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Abstract: Many algorithms have been presented for constructing a binary tree from its traver-
sals. This problem can be solved by a sequential algorithm of linear time, such as E. Makinen's 

and A. Andersson and S. Carlsson's algorithms. If the number of comparison operations is used 

as a measure of time complexity, the linear coefficient of E. Makinen's is 3 in its best case and 

5 in its worst case, and that of A. Andersson and S. Carlsson's is 4 in its best case and 7 in its 

worst case. In this article, we give a more efficient sequential algorithm for the problem, and the 

linear coefficient is 3 in any case. 
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 1. Introduction 

  "If we are given the preorder and the inorder of 

the nodes of a binary tree, the binary tree structure 

may be constructed[ 9)p.331 1." "Postorder and in-
order together characterize the structure. But pre-
order and postorder do not[ 9) p.564 ] ." Up to now, 
many sequential and parallel algorithms have been 

presented for constructing a binary tree from its 
traversals1) 2),3),5),7),10),11),r3),14),15) H. A. Burgdorff 
et al.2) presented an 0(n2) solution, G.H.Chen et 
al.3> and W. Slough and K. Efe13> gave 0(nlogn) 
methods respectively, E. Makinen10) and A. An-
dersson and S. Carlsson' raised 0(n) algorithms 

respectively, and other researchers paid attention 
to parallel algorithms for this problem on EREW 
PRAM5>'7>, CREW PRAM11>, CRCW PRAM15> 
and BSR14) 

 Of all the sequential algorithms for the problem 

of constructing a binary tree from its traversals (the 
CBTf IT problem for short), E. Makinen's and A. 
Andersson and S. Carlsson's linear algorithms are 
the best solutions. In any sequential algorithm for 
the CBTf IT problem, the binary tree is constructed 
mainly by comparing its traversals and checking in-

teger variables for the recurrent control. Therefore, 
the number of comparison operations is used as a 
measure of time complexity in this article. Thus, 
for the CBTf IT problem with n nodes in a tree, E. 
Makinen's algorithm is of 3n — 2 complexity in its 
best case and of 5n-5+(1—(-1)n)/2 complexity in
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its worst case, and A. Andersson and S. Carlsson's 
algorithm is of 4n complexity in its best case and of 

7n — 3 complexity in its worst case. 
 By discussing properties further for the traversals 

of a binary tree, we obtain some new results, and 
based on them we propose a more efficient sequen-
tial algorithm for the CBTf IT problem, which is of 
3n — 2 complexity in its best case and of 3n — 1 

complexity in its worst case. 

 2. Properties 

In the same way as in most literatures we assume 
that the nodes of a binary tree are labeled with dis-
tinct alphanumeric labels. Thus, the traversal (pre-

order, inorder or postorder) of a binary tree with Ti 
nodes is a sequence with n distinct alphanumeric la-
bels. We denote the set of n distinct alphanumeric 
labels by En and the set of all the permutations on 
set En by P(En), then we can discuss the CBTf IT 

problem in the relation category. 

Definition 1. 

 (1) If A e P(), then A is called a sequence, 
   and A" is the converse of A (obviously A' E 

P(En) ) 
 (2) PTS1,, is a relation on P(En), s.t., < 

A,B >e PTSn, denoted by PTS„(A, B), if 
   and only if A, B E P(E,,,), and B can be ob-

   tained by Passing A Through a Stack. 

 (3) piTt, is a relation on P(En), s.t., < A, B >E 
piTa, denoted by piT„ (A,B), if and only if A, 

   B E P(E,), and A and B may be the Preorder 
and Inorder of a binary Tree respectively. The 

   binary tree with the preorder A and the inorder 
   B is denoted by Tpz (A, B). 

 (4) ipT„ is a relation on P(En), s.t., < A, B >e



 ipT„.„, denoted by ipT,, (.A, B), if and only if A, 
   B E P(>,„,), and A and B may be the Inorder 

   and Postorder of a binary Tree respectively. 
 Thus, the result on [ ̀ '>p.331 ] can be expressed 

as "piT,, (A, B) PTS.,,, (A, B)” that sequences A 
and B may .be the preorder and inorder traversals 
of a binary tree respectively if and only if sequence 
B can be obtained by passing sequence A through 
a stack. New properties on PTS.,,, piT,,, and ipT,,, 
can be given as follows. 

