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Abstract:In this paper, we present a recursive computation for Subspace-based State Space 
System IDentification (4SID) methods. We develope another interpretation of the method by 
using Schur complement, and propose a recursive formula for the error covariance matrix in the 
4SID procedure. In the ordinary MIMO Output-Error State space model identification (MOESP) 
algorithm, we show the estimate of the extended observability matrix is obtained by Schur com-

plement of input-output data matrix. For the noisy case interpretation of the 4SID procedure is 
also presented. Finally, we illustrate a numerical example for the proposed algorithm. 
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 1. Introduction 

 The 4SID methods have attracted much atten-
tion because of being essentially suitable for mul-
tivariable system identification. The methods have 
been demonstrated to perform well in a number of 
applications, but the properties of these have not 

been fully analyzed nor understood yet. For ap-

plying the methods, no assumptions on structure 
of realization are needed and any coordinate trans-
formation is allowed for the estimates. This is one 
reason why many kinds of properties expected for i-

dentification procedures have not been clarified yet. 
The methods are essentially characterized by deter-
mination of the extended observability matrix from 
input-output data by using QR factorization and 
singular value decomposition. Recursive computa-
tions for 4SID methods seem to suffer from the fact 

that the SVD is not easily updated in a recursive 
manner. Then we consider the QR factorization on 
the procedure of the 4SID methods1>'3), and show a 
relationship between the least squares residual and 
the matrix obtained by using Schur complement3) 
in the 4SID procedure. We will propose a recursive 
formula for the error covariance matrix in the 4SID 

method. 

 2. Problem statement 

 We consider a discrete time linear time-invariant 
system represented by 

xk-F1 = Axk + Buk(1) 

yk = Cxk + Duk(2)
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where xk is an n dimensional state vector, uk m 

dimensional input and yk 1 dimensional output, re-

spectively. The system matrices A, B, C, and D 

have appropriate dimensions. Furthermore, it is as-

sumed that the model is minimal that is, the system 

is completely reachable and observable. 

 Let i > n, N >> i, and Hankel matrix Uk ,i,N of 

{uk} is defined by 

Uk uk+1 • • uk+N-1 - 

 U_uk+1 uk+2•• Uk+N  k,i,N•=(3). 

                                                                                                               • _ uk+i-1 uk+i • • • Uk+N+i-2 _ 

and Yk,i,N is defined in a similar way. Then, we 
have 

 Yk,i,N = FiXk,NHiUk,i,N(4) 

from equation (1) and (2) where 

  Xk,N [xk xk+1 " • xk+N-1]       -C - 

         CA 
ri •_ • 

CAi-1 
   -D0- 

       CB D 
H,:= 

CAi-2B • CB D 

where Fi is called the extended observability matrix. 

We will omit the subscripts for U and Y unless oth-

erwise mentioned. An estimated realization of the 

system matrices are defined as



 [AT, BT, CT, DT] _ [TAT-1, TB, CT-1, D] 

where T is a similarity transformation. Let the in-

put uk be such that the following condition is sat-
isfied: 

rank U = mi + n(5) 

 An ordinary MOESP algorithm can be described 
as follows. 
Algorithm A1) 
stepl Compute QR factorization of a matrix 

[UTYT]T , as in 
 U _R11O Q1(6) 

  Y R21 R22 J LQ2 
where Ri i and R22 are lower triangular, and 
Q1Q1 — Irrci, Q2Q2 — Ili, Q1Q2 = O. 

step2 Compute Singular value decomposition of 
R22 as given in (6) of stepl, i.e., 

       S°1[FT  R22 = [En E,~]01S [(T](7) 
                       2 Here the dimension of Sn is equal to the one of the 

system. 

step3 Compute the CT and AT from En as given 
in (7) of step2 

   CT = En (1:1, :)(8) 
E(1) AT = E12)(9) 

where En (1:1, :) denotes the first 1 rows of En, EC1) 
is the submatrix composed of the first (i — 1)1 rows 
of the matrix En and EC2) is constructed by the last 
rows in a similar way. 

step4 Solve the following equation for the BT and 
D: 

 S2 
— D(10) 

 

• BT 

                      • _i _ 

where ~ , 0j, and kIf are defined by the following 

relations: 

[e1 e2 .•• i] :_ (En)TR21R111 
[ 1 02 ••• 4'i] •_ (En)T

4-1 02 .. 4ji 
         42i II O 
:=O E(i) 

- 0,O -

Here, the size of (1 < j < i) and 03 (1 < j < i) is 

(li — n) x m and (li — n) x 1, respectively. 

