
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

On Constructing a Binary Tree from Its
Traversals

Xiang, Limin
Department of Computer Science and CommunicationEngineering, Kyushu University

Lawi, Armin
Department of Computer Science and CommunicationEngineering, Kyushu University : Graduate
Student

Ushijima, Kazuo
Department of Computer Science and Communication　Engineering, Graduate School of Information
Science and Electrical Engineering, Kyushu University

https://doi.org/10.15017/1500431

出版情報：九州大学大学院システム情報科学紀要. 5 (1), pp.13-18, 2000-03-24. 九州大学大学院シス
テム情報科学研究院
バージョン：
権利関係：

九州大学大学院

システム情報科学研究科報告

第5巻 第1号 平成12年3月

Research Reports on Information Science and

Electrical Engineering of Kyushu University

 Vol.5, No.1, March 2000

On Constructing a Binary Tree from Its Traversals

Limin XIANG* , Armin LAWI** and Kazuo USHIJIMA*

(Received December 9, 1999)

Abstract: Many algorithms have been presented for constructing a binary tree from its traver-
sals. This problem can be solved by a sequential algorithm of linear time, such as E. Makinen's

and A. Andersson and S. Carlsson's algorithms. If the number of comparison operations is used

as a measure of time complexity, the linear coefficient of E. Makinen's is 3 in its best case and

5 in its worst case, and that of A. Andersson and S. Carlsson's is 4 in its best case and 7 in its

worst case. In this article, we give a more efficient sequential algorithm for the problem, and the

linear coefficient is 3 in any case.

Keywords: Data structures, Binary trees, Tree traversals, Tree construction, Design of algo-

rithms, Analysis of algorithms

 1. Introduction

 "If we are given the preorder and the inorder of

the nodes of a binary tree, the binary tree structure

may be constructed[9)p.331 1." "Postorder and in-
order together characterize the structure. But pre-
order and postorder do not[9) p.564] ." Up to now,
many sequential and parallel algorithms have been

presented for constructing a binary tree from its
traversals1) 2),3),5),7),10),11),r3),14),15) H. A. Burgdorff
et al.2) presented an 0(n2) solution, G.H.Chen et
al.3> and W. Slough and K. Efe13> gave 0(nlogn)
methods respectively, E. Makinen10) and A. An-
dersson and S. Carlsson' raised 0(n) algorithms

respectively, and other researchers paid attention
to parallel algorithms for this problem on EREW
PRAM5>'7>, CREW PRAM11>, CRCW PRAM15>
and BSR14)

 Of all the sequential algorithms for the problem

of constructing a binary tree from its traversals (the
CBTf IT problem for short), E. Makinen's and A.
Andersson and S. Carlsson's linear algorithms are
the best solutions. In any sequential algorithm for
the CBTf IT problem, the binary tree is constructed
mainly by comparing its traversals and checking in-

teger variables for the recurrent control. Therefore,
the number of comparison operations is used as a
measure of time complexity in this article. Thus,
for the CBTf IT problem with n nodes in a tree, E.
Makinen's algorithm is of 3n — 2 complexity in its
best case and of 5n-5+(1—(-1)n)/2 complexity in

* Department of Computer Science and Communication

Engineering

** Department of Computer Science and Communication

Engineering, Graduate Student

its worst case, and A. Andersson and S. Carlsson's
algorithm is of 4n complexity in its best case and of

7n — 3 complexity in its worst case.
 By discussing properties further for the traversals

of a binary tree, we obtain some new results, and
based on them we propose a more efficient sequen-
tial algorithm for the CBTf IT problem, which is of
3n — 2 complexity in its best case and of 3n — 1

complexity in its worst case.

 2. Properties

In the same way as in most literatures we assume
that the nodes of a binary tree are labeled with dis-
tinct alphanumeric labels. Thus, the traversal (pre-

order, inorder or postorder) of a binary tree with Ti
nodes is a sequence with n distinct alphanumeric la-
bels. We denote the set of n distinct alphanumeric
labels by En and the set of all the permutations on
set En by P(En), then we can discuss the CBTf IT

problem in the relation category.

