Groebner basis while {x+ y, y2 + y} is.

In Figure 3.4, every circle represents a HT(f), f ∈ R. The arrow from circle HT(fi) to circle

HT(fj) represents HT(fi) | HT(fj). Let HT (fi) <HT HT (fj) iff HT(fi) | HT(fj). Figure 3.4

shows the partial order <HT de ined on the set of head terms in ideal I . We can say that, by

de inition of Groebner Basis, a Groebner BasisGmust contains all those minimal polynomials

gi with HT(gi) being the leftmost node.

Next, to calculate Groebner Basis, we have to calculate SPolynomials irst.

De inition 3 SPolynomial

Let fi, fj ∈ I , ci =
lcm(HT (fi,fj))

HT (fi)
, cj =

lcm(HT (fi,fj))
HT (fj)

, then cifi − cjfj is the SPolynomial of (fi,

21

Figure 3.4: Simple sketch of Groebner Basis

fj), denoted as SPoly(fi, fj). The degree of SPoly(fi, fj) is the degree of lcm(fi, fj), denoted as

deg(SPoly(fi, fj)).

De inition 4 Pair

Let fi, fj , ci, cj be the same de intion in the De inition 3, then we said that <lcm(fi, fj), ci, fi, cj ,

fj> is a pair which gives the information of SPoly(fi, fj). Let p be a pair of (fi, fj), the contents

of p is denoted in order as p.lcm, p.fimult, p.fi, p.fjmult, p.fj .

De inition 5 pre-SPolynomial

Let fi, fj , ci, cj be the same de intion in the De inition 3, cifi, cjfj are the pre-SPolynomials of (fi,

fj), denoted as pre-SPolyi(fi, fj) and pre-SPolyj(fi, fj) respectively.

By de inition of SPolynomial, SPoly(fi, fj) eliminates the head term of pre-SPolyi and pre-

SPolyj , which is divisible by head term of fi and fj respectively. Thus, we will ind out new

head terms that may not be divided by the head terms inG.

For example, let I = <x2y + 1, xy2 + 1>, SPoly(x2y + 1, xy2 + 1) =−x+ y, it is a new head

term not divided by x2y and xy2 .

22

The next question is, howwe determine whether a basisG is Groebner basis or not. Buch-

berger then gave a theorem as followed :

Theorem 1 Buchberger Theorem

LetG be a basis of I , thenG is a Groebner Basis of I if and only if ∀fi, fj ∈ I, SPoly(fi, fj) can

be reduced to zero byG.

This theorem states that if all the SPolynomials of G can be reduced to zero by G, then G

is Groebner Basis, and vice versa. One direction of the proof is straightforward. If there exists

a SPoly(fi, fj), denoted as spoly, that cannot be reduced to zero byG, that is, spoly is reduced

to p by G, p ̸= 0, then ∀g ∈ G, HT(g) ∤ HT(p). This con licts with the de inition of Groebner

Basis. In other hand, ifG satis ied the statement, then every arithmetic combination of gi inG

will have a head term that is a multiple of gi (Standard Representation). Thus, it is a Groebner

Basis. The detail of proof can be found in [BKW93, 1993].

Nowwehave a systematicmethod to examinewhether a basisG is a Groebner Basis or not.

Buchberger also stated some special cases for SPoly(fi, fj) that do not need to be checked.

Criteria 1 Buchberger First Criteria

Let fi, fj ∈ I , if gcd(fi, fj) = 1, then SPoly(fi, fj) can be reduced to zero by {fi, fj}.

Criteria 2 Buchberger Second Criteria

Let fi, fj , fk ∈ I , and lcm(fi, fj)| lcm(fj , fk), lcm(fi, fk)| lcm(fj , fk), then if both SPoly(fi, fj)

and SPoly(fi, fk) can be reduced to zero by G, so is SPoly(fj , fk).

The Buchberger First Criteria stated that if we have fi, fj with gcd(fi, fj) = 1, then we do

not need to check SPoly(fi, fj), since it must be reduced to zero by {fi, fj} ⊆ G, thus must be

reduced by G. The Buchberger Second Criteria stated that if we have fi, fj , fk satisfying the

condition speci ied, then we only need to check SPoly(fi, fj) and SPoly(fi, fk), since if both the

23

two SPolynomial can be reduced to zero byG, then SPoly(fj , fk) can be reduced to zero byG,

too. The detail of proof also can be found in [BKW93, 1993].

The following three section shows three different algorithms inding out Groebner Basis of

<F>, where F is a set of polynomials that we want to solve.

For convenience, whenwe said about divisibility of polynomials in this thesis, it means the

divisibility of their head terms. For example, when we said f | g, it meansHT (f) |HT (g).

3.4.3 Buchberger Algorithm

Buchberger algorithm is based onBuchberger Theorem1 stated byBrunoBuchberger in 1976.

It is the irst algorithm to compute a Groebner Basis of an Ideal systematically. Buchberger

Theorem really told us how to examine whether a Basis is a Groebner Basis or not. According

to the theorem, what the algorithm does is very simple:

1. Set the input F to be a Groebner BasisG

2. Check ifG satis ies the condition stated in Buchberger Theorem

3. IfG does not satisfy, modify the elements inG and go to step 1

We now introduce more detail as follows.

We can see in Algorithm 3.4 the whole low of Buchberger algorithm. The input of the

algorithm isF , the polynomial systemwewould like to solve, while the output of the algorithm

isG, the Groebner Basis of F , which spans the same ideal and contains at least one univariate

polynomial.

The algorithm takes the input F and set it asG irst (line 3). At the same time, it alsomain-

tains a pool of Pairs P to store those pairs that haven't been checked. After the initialization,

it starts to examine ifG is really a Groener Basis by checking all the pairs generated byG. The

pool P stores all these pairs; those which have been examined are removed from P .

24

Algorithm 3.4 Pseudocode of Buchberger Algorithm
Input: F

1REM Initialization

2 F ←− ReducedRowEchelon(F)

3 G,P ←− UpdateGP(G,P, F)

4REM Main program - check pairs and letG satis ied the condition

5 while P ̸= {} do

6 spoly, P ←− SelectPair(P)

7 r ←− MultivariateDivision(spoly,G)

8 if r ̸= 0 then

9 G,P ←− UpdateGP(G,P, {r})

10 end

11 end

Output: G

Algorithm 3.5 Pseudocode of SelectPair function in Buchberger Algorithm
Input: P

1 pair ←− SelectStrategy(P)

2 P ←− P\{pair}

3 spoly ←− pair.imult∗pair.fi − pair.jmult∗pair.fj

Output: spoly, P

25

In the while loop (line 5), we pick and check pairs from P one by one. First, SelectPair

function picks a pair from P with a select strategy, as Algorithm 3.5 shows. The select strategy

is left open, so the user can select pairs in anyway she likes, as long as all the pairs are selected

and checked eventually. Nevertheless, it is suggested that the user select the pair with the

least degree of pair.lcm. After SelectPair function, we get a SPolynomial spoly. We check if

it can be reduced to zero by G at line 7. The MulltivariateDivision function reduces spoly by

G and gets r either equal to zero or each monomial mn in r with gi ∤ mn, gi ∈ G. By the

Buchberger Theorem, if there is one SPolynomial that cannot be reduced to zero byG, thenG

is not a Groebner Basis. Thus, if r ̸= 0, then it meanswe need tomodifyG tomake it satisfy the

condition of Buchberger Theorem. The simplest and validway to do this is to add r intoG (line

9). This operation would not change the ideal spanned byG since r is a linear combination of

gi ∈ G. By doing this, spoly is reduced to zero by G since its remainder r is in G now. By

keeping checking the pairs and adding new remainders if needed, inally we will arrive at the

Groebner Basis.

Algorithm 3.6 Pseudocode of UpdateGP function
Input: G,P, F

1 forall the f ∈ F do

2 P ←− P ∪ {getPair(f, gi) | gi ∈ G}

3 P ←− BuchbergerCriteria(P)

4 G←− G ∪ {f}\{gi | gi ∈ G, f |gi}

5 end

Output: G,P

The UpdateGP function appears in line 3 and line 9 is indeed taking a new set F , adding its

elements into BasisG, and putting the new pairs generated into P , as shown in Algorithm 3.6.

26

F =

 3x2 + 2xy + y2 + 3

2x2 + 4xy + y2 + 1

 ⇐⇒ M =

x2 xy y2 1

3 2 1 3

2 4 1 1

Figure 3.5: Transformation between matrix and polynomials

It also discards useless pairs from P in the function BuchbergerCriteria based on Buchberger

Criteria 1 and Buchberger Criteria 2. It also removes useless gi ∈ G if there is another gj ∈ G

such that gj |gi. Notice that the pair of SPoly(gi, gj) is in P now according to the design of

UpdateGP. Consider a new remainder r to be added into G; then gi, gj , r satisfy the condition

of Buchberger Criteria 2, whichmeans that we just have to check SPoly(gi, gj) and SPoly(gj , r),

and then SPoly(gi, r) would also satisfy. Indeed, that meansG always keeps the leftmost Head

Term of every line shown in Figure 3.4.

What the RedcuedRowEchelon function in line 2 does is that it transforms the polynomials

F into a matrix M , computes the reduced row echelon form of M , transforms it to polyno-

mials again, and puts them into F . The transformation between matrix and polynomials is as

igure 3.5 shows.

The Buchberger algorithmwill terminate deterministically since the basis must be initely

generatedbasedonHilbert's basis theoremand the fact thatwekeep inding smaller polynomi-

als in the ideal spanned by F . However, it is too slow to be practical in solving a larger system.

If there arem polynomials in F , then we have to check almost m∗(m−1)
2 pairs, andmore as new

remainders are added into G. Doing this checking one by one is not very ef icient. There are

a lot of duplicated work that may be done together to save time. That's how F4 improved the

Buchberger algorithm, which we will show later in Section ??. More detail of the Buchberger

algorithm can be found in [Buc76, 1976].

27

3.4.4 Faugère's algorithm (F4)

F4 algorithm was given by Faugère in 1999. It was based on the idea of Buchberger algorithm

with some improvement. The improvement makes it amazingly fast. The changes are summa-

rized as follows.

• Check instead of a pair but a set of pairs at one time

• Do the reduction of SPolynomial in matrix form

We can see that how F4 works in Algorithm 3.7. The initialization of F4 is the same as

Buchberger algorithm. Both Buchberger algorithm and F4 use the same ReduceRowEchelon

and UpdateGP function. However, the Select Pair step is a little different. Unlike Buchberger,

SelectPairs here selects a set of pairs to check and return a set of pre-SPolynomials of those

pairs stored inPoly, as shown in Algorithm 3.8. The SelectStrategy is left open, so the user can

select pairs any way she likes. It is recommended that those pairs with lcm of the least degree

be selected irst. The improvement here is that the F4 algorithm increases the throughput of

the pairs checking. The reason to select a set of pairs is not only to increase the throughput,

but also to eliminate some duplicated work. For example, if there is a monomial m in both

fi, fj that can be divided by g, in Buchberger algorithm, g must to extend tom twice to do the

reduction, whereas in F4 algorithm, the extension only needs to be done once since we check

fi, fj together.