 3. Another interpretation of 4SID 
    method 

 In this section, we show another interpretation of 

the 4SID method via the Schur complement. 

Definition of the Schur complement3) 
Suppose we partition A represented by 

 A=A11 Al2 A
21 A22 

Asssume that A11 is nonsingular. Then the matrix 
S = A22 — A21A111Al2 is called the Schur comple-
ment of A11 in A. 

 3.1 Noise-free case 

  First, we consider the following matrix construct-

ed from input-output data 

  UTT —UUT UYT 
Y [ UY]— Y UT YYT(11) 

The Schur complement S1 of UUT in (11) is repre-
sented by 

Si = Y(I — UT (UUT)-1U)YT 
=YIIUYT(12) 

where Ilu = UT (UUT)-1U and nU =1--Hu.  Here 
Si in (12) can be rewritten by 

Si = R22Q2 Q2R 2 
 = R22R2(13) 

using (4) and (6). From results of (12) and (13), we 
have 

YIIUYT = R22R2(14) 

Therefore we see that the matrix En in equation (7) 
is yielded by computing singular value decomposi-
tion of YIIUYT 

 3.2 Noisy case 

  It is assumed that the output of the system is per-

turbed by the noise vk, where the input uk and the 

noise vk are independent. Then the output equation 

reads



 zk  =  yk  Vk(15) 

Hankel matrices of {zk} and {vk} is represented by 
Z and V ,then we have 

Z = Y + V(16) 

Using a matrix R22 yielded by computing the QR 
factorization of a matrix [UT ZT ] T in a similar way 
as in the noise-free case, the following relation is ob-
tained from equation (14). 

 -NR22R22NYHUYT + Rvv(17) 
where Rvv is a covariance matrix of vk, and the 
notation A B means that A asymptotically con-
verges to B if the number of data N tends to infini-
ty. From equation (17) the estimate of the extended 

observability matrix is not obtained by computing 
singular value decomposition of ZHUZT asymptot-
ically. Therefore we introduce an instrumental vari-

able 1, satisfying the following conditions: 

  lim1~VT= 0,(18) 
N-->oo N 

 rank = mi +p(19) 

where the size of is p x N and p> n. 
  A 4SID procedure using the instrumental variable 

  is described as follows. 
Algorithm B2) 

stepl' Compute QR factorization of a matrix con-
sisted of input-output data U, Z and an instrumen-
tal variable 1, i.e. 

U R11 0 Q1 

[Y]=[1l21  R22  Q2(20) R31 R32 R33 Q3 

step2' Compute Singular value decomposition of 

R22 R3 as given in (20) of step l ' , as in 

           Sn0FT  R22/132=[En En]O S2 [(T](21) 
step3' Using E„, En-L, R-1 , and R21 yielded in 
stepl' and step2', compute the quadruple of the 
system matrices [A, B, C, D] in a similar way in 
Algorithm A.

  We consider a matrix Z which is a linear combi-

nation of U and 1. This is represented by 

Z := L1U + L2~ 

= [Li L2U 
= T (22) where L := [ L1 L2] , S2 := [ UT (1)T 

Since the condition (19) is satisfied, L which mini-
mize 11 Z – Z F for ci exists uniquely. Here 11 • F 
denotes the Frobenius norm. Then L is represented 
by 

L = ZS2T(ch-2T)-1. (23) 

From the result of (23), we substitute L for L in 

(22) to obtain 

2 = ZSZT(S2S2Tr's2 
 = ZI10(24) 

where II0 = CiT(CMT)-1SZ We consider a matrix 

T [UT  2T . From the assumption, Z and V are 
uncorrelated. Therefore we have 

 lim 1 V [ UT ZT ] = 0 (25) 
N—>oo N 

Suppose the following matrix as in (11) 

[UT ZT Z 14,2 [UT zT] 
          _ UUT UZT 

             ZUT ZHS2ZTJ(26) 
where U110 = U. Thus the Schur complement S3 
of UUT in (26) is represented by 

S3 = Z(H0 — UT (UUT)-1U)ZT 
= ZHUZT .(27) 

Here 

HS2 = S T(S2S1T)-152 
    = Hu + HU(V (mU(DT)-14HU. (28) 

Then we have 

 S3 = ZHUZT (4)HOT)-14)HUZT. (29) 

From the result of (20), the equation (27) can be 
rewritten as 

 S3 = R22R2A1R32R2(30) 

where A = R32Rs2 + R33R33. S3 converges for 
N — oo, that is,



 N2  S3 

  ri  _XIIU4,T(4,IIUitoT)-1N4.,IIUXTF7'. (31) 

 4. Recursive computation 

 In this section, we will show a relationship be-

tween the least squares residual and the matrix 

yielded by the Schur complement, and derive a re-
cursive formula for an error covariance matrix. 