Definition 1.

 (1) If A e P(), then A is called a sequence,
 and A" is the converse of A (obviously A' E

P(En))
 (2) PTS1,, is a relation on P(En), s.t., <

A,B >e PTSn, denoted by PTS„(A, B), if
 and only if A, B E P(E,,,), and B can be ob-

 tained by Passing A Through a Stack.

 (3) piTt, is a relation on P(En), s.t., < A, B >E
piTa, denoted by piT„ (A,B), if and only if A,

 B E P(E,), and A and B may be the Preorder
and Inorder of a binary Tree respectively. The

 binary tree with the preorder A and the inorder
 B is denoted by Tpz (A, B).

 (4) ipT„ is a relation on P(En), s.t., < A, B >e

 ipT„.„, denoted by ipT,, (.A, B), if and only if A,
 B E P(>,„,), and A and B may be the Inorder

 and Postorder of a binary Tree respectively.
 Thus, the result on [̀ '>p.331] can be expressed

as "piT,, (A, B) PTS.,,, (A, B)” that sequences A
and B may .be the preorder and inorder traversals
of a binary tree respectively if and only if sequence
B can be obtained by passing sequence A through
a stack. New properties on PTS.,,, piT,,, and ipT,,,
can be given as follows.

Theorem 2.
 (1) When n = 1, 2, PTS.„, is equivalent.

 (2) When n > 3,
 (a) PTS,,, is reflexive;

 (b) PTS,,, is neither symmetric nor anti-
 symmetric;

 (c) PTS„ is not transitive.
 (3) ipT,,(A,13) PTS-„(A, B).

 (4) PTS-„(A, B) PTS,„(B , Ac).
Proof. Since proofs for (1) and (2) are simple, they
are omitted here. Proof for (3) can be obtained eas-
ily, similar to that for "piT„ (A, B) PTS„ (A, B)”

[p.564]. Therefore, only the proof for (4) is given
as follows.

If PTSI,, (A, B), i.e., sequence B with n elements
can be obtained by passing A through a stack, then
the operations for passing A through a stack can be
described by an admissible sequence of n S's and n
X's[9)pp.242-243], where S stands for moving an
element from the input into the stack, and X stands
for moving an element from the stack into the out-
put. "An admissible sequence is one in which the
number of X's never exceeds the number of S's if
we read from the left to the right[9)p.536].” Let
Ssx be the admissible sequence for PT SU (A, B),
since "no two different admissible sequences give the
same output permutation ['))p.243] ,” Ss x is the on-
ly one admissible sequence for PTS„(A, B). If we
exchange all S's for all X's in Ssx, i.e., the con-
verse sequence of Ssx , to get a new sequence of n
S's and n X's which we denote by E(Ssx), then
E (S x) is an admissible sequence, too, and S (Ssx)
is just the admissible sequence for PTS„(B , Ac).
This completes the proof. ^

Corollary 3.
 (1) piT,,,(A, B) PTS.„(Bc, At).

 (2) ipT,„ (A, B) PTS,,. (B", A").
Proof.

 (1). From piT,, (A, B) PTS„(A,13)
 and Theorem 2.(4).

 (2). From Theorem 2.(3) and (4). ^

 3. Algorithm
 From corollary 3.(1), we know that the preorder

A can be regarded as the sequence formed by using
a stack to change the order of elements in the in-
order B conversely. In other words, we can design
a match algorithm in which the inorder B is to
be scanned conversely, and the order of elements in
the inorder B is to be changed by a stack in order to
rriatch elements in the preorder A conversely. Such
a match algorithm can be described as follows.