The Reduction step here is a little bit complicated. What from line 9 to line 15 in Algo-

rithm 3.7 do is to make sure that every monomialm ∈ Poly, if there exists a g in G such that

g|m, then gwill be extended tom and contained in Poly. Monomials(Poly) is the set of mono-

mials in Poly, and Headterms(Poly) is the set of head terms of Poly. The reason to do this

step is to ensure that for any r ∈ R (line 17), r cannot be reduced byG anymore. We can then

reduce the Poly to Poly′ by Gaussian Elimination after discarding those p in Poly′ that can

28

Algorithm 3.7 Pseudocode of F4 Algorithm
Input: F

1REM Initialization

2 F ←− ReducedRowEchelon(F)

3 G,P ←− UpdateGP(G,P, F)

4REM Main program - check pairs and letG satis ied the condition

5 while P ̸= {} do

6REM step : Select Pair

7 Poly, P ←− SelectPairs(P)

8REM step : Reduction

9 M ←− Monomials(Poly)

10 Done←− Headterms(Poly)

11 while ∃m ∈M\Done, ∃ g ∈ G, g|m do

12 Done←− Done ∪ {m}

13 Poly ←− Poly ∪ {g ∗ m
HT(g)}

14 M ←− Monomials(Poly)

15 end

16 Poly′ ←− ReducedRowEchelon(Poly)

17 R←− {p | p ∈ Poly′,HT(p) /∈ HT(Poly)}

18REM step : UpdateGP

19 G,P ←− UpdateGP(G,P,R)

20 end

Output: G

29

Algorithm 3.8 Pseudocode of SelectPairs function in F4
Input: P

1 Pair ←− SelectStrategy(P)

2 P ←− P\Pair

3 Poly ←− {pair.fimult∗pair.fi , pair.fjmult∗pair.fj | pair ∈ Pair}

Output: Poly, P

be divided byG, after which we get the new remaindersR and inish the Reduction step. The

UpdateGP step is the same as in Buchberger algorithm. More detailed proof of the correctness

of the algorithm, please refer to [Fau99].

30

Chapter 4

First Approach

Although the approach of FPPR method provides a systematic way to solve Semaev's polyno-

mials, their algorithm is still not practical. Petit and Quisquater estimated that the method

could beat generic algorithms for extension degrees n larger than about 2000 [PQ12]. This

number is much larger than the parameter n = 160 that is currently used in applications. In

fact, the degrees of the equations inF growquadraticallywithm, and the number ofmonomial

terms in the equations is exponential in this degree. In practice, the sole computation of the

Semaev's polynomial sm+1 seems to be a challenging task form larger than 7. Because of the

large computation costs (both in time andmemory), no experimental result has been provided

yet when n is larger than 20.

In this chapter, we provide a variant of the FPPRmethod that practically improves its com-

plexity. Ourmethod exploits the symmetry of Semaev's polynomials to reduce both the degree

of the equations and the number of monomial terms appearing during the computation of a

Gröbner basis of the system F .

At irst, in the Section 4.1, we will give some example of the previous work using similar

idea, and in the Section 4.2, we exploits the same idea by overcoming some structure disadvan-

tages of the speci ic ield with prime extension degree (F2n with n is prime). We show some

31

theoretical analysis here to illustrate the improvement of our irst approach. At last, in Sec-

tion 4.3, we show the experimental evidence both in solving single relation search and solving

the entire ECDLP problem to indicates that our irst approach is more ef icient in practice.

4.1 Use of Symmetries in PreviousWorks

The symmetry of Semaev's polynomials has been exploited in previous works, but always for

inite ields Fpn with composite extension degrees n. The approach was already described by

Gaudry [Gau09] as a mean to accelerate the Gröbner basis computations. The symmetry of

Semaev's polynomials has also been used by Joux and Vitse's to establish new ECDLP records

for composite extension degree ields [JV11a, JV12]. Extra symmetries resulting from the exis-

tence of a rational 2-torsion point have also been exploited by Faugère et al. for twisted Edward

curves and twisted Jacobi curves [FGHR12]. In all these approaches, exploiting the symmetries

of the system allows reducing the degrees of the equations and the number of monomials in-

volved in the Gröbner basis computation, hence it reduces both the time and thememory costs.

To exploit the symmetry in ECDLP index calculus algorithms, we irst rewrite Semaev's

polynomial sm+1 with the elementary symmetric polynomials.

De inition 6 Let x1, x2, ..., xm be m variables, then the elementary symmetric polynomials

are de ined as

σ1 :=
∑

1≤j1≤m xj1

σ2 :=
∑

1≤j1<j2≤m xj1xj2

σ3 :=
∑

1≤j1<j2<j3≤m xj1xj2xj3

...

σm :=
∏

1≤j≤m xj

(4.1)

Any symmetric polynomial can bewritten as an algebraic combination of these elementary

32

symmetric polynomials. Wedenote the symmetrizedversionof Semaev's polynomial sm by s′m.

For example for the curveEα,β in characteristic 2, we have

s3 = (x1x2 + x1x3 + x2x3)
2 + x1x2x3 + β,

where x3 is supposed to be ixed to some x(R). The elementary symmetric polynomials are

σ1 = x1 + x2,

σ2 = x1x2.

The symmetrized version of s3 is therefore

s′3 = (σ2 + σ1x3)
2 + σ2x3 + β.

Since x3 is ixed and the squaring is a linear operation over F2, we see that symmetrization

leads to a much simpler polynomial.

Let us now assume that n is a composite number with a non-trivial factor n′. In this case,

we can ix the vector space V as the sub ield Fpn
′ of Fpn . We note that all arithmetic operations

are closed on the elements of V for this special choice. In particular, we have

if xi ∈ V then σi ∈ V . (4.2)

Let now {1, ω2, . . . , ωn/n′} be a basis of Fpn/Fpn′ . We can write

σj = dj,0 for 1 ≤ j ≤ m,

xm+1 = r1 + r2ω2 + . . .+ rn/n′ωn/n′ ,

where rℓ ∈ Fpn are known and the variables dj,0 are de ined over Fpn
′ . These relations can

be substituted in the equation s′m+1 |xm+1=x(R)= 0 to obtain a system of n/n′ equations in

the m variables dj,0 only. Since the total degree and the degree of s′m with respect to each

symmetric variable σi are lower than those of sm with respect to all non-symmetric variables

xi, the degrees of the equations in the resulting system are also lower and the system is easier

to solve. As long as n/n′ ≈ m, the system has a reasonable chance to have a solution.

33

Given a solution (σ1, . . . , σm) for this system, we can recover all possible corresponding

values for the variables x1, . . . , xm (if there is any) by solving the system given in De inition 6,

or equivalently by solving the symmetric polynomial equation

xm +
m∑
i=1

σix
m−i = xm + σ1x

m−1 + σ2x
m−2 + . . .+ σm.

Note that the existence of a non-trivial factor of n and the special choice for V are crucial

here. Indeed, they allowbuilding a new system that only involves symmetric variables and that

is signi icantly simpler to solve than the previous one.

4.2 Using Symmetries with Prime Extension Degrees

When n is prime, the only sub ield of F2n is F2, but choosing V = F2 would imply to choose

m = n, hence to work with Semaev's polynomial sn+1 which would not be practical when n is

large. In Diem's and Faugère et al.'s attacks [FPPR12, Die11], the set V is therefore a generic

vector subspace of F2n/F2 with dimension n′. In that case, Implication (4.2) does not hold, but

we now show how to nevertheless take advantage of symmetries in Semaev's polynomials.

4.2.1 A New Systemwith both Symmetric and Non-Symmetric Variables

Let n be an arbitrary integer (possibly prime) and let V be a vector subspace of F2n/F2 with

dimension n′. Let {v1, . . . , vn′} be a basis of V . We can write
xj = cj,1v1 + cj,2v2 + ...+ cj,n′vn′ , for 1 ≤ j ≤ m

xm+1 = r0 + r1ω + ...+ rn−1w
n−1,

where cj,ℓ with 1 ≤ j ≤ m and 1 ≤ ℓ ≤ n′ are variables but rℓ, 1 ≤ ℓ ≤ n are known elements

in F2.

Like in the composite extension degree case, we can use the elementary symmetric polyno-

mials to write Semaev's polynomial sm+1 as a polynomial s′m+1 in the variables σj only. How-

34

ever since V is not a ield anymore, constraining xj in V does not constrain σj in V anymore.

Since σj ∈ F2n , we can however write

σ1 = d1,0 + d1,1ω + . . .+ d1,n−1ω
n−1,

σ2 = d2,0 + d2,1ω + . . .+ d2,n−1ω
n−1,

...

σm = dm,0 + dm,1ω + . . .+ dm,n−1ω
n−1.

where dj,ℓ with 1 ≤ j ≤ m and 1 ≤ ℓ ≤ n are binary variables. Using these equations, we can

substitute σj in s′m+1 to obtain

s′m+1 = f ′
0 + f ′

1ω + . . .+ f ′
n−1ω

n−1

where f ′
0, f

′
1, ..., f

′
n−1 are polynomials in the binary variables dj,ℓ. Applying a Weil descent on

the symmetrized Semaev's polynomial equation s′m = 0, we therefore obtain a polynomial

system

f ′
0 = f ′

1 = . . . = f ′
n−1 = 0

in themn binary variables dj,ℓ.

The variables dj,ℓ must also satisfy certain constraints provided by System (4.1). More

precisely, substituting both the xj and the σj variables for binary variables in the equation

σj =
∑

I⊂{1,...,m}
#I=j

∏
k∈I

xk ,

we obtain

dj,0 + dj,1ω + ...+ dj,n−1ω
n−1 = σj =

∑
I⊂{1,...,m}

#I=j

∏
k∈I

n′∑
ℓ=1

ck,ℓvℓ

= gj,0 + gj,1ω + ...+ gj,n−1ω
n−1

35

where gj,ℓ are polynomials in themn′ binary variables ci,ℓ only. In otherwords, applying aWeil

descent on each equation of System (4.1), we obtainmn new equations

dj,ℓ = gj,ℓ

in themn+mn′ binary variables cj,ℓ and dj,ℓ. The resulting system
f ′
j = 0, 1 ≤ j ≤ n,

dj,ℓ = gj,ℓ, 1 ≤ j ≤ m, 1 ≤ ℓ ≤ n,

hasmn+n equations inmn+mn′ binary variables. As before, the system is expected to have

solutions ifmn′ ≈ n, and it can then be solved using a Gröbner basis algorithm.

