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Abstract:In this paper, we present a recursive computation for Subspace-based State Space
System IDentification (4SID) methods. We develope another interpretation of the method by
using Schur complement, and propose a recursive formula for the error covariance matrix in the
4SID procedure. In the ordinary MIMO Output-Error State space model identification (MOESP)
algorithm, we show the estimate of the extended observability matrix is obtained by Schur com-
plement of input-output data matrix. For the noisy case interpretation of the 4SID procedure is
also presented. Finally, we illustrate a numerical example for the proposed algorithm.
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1. Introduction

The 4SID methods have attracted much atten-
tion because of being essentially suitable for mul-
tivariable system identification. The methods have
been demonstrated to perform well in a number of
applications, but the properties of these have not
been fully analyzed nor understood yet. For ap-
plying the methods, no assumptions on structure
of realization are needed and any coordinate trans-
formation is allowed for the estimates. This is one
reason why many kinds of properties expected for i-
dentification procedures have not been clarified yet.
The methods are essentially characterized by deter-
mination of the extended observability matrix from
input-output data by using QR factorization and
singular value decomposition. Recursive computa-
tions for 4SID methods seem to suffer from the fact
that the SVD is not easily updated in a recursive
manner. Then we consider the QR factorization on
the procedure of the 4SID methods')®, and show a
relationship between the least squares residual and
the matrix obtained by using Schur complement?
in the 4SID procedure. We will propose a recursive
formula for the error covariance matrix in the 4SID
method.

2. Problem statement

We consider a discrete time linear time-invariant
system represented by

Tr+1 = Az + Buy (1)
Y = C.’L’k + Duy, (2)
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where z is an n dimensional state vector, ug m
dimensional input and y; [ dimensional output, re-
spectively. The system matrices A, B, C, and D
have appropriate dimensions. Furthermore, it is as-
sumed that the model is minimal that is, the system
is completely reachable and observable.

Let 7 > n, N > 4, and Hankel matrix Uy ; y of
{uk} is defined by

U Uk+1 " Uk4N-1
Uk+1 Uk42 "7 Uk4N
Ugin = ) . : (3)
Uk4i—1 Uk4+i =" Uk N+4i—2

and Y ; y is defined in a similar way. Then, we
have

Yiin =TiXen + HiUiy N (4)
from equation (1) and (2) where

XeN: ThtN—1]

[Tk Tgr -
[ C
CA

_CAifl

2 (@)
cB D

Hi =

|CA*2B ... CB D
where I'; is called the extended observability matrix.
We will omit the subscripts for U and Y unless oth-

erwise mentioned. An estimated realization of the
system matrices are defined as
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[A7, Bp,Cr, Dr) = [TAT ', TB,CT ', D]

where T is a similarity transformation. Let the in-
put uy be such that the following condition is sat-
isfied:

U
rank [ X

] =mi+n (5)
An ordinary MOESP algorithm can be described
as follows.
Algorithm A"
stepl Compute QR factorization of a matrix
[UT YT]T, as in
HRETAIE ©
Y Ry1 Ry | [ Q2

where Ry; and Ry, are lower triangular, and

Q1Q7 = Lni, Q2QF = Ii, 1Q7 = 0.

step2 Compute Singular value decomposition of

Ry3 as given in (6) of stepl, i.e.,

FT

(P57 @

R22 _ [E" E’i)] l:Sn O:|

O S;

Here the dimension of Sy, is equal to the one of the
system.

step3 Compute the Cr and Ar from E, as given
in (7) of step2

Cr=E,(1,>) (8)
EW A = E(2) (9)
where E,, (1:1, :) denotes the first [ rows of E,,, EY
is the submatrix composed of the first (¢ — 1){ rows
of the matrix F,, and E5L2) is constructed by the last
rows in a similar way.

step4 Solve the following equation for the By and
D:

&1
&2 D
=v

(=2 a) (10

&
where &, ¢;, and ¥ are defined by the following
relations:

[& & - &)= (E J_) Ry Ry}

[’l,/)] o - 1/%} -—(

YL P2 e Y
P ¥

U = : " E7(ll)
i 0

Here, the size of &; (1 <

j<i)and ¢; (1 <j<i)is
(Ili —n) x m and (li —n) x,

respectively.