Algorithm Match
procedure Match;
begin
 push a to a stack as the bottom element;

 push inorder[n] to the stack;
inindex:=n — 1;
preindex:=n;
 while (preindex> 1) do

 begin
 while (top�preorder[preindex]) do

 begin
 push inorder[inindex] to the stack;

inindex:=inindex-1;
 end;

 pop the top element;
preindex:=preindex-1;
 end;

 if (inindex= 1) then
 begin

{ inorder[1] matches preorder[1], }
{ inorder[1] (preorder[1]) is the label of the root, and }

 { the root has not the left subtree. }
 end else

 begin
 { the top element matches preorder[1] }

 { the top element (preorder[1]) is the label of the }
 { root, and the root has the left subtree. }

 pop the top element;
 end;

 pop the top element (cr) ;
end.

 Since the preorder A and the inorder B can be ex-
pressed as A = rALAR and B = BLr13R respective-
ly, where, r is the label of the root, and T pi (AL, BL)
and Tpi (AR, BR) are the left and right subtrees of
r respectively, the algorithm Match can be under-
stood as the following steps.

 1. Using the stack to match BR with AR;
 2. pushing r of B to the stack;

 3. using the stack with the bottom element r to
 match BL with AL;

 4. popping r from the stack to match r of A.
Further, we know in the algorithm Match that

 1. when an element bi of B is pushed to the stack,

 the right-subtree of bi can be determined;

 2. if b,i is popped as soon as it is pushed to the

 stack, the left-subtree of bi is empty;

 3. if bi is popped as soon as b1 is popped, bj is

 the left-son of bi;

 4. when bi is popped from the stack, the subtree

 with the root bi can be determined.

 Therefore, by modifying the algorithm Match,

we can obtain an algorithm using a stack to con-

struct a binary tree from its traversals. If we pay at-

tention to that the left pointer of a node is not used

after the node is created until the node is popped

from the stack, we can only use a pointer Virtu-

alStack instead of the stack. Thus, we obtain the

following algorithm ConstructTree.

Algorithm ConstructTree
procedure ConstructTree;
begin

VirtualStack:=CreateNode(a);
CurrentNode: =CreateNode(inorder[n]);
CurrentNodeT . right: =nil;
CurrentNodel .left: =V irtualStack;
VirtualStack: =CurrentNode;
SubTree:=nil; inindex:=n — 1; preindex:=n;

 while (preindex> 1) do
 begin

while (VirtualStacki.label�preorder[preindex]) do
 begin

CurrentNode:=CreateNode(inorder[inindex]);
CurrentNodeT . right: =SubTree;
CurrentNodel.left: =VirtualStack;
VirtualStack: =CurrentNode;
SubTree:=nili;
inindex:=inindex-1;
 end;

CurrentNode: =V irtualStack;
VirtualStack:=CurrentNodel.left;
CurrentNodel .left: =SubTree;
SubTree:=CurrentNode;

preindex:=preindex-1;
 end;

 if (inindex= 1) then
 begin

root:=CreateNode(inorder[1]);
root l.left: =nil;
root T. right: =SubTree;

 end else
 begin

root:=VirtualStack;
V in ualStack: =root 1.left;

 root T.left: =SubTree;
 end;

 dispose(VirtualStack); { i.e., a }
end.

 Similarly, based on piT,„ (A, B) PTS,,,, (A, B),
ipTn (A, B) PTST, (A, B) or ipT„ (A, B)
PTST, (B`', A<), the corresponding algorithms can
be easily obtained for the match and the tree con-
struction.

 4. Analysis and contrast
 The number of comparison operations is used as

a measure of time complexity for the CBTf IT prob-
lem in this article. In this section, the algorithm
ConstructTree is analyzed and contrasted with
the best two previous sequential algorithms, i.e., A.
Andersson and S. Carlsson's and E. Makinen's.

 4.1 Lower and upper bounds

(1) A. Andersson and S. Carlsson's Algorithm'
 The algorithm is shown in Appendix B. There

are 5 comparisons in turn, i.e.,

 1. C,1 : not Empty(IN),
 2. Cdi : currentT.data�First(IN),

 3. C.2 : not Empty(IN),

 4. C?11 : currenti.right=nil, and
 5. Cd2 : First(IN)�currentT.right.data .

Ce1 i Cc2 and C,d can be implemented simply by in-
teger comparisons, and Cd1 and Cd2 are label com-

parisons. The best case for the algorithm is that the
binary tree to be constructed is a rightchain tree' ,

and in the case the number for integer comparisons
is 3n and the number for label comparisons is n,
while the worst case for the algorithm is that the
binary tree is a leftchain treen'16), and in the case
the number for integer comparisons is 4n — 1 and

the number for label comparisons is 3n — 2. In the

general, A. Andersson and S. Carlsson's Algorithm
needs 4n comparisons in its best case and 7n — 3
comparisons in its worst case.

