SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

On Constructing a Binary Tree from Its
Traversals

Xiang, Limin
Department of Computer Science and CommunicationEngineering, Kyushu University

Lawi, Armin
Department of Computer Science and CommunicationEngineering, Kyushu University : Graduate
Student

Ushijima, Kazuo
Department of Computer Science and Communication Engineering, Graduate School of Information
Science and Electrical Engineering, Kyushu University

https://doi.org/10.15017/1500431

HARIER : N KFERZRY X T LABEHRBERLE. 5 (1), pp.13-18, 2000-03-24. AMNKFEKXKZFRS R
T LERBEH R
N— 30

HEFIBAMR

VPN N7
2 2 F LR R R
ok 1Y PIR124:3H

Research Reports on Information Science and
Electrical Engineering of Kyushu University
Vol.5, No.1, March 2000

On Constructing a Binary Tree from Its Traversals

Limin XTANG™* |

Armin LAWI** and Kazuo USHIJIMA*

(Received December 9, 1999)

Abstract: Many algorithms have been presented for constructing a binary tree from its traver-
sals. This problem can be solved by a sequential algorithm of linear time, such as E. Makinen’s
and A. Andersson and S. Carlsson’s algorithms. If the nummber of comparison operations is used
as a measure of time complexity, the linear coefficient of E. Makinen’s is 3 in its best case and
5 in its worst case, and that of A. Andersson and S. Carlsson’s is 4 in its best case and 7 in its
worst case. In this article, we give a more efficient sequential algorithin for the problem, and the

linear coefficient is 3 in any case.

Keywords: Data structures, Binary trees, Tree traversals, Tree construction, Design of algo-

rithms, Analysis of algorithms

1. Introduction

“If we are given the preorder and the inorder of
the nodes of a binary tree, the binary tree structure
may be constructed| 9p.331].” “Postorder and in-
order together characterize the structure. But pre-
order and postorder do not[¥p.564].” Up to now,
many sequential and parallel algorithms have been
presented for constructing a binary tree from its
traversals!)2):3)9),7),100,11),18)14),15) - H_ A Burgdorff
et al.? presented an O(n?) solution, G.H.Chen et
al.¥) and W. Slough and K. Efe!® gave O(nlogn)
methods respectively, E. Makinen'® and A. An-
dersson and S. Carlsson" raised O(n) algorithms
respectively, and other researchers paid attention
to parallel algorithms for this problem on EREW
PRAM®", CREW PRAM!Y, CRCW PRAMM
and BSR').

Of all the sequential algorithms for the problem
of constructing a binary tree from its traversals (the
CBT{IT problem for short), E. Makinen’s and A.
Andersson and S. Carlsson’s linear algorithms are
the best solutions. In any sequential algorithm for
the CBTfIT problem, the binary tree is constructed
mainly by comparing its traversals and checking in-
teger variables for the recurrent control. Therefore,
the number of comparison operations is used as a
measure of time complexity in this article. Thus,
for the CBTfIT problem with n nodes in a tree, E.
Makinen’s algorithm is of 3n — 2 complexity in its
best case and of 5n—5+(1—(—1)"™)/2 complexity in

* Department of Computer Science and Communication
Engineering
s Department of Computer Science and Communication

Engineering, Graduate Student

its worst case, and A. Andersson and S. Carlsson’s
algorithm is of 4n complexity in its best case and of
7n — 3 complexity in its worst case.

By discussing properties further for the traversals
of a binary tree, we obtain some new results, and
based on them we propose a more efficient sequen-
tial algorithm for the CBTfIT problem, which is of
3n — 2 complexity in its best case and of 3n — 1
complexity in its worst case.

2. Properties

In the same way as in most literatures we assume
that the nodes of a binary tree are labeled with dis-
tinct alphanumeric labels. Thus, the traversal (pre-
order, inorder or postorder) of a binary tree with n
nodes is a sequence with n distinct alphanumeric la-
bels. We denote the sct of n distinct alphanumeric
labels by 32,, and the set of all the permutations on
set X, by P(X,.), then we can discuss the CBT{IT
problem in the relation category.

Definition 1.

(1) If A € P(%,), then A is called a sequence,
and A is the converse of A (obviously A €
P(S) .)