In comparison with the simpler FPPR method [FPPR12], the number of variables is multi-

plied by a factor roughly (m + 1). However, the degrees of our equations are also decreased

thanks to the symmetrization, and this may decrease the degree of regularity of the system.

In order to compare the time and memory complexities of both approaches, let DFPPR and

DAppr1 be the degrees of regularity of the corresponding systems. The time andmemory costs

are respectively roughly N2Dreg and N3Dreg , where N is the number of variables and Dreg is

the degree of regularity. Assuming that neitherDFPPR norDAppr1 depends onn (as suggested

by Petit and Quisquater's experiments [PQ12]), that DAppr1 < DFPPR (thanks to the use of

symmetric variables) and thatm is small enough, then the extra (m+1) factors in the number

of variables will be a small price to pay for large enough parameters. In practice, experiments

are limited to very smalln andm values. For these small parameters, we could not observe any

signi icant advantage of this variant with respect to FPPR method. However, the complexity

can be improved even further in practice with a clever choice of vector space.

36

4.2.2 A Special Vector Space

In the prime degree extension case, V cannot be a sub ield, hence the symmetric variables σj

are not restricted to V . This led us to introduce mn variables dj,ℓ instead of mn′ variables

only in the composite extension degree case. However, we point out that some vector spaces

may be ``closer to a sub ield'' than other ones. In particular if V is generated by the basis

{1, ω, ω2, . . . , ωn′−1}, then we have

if xj ∈ V then σ2 ∈ V ′

where V ′ ⊃ V is generated by the basis {1, ω, ω2, . . . , ω2n′−2}.

More generally, we can write

σ1 = d1,0 + d1,1ω + ...+ d1,n′−1ω
n′−1,

σ2 = d2,0 + d2,1ω + ...+ d2,2n′−2ω
2n′−2,

...

σm = dm,0 + dm,1ω + ...+ dm,n−mωn−m.

Applying a Weil descent on s′m+1 |xm+1=x(R) and each equation of System (4.1) as before, we

obtain a new polynomial system
f ′
j = 0, 1 ≤ j ≤ n,

dj,ℓ = gj,ℓ, 1 ≤ j ≤ m, 0 ≤ ℓ ≤ j(n′ − 1),

in n+ (n′ − 1)m(m+1)
2 +m equations and n′m+ (n′ − 1)m(m+1)

2 +m variables.

Whenm is large andmn′ ≈ n, the number of variables is decreased by a factor 2 if we use

our special choice of vector space instead of a randomone. Form = 4 andn ≈ 4n′, the number

of variables is reduced from about 5n to about 7n/2. For m = 3 and n ≈ 3n′, the number of

variables is reduced from about 4n to about 3n thanks to our special choice for V . In practice,

this improvement turns out to be signi icant.

37

sm+1 s′m+1 s′m+1 with speci ic V

variables number mn′ mn′ +mn mn′ + (n′ − 1)m(m+1)
2 +m

polynomials number n n+mn n+ (n′ − 1)m(m+1)
2 +m

Dreg 7 or 6 4 or 3 4 or 3

Table 4.1: Comparison for different multivariate polynomial system

4.2.3 New Decomposition Algorithm

Our new algorithm for the decomposition problem is described in Algorithm 4.1. It is denoted

as ImpAppr1 in this work. The only difference between ImpFPPR and ImpAppr1 comes from a

different transformation function in the line 1 of Algorithm 4.1. Although the system solved

in ImpAppr1 contains more variables and equations than the system solved in ImpFPPR, the

degrees of the equations are smaller and they involve less monomial terms. We now describe

our experimental results.

4.3 Experimental Results

To validate our analysis and experimentally compare our method with FPPR method, we im-

plemented both algorithms inMagma. All our experimentswere conducted on a CPUwith four

AMD Opteron Processor 6276 with 16 cores, running at 2.3GHz with a L3 cache of 16MB. The

Operating System was CentOS 6.3 with Linux kernel version 2.6.32-279.14.1.el6.x86_64 and

512GB memory. The programming platform was Magma V2.18-9 in its 64-bit version. Gröb-

ner basis were computed with the GroebnerBasis function of Magma. Our implementations of

ImpFPPR and ImpAppr1 share the same program, except that the former uses Algorithm 3.3

and the latter uses Algorithm 4.1 to set up the binary multivariate system. We irst focus on

the relation search, then we describe experimental results for a whole ECDLP computation.

38

Algorithm4.1 Decompose functionwith binarymultivariable polynomial systemand

symmetric elementary functions (ImpAppr1)
Input: R = [a]P + [b]Q, factor base FV

1 F ←− TransFromSemaevToBinaryWithSym(sm+1 |xm+1=x(R))

2 F _←− GroebnerBasis(F)

3 sol(F)←− GetSolutionFromGroebnerBasis(F _)

4 solm ←− {}

5 for e = {P1, P2, .., Pm} ∈ sol(F) do

6 if P1 + P2 + ...+ Pm +R = O then

7 solm ←− solm ∪ {e}

8 end

9 end

Output: solm contains the decomposition elements ofRw.r.t. FV

4.3.1 Relation Search

The relation search is the core of both FPPR method and our variant. In our experiments,

we considered a ixed randomly chosen curve Eα,β , a ixed ECDLP with respect to P , and a

ixed m = 3 for all values of the parameters n and n′. For random integers a and b, we used

both FPPR method and our irst approach to ind factor basis elements Pj ∈ FV such that

P1 + · · ·+ Pm = [a]P + [b]Q.

We focused on m = 3 (fourth Semaev's polynomial) in our experiments. Indeed, there

is no hope to solve ECDLP faster than with generic algorithms using m = 2 because of the

linear algebra stage at the end of the index calculus algorithm1. On the other hand, themethod

appears unpractical for m = 4 even for very small values of n because of the exponential

increase withm of the degrees in Semaev's polynomials.
1In fact, evenm = 3would require a double large prime variant of the index calculus algorithmdescribed above

in order to beat generic discrete logarithm algorithms [Gau09].

39

n n'
sol: yes sol: no

Dreg ttrans tgroe mem Dreg ttrans tgroe mem

ImpFPPR 17 3 6 3.95 1.08 21.51 6 4.50 0.09 23.40

ImpAppr1 17 3 3 0.67 1.14 14.86 3 0.72 0.24 16.26

ImpFPPR 19 3 6 4.44 1.08 27.55 6 4.97 0.11 29.59

ImpAppr1 19 3 3 0.75 1.13 19.75 3 0.79 0.31 20.90

ImpFPPR 23 3 6 5.47 1.06 29.10 6 6.18 0.12 32.25

ImpAppr1 23 3 3 0.91 1.04 15.59 3 0.97 0.14 16.68

ImpFPPR 29 3 6 6.94 1.02 38.85 6 7.75 0.07 43.14

ImpAppr1 29 3 3 1.15 0.95 17.16 3 1.22 0.17 18.43

ImpFPPR 31 3 6 7.38 1.03 41.12 5 8.38 0.06 46.33

ImpAppr1 31 3 3 1.24 0.90 17.59 3 1.30 0.04 18.87

ImpFPPR 37 3 6 8.90 1.00 48.88 6 9.99 0.06 54.81

ImpAppr1 37 3 3 1.48 0.88 19.23 3 1.58 0.05 20.85

ImpFPPR 41 3 6 9.81 0.98 54.35 6 11.17 0.06 61.70

ImpAppr1 41 3 3 1.64 0.87 20.58 3 1.75 0.05 22.60

ImpFPPR 43 3 6 10.47 0.99 57.69 6 11.73 0.06 64.74

ImpAppr1 43 3 3 1.76 0.87 21.28 3 1.86 0.05 23.24

ImpFPPR 47 3 6 11.29 1.00 63.77 5 12.85 0.06 72.47

ImpAppr1 47 3 3 1.92 0.83 23.17 3 2.02 0.06 25.32

ImpFPPR 53 3 6 12.86 1.03 72.06 5 14.57 0.07 81.22

ImpAppr1 53 3 3 2.12 0.79 24.89 2 2.28 0.04 27.52

Table 4.2: Comparison of the relation search (m = 3, n′ = 3) with two strategies, ImpFPPR and ImpAppr1.

Dreg , var, poly and mono are the degree of regularity, the number of variables, the number of polynomials and the

number of monomials in the system. ttrans and tgroe are the transformation time and solving Gröbner basis time

(seconds). men is the memory consumptions for solving the system (MB).

40

n n'
sol: yes sol: no

Dreg ttrans tgroe mem Dreg ttrans tgroe mem

ImpFPPR 17 4 7 15.47 6.81 58.16 7 16.53 1.20 55.37

ImpAppr1 17 4 3 1.31 3.91 31.52 3 1.33 2.23 24.88

ImpFPPR 19 4 7 17.04 6.88 67.24 7 17.85 1.54 64.78

ImpAppr1 19 4 3 1.51 3.26 32.97 3 1.46 1.57 27.11

ImpFPPR 23 4 6 21.06 6.83 95.66 6 22.31 4.67 91.23

ImpAppr1 23 4 3 1.83 3.19 29.63 3 1.81 1.72 22.75

ImpFPPR 29 4 6 26.63 6.56 125.32 6 27.80 1.37 129.78

ImpAppr1 29 4 3 2.30 3.11 32.95 3 2.29 1.06 27.88

ImpFPPR 31 4 6 28.94 3.37 136.23 6 30.19 1.56 142.69

ImpAppr1 31 4 3 2.49 3.20 35.30 3 2.48 1.24 29.22

ImpFPPR 37 4 6 35.03 2.43 172.56 6 35.68 0.88 176.13

ImpAppr1 37 4 3 2.93 2.45 31.32 3 2.96 0.49 32.45

ImpFPPR 41 4 6 37.58 2.79 189.16 6 39.80 0.84 201.77

ImpAppr1 41 4 3 3.24 2.23 33.84 3 3.33 0.56 35.49

ImpFPPR 43 4 6 40.59 2.24 207.05 6 41.39 0.85 210.59

ImpAppr1 43 4 3 3.41 2.23 35.02 3 3.48 0.60 36.51

ImpFPPR 47 4 6 43.37 2.10 225.73 6 46.01 0.66 239.89

ImpAppr1 47 4 3 3.73 2.12 37.93 3 3.84 0.67 39.78

ImpFPPR 53 4 6 50.63 1.86 272.55 6 52.26 0.37 279.83

ImpAppr1 53 4 3 4.19 1.75 40.46 3 4.36 0.46 42.63

Table 4.3: Comparison of the relation search (m = 3, n′ = 4) with two strategies, ImpFPPR and ImpAppr1.