(2) E. Makinen's Algorithmn10)
 The algorithm is shown in Appendix C. There

are 6 comparisons in turn, i.e.,

 1. Ca : preindex< n,

 2. CA : preorder[preindex]=inorder[inindex],
 3. Cd2 : inorder[inindex]7top1.label,
 4. Cd3 : inorder[inindex] =top T.label,

 5. Cd4 : inorder[inindex]=topT.label, and
 6. Ci2 : preindex< n.

Ca and Ci2 are integer comparisons, and Cdi, Cd2,
Cd3 and Cd4 are label comparisons. The best case
for the algorithm is that the binary tree to be con-
structed is a leftchain tree, and in the case the num-
ber for integer comparisons is n and the number for

label comparisons is 2n — 2, while the worst case

Table 1 Data for average linear coefficients

for the algorithm is that the binary tree is a fall
tree (when It is odd) or a tree with only one inter-

node without the left subtree (when n is even), and
in the case the number for integer comparisons is

[(n — 1)/2] and the number for label compar-
isons is 3n — 3 L(n — 1)/24. In the general, E.

Makinen's Algorithm needs 3n — 2 comparisons in
its best case and 5n —5+ (1— (-1)n)/2 comparisons
in its worst case.

(3) Our Algorithm
Theorem 4.
The algorithm ConstructTree needs 3n — 2 com-
parisons in its best case and 3n — 1 comparisons in
its worst case.
Proof.
Note that in the algorithm Construct'I4'ee,

 1. there are only three clauses including com-
 parison operations, i.e., the while clause

 with '(preindex> 1)', the while clause with
' (VirtualStackT .label�preorder [preindex])' and

 the if clause with '(inindex= 1)';
 2. the initial values of the variables preindex and

inindex are 'n and n — 1 respectively;
 3. the variables preindex and inindex are sub-

 tracted by 1 for each time in the body of its
 while clause respectively;

 4. the final value of the variable preindex is 1,
 while the final value of the variable inindex

 is 1 when preorder[1]=inorder[1] or 0 when
preorder [1] � inorder [1] ;

 5. the if clause is executed for only one time.
Therefore, for the algorithm ConstructTree, the
number of integer comparisons is n+1, and the num-
ber of label comparisons is (n — 1) (n — 2) = 2n — 3
when preorder[1]=inorder[1] or (n — 1) (n — 1) =
2n-2 when preorder [1]�inorder[1]. This completes
the proof. ^

 4.2 Average linear coefficients
 For the three linear algorithms above, we can cre-

ate a table to show their average linear coefficients
by

 1. using an algorithm in 17) or 18) to enumerate
 binary trees,

 2. obtaining its preorder and inorder traversals
 for each tree,

 3. constructing the tree from the traversals by
 each of the three algorithms, and

 4. adding up the number of comparisons.

Such a table is given in Table 1, where,
Cm,: the nth Catalan Number, i.e., the number

 of binary trees with n nodes9),
ACT,: the number of comparisons needed by A.

Andersson and S. Carlsson's algorithm to con-
 struct all the binary trees with n nodes,

Mn: the number of comparisons needed by E.
Makinen's algorithm to construct all the binary

 trees with n nodes,
XUn: the number of comparisons needed by our

 algorithm to construct all the binary trees with
 n nodes,

ALCacn: the average linear coefficient of A.
 Andersson and S. Carlsson's algorithm, i.e.,

(ACf/CT,) /n,
ALCmn: the average linear coefficient of E.