(2) PTS, is a relation on P(X,), st., <
A, B > PTS,, denoted by PTS, (A,B), if
and only if A, B € P(X,), and B can be ob-
tained by Passing A Through a Stack.

(3) piT, is arelation on P(%,,), s.t., < A, B >€
piT,,, denoted by piT,, (A, B), if and only if A,
B e P(X,), and A and B may be the Preorder
and Inorder of a binary Tree respectively. The
binary tree with the precorder A and the inorder
B is denoted by T, (A, B).

(4) ipT, isarclation on P(¥,), s.t., < A, B >¢

L. Xiang, A. Lawi and K. Ushijima

ipT,,, denoted by ipT,, (A, B), if and only if A,
B € P(%,), and A and B may be the Inorder
and Postorder of a binary Trec respectively.
Thus, the result on [#p.331 | can be expressed
as “piT, (A4, B) & PTS, (A, B)” that sequences A
and B may be the preorder and inorder traversals
of a binary tree respectively if and only if sequence
B can be obtained by passing sequence A through
a stack. New propertics on PTS,,, piT,, and ipT,,
can be given as follows.

Theorem 2.
(1) When n =1,2, PTS,, is equivalent.
(2) When n > 3,
(a) PTS,, is reflexive;
(b) PTS,, is ncither symmetric nor anti-
symimetric;
(¢) PTS, is not transitive.

(3) ipT, (A,B) « PTS, (A, B).

(4) PTS, (A, B) < PTS, (B° A).

Proof. Since proofs for (1) and (2) are simple, they
arc omitted here. Proof for (3) can be obtained eas-
ily, similar to that for “piT, (A, B) & PTS, (A, B)”
[p.564]. Thercfore, only the proof for (4) is given
as follows.

If PTS,. (A, B), i.c., sequence B with n elements
can be obtained by passing A through a stack, then
the operations for passing A through a stack can be
described by an admissible sequence of n S’s and n
X’s| 9'pp.242-243 |, where S stands for moving an
clement from the input into the stack, and X stands
for moving an element from the stack into the out-
put. “An admissible sequence is one in which the
number of X’s never exceeds the number of S’s if
we read from the left to the right] ®p.536].” Let
Ssx be the admissible sequence for PTS,, (A, B),
since “no two different admissible sequences give the
same output permutation [9p.243],” Sgx is the on-
ly one admissible sequence for PTS,,(A4, B). If we
exchange all S’s for all X’s in 8¢y, i.c., the con-
verse sequence of Sgx, to get a new sequence of n
S’s and n X’s which we denote by £(S§y), then
E(S5) is an admissible sequence, too, and £(Sgy)
is just the admissible sequence for PTS,, (B¢, A°).
This completes the proof. O

Corollary 3.
(1) piT, (A, B) & PTS, (B¢, A%).
(2) ipT, (A, B) < PTS, (B, A°).
Proof.
(1). From piT (A, B) & PTS,.(A,B)
and Theorem 2.(4).
(2). From Theorem 2.(3) and (4). 0O

3. Algorithm

From corollary 3.(1), we know that the preorder
A can be regarded as the sequence formed by using
a stack to change the order of elements in the in-
order B conversely. In other words, we can design
a match algorithm in which the inorder B is to
be scanned conversely, and the order of elements in
the inorder B is to be changed by a stack in order to
match clements in the preorder A conversely. Such
a match algorithm can be described as follows.

Algorithm Match
procedure Match;
begin
push « to a stack as the bottom element;
push inorder([n] to the stack;
inindex:=n — 1;
preindex:=n;
while (preindex> 1) do
begin
while (top#preorder[preindex]) do
begin
push inorder(inindex] to the stack;
inindex:=inindex—1;
end;
pop the top element,;
preindex:=preindex—1;
end;
if (inindex= 1) then
begin
{ inorder[1] matches preorder[1], }
{ inorder[1] (preorder[1]) is the label of the root, and }
{ the root has not the left subtree. }
end else
begin
{ the top element matches preorder(1] }
{ the top element (preorder(l]) is the label of the }
{ root, and the root has the left subtree. }
pop the top element,
end;
pop the top element () ;

end.

Since the preorder A and the inorder B can be ex-
pressed as A = r AL AF and B = BLrB® respective-
ly, where, 7 is the label of the root, and T,; (AL, BY)
and Tm-(AR, BT) are the left and right subtrees of
7 respectively, the algorithm Match can be under-
stood as the following steps.