3. Another
method

In this section, we show another interpretation of
the 4SID method via the Schur complement.

interpretation of 4SID

Definition of the Schur complement?®
Suppose we partition A represented by
A= [An Alz] '
Az Az
Asssume that Ai1; is nonsingular. Then the matrix
S = Ay — A21A11 AT, is called the Schur comple-
ment of A in A.

3.1 Noise-free case
First, we consider the following matrix construct-
ed from input-output data

U rory_ |OUT UYT
The Schur complement S; of UUT in (11) is repre-

sented by

S, =y -UvTwuhHtu)yT
=YH;y” (12)
where IIy = UT(UUT)~U and I = I —IIy. Here
S1 in (12) can be rewritten by

S1 = Rp2Q3 Q2R3
= Ry R}, (13)
using (4) and (6). From results of (12) and (13), we
have

YIHYT = Ry RL, (14)

Therefore we see that the matrix E,, in equation (7)

is yielded by computing singular value decomposi-
tion of YH[JJ:YT.

3.2 Noisy case

It is assumed that the output of the system is per-
turbed by the noise vi, where the input ux and the
noise vy, are independent. Then the output equation
reads
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2k = Yk + Uk (15)

Hankel matrices of {z;} and {vg} is represented by
Z and V ,then we have

Z=Y+V (16)

Using a matrix ﬁgg yielded by computing the QR
factorization of a matrix [UT ZT} " in a similar way
as in the noise-free case, the following relation is ob-
tained from equation (14).

1~ = 1
NRZZRQTZ = NYHéYT + Ry (17)

where R,, is a covariance matrix of vy, and the
notation A = B means that A asymptotically con-
verges to B if the number of data N tends to infini-
ty. From equation (17) the estimate of the extended
observability matrix is not obtained by computing
singular value decomposition of ZHﬁZ T asymptot-
ically. Therefore we introduce an instrumental vari-
able @, satisfying the following conditions:

T QU
]\;1_13100 —]—V—@V =0, (18)
rank[g} =mi+p (19)

where the size of ® is p x N and p > n.

A 48ID procedure using the instrumental variable
® is described as follows.
Algorithm B?
stepll Compute QR factorization of a matrix con-
sisted of input-output data U, Z and an instrumen-
tal variable @, i.e.

U IEM R o Ql
Y| = 1321 1322 R Qz (20)
o R3 R3y Rss Q3

step2/ Compute Singular value decomposition of
Ry, RY, as given in (20) of stepl/, as in

FT

~ o S, O
Ry REL, = [E. Ex] [ J (Fl)T (21)

O S,

iep_Sl Using FE,, E;i-, ﬁll, and égl yielded in
stepl and step2’, compute the quadruple of the
system matrices [A, B, C, D] in a similar way in
Algorithm A.

We consider a matrix Z which is a linear combi-
nation of U and ®. This is represented by

7 = LU + Lo®

= [L;: Lo {g]

= LQ (22)
where L:= Ly Ly |, Q:=[UT CI>T]T.
Since the condition (19) is satisfied, L which mini-
mize || Z — Z ||% for Q exists uniquely. Here Il lF
denotes the Frobenius norm. Then L is represented

by

L=2zaTQa") . (23)

From the result of (23), we substitute L for L in
(22) to obtain

Z=2zaTQa")'a
= ZIlg (24)
where Il = QTQOT)1Q. We consider a matrix
vt 77"

uncorrelated. Therefore we have

From the assumption, Z and V are

lim %V {UT ZT] =0 (25)

N—oo |

Suppose the following matrix as in (11)
[2

where Ull, = U. Thus the Schur complement Sy
of UUT in (26) is represented by

T 27 = B} i, [U7 27

_[UUT uz? J

- zuT zngzT (26)

Sy = Z(Mlg - UT (WU u)z"
= 7177 (27)

Here

I, = QT ()10
=y + 0507 (I 7)1 aII. (28)
Then we have
Sy = ZIIH@T (@I 0T) eI 27 (29)

From the result of (20), the equation (27) can be
rewritten as

Sy = Ryp R, A" R4, RE, (30)

where A = R;,QR.?Q + Rs3RI,. S3 converges for
N — o0, that is,
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>3 =
N273
1

1
riﬁxn,ﬁﬁ(@néqﬂ)—l—

N«bnﬁxTrzT. (31)

4. Recursive computation

In this section, we will show a relationship be-
tween the least squares residual and the matrix
yielded by the Schur complement, and derive a re-
cursive formula for an error covariance matrix.