Dreg , var, poly and mono are the degree of regularity, the number of variables, the number of polynomials and the

number of monomials in the system. ttrans and tgroe are the transformation time and solving Gröbner basis time

(seconds). men is the memory consumptions for solving the system (MB).

41

n n'
sol: yes sol: no

Dreg ttrans tgroe mem Dreg ttrans tgroe mem

ImpFPPR 17 5 7 46.53 218.87 723.08 7 48.06 59.82 725.07

ImpAppr1 17 5 4 2.21 485.10 596.46 4 2.16 136.93 492.88

ImpFPPR 19 5 7 50.50 91.61 401.17 7 54.03 41.80 348.01

ImpAppr1 19 5 4 1.97 516.67 619.63 4 2.67 182.92 492.82

ImpFPPR 23 5 7 64.67 70.46 475.55 7 65.07 55.75 381.39

ImpAppr1 23 5 4 3.01 157.86 323.60 4 3.07 17.83 253.16

ImpFPPR 29 5 7 81.75 109.40 587.39 7 80.99 50.75 530.53

ImpAppr1 29 5 4 3.67 140.47 372.59 4 3.82 20.03 278.07

ImpFPPR 31 5 7 84.08 70.64 547.86 7 85.50 53.56 410.47

ImpAppr1 31 5 4 3.99 130.07 362.76 4 4.13 20.98 279.23

ImpFPPR 37 5 7 101.06 158.23 828.44 7 103.29 88.29 690.51

ImpAppr1 37 5 3 4.85 11.68 118.00 3 4.87 6.85 57.52

ImpFPPR 41 5 6 113.85 230.40 889.70 7 114.09 69.12 930.24

ImpAppr1 41 5 3 5.33 13.26 126.19 3 5.34 8.53 58.99

ImpFPPR 43 5 6 118.87 75.46 600.95 6 118.31 39.69 615.72

ImpAppr1 43 5 3 5.41 11.35 89.33 3 5.74 8.21 56.86

ImpFPPR 47 5 6 128.63 65.03 674.87 6 131.95 45.34 693.31

ImpAppr1 47 5 3 6.07 9.57 109.38 3 6.26 4.71 60.15

ImpFPPR 53 5 6 147.66 80.76 810.08 6 150.41 23.31 814.76

ImpAppr1 53 5 3 6.83 6.68 59.58 3 6.96 1.36 59.91

Table 4.4: Comparison of the relation search (m = 3, n′ = 5) with two strategies, ImpFPPR and ImpAppr1.

42

n n'
sol: yes sol: no

Dreg ttrans tgroe mem Dreg ttrans tgroe mem

ImpFPPR 23 6 7 163.45 3888.70 6656.13 7 156.11 3309.43 5025.06

ImpAppr1 23 6 4 4.36 5150.12 4791.31 4 4.42 3082.15 4428.07

ImpFPPR 29 6 7 198.99 4511.74 6685.01 7 204.07 1681.27 6528.03

ImpAppr1 29 6 4 5.67 2848.46 3368.01 4 5.76 932.65 2681.20

ImpFPPR 31 6 7 209.98 4664.25 7336.11 7 206.29 1205.29 7276.85

ImpAppr1 31 6 4 5.82 2811.99 3257.82 4 6.09 1049.14 2616.21

ImpFPPR 37 6 7 248.24 4733.79 9777.27 7 256.90 1126.29 9812.93

ImpAppr1 37 6 4 6.77 1101.04 1327.00 4 7.10 146.14 927.36

ImpFPPR 41 6 7 279.05 1045.53 4416.99 7 266.44 653.92 3062.68

ImpAppr1 41 6 4 7.87 953.60 1361.59 4 8.31 87.61 896.38

ImpFPPR 43 6 7 298.13 1444.41 4288.28 7 280.46 787.02 3796.57

ImpAppr1 43 6 4 8.02 920.13 1340.39 4 8.33 82.37 918.05

ImpFPPR 47 6 7 326.22 1278.79 4524.33 7 326.08 463.62 3287.07

ImpAppr1 47 6 4 9.06 858.66 1296.09 4 9.24 80.54 919.39

ImpFPPR 53 6 7 366.92 2967.03 7311.44 7 359.03 1857.65 6677.92

ImpAppr1 53 6 3 10.48 34.82 151.04 3 10.70 31.21 151.02

Table 4.5: Comparison of the relation search (m = 3, n′ = 6) with two strategies, ImpFPPR and ImpAppr1.

43

The experimental results are given inTable 4.2, Table 4.3, Table 4.4 and4.5. Formost values

of the parameters n and n′, the experiment was repeated 200 times and average values are

presented in the table. For large values n′ = 6, the experiment was only repeated 3 times due

to the long execution time.

We noticed that the time required to solve one system varied signi icantly depending on

whether it had solutions or not. Table 4.2, Table 4.3, Table 4.4 and 4.5 therefore present re-

sults for each case in separate columns. The table contains the following information: Dreg is

the maximum degree appearing when solving the binary system with Magma's Gröbner ba-

sis routine; var is the number of F2 variables of the system; poly and mono are the number

of polynomials and monomials in the system; rel is the average number of solutions obtained

(modulo equivalent solutions through symmetries); ttrans and tgroe are respectively the time

(in seconds) needed to transform the polynomial sm+1 into a binary system and to compute a

Gröbner basis of this system; mem is the memory required by the experiment (in MB).

The experiments show that the degrees of regularity of the systems occurring during the

relation search are decreased from values between 6 and 7 in FPPRmethod to values between

3 and 4 in our irst approach. This is particularly important since the complexity of Gröebner

basis algorithms is exponential in this degree. However, this huge advantage of our method

comes at the cost of a signi icant increase in the number of variables, which itself tends to

increase the complexity of Gröbner basis algorithms. Our experimental results con irm the

analysis of Section 4.2: while our method may require more memory and time for small pa-

rameters (n, n′), it becomes more ef icient than FPPR method when the parameters increase.

We remark that although the time required to solve the systemmay be larger with our method

than with FPPR method for small parameters, the time required to build this system is always

smaller. This is due to the much simpler structure of s′m+1 compared to sm+1 (lower degrees

and less monomial terms).

44

n #Eα,β ImpFPPR ImpAppr1

7 4*37 1.574 0.864

11 4*523 8.625 6.702

13 4*2089 49.698 31.058

17 4*32941 2454.470 1364.742

19 4*131431 22474.450 9962.861

Table 4.6: Comparison of two ECDLP strategies, ImpFPPR and ImpAppr1. The last two columns are computing

time in seconds.

probability to get an answer 2mn′

m!2n complexityNωDreg

m increases probability increases Dreg increases,N increases.

n′ increases probability increases N increases.

Table 4.7: Trade-off for choosing m and n′. N : total number of variables. Dreg: degree of

regularity.

4.3.2 Whole ECDLP Computation

In anext step,wealso implemented thewholeECDLPalgorithmwith the twostrategies ImpFPPR

and ImpAppr1. For n in {7, 11, 13, 17, 19}, we ran the whole attack using m = 3 and sev-

eral values for n′. The orders of the curves we picked in our experiments are shown in Ta-

ble 4.6 together with the experimental results for the best value of n′, which turned out to

be 3 in all cases. Timings provided in the table are in seconds and averaged over 20 experi-

ments. Table 4.6 clearly shows that ourmethod (ImpAppr1) ismore ef icient than FPPRmethod

(ImpFPPR).

It may look strange that n′ = 3 leads to optimal timings at irst sight. Indeed, the ECDLP

attacks described above use mn′ ≈ n and a constant value for n′ leads to a method close to

45

exhaustive search. However, this is consistent with the observation already made in [FPPR12,

PQ12] that exhaustive search is more ef icient than index calculus for small parameters. Ta-

ble 4.7 also shows that while increasing n′ increases the probability to have solutions, it also

increases the complexity of the Gröebner basis algorithm. This increase turns out to be signif-

icant for small parameters.

46

Chapter 5

Second Approach

In our irst approach, though using the symmetry property and the speci ic vector space looks

ef icient, we still encounter the dif iculty in calculating larger parameter for n. This is either

because of the rapidly growing number of variables, if you always calculate the decomposition

with s4 |x4=x(R) and behaves rather like an exhaustive search, or because of the rapidly grow-

ing degree and size of polynomials, due to the recursive construction of Semaev's summation

polynomial, if you calculate with larger sm+1. That is, the complicated structure of Semaev's

summation polynomial itself makes the problem dif icult. Therefore, in this chapter, we focus

on the particularity of the Semaev's summation polynomial, namely their resultant structure,

and try to make the computation of Semaev's summation polynomial easier.

In the next Section 5.1 and Section 3.1, we will show the new idea to solve the resultant

ResX(f (1), f (2)) of two polynomials f (1) and f (2) without really calculating the resultant by

addingmore intermediate extra variables. In the Section 5.3, wewill showing the experimental

results of the new idea.

47

5.1 Splitting up the Resultant

Let n be a positive integer and let p = 2. Let f (1), f (2) be two multivariate polynomials over

the ield Fpn , respectively withm1 + 1 andm2 + 1 variables. To simplify the exposition of our

idea, we will assume thatm1 = m2 = m and that the degrees of f (1) and f (2) are bounded by

D with respect to all variables individually. Let f(x1, . . . , xm, y1, . . . , ym) :=

ReszX(f (1)(x1, . . . , xm, z), f (2)(y1, . . . , ym, z)). The polynomial f has degree bounded by 2D

with respect to all its variables.

Let n′ ≈ n/2m and let V = ⟨v1, . . . , vn′⟩ ⊂ Fpn be a vector space of dimension n′ over Fp,

generated by {v1, . . . , vn′}. For ``random'' polynomials f (1) and f (2) with the above character-

istics, we expect the equation f(x1, . . . , xm, y1, . . . , ym) = 0 to have about one solution such

that xi ∈ V . As recalled in Chapter 4, the standard way to ind such a solution is to introduce

small ield variables to model the vector space constraints and to apply a Weil descent on f .

To exploit the resultant structure of f , we suggest to introducen additional small ield vari-

ables zi such that z =
∑n

i=1 ziθi, and to perform a Weil restriction on f (1) and f (2) separately

instead of doing the Weil restriction on their resultant. This leads to a polynomial system

f
(1)
ℓ (xij , zj) = 0 ℓ = 1, . . . , n

f
(2)
ℓ (yij , zj) = 0 ℓ = 1, . . . , n

xpij − xij = 0 1 ≤ i ≤ m, 1 ≤ j ≤ n′

ypij − yij = 0 1 ≤ i ≤ m, 1 ≤ j ≤ n′

zpj − zj = 0 1 ≤ j ≤ n.