1. Using the stack to match B® with A%,

2. pushing r of B to the stack;

3. using the stack with the bottom element r to

match BE with AL;

4. popping r from the stack to match r of A.
Further, we know in the algorithm Match that

On Constructing a Binary Tree from Its Traversals — 15 —

1. when an element b; of B is pushed to the stack,

the right-subtree of b; can be determined,

2. if b; is popped as soon as it is pushed to the

stack, the left-subtree of b; is empty;

3. if b; is popped as soon as b; is popped, b; is

the left-son of b;;

4. when b; is popped from the stack, the subtree

with the root b; can be determined.

Therefore, by modifying the algorithm Match,
we can obtain an algorithm using a stack to con-
struct a binary trece from its traversals. If we pay at-
tention to that the left pointer of a node is not used
after the node is created until the node is popped
from the stack, we can only use a pointer Virtu-
alStack instead of the stack. Thus, we obtain the
following algorithm ConstructTree.

Algorithm ConstructTree
procedure ConstructTree;
begin
VirtualStack:=CreateNode(a);
CurrentNode:=CreateNode(inorder([n]);
CurrentNode .right:=nil;
CurrentNode?.left: =VirtualStack;
VirtualStack:=CurrentNode;
SubTree:=nil; inindex:=n — 1; preindex:=n;
while (preindex> 1) do
begin
while (VirtualStack!.label#preorder|preindex|) do
begin
CurrentNode:=CreateNode(inorder[inindex]);
CurrentNodeT.right:=SubTree;
CurrentNodeT . left:=VirtualStack;
VirtualStack:=CurrentNode;
SubTree:=nil;
inindex:=inindex—1;
end;
CurrentNode:=VirtualStack;
VirtualStack:=CurrentNodeT left;
JurrentNodeT.left: =SubTree;
SubTree:=CurrentNode;
preindex:=preindex—1;
end;
if (inindex=1) then
begin
root:=CreateNode(inorder(1]);
root].left:=nil;
rootT.right:=SubTree;
end else
begin
root:=VirtualStack;
VirtualStack:=rootT.left;
rootT.left:=SubTree;
end;
dispose(VirtualStack); { i.e., a }
end.

Similarly, based on piT,, (A4, B) < PTS, (A, B),
ipT,(A,B) < PTS,(A,B) or ipT, (A, B) &
PTS, (B, A°), the corresponding algorithms can
be casily obtained for the match and the tree con-
struction.

4. Analysis and contrast

The number of comparison operations is used as
a measure of time complexity for the CBTTIT prob-
lem in this article. In this section, the algorithm
ConstructTree is analyzed and contrasted with
the best two previous sequential algorithms, ie., A.
Andersson and S. Carlsson’s and E. Makinen’s.

4.1 Lower and upper bounds

(1) A. Andersson and S. Carlsson’s Algorithm"
The algorithm is shown in Appendix B. There

arc 5 comparisons in turn, i.c.,

1. C, : not Empty(IN),

2. Cy; : current].dataFirst(IN),

3. C.2 : not Empty(IN),

4. C,,; : current].right=nil, and

5. Cy2 : First(IN)#currentT.right.data .
C.1, Cuy and C,,; can be implemented simply by in-
teger comparisons, and Cy; and Cyy are label com-
parisons. The best case for the algorithm is that the
binary tree to be constructed is a rightchain tree'®,
and in the casc the number for integer comparisons
is 3n and the number for label comparisons is n,
while the worst case for the algorithm is that the

7:16) and in the casc

binary tree is a leftchain tree
the number for integer comparisons is 4n — 1 and
the number for label comparisons is 3n — 2. In the
genceral, A. Andersson and S. Carlsson’s Algorithm
needs 4n comparisons in its best case and 7n — 3

comparisons in its worst case.