 4.1 Noise-free case 

 We have obtained the following relation 

YIIUYT = R22R2 

The left hand side of (14) can be rewritten as 

YIIUYT = YIIU(YIIU)T(32) 

Then we consider the following matrix 

YIIU = Y - Y_UT (UUT)-1U 
  =Y-GNU(33) 

where G is defined as 

GN = YUT (UUT)-1,(34) 

and we denote an error Y - GNU by E. 
  We can regard a matrix E as a least squares resid-

ual, then YIIUYT a squared sum of residuals denot-
ed by an error covariance matrix EET . The nomal 

equation can be represented by 

 (Y - GN U) UT = 0(35) 

Equation (32) can be rewritten as 

EET = (Y - GN_U)(Y - GNU)T 
   = yyTGUYT(36) 

From the results of (35) and (36), the extended nor-
mal equation can be represented by 

[ -GN 1 ] UUTUYT=i=  [ O ENEN] (37) YUYY 
The submatrix of the Hankel matrix Uk,i,N+1 is de-
fined as 

 ui(kTTTT         +N) := [Uk+N Uk+N+1 .. uk+N+i-1 
                         (38) 

and yi is defined in a similar way. Then the Hankel 
matrices Uk,i,N+1 and Yk,i,N+1 are partitioned such

as 

Uk,i,N+1 = [ Uk,i,N ui(k + N) ] (39) 
Yk,i,N+1 = [ k,i,N yi (k + N) ] (40) 

For brevity we denote Uk,i,N, Yk,i,N by UN, YN, and 

ui(k+N), yi(k+N) by ui, yi, respectively. We con-
sider a matrix consisted of the Hankel matrix UN+1 
and YN-F1. The following relation is obtained from 

(40). 
    UN+1 
   YN+1 [UN+1 YT 

= [UN] [UNYN]+UZ [u?yT(41) YNyi 

Equation (41) is mutiplied by a matrix [ -GN 1], 
                                      and then the following is obtained 

             UN+1 

[—GNI ]YN+1[ UN+1YTN+1 
=[oENEN]+ei[uT yT] (42) 

where 

ci = yi - GNUi (43) 

We introduce the vectors kN+1 and yi(k+N) which 
satisfy the following equation; 

     [vi]TT    [ k7'N+1 0]1[ UN+lYN+1 
  = [ u? yi (k + N)T ] (44) 

Equations (42) and (44) multiplied by ei give the 
following: 

[-SN  - eiTV+1 1 ]YN+l [U1YN+1 J 
  = [O ENEN] + [O ei{yi --- yi(k+N)}T ](45) 

Equation (37) leads to equation (46), if the number 
of data is N + 1. 

               UN+1UN+1 UN+117N+1 
[ —GN+1 1 ]               YN+1UN+1 YN+l1+1 
 = [ O EN+iEN+l ](46) 

Comparing equation (45) with (46), an error covari-
ance EN+lEN+l and estimates GN+1 are obtained 
as 

ON—F1= GN + eikN+1(47) 
EN+l E'N+1 = + ei {yi — yi (k + N) }T (48) 

From equation (44), kN+1 and -Mk + N) are ob-
tained as follows 

leN1 — uT PN+1(49) 
~i(k + N) = GN+1ui(50) 

where the matrix PN+1 is defined as



 PN+1 = (UN+1UN+1)-1•(51) 

Using the matrix inversion lemma, PN+1 can be rep-

resented by 

 PN+1 = PN — PNUiUT PNIO(52) 

where a is defined by 

a =1+  uT PNUi.(53) 

Using equations (49) and (52), the relation between 
GN and GN+1 can be represented by 

GN+1 = GN + eiuT PN+1 
= GN + eiuT PN/a.(54) 

Therefore, a recursive formula is summarized as fol-

lows; 

a= 1+uTPNUi 
ei=yi — GNUi 

  _GN+1=GN+eiuT PN/ck 
 EN+1ETr+1 = ENETr + eieT /a 

PN+1 = PN — PNUilLT PN/a 
eiei 

   RN+1 =RN +-----------(55) 
1+uTPNUi 

where the error covariance RN = ENEN. 