(5.1)

Note that the polynomials fk
ℓ have degree bounded by ⌈logp(D)⌉ in each block of variables, and

by (m+ 1)⌈logp(D)⌉ in total. We will apply this technique to ECDLP in the next section.

48

5.2 Application to ECDLP

For an elliptic curve with equation y2 + xy = x3 + αx2 + β over F2n , the second and third

summations polynomials are de ined by S2(x1, x2) = x1 + x2 and S3(x1, x2, x3) = x21x
2
2 +

x21x
2
3 + x22x

2
3 + x1x2x3 + β, as mentioned in Section 3.2.2. The next summation polynomials

can be recursively de ined by

Sr(x1, . . . , xr) = ResX(Sr−k(x1, . . . , xr−k−1, X), Sk+2(xr−k, . . . , xr, X))

for an arbitrary integer k ∈ [1, r − 3].

Although the asymptotic analysis in [PQ12] suggests usingm = n1/3 for optimal ef iciency,

the huge memory requirements following from a (predicted) degree of regularity approxi-

mately equal tom2 have so far limitedm to either 3 or 4 in all experiments. In fact even when

additional symmetries coming from composite extension degrees are exploited, the maximal

value of m reportedly used in experiments is 6, and the largest summation polynomial com-

puted is S8 [FHJ+14]!

Splitting the resultant as above can potentially allow for much larger m values, without

even needing to computing the corresponding summation polynomial. To compute a relation

in Diem's algorithm withm = 3, one can apply a Weil descent on both polynomials in the set

{S3(x1, x2, w), S3(w, x3, X)} and solve the resulting system using Gröbner basis algorithms.

This reasoning can be extended to largerm values. By recursively splitting down all the re-

sultant, we inally split the (m+1)th summationpolynomial intom−1 summationpolynomials

S3. Themethodwill introducem−2 variableswi that are unconstrained overF2n (correspond-

ing to x-coordinates of partial sums of the irst points involved in the summation), so solving

the (m+ 1)th summation polynomial.

Assuming that the irst fall degree heuristics works in all cases, it is tempting to increase

m as much as possible. This will decrease the size of the vector spaces, hence the cost of linear

49

algebra in the second phase of index calculus. The parameterm can however not be increased

too much (say not up to m ≈ n) since the factor m! arising from the symmetry of Semaev's

polynomials will then signi icantly decrease the probability that one random point can be de-

composed as a sum of factor basis elements.

In practice, we could solve (m + 1)th summation polynomials with m up to 6 using this

splitting strategy. For smaller values of m, we could solve them for n values larger than in

previousworks. Althoughwe cannot give a rough theoretical analysis of complexity of the new

idea we proposed here so far, we will shows the experimental evidence of the ef iciency of the

second approach in the next section. Even the experiments are limited by their memory and

time requirements, they do provide some support for ef iciency of the new method. Detailed

experimental results are provided in Sections 5.3.1 to 5.3.3.

5.3 Experimental results

In order to investigate the validity of our generalized irst fall degree assumptions, we irst

performed experiments onWeil descent systems coming from splitting strategies of Semaev's

polynomials. We then also studied the Weil descent of ``generic resultant polynomials''. All

algorithms were implemented in Magma, and we used the GroebnerBasis function of Magma

to compute Gröbner bases.

The experiments of Sections 5.3.1 to 5.3.4 were conducted on a CPU with four 16-cores

AMD Opteron Processor 6276, running at 2.3GHz with a L3 cache of 16MB. The Operating

Systemwas Linux Mint 14 Nadia with kernel version GNU/Linux 3.5.0-17-generic x86_64 and

512GB memory. The programming platform was Magma V2.18-9 in its 64-bit version. We

usually provide average results on at least 10 experiments, except when an experiment takes

more than 1000 seconds, inwhich casewe provide average numbers on at least 2 experiments.

The time unit is the second, and the memory unit is a MB.

50

5.3.1 Splitting up Semaev 4

We irst applied our splitting strategy to compute relations in Diem's algorithm whenm = 3.

We chose a random curve, a random point (X,Y) on the curve and a random vector space V of

appropriate size, and we solved S4(x1, x2, x3, X) = 0 by applying a Weil descent to two poly-

nomials S3(x1, x2, w) and S3(w, x3, X)where we left the variable w unconstrained. Table 5.1

and Table 5.2 compares the experimental results obtained using this approach with previous

works denoted as ImpFPPR [FPPR12] and ImpAppr1 [HPST13]. The table suggests that the

degree of regularity remains at 4 in our splitting method. The new method is also faster than

both ImpFPPR and ImpAppr1 by an order of magnitude, and it requires less memory in most

cases. Empty lines in the table occur when we could not inish the computation: we observe

that our splitting strategy allows for larger parameters.

5.3.2 Splitting up Semaev 5

We then applied our splitting strategy to compute relations in Diem's algorithm when m =

4. We repeated the same steps as the previous section, and we split s5(x1, x2, x3, x4, X) into

three parts {s3(x1, x2, w1), s3(w1, X,w2), s3(w2, x3, x4)}, where the new variables w1 and w2

were left unconstrained. We remark that it is better to split the polynomial in this way than

as {s3(x1, x2, w1), s3(w1, x3, w2), s3(w2, x4, X)} to obtain a better balance of variables in the

three equations.

Table 5.3 summarizes the experimental results obtained using this approach. Note that

we could not inish the computation using previousmethods (neither ImpFPPR [FPPR12] nor

ImpAppr1 [HPST13]), so we only show the experiments results for the new method here. The

table shows thatDreg remains at 4 in this case.

51

5.3.3 Splitting up Semaev 6 and 7

We then considered larger summation polynomials. We followed the same steps as in the pre-

vious two sections, and we solved sm+1(x1, x2, ..., xm, X) = 0 by applying a Weil descent to

split polynomials s3(x1, x2, w1), s3(w1, x3, w2), ..., and s3(wm−2, xm, X)wherewe left the vari-

ables w1, w2, ..., wm−2 unconstrained. The results are shown in Table 5.4.

The table shows that we could solve Semaev's polynomials up to m = 6 (s7) using our

splitting method. The degree of regularity remains reasonably small, but unlike for smaller

m values it does seem slightly larger than 4 when m = 5 and m = 6. We point out that the

experiments here were only repeated twice due to the longer computing time, so the average

results may still be affected by variability effects such as the number of solutions.

5.3.4 Generic resultant polynomials

We then studied the case of ``generic resultant polynomials''. To this aim, we generated two

randompolynomials f (1) and f (2)withm+1variables over thebase ieldF2n , withdegree2t−1

in each variables, such that f1 and f2 share exactly one variable. We applied aWeil descent on

both f and the set {f (1), f (2)}, we solve both systems F (res) and F (1+2) using Gröbner basis

algorithms, andwe compare the timings and thedegreeof regularity obtained. The experiment

results with t = 1, 2, 3, m = 1, 2 and 7 ≤ n ≤ 29 are shown in Fig. 5.1, Fig. 5.2, Fig. 5.3 and

Fig. 5.4.

For the largest parameters t andm we tested, solving the system was actually faster than

generating it. We believe this is because we did not optimize the Weil descent process (to

focus on its resolution) but we did not investigate this further. As an example in the case (t =

2,m = 1), it takes more than 20,000 seconds to setup the system and seconds to solve it. We

also noted that the computation sometimes ran out of memory or took too much time to solve

F (res) system in the step Gröbner walk no matter how small t and m were, while it worked

52

well in solving F (1+2). The numbers we report are average values on the cases that could be

completed.

The results obtained for generic polynomials are not as spectacular as for Semaev polyno-

mials. On the one hand, we consistently observe smaller degrees of regularity with our split-

ting method, on the other hand these smaller degrees of regularity do not compensate for the

larger number of variables at the parameters we could test, and for most parameters the split-

ting method was actually slower than solving the Weil descent of the resultant polynomial.

We point our that this does not contradict to our claim, which predicts that the new method

becomes better for suf iciently large n values.

Another important remark is that for (t = 1,m = 1), the resultant polynomial has actually

the same degrees as both f (1) and f (2), so it de initely makes sense that F (res) can be solved

faster than F (1+2) in this case. In fact for larger parameters such as (t = 3,m = 2) shown in

Fig 5.4, we observed that the splitting method became more ef icient.

Interestingly, the splitting strategy performs much better for s4 than for generic resultant

polynomials with (t = 2,m = 2) (arguably the closest case to s4). We believe this is because

of the sparsity and the symmetric structure of the Semaev's polynomial system. The sparsity

of a system is quite important in solving the system, as it affects thematrix size occurring in F4

calculation, hence the run time.

53

n n'
sol: yes sol: no

Dreg ttrans tgroe mem Dreg ttrans tgroe mem

ImpFPPR 17 4 7 15.47 6.81 58.16 7 16.53 1.2 55.37

ImpAppr1 17 4 3 1.31 3.91 31.52 3 1.33 2.23 24.88

ImpAppr2 17 4 4 0.66 4.96 37.38 4 0.65 3.16 39.63

ImpFPPR 17 5 7 46.53 218.87 723.08 7 48.06 59.82 725.07

ImpAppr1 17 5 4 2.21 485.1 596.46 4 2.16 136.93 492.88

ImpAppr2 17 5 4 0.84 10.32 68.55 4 0.85 9.19 61.67

ImpFPPR 19 5 7 50.5 91.61 401.17 7 54.03 41.8 348.01

ImpAppr1 19 5 4 1.97 516.67 619.63 4 2.67 182.92 492.82

ImpAppr2 19 5 4 1.19 18.6 91.91 4 1.11 16.19 86.61

ImpFPPR 19 6

ImpAppr1 19 6

ImpAppr2 19 6 4 1.46 135.17 400.89 4 1.44 68.60 380.98

ImpFPPR 23 5 7 64.67 70.46 475.55 7 65.07 55.75 381.39

ImpAppr1 23 5 4 3.01 157.86 323.6 4 3.07 17.83 253.16

ImpAppr2 23 5 4 1.37 49.14 136.1 4 1.41 34.61 108.24

ImpFPPR 23 6 7 163.45 3888.7 6656.13 7 156.11 3309.43 5025.06

ImpAppr1 23 6 4 4.36 5150.12 4791.31 4 4.42 3082.15 4428.07

This Work 23 6 4 1.77 168.12 794.3 4 1.69 146.35 767.47

ImpFPPR 23 7

ImpAppr1 23 7

ImpAppr2 23 7 4 2.07 538.77 1981.37 4 2.09 476.41 1936.13

Table 5.1: Comparison FPPR [FPPR12], the irst approach [HPST13] and the second approach whenm = 3