 Makinen's algorithm, i.e., (Mn/Cn)/n, and
ALCxu,n: the average linear coefficient of our al-

 gorithm, i.e., (XUn/Cn)/n.

 From Table 1, it is known that

 1. XUn <ACn and XUn <Mn when n > 2,
 2. ALCacn > 5.7, ALCmn > 4, and ALCxu7,, <

 3 (limn_,OALCxun = 3) when n > 12, and
 3. XUn/ACn is about 50% and XUn/Mn is less

 than 73% when n > 10.

 5. Conclusion

 The intimate relation has been revealed further
between the stack and the binary tree, and more
efficient sequential algorithm has been derived for
the CBTf IT problem.

 Algorithms in 2), 3) and 13) for computing the

inorder-preorder sequence need 0(n2) or 0(nlogn)
time, while based on the intimate relation between
the stack and the binary tree, an efficient linear
algorithm can be obtained easily by modifying the
Algorithm Match. Such an algorithm is given in
Appendix A.

 As for the efficient algorithm for computing the

preorder-inorder sequence, it can be obtained by
replacing

"ipSequence[preindex]:=top" and
 "ipSequence[1]:=top" with

"piSequence [top] : =preindex" and
 "piSequence [top] : =1" respectively

in Appendix A.
 In the same way based on the intimate relation

between the stack and the binary tree, a binary bit-

pattern(or bit-string)4)'12)49) representing a binary
tree can be regarded as the admissible sequence for

passing the preorder of the binary tree through a
stack into the inorder of the binary tree, in which 1
stands for S and 0 stands for X.

 References

 1) A. Andersson and S. Carlsson, Construction of a tree
 from its traversals in optimal time and space, Inform.

 Process. Lett., 34 (1990), pp. 21-25.
 2) H. A. Burgdorff, S. Jajodia, F. N. Springsteel and Y.

 Zalcstein, Alternative methods for the reconstruction
 of trees from their traversals, BIT, 27 (1987), pp. 134-

 140.
 3) G. H. Chen, M. S. Yu and L. T. Liu, Two algorithms

 for constructing a binary tree from its traversals, In-
 forrn. Process. Lett., 28 (1988), pp. 297-299.

 4) M. C. Er, Enumerating Ordered Trees Lexicographi-
 cally, Comput. J., 28 (1985), pp. 538-542.

 5) N. Gabrani and P. Shankar, A note on the reconstruc-
 tion of a binary tree from its traversals, Inform. Pro-

 cess. Lett., 42 (1992), pp. 117-119.
 6) T. Hikita, Listing and counting subtrees of equal size

 of a binary tree, Inform. Process. Lett., 17 (1983), pp.
 225-229.

 7) V. Kamakoti and C. P. Rangan, An optimal algorithm
 for reconstructing a binary tree, Inform. Process.

Lett.,42 (1992), pp. 113-115.
 8) G. D. Knott, A numbering system for binary trees,

 Comm. ACM, 20 (1977), pp. 113-115.
 9) D. E. Knuth, Fundamental Algorithms, The art

 of Computer Programming, vol.1 Third Edition,

 Addison-Wesley, Reading Mass., 1997.
 10)E. Makinen, Constructing a binary tree from its

 traversals, BIT, 29 (1989), pp. 572-575.
 11)S. Olariu, M. Overstreet and Z. Wen, Reconstructing

 a binary tree from its traversals in doubly logarithmic
 CREW time, J. Parallel Distrib. Comput., 27 (1995),

 pp. 100-105.
 12)A. Proskurowski, On the Generation for Binary Trees,

 J. ACM, 27 (1980), pp. 1-2.
 13)W. Slough and K. Efe, Efficient algorithms for tree

 reconstruction, BIT, 29 (1989), pp. 361-363.
 14)I. Stojmenovic, Constant time BSR solutions to

 parenthesis matching, tree decoding, arid tree recon-
 struction from its traversals, IEEE Trans. Parallel and

 Distributed Systems, 7 (1996), pp. 218-224.
 15)Z. Wen, New algorithms for the LCA problem and tire

 binary tree reconstruction problem, Inform. Process.
 Lett., 51 (1994), pp. 11-16.