 4.2 Noisy case 

 We have obtained the following result 

ZIIUZT = 21-16(21-45)T 
      = R22142A-11132122 (56) 

We consider a recursive formula of the matix 

ZIIUZT. The matrix ZIIU can be rewritten as 

ZIT = ZII0IIU 
      = ZII0 — ZIIU 

     =Z_-GNU_ 
     =GN2 _—GNU_ 

      =Y—GNU-(Y-GNs2) 
  =EN—EN (57) 

where 

GN = YS2T (S1S1T)-1 (58) 
EN =Y — GNS2 (59) 

We denote ZIIU by EN, then ZIIUZT is represent-
ed by ENEN. From equation (57), the following 
equation is obtained.

 ENEN = (_EN -EN)(E_N -EN*)T     =ENEN— ENEN(60)                          (60) 

where 

 ENEN = EN* EN 
   — EN* EN(61) 

Therefore we see that ENEN is yeilded by comput-
ing ENE and ENEN . 
Here the matrix S2 is defined as the following equa-

tion 

2 = [ wi(k) wi(k + 1) ... wi(k + N — 1) ] (62) 
where 

wi(k) = [ui(k)T 0le 041 ... +i -1 ]T (63) 
and 0 is an element of the instrumental variable 
1. EN, GN and Q are corresponded EN, GN and 
U, then a recursive formula of the error covariance 
matrix EET is summarized as follows; 

           = 1 + W7'QNWi 
ei = yi — GNWi 

     GN+1 = GN+ eiwT QN/ 
  E*N+1EN+1*T=EN* EN*T+ ei*ei*Tla 

      QN+1 = QN — QNWiWT QNI13 
                               e*e*T  *i----------------i  

   RN+1= TZ*(N +1 
+wT i64) 

where TZ*N = ENEN , QN = (C2NQN)-1. Therefore 
a recursive formula of EET is obtained 

 RN-I-1 = R-N+1 — RN*+1(65) 

where 1 N = ENEN 

 4.3 Numerical example 

 In this section, we applied the recursive method 

presented in this paper to identify the following dis-
crete time linear system; 

      0.8 —0.4 0.2 0 0 

xk+1 =0 0.3 —0.5 xk +0 —0.6 Uk 

      0 0 0.50.5 0 

   =0.5 0.5 00.05] yk0 0 1xk +0 .02Vk (66) 
where uk is constructed by 2 inputs, yk by 2 out-

puts and xk is 3 state vector, respectively. In order 
to use our recursive procedure we generated 1500 
samples of input-output data and took the input uk 
equal to a zero-mean white noise of unit variance, 
the noise vk is as in a similar way. The experiment 
was conducted with MATLAB package. Using the



recursive formula for noisy case as in equation (64), 
we estimated a sequence of  state space models. The 
instrumental variable is selected as 

= Uk-i ,i,N(67) 
and an auxiliary order i = 7. To start up the re-
cursive operation, we used the first 50 samples to 
produce an estimate as initial value in off-line. The 
initially obtained factors RN, RN, etc are updated 
for 1500 steps. Computing the SVD for the error co-
variance matrix RN+1, the system of matrices AT, 
BT, CT and DT is obtained. In Fig.1 and Fig.2, 
we denote the ith largest eigenvalues of AT by Ai, 
and the singular value of R. by ai in a similar way. 

  We have shown the behaviour of singular values 
of R in equation (65) in Fig.1. We can see that the 
order of the system n = 3 from the result in Fig.1. 
Fig.2 has shown that eigenvalues of AT asymptoti-
cally tend to the true values for increasing step num-
ber. In Fig.3 and Fig.4, we have shown that step 
responses for two elements of output yk of the sys-
tem and estimated model. The system of matrices 
estimated from input-output measurements for 1500 
steps is used in this simulation. Then the quadru-
ple of the system matrices is obtained as in equation 
(68).

Fig.1 Singular values of 7Z

Fig.2 Eigenvalues of AT

Fig.3 First element of output yk

  Fig.4 Second element of output Yk 

        0.7289 -0.0753 -0.1350 

AT I=-0.3039 0.7323 0.4244 (68-a) 
       -0 .0564 -0.1980 0.1367 

    [0.5460 0.1199 BT = 0.2677 0.0341(68-b) 
       0.1184 -0.3412 

  =68-c0.0532 -0.4810 0.8465 CT
0.6441 0.4361 0.2692) 

  _0.0011 0.00031() DT0
.0007 0.000068-d

 5. Conclusion 

 In this paper, we focused on QR factorization in 
the 4SID procedure, and showed another interpre-

tation of the 4SID method by using the Schur com-

plement for the input-output data matrix. We have 
also proposed a recursive formula for the error co-
variance matrix in the 4SID method. The results 
are useful for analysing properties of parameters ob-
tained by 4SID methods. 
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