54

n n'
sol: yes sol: no

Dreg ttrans tgroe mem Dreg ttrans tgroe mem

ImpFPPR 29 6 7 198.99 4511.74 6685.01 7 204.07 1681.27 6528.03

ImpAppr1 29 6 4 5.67 2848.46 3368.01 4 5.76 932.65 2681.2

ImpAppr2 29 6 4 2.53 636.97 2195.45 4 2.44 489.95 2201.95

ImpFPPR 29 7

ImpAppr1 29 7

ImpAppr2 29 7 4 3.02 1907.13 5555.25 4 2.83 1519.04 5545.99

ImpFPPR 29 8

ImpAppr1 29 8

ImpAppr2 29 8 4 3.45 5450.35 12297.73 4 3.36 4868.43 11449.37

ImpFPPR 31 6 7 209.98 4664.25 7336.11 7 206.29 1205.29 7276.85

ImpAppr1 31 6 4 5.82 2811.99 3257.82 4 6.09 1049.14 2616.21

ImpAppr2 31 6 4 2.79 1088.8 2984.91 4 2.61 827.2 2988.82

Table 5.2: Comparison FPPR [FPPR12], the irst approach [HPST13] and the second approach whenm = 3

n m n'
sol: yes sol: no

Dreg ttrans tgroe mem Dreg ttrans tgroe mem

13 4 3 4 1.05 246.38 803.26 4 0.99 178.89 514.82

17 4 3 4 1.77 427.45 2538.02 4 1.47 545.94 2258.43

17 4 4 4 1.90 4252.28 10987.02 4 1.72 2460.63 10483.68

23 4 3 4 3.49 3132.48 14068.59 4 4.46 2061.40 11451.40

23 4 4 4 3.94 27501.20 57511.55 4 4.56 18092.68 57493.99

23 4 5 4 3.73 24890.21 57657.05 4 5.36 16672.26 57553.95

29 4 3 4 7.38 17053.36 57943.28 4 8.05 11804.60 44238.16

29 4 4 4 8.74 122559.83 220688.44 4 7.00 431414.36 671703.84

Table 5.3: Experiment results for the splitting strategy whenm = 4

55

n m n'
sol: yes sol: no

Dreg ttrans tgroe mem Dreg ttrans tgroe mem

13 5 (s6) 2 4.00 1.55 42.39 395.97 4.00 1.45 31.80 276.18

13 5 (s6) 3 4.33 1.87 686.53 2784.53 4.00 1.74 668.06 3711.62

13 6 (s7) 2 5.00 2.08 213.70 887.97 4.00 2.00 238.17 932.53

17 5 (s6) 3 4.33 2.53 4378.38 12444.42 4.00 2.64 572.30 4518.55

17 6 (s7) 2 4.50 3.15 1295.83 3618.48 4.00 4.00 305.57 2164.90

17 6 (s7) 3 5.00 3.70 25543.69 25533.75 4.00 3.79 14361.97 15185.44

23 5 (s6) 3 4.67 4.84 8780.20 28556.62 4.00 5.66 3602.93 23407.68

23 6 (s7) 3 5.00 6.27 88161.21 43730.85 4.00 5.97 4666.71 16058.17

29 5 (s6) 3 4.33 10.39 48122.94 102263.43 4.00 9.63 16588.69 81579.91

Table 5.4: Experiment results for the splitting strategy whenm > 4

56

n
F (1+2) F (res)

Dreg time Dreg time

12 3.60 0.03 3.00 0.00

13 3.20 0.20 3.00 0.00

14 3.00 0.21 3.00 0.00

15 3.00 0.38 3.00 0.01

16 3.20 0.44 3.00 0.01

17 3.60 0.68 3.00 0.02

18 4.00 0.85 3.00 0.01

19 3.20 1.07 3.20 0.03

20 3.20 1.31 3.00 0.02

21 3.60 1.82 3.00 0.11

22 3.20 2.15 3.00 0.03

23 3.80 3.09 3.00 0.17

24 3.60 3.08 3.00 0.16

25 4.00 3.78 3.00 0.27

26 3.20 4.79 3.00 0.24

27 3.20 33.85 3.00 0.39

28 3.50 7.14 3.25 0.34

29 4.00 58.44 3.20 0.60

Figure 5.1: Experiments for the splitting strategy with generic resultant polynomial (t = 1,m = 1).

57

n
F (1+2) F (res)

Dreg time Dreg time

12 4.20 1.38 5.00 0.06

13 4.20 1.60 5.00 0.10

14 4.80 30.47 5.00 1.36

15 4.60 22.38 5.00 1.62

16 4.00 30.95 5.00 2.23

17 4.20 41.86 5.00 2.64

18 5.00 2599.71 5.00 53.18

19 5.00 3419.45 5.00 47.66

20 5.00 4666.46 5.20 46.81

Figure 5.2: Experiments for the splitting strategy with generic resultant polynomial (t = 1,m = 2).

58

n
F (1+2) F (res)

Dreg time Dreg time

7 5 0.10 7 0.01

8 5 0.13 7 0.01

9 5 0.84 7 0.09

10 5 1.34 7 0.09

11 5 4.38 7 0.39

12 5 6.91 7 0.54

13 5 221.04 7 4.87

14 5 327.19 7 5.60

15 5 1620.49 7 37.19

Figure 5.3: Experiments for the splitting strategy with generic resultant polynomial (t = 2,m = 1).

59

t m n
F (1+2) F (res)

Dreg time Dreg time

2 2 7 7 0.119 8 0.01

2 2 13 5 10.612 9 3.406

3 1 7 5 0.115 7 0.113

3 1 13 5 219.813 7 13.534

3 2 13 7 39.359 12 625.939

Figure 5.4: Experiments for the splitting strategy with generic resultant polynomial for larger t andm.

60

Chapter 6

Extension Discussion

In this chapter, we will showing more potential idea relating to both ECDLP and other work,

based on our previous splitting method in Section 5.1. In the irst Section 6.1, we will show-

ing a new algorithm ``binary ECDLP'' to solving ECDLP, and in the later Section 6.1.2 and Sec-

tion 6.1.3, we will show its variants which is more ef icient in solving the problem. In the Sec-

tion 6.2, we are going to introducing a reduction from the binary ECDLP to ECSSP(elliptic curve

subset sum problem), which had been proved to be an NP-complete problem [Che08]. Also, it

is shown by [Che08] that an ECDLP is not hard than ECSSP. Wewill then actually show that we

are not only proposed a new algorithm to solving ECDLP, but also solving ECSSP problem.

we implemented the Algorithms of Sections 6.1.1, 6.1.2 and 6.1.3 and showing the exper-

imental results in Section 6.3. Although there are not suf icient experimental results, we still

give the evidence that thenewmethodwouldbemoreef icient than theprevious approach [FPPR12,

HPST13] in some cases.

61

6.1 New binary ECDLP and DLP Algorithms

In this section, we provide several new algorithms for solving ECDLP arising from the new

splitting idea showing in Chapter 5. Although some of them are partly backed by small exper-

imental results, we believe that we may extend it in the future work and get good news.

6.1.1 Binary ECDLP Algorithm

We irst focus on binary ECDLP. Let n be a prime number, letK := F2n and letE be the elliptic

curve given by the equation y2 + xy = x3 + αx2 + β with α, β ∈ K . The second and third

summation polynomials are given by S2(z1, z2) := z1 + z2 and S3(z1, z2, z3) := z21z
2
2 + z21z

2
3 +

z22z
2
3 + z1z2z3 + β. Let P ∈ E and letQ ∈< P >. LetN be the order of P .

For any (P1, . . . , Pm) ∈ Em, let xi be the x-coordinate of Pi and let wi be the x-coordinate

ofQi :=
∑i

j=1 Pj . Our attack goes as follows

1. Let Pi = (xi, yi) := aiP for ai randomly generated in {0, . . . , N − 1}, i = 1, . . . , n.

2. LetR = (X,Y) := aP + bQ for a, b randomly generated in {0, . . . , N − 1}

3. Build the system

S3(x1, x2, w2) = 0

S3(w2, x3, w3) = 0

S3(w3, x4, w4) = 0

. . .

S3(wn−1, xn, X) = 0.

4. Apply a Weil descent on each equation of this system, restricting xi in Vi and wi in the

whole ield F2n . Add the ield equations to this system. This results in a system with

62

n(n − 1) variables over F2 (corresponding to the variables w2, . . . , wn−1 over F2n and

the variables xi ∈ F2) and 2n(n− 1) equations, each of them of degree at most 2.

5. Solve this system with F4. If there is no solution, go back to Step 2.

6. Reconstruct the corresponding solutions wi over F2n .

7. Deduce the signs si ∈ {±1} in the relation∑m
i=1 siPi = aP + bQ, one value at the time.

8. Deduce the discrete logarithmQ = b−1 (−a+
∑n

i=1 aisi)P

By heuristic probabilistic arguments, each random choice of a and b is expected to pro-

duce one relation on average. Note that we saved the factor m! present in other attacks by

constraining each relation term in a distinct ``factor basis'' {±Pi}, similarly to Galbraith and

Gebregiyorgis's [GG14].

If the irst fall degree assumption holds for the system generated in Step 4, then the degree

of regularity of this system should remain very small even for large n. This implies that the

runtime complexity of the attack is roughly

(
n2ωDreg

)
.

6.1.2 Binary DLP Algorithm, First Variant

We now consider the discrete logarithm problem over the multiplicative group of a inite ield

of characteristic 2. Let K := F2n , let g a generator of K∗ and let h = gk . We suggest the

following algorithm to compute h:

1. Let ai be randomly chosen elements in F∗
2n , i = 1, . . . , n.

2. Let F := {g, h} ∪ {e+ ai, e ∈ F2, i = 1, . . . , n}.

3. LetR := ∅

63

4. Relation search: until #R > 2m+ 1 do

(a) Let r = gahb for a, b randomly generated in {0, . . . , 2n − 2}

(b) Build the system

w2 = (x2 + a2)(x1 + a1)

w3 = (x3 + a3)w2

. . .

wn−1 = (xn−1 + an−1)wn−2

r = (xn + an)wn−1

(c) Apply a Weil descent on each equation of this system, restricting xi in F2 and wi in

the whole ield F2n . Add the ield equations to this system. This results in a system

with n(n− 1) variables over F2 (corresponding to the variables w2, . . . , wn−1 over

F2n and the variables xi over F2) and 2n(n − 1) equations, each of them of degree

at most 2.

(d) Solve this system with F4. If there is no solution, go back to Step 4a.

(e) Add the relation gahb =
∏
(xi + ai) inR.

5. Do linear algebra on the relations to recover one relation gahb = 1, and deduce the dis-

crete logarithm.