4.1 Noise-free case
We have obtained the following relation

YII3YT = RyoRE,

The left hand side of (14) can be rewritten as

YI;YT = YIIG (YIIG)T (32)
Then we consider the following matrix

Y =Y —yuTwuh)~'u
=Y - GnU (33)

where G is defined as

Gy =YUT(wuT), (34)

and we denote an error ¥ — éNU by E.

We can regard a matrix E as a least squares resid-
ual, then YTI$Y T a squared sum of residuals denot-
ed by an error covariance matrix EET. The nomal
equation can be represented by

(Y —GyU)UT =0 (35)
Equation (32) can be rewritten as

EET = (Y — GnU)(Y - GpU)T
=YYT -GUY" (36)
From the results of (35) and (36), the extended nor-
mal equation can be represented by
= vut uy” ~ A
[—GN I] {YUT YYT] B [O ENEN] (37)
The submatrix of the Hankel matrix Uy ; n+1 is de-
fined as

T
u£+N+i— 1 ]
(38)

and vy; is defined in a similar way. Then the Hankel

wi(k+N) = [ul,y W gy

matrices Uy ; n+1 and Yy ; 11 are partitioned such

as

Ukin+t = [Ukin | ui(k+ N) | (39)
Viint1 = [ Yean | yi(k+N)] (40)
For brevity we denote Uy ; v, Yk ,i,n by Un, Y, and
u;(k+N), y;(k+ N) by u;, y;, respectively. We con-
sider a matrix consisted of the Hankel matrix Upn 4+
and Yy41. The following relation is obtained from

(40).
[U N+1

ot | (W Y]

:[[xjfﬂwﬁ Yg]*[;&][u;r vl (41)

Equation (41) is mutiplied by a matrix [—@N I},
and then the following is obtained

= U
[—GN 1} [ NH] (U1 Yo ]

Y1
Z[O E\NEJT,]+61-[U? yZT] (42)
where
€ = Yi — aNUi (43)

We introduce the vectors ky1 and g;(k+N) which
satisfy the following equation;

U
T N+1
(K 0] | 77| (08 ¥E)

= [ul Gu(k+N)T] (44)
Equations (42) and (44) multiplied by e; give the
following:

~ U
{—GN _eik%%—l I} [Yz;l] [U£+1 Y]%"H]
= {O ENE}C,} + [0 eifys — Gulk+ N)}T ] (45)

Equation (37) leads to equation (46), if the number
of datais N + 1.

~ Un+1UE . UnaaYE
S o e
YN+1UN+1 YN+1YN+1
=[0 EvsiBE, | (46)
Comparing equation (45) with (46), an error covari-

ance ENHEEH and estimates G, are obtained
as

Gni1 =GN + ek (47)

Eny1BYpy = ENEG + ey — Gk + N)}T (48)

From equation (44), ky41 and g;(k + N) are ob-
tained as follows

kL= %TPNH (49)
Ji(k+ N) =Gy (50)

where the matrix Pny; is defined as
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Prni1 = (Un1Ufp) ™ (51)

Using the matrix inversion lemma, P can be rep-
resented by

Pny1 = Py — Pyujul Py/a (52)

where « is defined by

a=1+ul Pyu,. (53)

Using equations (49) and (52), the relation between
Gn and Gy 41 can be represented by

Gnyr = GN + equl Pyt
=Gy + e;ul Py /. (54)
Therefore, a recursive formula is summarized as fol-
lows;

a=1+ulPyu;
i = Yi— 61\['&1
GN+1 = GN + e, PN/a
EN+1EN+1 = ENEL + el Ja
Pyi1= Py~ PNulu,fN/a

€;€;
R =R — 55
N+l N+ 1+UZTPNU1' ( )
where the error covariance Ry = E NE%
4.2 Noisy case
We have obtained the following result
AN (Eni)
=R 2R32A R32R22 (56)

We consider a recursive formula of the matix
ZHéZT. The matrix ZHJU- can be rewritten as

ZIy = ZNoIg;
= Zllg — Zly
=Z—-GnU
=Gy —-GpyU
=Y —GnU - (Y — G4Q)
— Ey - E (57)

where

GN = YQT(QQT) (58)

EN =Y -G N (59)
We denote ZH# by EN, then ZH(ﬁZ\T is represent-
ed by ENE}G From equation (57), the following
equation is obtained.