(2) E. Makinen’s Algorithm'?
The algorithm is shown in Appendix C. There

are 6 comparisons in turn, i.c.,
1. Cj : preindex< n,

2. Cyy : preorder|preindex]=inorder[inindex],
3. Cyz : inorder[inindex]#topT.label,

4. Cys : inorder[inindex]=top].label,

5. Cyq4 : inorder[inindex]=top].label, and

6. Cjg : preindex< n.

C;1 and Cjs arc integer comparisons, and Cy;, Cyz,
Cy3 and Cyy are label comparisons. The best casc
for the algorithm is that the binary tree to be con-
structed is a leftchain tree, and in the case the num-
ber for integer comparisons is n and the number for
label comparisons is 2n — 2, while the worst case

L. Xiang, A. Lawi and K. Ushijima

Table 1 Data for average linear coefficients

n| ¢, AC p M, XU , ALCac ALCm ALCxu XU o [AC, XU 4 [Mp
1 1 4 1 2 4.0000000000 1.0000000000 2.0000000000 | 0.5000000000 2.0000000000
2| 2 19 9 9 47500000000 22500000000 2.2500000000 | 0.4736842105 1.0000000000
3l s 76 43 38 5.0666666667 2.8666666667 2.5333333333 | 0.5000000000 0.8837209302
4] 1a 294 180 149 52500000000 32142857143 2.6607142857 | 0.5068027211 0.8277777778
5| 4 128 722 574 53714285714 3.4380952381 27333333333 | 0.5088652482 0.7950138504
6] 132 4323 2847 2202 | 54583333333 3.5946969697 2.7803030303 | 0.5093684941 0.7734457323
7] 420 16588 11143 8448 | 55238095238 37106227106 2.8131868132 | 0.5092838196 0.7581441264
8| 1430 63778 43472 32461 | 55750000000 3.8000000000 2.8375000000 | 0.5089686099 07467105263
9| 462 | 245752 169390 124982 | 56161616162 38710635769 28562091503 | 0.5085696149 0.7378357636
10 | 16796 | 948974 659906 482222 | 5.6500000000 39289473684 28710526316 | 0.5081509082 07307434695
10| ss786 | 3671864 2571726 1864356 | 5.6783216783 3.9770229770 28831168831 | 05077410274 07249434815
12] 208012 | 14233964 10028504 7221634 | 5.7023800524 4.0175983437 28931159420 | 0.5073522738 0.7201107962
13 | 742000 | 55271760 39135072 28022188 | 5.7230769231 4.0523076923 29015384615 | 05069892473 0.7160212604
14 [2674440 |214958115 152851675 108909140 | 5.7410714286 4.0823412698 29087301587 | 05066528426 0.7125151883

for the algorithm is that the binary tree is a full
tree (when n is odd) or a tree with only one inter-
node without the left subtree (when n is even), and
in the case the number for integer comparisons is
n+ | (n —1)/2] and the number for label compar-
isons is 3n — 3 4 [(n — 1)/2]. In the general, E.
Makinen’s Algorithim neceds 3n — 2 comparisons in
its best case and 5n—54 (1—(~1)")/2 comparisons

in its worst case.

(3) Our Algorithm

Theorem 4.

The algorithm ConstructTree needs 3n — 2 com-
parisons in its best casc and 3n — 1 comparisons in
its worst casc.

Proof.

Note that in the algorithm ConstructTree,

1. there are only three clauses including com-
the
with ’(preindex> 1), the while clause with
'(VirtualStackT.label#preorder[preindex])’ and
the if clause with *(inindex= 1)’;

parison operations, i.e., while clause

2. the initial values of the variables preindex and
inindex are n and n — 1 respectively;

3. the variables preindex and inindex arc sub-
tracted by 1 for cach time in the body of its
while clause respectively;

4. the final valuc of the variable preindex is 1,
while the final value of the variable inindex
is 1 when preorder[l]=inorder[l] or 0 when
preorder|1]#inorder{1];

5. the if clause is executed for only one time.
Therefore, for the algorithm ConstructTree, the
number of integer comparisons is n+1, and the num-
ber of label comparisons is (n—1)+ (n—2) = 2n—3
when preorder[l]=inorder[1] or (n — 1) + (n — 1) =
2n — 2 when preorder[1}#inorder[1]. This completes
the proof. O

4.2 Average linear coefficients
For the three linear algorithms above, we can cre-
ate a table to show their average linear coeflicients
by
1. using an algorithm in 17) or 18) to enumerate
binary trees,
2. obtaining its preorder and inorder traversals
for each tree,
3. constructing the tree from the traversals by
each of the three algorithms, and
4. adding up the number of comparisons.