The algorithm uses a very small factor basis F . Unlike in the previous algorithm, the dis-

crete logarithms of the factor basis elements are not known a priori, so 2n + 1 relations are

needed and a (very small) linear algebra step is performed at the end.

The runtime complexity of the algorithm can be estimated as

n2ωDreg+1

64

whereDreg is the degree of regularity of the above system.

In the next subsection, we provide another DLP algorithm which is closer in spirit to the

algorithm of Section 6.1.2. Note that a similar generalization to hyperelliptic curves is straight-

forward given previous works such as [iN13a].

6.1.3 Binary DLP Algorithm, Second Variant

Semaev's polynomials project the addition law on point elements into an addition law con-

straint on theirx-coordinate. The projection fromone point to itsx-coordinate ismostly 2-to-1

since the x-coordinates of P and−P are identical.

To extend the algorithm of the previous section to inite ields, we suggest to project any

ield elementx onto the element z := x+x−1, which ensures that every element and its inverse

have the same image. The second and third summation polynomials then naturally become

S2(z1, z2) := z1 + z2, S3(z1, z2, z3) := z21 + z22 + z23 + z1z2z3.

Indeed, S2 = 0 if and only if xe11 xe22 = 1 for some (e1, e2) ∈ {−1, 1}2, and similarly for S3.

The remaining summation polynomials are then de ined inductively using resultants. At this

point, generalizing the algorithm of Section 6.1.1 is straightforward, and it is also clear that it

has expected polynomial complexity O(
(
n2ωDreg

)
) under an appropriate generalization of the

irst fall degree assumption.

6.2 Reduction to binary ECSSP

Asubset sumproblem(SSP) is a classical hardproblemrelated todecoding theorem. Anelliptic

curve subset sum problem (ECSSP) is the speci ic problem on the elliptic curve. In the paper

of Cheng [Che08], it is stated that the ECSSP is NP-complete and the ECDLP is not harder than

ECSSP. We are going to reduce our algorithm to solve ECSSP in this section.

65

First, wede ine the elliptic curve subset sumproblem. LetE bea curveandP1, P2, ..., Pn, R ∈

E. The elliptic curve subset sum problem is to ind out that if R =
∑

1≤i≤n eiPi, where ei ∈

{0, 1}.

In this work, we speci ied Eα,β be a curve over F2n , and P ∈ Eα,β . Then we modi ied the

binary ECDLP method as followed:

1. Let Pi = (xi, yi) := aiP for ai randomly generated in {0, . . . , N − 1}, i = 1, . . . , n.

2. LetR = (X,Y) := (
∑

1≤i≤n ai + a)P for a, b randomly generated in {0, . . . , N − 1}

3. Build the system

S3(x1, x2, w2) = 0

S3(w2, x3, w3) = 0

S3(w3, x4, w4) = 0

. . .

S3(wn−1, xn, X) = 0.

4. Apply a Weil descent on each equation of this system, restricting xi in Vi and wi in the

whole ield F2n . Add the ield equations to this system. This results in a system with

n(n − 1) variables over F2 (corresponding to the variables w2, . . . , wn−1 over F2n and

the variables xi ∈ F2) and 2n(n− 1) equations, each of them of degree at most 2.

5. Solve this system with F4. If there is no solution, go back to Step 2.

6. Reconstruct the corresponding solutions wi over F2n .

7. Deduce the signs si ∈ {±1} in the relation∑m
i=1 siPi = (

∑
1≤i≤n ai + a)P , one value at

the time.

8. Deduce the subset sum aP =
∑

1≤i≤n ei(2aiP).

66

We modi ied Step 2 and get a new equation in Step 7. By this reduction, we can solve the

problemwhether aP is a subset sum of {2aiP} as well as the solution in Step 8. Nowwe claim

that the binary ECDLP is also a solution of ECSSP, hence fore, for the modi ied version we may

like to name it as binary ECSSP. In the next section, we then show some experiments that the

newmethod would be much ef icient than the previous approach at least in some cases.

6.3 Experimental results

In order to investigate the ef iciencyof thenewbinaryECDLPmethod (orbinaryECSSPmethod),

we implemented the Algorithms of Sections 6.1.1, 6.1.2 and 6.1.3. All algorithms were imple-

mented in Magma, and we used the GroebnerBasis function of Magma to compute Gröbner

bases. Although we cannot give a rough theoretical analysis of complexity of the new idea and

algorithm we proposed here so far, we will shows the experimental evidence of the ef iciency

of the new algorithm in this section.

The experiments of Sections 6.3.1 to 6.3.2 were conducted on a CPUwith four 4-cores Intel

Xeon Processor 5550, running at 2.67GHz with 8MB cache. The Operating System was Linux

Ubuntu 12.04.5 LTS with kernel version GNU/Linux 3.5.0-17-generic x86_64 and 24GB mem-

ory. The programming platform was Magma V2.18-5 in its 64-bit version. The time unit is the

second, and the memory unit is a MB.

6.3.1 New Binary ECDLP Algorithm

We implemented the binary ECDLP algorithm of Section 6.1.1. We observed the timings and

degrees of regularity obtained andwe compared themwith previousmethods proposed in the

Chapter 4 [HPST13]. The results are provided in Table 6.1. Perhaps surprisingly, the degree of

regularity remained below 4 in all experiments we did, but we point out that the parameters

we could test remained quite small. Table 6.1 also reports the number of times Step 2 of the

67

n
binary ECDLP in 6.1.1 FPPR HPST

Dreg loop time mem time time

7 4 3 0.180 11.030 1.57 0.86

8 3 3 0.210 11.190

9 4 2 0.360 13.380

10 4 2 1.180 35.030

11 4 1 1.120 24.160 8.63 6.70

12 4 1 4.440 48.500

13 4 1 19.010 88.410 49.70 31.06

14 4 2 213.350 231.380

15 4 1 597.570 364.380

17 2454.47 1364.74

Table 6.1: Comparison of ECDLP algorithms

algorithm was executed.

6.3.2 New Binary DLP Algorithms

We inally implemented the binary DLP algorithms of Sections 6.1.2 and 6.1.3, for which we

report results in Table 6.2. As for ECDLP algorithm, the degree of regularity surprisingly re-

mained below 4 in all experiments we did, but again the parameters we could test were quite

small, particularlywith respect to the latestDLP records. For the secondvariant, we also report

the second step of the algorithm was executed.

68

n
binary DLP 1st variant binary DLP 2nd variant

Dreg time mem Dreg loop time mem

7 3 0.14 11.03 4 1 0.15 11.03

8 4 0.18 13.25 3 1 0.17 11.50

9 4 0.47 15.81 4 1 0.35 14.72

10 3 0.71 17.28 3 2 1.69 22.06

11 3 1.53 35.84 4 3 13.60 242.66

12 4 23.62 94.75 4 1 96.19 864.59

13 4 126.53 235.62 4 4 1150.25 3330.28

14 4 503.40 1713.34 4 1 1105.41 5308.00

15 4 2286.90 6486.28 4 1 2647.24 8130.47

16 4 5550.42 2901.28

17 4 22589.91 12900.94

18 3 15497.95 15763.69

Table 6.2: Comparison of the DLP variants

69

Chapter 7

Conclusion

In this thesis, we proposed two approaches to improve the ef iciency in solving the binary

elliptic curve discrete logarithm problem (ECDLP). In the irst approach [HPST13], our vari-

ant takes advantage of the symmetry of Semaev's polynomials to compute relations more ef-

iciently. While symmetries had also been exploited in similar ECDLP algorithms for curves

de ined over inite ields with composite extension degrees, our method is the irst one in the

case of extension ields with prime extension degrees, which is the most interesting case for

applications. In our second approach, we further give a new idea in solving the Semaev's sum-

mation polynomial using splitting method. As for an extension discussion, we also proposed

several new variants of ECDLP algorithm which seems to be even powerful which can solve

ECSSP and be more ef icient in solving ECDLP.

At Asiacrypt 2012, Petit and Quisquater estimated that FPPR method would beat generic

discrete logarithm algorithms for any extension degree larger than roughly 2000. Though we

cannot give the accurate theoretical complexity analysis,We provided heuristic arguments and

experimental data showing that our method reduces both the time and the memory required

to compute a relation in FPPRmethod, unless the parameters are very small. Our results there-

fore imply that Petit and Quisquater's bound can be lowered a little.

70

7.1 Future work

Our work raises several interesting questions. At irst, we give two different approach to solv-

ing ECDLP, without combing the two ideas into one approach. This could be an extensionwork

in the future of this thesis.

Besides, on a theoretical side, it would be interesting to prove that the degrees of regularity

of the systems appearing in solving the Semaev's summation polynomial will not rise rapidly

when n increases (in most our experiments for various parameter sizes, they were equal to

either 3 or 4). It would also be interesting to provide a more precise analysis of our propose

and to precisely estimate for which values of the parameters it will become better than FPPR

method.

On a practical side, it would also be interesting to improve the resolution of the systems

even further. One idea in that direction is pre-computation. Solving the Semaev's summation

polynomial involves solving a large number of closely related systems, where only the value

x(R) changes from one system to the other. The transformation of Semaev's polynomial into

a binary multivariate system could therefore be done in advance, and its cost be neglected.

In fact, even the resolution of the system could potentially be improved using special Gröeb-

ner basis algorithms such as F4 trace [JV11b, Fau99]. A second direction on the practical side

is parallelization. A powerful feature of Pollard's ρ method and its variants is their highly-

parallelized structure. Since our method saves memory compared to FPPR method, it is also

more suited to parallelization. A new solver instead of Gröbner basis solver would be also an

option. For example, SAT solver is one of the practical choices, though it is hard to make a

complexity analysis. Also, an exhaustive search solver seems be more ef icient than a Gröbner

basis solver in practice, though its complexity is exponential.

Also, the work we showed in the extension discussion is also an interesting part to work

on. Since ECSSP is also an well-known hard problem, we hope our idea could be extended to a

71

new research direction of such problem.

Using Gröbner basis algorithms to solve ECDLP is a very recent idea. We expect that the

index calculus algorithms that have recently appeared in the literaturewill be subject to further

theoretical improvements and practical optimizations in a close future.

72

Bibliography

[Abe10] Masayuki Abe, editor. Advances in Cryptology - ASIACRYPT 2010 - 16th International

Conference on the Theory and Application of Cryptology and Information Security,

Singapore, December 5-9, 2010. Proceedings, volume 6477 of Lecture Notes in Com-

puter Science, New York, 2010. Springer.