 16)L. Xiang and K. Ushijima, Properties on Leftchain
 Trees, Research Reports on Information Science and

 Electrical Engineering of Kyushu University, ISSN
 1342-3819, 2 (1997), pp. 9-13.

 17)L. Xiang, C. Tang and K. Ushijima, Grammar-
 oriented enumeration of binary trees, Comput. J., 40

 (1997), pp. 278-291.
 18)L. Xiang and K. Ushijima, Grammar-oriented enu-

 meration of arbitrary trees and arbitrary k-ary trees,
 IEICE Trans. Inf. & Sys., E82-D (1999), pp. 1245-
 1253.

 19)S. Zaks, Lexicographic Generation of Ordered Trees,
 Theoretical Comput. Sci., 10 (1980), pp. 63-82.

 Appendix A. Algorithm GETipSEQUENCE

procedure GETipSEQUENCE;
begin

inorder [0] : =cr;

 push 0 to a stack as the bottom element;
 push n to the stack;

inindex:=n — 1;

preindex:=n;
 while (preindex> 1) do

 begin
 while (inorder [top] preorder [preindex]) do

 begin

 push inindex to the stack;
inindex:=inindex-1;
 end;

ipSEQUENCE [preindex] : =top;

 pop the top element;
preindex:=preindex-1;
 end;

 if (inindex= 1) then ipSEQUENCE[1]:=1 else
 begin

ipSEQUENCE[1]:=top;

 pop the top element;
 end;

 pop the top element (0) ;
end.

 Appendix B.

A. Andersson and S. Carlsson's algorithm[1)p.24]

procedure NonRecursive(var T: Tree; var PRE,
IN: NodeList);
var current, right-anc: Tree;
begin
 T:=CreateNode(First(PRE));

 Delete first element of PRE;
 current:=T;

 while not Empty(IN) do
 if currentl.data#First(IN) then begin

{ current has a nonempty left subtree }
right-anc:=current;
current{.left:=CreateNode(First(PRE));
 Delete first element of PRE;
cu rrent:=current 1.left;
currentT. right:=right-anc

 end
 else begin

{ current's left subtree has been constructed }
 Delete first element of IN;

 if not Empty(IN) and

(currentl.right=nil or First(IN)
currentl.right.data) then begin

 { current has a right subtree }
right-anc:=currentT .right;
currentl.right:=
 CreateNode(First(PRE));
 Delete first element of PRE;
current:=currentl.right;
currenti.right:=right-anc
 end

 else begin
{ current's right subtree is empty }
right-anc:=current T.right;
current 1.right:=nil;
current:=right-anc
 end

 end
end

 Appendix C.

E. Makinen's algorithm[10)pp.574-575]

procedure TreeConstruction;
begin

 inindex := 1;

 preindex := 1;
new(CurrentNode);
 CurrentNode 1 .label := preorder[1];

 root := CurrentNode;
 while preindex < n do begin

 if preorder[preindex] = inorder[inindex]
 then begin

 preindex := preindex + 1;
 inindex := inindex + 1;

 if inorder[inindex] � top T .label
 then begin

 new(CurrentNode 1 .right);
CurrentNode := CurrentNode T .right;

 CurrentNode 1 .label := preorder[preindex] end
 end

 else begin

preindex := preindex + 1;
 push a pointer to CurrentNode to the stack;

 new(CurrentNode T .left);
 CurrentNode := CurrentNode ? .left;

 CurrentNode T .label := preorder[preindex] end;
 if inorder[inindex] = top T .label

 then begin
 while inorder[inindex] = top I .label do begin

 CurrentNode := top;

 pop the top element from the stack;
inindex := inindex + 1 end;

 if preindex < n
 then begin

 new(CurrentNode T .right);
CurrentNode := CurrentNode 1 .right;

 CurrentNode T .label := preorder[preindex];end;
 end;

end;{do}
end; {TreeConstruction}

