Studies on Photodynamics and Integration of Inclusion Complexes Composed of Cyclic Porphyrin Dimers and Fullerenes

上村, 拓也

https://doi.org/10.15017/1500500

出版情報:九州大学,2014,博士(理学),課程博士 バージョン: 権利関係:全文ファイル公表済

氏 名 : 上村 拓也

 論文名: Studies on Photodynamics and Integration of Inclusion Complexes
Composed of Cyclic Porphyrin Dimers and Fullerenes
(環状ポルフィリン二量体とフラーレン類からなる包接錯体の光化学 ダイナミクスと集積化に関する研究)

区 分 : 甲

論文内容の要旨

ポルフィリンは電子供与性と紫外–可視領域での強い光吸収を 有し、またフラーレンは電子受容性を有する。そのため、ポルフ ィリンとフラーレンからなる複合体は有機エレクトロニクスデバ イスの光電変換材料として応用が期待されている。著者が所属す る研究室では過去に、フラーレンを包接するホスト分子として環 状ポルフィリン二量体 (CPD,図 1a)を設計・合成した。CPD は π 共役系で囲まれた空孔を有するため、同じ π 共役系分子である フラーレン C₆₀ (図 1b)を安定に包接することができる。

 H_4 -CPD_{Py} と C₆₀の包接錯体 (C₆₀CH₄-CPD_{Py})の単結晶は C₆₀が 互いにファンデルワールス接触しながら一次元ジグザグ配列を形 成しており、良好な電荷輸送経路を構築している。また、H₄-CPD_{Py} から C₆₀への光誘起電子移動による電荷分離 (CS)状態の形成も 観測されたが、その寿命 (τ (CS))は 0.47 ns と非常に短く、光電 変換材料への応用には大幅な長寿命化が望まれる。一方、Ni₂-CPD_{Py} と C₆₀の包接錯体 (C₆₀CNi₂-CPD_{Py})の単結晶は、自己集合 による Ni₂-CPD_{Py}のナノチューブ状構造と、その内部での C₆₀の 直線配列が形成されており、理想的な電荷輸送経路を構築してい る。しかしながら、C₆₀CNi₂-CPD_{Py}は光励起による CS 状態の形成 が観測されなかった。

 $\begin{array}{l} \textbf{H_4-CPD}_{Py}: M = H_2, R = H \\ \textbf{Ni_2-CPD}_{Py}: M = Ni, R = H \\ \textbf{H_4-CPD}_{Py}(\textbf{OC}_6): M = H_2, R = OC_6H_{13} \\ \textbf{Ni_2-CPD}_{Pv}(\textbf{OC}_6): M = Ni, R = OC_6H_{13} \end{array}$

これらの C₆₀ 包接錯体の τ (CS)が非常に短かった主な要因として、CS 状態のエネルギー準位 (*E*(CS)) が C₆₀ や CPD の三重項励起状態のエネルギー準位 (*E*(T)) より高いことが挙げられる。そ こで著者は、*E*(CS)の大幅な低下を期待して C₆₀ より強い電子受容性を有するリチウムカチオン内包 C₆₀ (Li⁺@C₆₀, 図 1c) と CPD の包接錯体 (Li⁺@C₆₀CH₄-CPD_{Py}(OC₆)並びに Li⁺@C₆₀CNi₂-CPD_{Py}(OC₆)) を新たに合成し、極性溶媒 (PhCN) 中における光化学ダイナミクスを調べた。

Li⁺@C₆₀CH₄-CPD_{Py}(OC₆)とLi⁺@C₆₀CNi₂-CPD_{Py}(OC₆)は共に PhCN 中で高い錯形成定数を示した。 また、電気化学測定を用いて、それぞれの E(CS)を 1.07 eV 並びに 1.20 eV と見積もった。これらの 値は共に、Li⁺@C₆₀や CPD の E(T)(約 1.5 eV)より十分に低い。したがって、Li⁺@C₆₀CH₄-CPD_{Py}(OC₆) とLi⁺@C₆₀CNi₂-CPD_{Py}(OC₆)は共に光誘起電荷分離状態の形成とその長寿命化が期待される。 Li⁺@C₆₀CH₄-CPD_{Py}(OC₆)の PhCN 溶液の過渡吸収ス ペクトルを測定したところ、Li⁺@C₆₀のラジカルアニ オン(Li⁺@C₆₀)に帰属される吸収を観測した。また、 この吸収のタイムプロファイルから、Li⁺@C₆₀の寿命 を 0.50 ms と決定した。この結果は、Li⁺@C₆₀CH₄-CPD_{Py}(OC₆)がC₆₀CH₄-CPD_{Py}の10⁶倍も長いCS状態を 形成することを意味する。同様に、Li⁺@C₆₀CNi₂-CPD_{Py} (OC₆)の PhCN 溶液の過渡吸収スペクトルでも Li⁺@ C₆₀ の吸収が観測された。このタイムプロファイルか ら決定された寿命は 0.67 ms であり、この値はフラー レンとポルフィリンの超分子複合体の τ (CS)としては 現在でも世界最長である。

前述の通り、C₆₀⊂H₄-CPD_{Py}とC₆₀⊂Ni₂-CPD_{Py}は共に 単結晶中で電荷輸送に適した集積構造を形成するが、 単結晶で大面積のデバイスを構築するのは非常に困難 である。そこで著者はテンプレート法に注目し、自己

集合によって基板に垂直なナノシリンダー状のミクロ相分離構造を形成する両親媒性ブロック共重 合体 PEO_m-b-PMA(Az)_n(mとnは重合度,図2a)をテンプレートに用いた大面積での簡便な一次元 集積構造の構築を目指した。

PEO_m-b-PMA(Az)_nは、poly(ethylene oxide) (PEO) と、液晶性メソゲンとしてアゾベンゼン (Az) を側鎖に持つ poly(methacrylate) (PMA) からなり、熱アニールによって PEO_mのシリンダー状ドメ インが形成される。著者は PEO との親和性の向上を期待してオリゴエーテル鎖を導入した新規 CPD (Zn₂-CPD_{Ph}(TEO), 図 2b) を合成し、その C₆₀包接錯体 (C₆₀CZn₂-CPD_{Ph}(TEO)) を研究に用いた。

AFM 観察によって、 $C_{60}\subset Zn_2$ -CPD_{Ph}(TEO)と PEO_m-b-PMA(Az)_nの混合薄膜は PEO_m-b-PMA(Az)_n 独 自のミクロ相分離構造を良好に維持し、 $C_{60}\subset Zn_2$ -CPD_{Ph}(TEO)を過剰に混合することでこの構造が乱 れることが分かった。また、無染色の薄膜の TEM 観察でも同様にミクロ相分離構造が確認された。 これらの結果は、重原子を含む $C_{60}\subset Zn_2$ -CPD_{Ph}(TEO)が PEO_mのシリンダー状ドメイン中にのみ存在 していることを示唆する。さらに、DSC 測定を用いて冷却過程における PEO_m-b-PMA(Az)_nの相転移

温度を調べたところ、C₆₀⊂Zn₂-CPD_{Ph}(TEO)の混合によって PEO_m の凝固点が低下したのに対し、 PMA(Az)_nの相転移温度には有意 な変化が見られなかった。よって、 C₆₀⊂Zn₂-CPD_{Ph}(TEO)の一次元集 積構造が選択的にナノシリンダー 中のみに形成されていることが明 確に確認された。これは、混合溶 液の塗布による成膜と熱アニール という2段階の簡便な操作のみで 光・電子機能性複合体の一次元集 積化が実現できることを示してい る(図3)。

図 3. 薄膜作製手法の模式図.