Such a table is given in Table 1, where,

C,.: the nth Catalan Number, i.e., the number
of binary trees with n nodes®,

AC,,: the number of comparisons needed by A.
Andersson and S. Carlsson’s algorithm to con-
struct all the binary trees with n nodes,

M,,: the number of comparisons needed by E.
Makinen’s algorithm to construct all the binary
trees with n nodes,

XU,: the number of comparisons needed by our
algorithm to construct all the binary trees with
n nodes,

ALCac,: the average linear coefficient of A.
Andersson and S. Carlsson’s algorithm, i.e.,
(AC,/Cy)/m,

ALCm,: the average linear coefficient of E.
Makinen’s algorithm, i.e., (M,,/C,,)/n, and

ALCxu,,: the average linear coefficient of our al-

gorithm, i.e., (XU, /C,)/n.

From Table 1, it is known that

1. XU, <AC, and XU,, <M,, when n > 2,

2. ALCac,, > 5.7, ALCm,, > 4, and ALCxu,, <
3 (lim,,— o ALCxu,, = 3) when n > 12, and

3. XU, /AC, is about 50% and XU, /M,, is less
than 73% when n > 10.

On Constructing a Binary Tree from Its Traversals

5. Conclusion

The intimate relation has been revealed further
between the stack and the binary tree, and more
efficient sequential algorithm has been derived for
the CBTfIT problem.

Algorithms in 2), 3) and 13) for computing the
inorder-preorder sequence need O(n?) or O(nlogn)
time, while based on the intimate relation between
the stack and the binary tree, an efficient linear
algorithm can be obtained easily by modifying the
Algorithm Match. Such an algorithm is given in
Appendix A.

As for the efficient algorithm for computing the
preorder-inorder sequence, it can be obtained by
replacing

“ipSequence

[preindex]:=top” and
“ipSequencell]:
[

|:=top” with

“piSequence[top]:=preindex” and

“piSequence[top]:=1" respectively
in Appendix A.

In the same way based on the intimate relation
between the stack and the binary tree, a binary bit-
pattern(or bit-string)?12419) representing a binary
tree can be regarded as the admissible sequence for
passing the preorder of the binary tree through a
stack into the inorder of the binary tree, in which 1
stands for S and 0 stands for X.

References

1) A. Andersson and S. Carlsson, Construction of a tree
from its traversals in optimal time and space, Inform.
Process. Lett., 34 (1990), pp. 21-25.

2) H. A. Burgdorff, S. Jajodia, F. N. Springsteel and Y.
Zalcstein, Alternative methods for the reconstruction
of trees from their traversals, BIT, 27 (1987), pp. 134-
140.

3) G. H. Chen, M. S. Yu and L. T. Liu, Two algorithms
for constructing a binary tree from its traversals, In-
form. Process. Lett., 28 (1988), pp. 297-299.

4) M. C. Er, Enumerating Ordered Trees Lezicographi-
cally, Comput. J., 28 (1985), pp. 538-542.

5) N. Gabrani and P. Shankar, A note on the reconstruc-
tion of a binary tree from its traversals, Inform. Pro-
cess. Lett., 42 (1992), pp. 117-119.

6) T. Hikita, Listing and counting subtrees of equal size
of a binary tree, Inform. Process. Lett., 17 (1983), pp.
225-229.

7) V. Kamakoti and C. P. Rangan, An optimal algorithm
for reconstructing a binary tree, Inform. Process.
Lett.,42 (1992), pp. 113-115.

8) G. D. Knott, A numbering system for binary trees,
Comm. ACM, 20 (1977}, pp. 113-115.

9) D. E. Knuth,
of Computer Programming,

Fundamental Algorithms, The art
vol.1 Third Edition,

10)

11)

12)

13)

14)

17)

18)

19)

Addison-Wesley, Reading Mass., 1997.

E. Makinen, Constructing a binary tree from its
traversals, BIT, 29 (1989), pp. 572-575.

S. Olariu, M. Overstreet and Z. Wen, Reconstructing
a binary tree from its traversals in doubly logarithmic
CREW time, J. Parallel Distrib. Comput., 27 (1995),
pp. 100-105.