[BCC+10] DanielJ. Bernstein, Hsieh-Chung Chen, Chen-Mou Cheng, Tanja Lange, Ruben

Niederhagen, Peter Schwabe, and Bo-Yin Yang. Ecc2k-130 on nvidia gpus. In Guang

Gong and KishanChand Gupta, editors, Progress in Cryptology - INDOCRYPT 2010,

volume 6498 of Lecture Notes in Computer Science, pages 328--346. Springer Berlin

Heidelberg, 2010.

[BKW93] T. Becker, H. Kredel, and V. Weispfenning. Gröbner bases: a computational approach

to commutative algebra. Springer-Verlag, London, UK, 0 edition, 4 1993.

[Bre80] Richard P. Brent. An improved Monte Carlo factorization algorithm. BIT Numerical

Mathematics, 20:176--184, 1980.

[BSSC05] I. Blake, G. Seroussi, N. Smart, and J. W. S. Cassels. Advances in Elliptic Curve Cryp-

tography (LondonMathematical Society Lecture Note Series). Cambridge University

Press, New York, NY, USA, 2005.

73

[Buc76] B. Buchberger. A theoretical basis for the reduction of polynomials to canonical

forms. SIGSAM Bull., 10(3):19--29, 1976.

[CCK+00] Nicolas Courtois, Nicolas Courtois, Er Klimov, Jacques Patarin, and Adi Shamir. Ef i-

cient algorithms for solving overde ined systems of multivariate polynomial equa-

tions. IN ADVANCES IN CRYPTOLOGY, EUROCRYPT'2000, LNCS 1807, 1807:392--407,

2000.

[Che08] Qi Cheng. Hard problems of algebraic geometry codes. IEEE Transactions on Infor-

mation Theory, 54(1):402--406, 2008.

[CLO07] David A. Cox, John Little, and Donal O'Shea. Ideals, Varieties, and Algorithms: An

Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e

(Undergraduate Texts in Mathematics). Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 2007.

[Die06] Claus Diem. An index calculus algorithm for plane curves of small degree. In Hess

et al. [HPP06], pages 543--557.

[Die11] Claus Diem. On the discrete logarithm problem in elliptic curves. Compositio Math-

ematica, 147:75--104, 2011.

[Fau99] Jean-Charles Faugère. A new ef icient algorithm for computing Gröbner bases (F4).

Journal of Pure and Applied Algebra, 139(1-3):61--88, 1999.

[Fau02] Jean Charles Faugère. A new ef icient algorithm for computing Gröbner baseswith-

out reduction to zero (F5). In Proceedings of the 2002 international symposium on

Symbolic and algebraic computation, ISSAC '02, pages 75--83, New York, NY, USA,

2002. ACM.

74

[FGHR12] Jean-Charles Faugère, Pierrick Gaudry, Louise Huot, and Guénaël Renault. Using

symmetries in the index calculus for elliptic curves discrete logarithm. IACR Cryp-

tology ePrint Archive, 2012:199, 2012.

[FGLM93] J.C. Faugère, P. Gianni, D. Lazard, and T. Mora. Ef icient computation of zero-

dimensional Gröbner bases by change of ordering. Journal of Symbolic Computation,

16(4):329 -- 344, 1993.

[FHJ+14] Jean-Charles Faugère, Louise Huot, Antoine Joux, Guénaël Renault, and Vanessa

Vitse. Symmetrized summation polynomials: Using small order torsion points to

speed up elliptic curve index calculus. In Advances in Cryptology - EUROCRYPT 2014

- 33rd Annual International Conference on the Theory and Applications of Crypto-

graphic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, pages 40-

-57, 2014.

[FK13] Marc Fischlin and Stefan Katzenbeisser, editors. Number Theory and Cryptography -

Papers in Honor of Johannes Buchmann on the Occasion of His 60th Birthday, volume

8260 of Lecture Notes in Computer Science, New York, 2013. Springer.

[FPPR12] J.-C. Faugère, L. Perret, C. Petit, and G. Renault. Improving the complexity of index

calculus algorithms in elliptic curves over binary ield. In Proceedings of Eurocrypt

2012, volume 7237 of Lecture Notes in Computer Science, pages 27--44, London,

2012. Springer Verlag.

[Gau09] Pierrick Gaudry. Index calculus for abelian varieties of small dimension and the

elliptic curve discrete logarithm problem. Journal of Symbolic Computation, 44(12):

1690 -- 1702, 2009.

75

[GG14] Steven D. Galbraith and Shishay W. Gebregiyorgis. Summation polynomial algo-

rithms for elliptic curves in characteristic two. Personal communication, 2014.

[Gra10] Robert Granger. On the static Dif ie-Hellman problem on elliptic curves over exten-

sion ields. In Abe [Abe10], pages 283--302.

[HMV03] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to Elliptic Curve

Cryptography. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.

[HPP06] Florian Hess, Sebastian Pauli, and Michael E. Pohst, editors. Algorithmic Number

Theory, 7th International Symposium, ANTS-VII, Berlin, Germany, July 23-28, 2006,

Proceedings, volume 4076 of Lecture Notes in Computer Science, New York, 2006.

Springer.

[HPST13] Yun-Ju Huang, Christophe Petit, Naoyuki Shinohara, and Tsuyoshi Takagi. Improve-

ment of Faugère et al.'s method to solve ECDLP. In Sakiyama and Terada [ST13a],

pages 115--132.

[iN13a] Koh ichi Nagao. Decomposition formula of the jacobian group of plane curve. Cryp-

tology ePrint Archive, Report 2013/548, 2013. http://eprint.iacr.org/.

[iN13b] Koh ichi Nagao. Equations system coming from weil descent and subexponential

attack for algebraic curve. Cryptology ePrint Archive, Report 2013/549, 2013. http:

//eprint.iacr.org/.

[JMS12] Lyndon Judge, Suvarna Mane, and Patrick Schaumont. A hardware-accelerated

ECDLPwith high-performance modular multiplication. International Journal of Re-

con igurable Computing, 2012, 2012.

[JV11a] Antoine Joux and Vanessa Vitse. Elliptic curve discrete logarithm problem over

small degree extension ields. Journal of Cryptology, pages 1--25, 2011.

76

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[JV11b] Antoine Joux and Vanessa Vitse. A variant of the F4 algorithm. In Kiayias [Kia11],

pages 356--375.

[JV12] Antoine Joux and Vanessa Vitse. Cover and decomposition index calculus on elliptic

curves made practical - application to a previously unreachable curve over Fp6 . In

Pointcheval and Johansson [PJ12], pages 9--26.

[Kia11] Aggelos Kiayias, editor. Topics in Cryptology - CT-RSA 2011 - The Cryptographers'

Track at the RSA Conference 2011, San Francisco, CA, USA, February 14-18, 2011.

Proceedings, volume 6558 of Lecture Notes in Computer Science, New York, 2011.

Springer.

[Nat09] National Security Agency. The case for elliptic curve cryptography. http://www.

nsa.gov/business/programs/elliptic_curve.shtml, January 2009.

[PJ12] David Pointcheval and Thomas Johansson, editors. Advances in Cryptology - EURO-

CRYPT 2012 - 31st Annual International Conference on the Theory and Applications

of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, volume

7237 of Lecture Notes in Computer Science, New York, 2012. Springer.

[Pol75] J. M. Pollard. A Monte Carlo method for factorization. BIT Numerical Mathematics,

15 (3):331--334, 1975.

[Pol00] J. M. Pollard. Kangaroos, monopoly and discrete logarithms. Journal of Cryptology,

13:437--447, 2000.

[PQ12] Christophe Petit and Jean-Jacques Quisquater. On polynomial systems arising from

a Weil descent. In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology

– ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer Science, pages 451--

466. Springer Berlin Heidelberg, New York, 2012.

77

http://www.nsa.gov/business/programs/elliptic_curve.shtml
http://www.nsa.gov/business/programs/elliptic_curve.shtml

[Sem04] Igor Semaev. Summation polynomials and the discrete logarithm problem on ellip-

tic curves. IACR Cryptology ePrint Archive, 2004:31, 2004.

[Sha71] Daniel Shanks. Class number, a theory of factorization, and genera. In 1969 Number

Theory Institute (Proc. Sympos. PureMath., Vol. XX, State Univ. NewYork, Stony Brook,

N.Y., 1969), pages 415--440. Providence, R.I., 1971.

[Sil99] Joseph H. Silverman. The xedni calculus and the elliptic curve discrete logarithm

problem. Designs, Codes and Cryptography, 20:5--40, 1999.

[ST13a] Kazuo Sakiyama and Masayuki Terada, editors. Advances in Information and Com-

puter Security - 8th International Workshop on Security, IWSEC 2013, Okinawa,

Japan, November 18-20, 2013, Proceedings, volume 8231 of Lecture Notes in Com-

puter Science, New York, 2013. Springer.

[ST13b] Michael Shantz and Edlyn Teske. Solving the elliptic curve discrete logarithm prob-

lem using semaev polynomials, weil descent and gröbner basismethods - an exper-

imental study. In Fischlin and Katzenbeisser [FK13], pages 94--107.

[SYKY11] Tsunekazu Saito, Shun'ichi Yokoyama, Tetsutaro Kobayashi, and Go Yamamoto.

Some relations between semaev′s summation polynomials and stange's elliptic

nets. Journal of Math-for-Industry, 3 (2011A-9):89--92, 2011.

[YC04] Bo-Yin Yang and Jiun-Ming Chen. All in the xl family: Theory and practice. In ICISC,

pages 67--86, 2004.

78

	Acknowledgement
	Abstract
	Table of Contents
	List of Algorithms
	List of Tables
	List of Figures
	Introduction
	Thesis Organization

	Notation
	Preliminary
	Elliptic Curve Discrete Logarithm Problem
	Index Calculus Method
	Generic Index Calculus Method
	Semaev's summation polynomial

	FPPR method
	Groebner Basis
	Order
	Groebner basis
	Buchberger Algorithm
	Faugère's algorithm (F4)

	First Approach
	Use of Symmetries in Previous Works
	Using Symmetries with Prime Extension Degrees
	A New System with both Symmetric and Non-Symmetric Variables
	A Special Vector Space
	New Decomposition Algorithm

	Experimental Results
	Relation Search
	Whole ECDLP Computation

	Second Approach
	Splitting up the Resultant
	Application to ECDLP
	Experimental results
	Splitting up Semaev 4
	Splitting up Semaev 5
	Splitting up Semaev 6 and 7
	Generic resultant polynomials

	Extension Discussion
	New binary ECDLP and DLP Algorithms
	Binary ECDLP Algorithm
	Binary DLP Algorithm, First Variant
	Binary DLP Algorithm, Second Variant

	Reduction to binary ECSSP
	Experimental results
	New Binary ECDLP Algorithm
	New Binary DLP Algorithms

	Conclusion
	Future work

	Bibliography