ENE} = ( N = EN)(EN - E3)T
where
ExEf = EyER

= ENEN (61)
Therefore we see that E NE}\} is yeilded by comput-
ing ENET and E3 ERF.
Here the matrix € is defined as the following equa-
tion

Q= [wi(k) wi(k+1) -

where

wi(k) = [wi(k)T of ¢iy, - (63)
and ¢ is an element of the instrumental variable
®. E}, Gy and § are corresponded FEy, Gy and

wilk+N-1)] (62)

T
d)k-H 1 ]

U, then a recursive formula of the error covariance
’ o~ —~
matrix EJ*{,E}*\,T is summarized as follows;

B=1+ wiTQNw,»
el =yi— @}‘th
GN+1 =Gy +ejw; [Qn/B
E]\/+1EN+1 = EyE + efefT/ﬂ
Ont1=Qn — QNwzw Qm /B

66

A = R* —_— 64

N+1 1 +‘-UiTQNwi ( )

where Ry = EJ*VE}‘VT, Qn = (QnQL) 7L Therefore
a recursive formula of EE7T is obtained

Rn41=Rnt1— Rip (65)

where ﬁN = ENE'E

4.3 Numerical example

In this section, we applied the recursive method
presented in this paper to identify the following dis-
crete time linear system:;

0.8 —0.4 0.2 0 0
Th+1 = 0 0.3 —-0.5 T + 0 —0.6 U
0 0 05 05 0
05050 0.05
- 6
Yk {o 0 1]5””[0.02]”’“ (66)

where uy is constructed by 2 inputs, yx by 2 out-
puts and xy is 3 state vector, respectively. In order
to use our recursive procedure we generated 1500
samples of input-output data and took the input uy,
equal to a zero-mean white noise of unit variance,
the noise vy, is as in a similar way. The experiment
was conducted with MATLAB package. Using the
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recursive formula for noisy case as in equation (64),
we cstimated a sequence of state space models. The
instrumental variable is selected as

® =U—iinN (67)
and an auxiliary order ¢ = 7. To start up the re-
cursive operation, we used the first 50 samples to
produce an estimate as initial value in off-line. The
initially obtained factors Ry, R}, etc are updated
for 1500 steps. Computing the SVD for the error co-
variance matrix 7‘éN+1, the system of matrices Ar,
Br, Cp and Dr is obtained. In Fig.1 and Fig.2,
we denote the ith largest eigenvalues of Ar by A;,
and the singular value of R by o; in a similar way.

We have shown the behaviour of singular values
of R in equation (65) in Fig.1. We can see that the
order of the system n = 3 from the result in Fig.1.
Fig.2 has shown that eigenvalues of A7 asymptoti-
cally tend to the true values for increasing step num-
ber. In Fig.3 and Fig.4, we have shown that step
responses for two clements of output yx of the sys-
tem and estimated model. The system of matrices
cstimated from input-output measurements for 1500
steps is used in this simulation. Then the quadru-
ple of the system matrices is obtained as in equation
(68).

1000

800 L3

]
o
o

%2

3
o

%

singular values

N
o
o

%

500 step 1000 1500

(=}
-]

Fig.1  Singular values of R

0.9

0.8
0.7
Sos
[
>
gos
2
04

3
03 Mﬂ‘_ﬂ

0.2
o

500 step 1000 1500

Fig.2 Eigenvalues of Ap

1.5

1
E_ os
=
o x : system

o o : model

-0.
s 0 4 12 16 20

8 step

Fig.3 First element of output yy

1.4
1.2¢ 4
1}
-50,8 r
%0.6 F X : systemn “
o
04t o : model ]
o2y 1
OO T 8 step 12 18 20

Fig.4  Second element of output yj

[ 0.7289 —0.0753 —0.1350
Ar = | —0.3039 0.7323 04244 | (68-a)
| —0.0564 —0.1980 0.1367
[0.5460 0.1199
Br = |0.2677 0.0341 (68-b)
0.1184 —0.3412
0.0532 —0.4810 0.8465
Cr — 68-
T [0.6441 0.4361 0.2692] (68-c)
[0.0011 0.0003
Dr = 68-d
T~ l0.0007 0.0000] (68-d)

5. Conclusion

In this paper, we focused on QR factorization in
the 4SID procedure, and showed another interpre-
tation of the 4SID method by using the Schur com-
plement for the input-output data matrix. We have
also proposed a recursive formula for the error co-
variance matrix in the 4SID method. The results
are useful for analysing properties of parameters ob-
tained by 4SID methods.
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