A. Proskurowski, On the Generation for Binary Trees,
J. ACM, 27 (1980), pp. 1-2.

W. Slough and K. Efe, Efficient algorithms for tree
reconstruction, BIT, 29 (1989), pp. 361-363.

I. Stojmenovic, Constant time BSR solutions to
parenthesis matching, tree decoding, and tree recon-
struction from its traversals, IEEE Trans. Parallel and
Distributed Systems, 7 (1996), pp. 218-224.

7. Wen, New algorithms for the LCA problem and the
binary tree reconstruction problem, Inform. Process.
Lett., 51 (1994), pp. 11-16.

L. Xiang and K. Ushijima, Properties on Leftchain
Trees, Research Reports on Information Science and
Electrical Engineering of Kyushu University, ISSN
1342-3819, 2 (1997), pp. 9-13.

L. Xiang, C.
oriented enumeration of binary trees, Comput. J., 40
(1997), pp. 278-291.

L. Xiang and K. Ushijima, Grammar-oriented enu-

Tang and K. Ushijima, Grammar-

meration of arbitrary trees and arbitrary k-ary trees,
IEICE Trans. Inf. & Sys., E82-D (1999), pp. 1245-
1253.

S. Zaks, Lexicographic Generation of Ordered Trees,
Theoretical Comput. Sci., 10 (1980), pp. 63-82.

Appendix A. Algorithm GETipSEQUENCE

procedure GETipSEQUENCE;
begin

inorder(0]:=a;

push O to a stack as the bottom element,

push n to the stack;

inindex:=n — 1;

preindex:=n;

while (preindex> 1) do

begin

end;

while (inorder[top]#preorder|preindex]) do
begin
push inindex to the stack;
inindex:=inindex—1;
end;
ipSEQUENCE[preindex]:=top;
pop the top element;
preindex:=preindex—1;

3

if (inindex= 1) then ipSEQUENCE1]:=1 else
begin

ipSEQUENCE]/1]:=top;
pop the top element;

end;

pop the top element (0) ;

end.

- 18 — L. Xiang, A. Lawi and K. Ushijima

Appendix B.
A. Andersson and S. Carlsson’s algorithm[!)p.24]

Appendix C.

E. Makinen’s algorithm[lo)pp.574-575]

procedure NonRecursive(var T: Tree; var PRE,
IN: NodeList);
var current, right-anc: Tree;
begin
T:=CreateNode(First(PRE));
Delete first element of PRE;
current:=T;
while not Empty(IN) do
if currentl.data#First(IN) then begin
{ current has a nonempty left subtree }
right-anc:=current;
currentT.left:=CreateNode(First(PRE));
Delete first element of PRE;
current:=current.left;
currentT.right:=right-anc
end
else begin
{ current’s left subtree has been constructed }
Delete first element of IN;
if not Empty(IN) and
(current?.right=nil or First(IN)#
current.right.data) then begin
{ current has a right subtree }
right-anc:=currentT.right;
currentT.right:=
CreateNode(First(PRE));
Delete first element of PRE;
current:=current{.right;
current{.right:=right-anc
end
else begin
{ current’s right subtree is empty }
right-anc:=currentT.right;
currentT.right:=nil;
current:=right-anc

end

procedure TreeConstruction;
begin
inindex = 1;
preindez := 1;
new(CurrentN ode);
CurrentNode 1 .label := preorder(l];
root := CurrentNode;
while preindex < n do begin
if preorder[preindex] = inorder[inindex)
then begin
preindex := preindex + 1;
inindex := inindex + 1,
if inorder[inindex] # top 1 .label
then begin
new(CurrentNode T .right);
CurrentNode := CurrentNode T .right;
CurrentNode T .label := preorder{preindex] end
end
else begin
preindex := preindex + 1;
push a pointer to CurrentNode to the stack;
new(CurrentNode T .left);
CurrentNode := CurrentNode | .left;
CurrentNode T .label := preorder|[preindez] end;
if inorder[inindex] = top 1 .label
then begin
while inorder[inindez] = top 1 .label do begin
CurrentNode := top;
pop the top element from the stack;
inindex := inindez + 1 end;
if preindex < n
then begin
new(CurrentNode | .right);
CurrentNode := CurrentNode 1 .right;
CurrentNode T .label := preorder|[preindex};end;
end;
end;{do}

end; {TreeConstruction}