Theorem 2. 
  (1) When n = 1, 2, PTS.„, is equivalent. 

 (2) When n > 3, 
     (a) PTS,,, is reflexive; 

     (b) PTS,,, is neither symmetric nor anti-
       symmetric; 

     (c) PTS„ is not transitive. 
 (3) ipT,,(A,13) PTS-„(A, B). 

 (4) PTS-„(A, B) PTS,„(B , Ac). 
Proof. Since proofs for (1) and (2) are simple, they 
are omitted here. Proof for (3) can be obtained eas-
ily, similar to that for "piT„ (A, B) PTS„ (A, B)” 

[ p.564 ]. Therefore, only the proof for (4) is given 
as follows. 

If PTSI,, (A, B), i.e., sequence B with n elements 
can be obtained by passing A through a stack, then 
the operations for passing A through a stack can be 
described by an admissible sequence of n S's and n 
X's[ 9)pp.242-243 ], where S stands for moving an 
element from the input into the stack, and X stands 
for moving an element from the stack into the out-
put. "An admissible sequence is one in which the 
number of X's never exceeds the number of S's if 
we read from the left to the right[ 9)p.536 ].” Let 
Ssx be the admissible sequence for PT SU (A, B), 
since "no two different admissible sequences give the 
same output permutation [ '))p.243 ] ,” Ss x is the on-
ly one admissible sequence for PTS„(A, B). If we 
exchange all S's for all X's in Ssx, i.e., the con-
verse sequence of Ssx , to get a new sequence of n 
S's and n X's which we denote by E(Ssx), then 
E (S x) is an admissible sequence, too, and S (Ssx ) 
is just the admissible sequence for PTS„(B , Ac). 
This completes the proof. ^ 

Corollary 3. 
 (1) piT,,,(A, B) PTS.„(Bc, At). 

 (2) ipT,„ (A, B) PTS,,. (B", A"). 
Proof. 

 (1). From piT,, (A, B) PTS„(A,13) 
     and Theorem 2.(4). 

 (2). From Theorem 2.(3) and (4). ^

 3. Algorithm 
 From corollary 3.(1), we know that the preorder 

A can be regarded as the sequence formed by using 
a stack to change the order of elements in the in-
order B conversely. In other words, we can design 
a match algorithm in which the inorder B is to 
be scanned conversely, and the order of elements in 
the inorder B is to be changed by a stack in order to 
rriatch elements in the preorder A conversely. Such 
a match algorithm can be described as follows. 

Algorithm Match 
procedure Match; 
begin 
  push a to a stack as the bottom element; 

  push inorder[n] to the stack; 
inindex:=n — 1; 
preindex:=n; 
  while (preindex> 1) do 

  begin 
    while (top�preorder[preindex]) do 

    begin 
       push inorder[inindex] to the stack; 

inindex:=inindex-1; 
     end; 

     pop the top element; 
preindex:=preindex-1; 
  end; 

  if (inindex= 1) then 
  begin 

{ inorder[1] matches preorder[1], } 
{ inorder[1] (preorder[1]) is the label of the root, and } 

     { the root has not the left subtree. } 
  end else 

  begin 
     { the top element matches preorder[1] } 

    { the top element (preorder[1]) is the label of the } 
     { root, and the root has the left subtree. } 

     pop the top element; 
  end; 

  pop the top element (cr) ; 
end. 

 Since the preorder A and the inorder B can be ex-
pressed as A = rALAR and B = BLr13R respective-
ly, where, r is the label of the root, and T pi (AL, BL) 
and Tpi (AR, BR) are the left and right subtrees of 
r respectively, the algorithm Match can be under-
stood as the following steps. 

 1. Using the stack to match BR with AR; 
 2. pushing r of B to the stack; 

 3. using the stack with the bottom element r to 
   match BL with AL; 

 4. popping r from the stack to match r of A. 
Further, we know in the algorithm Match that



 1. when an element  bi of B is pushed to the stack, 

   the right-subtree of bi can be determined; 

 2. if b,i is popped as soon as it is pushed to the 

   stack, the left-subtree of bi is empty; 

 3. if bi is popped as soon as b1 is popped, bj is 

   the left-son of bi; 

 4. when bi is popped from the stack, the subtree 

   with the root bi can be determined. 

 Therefore, by modifying the algorithm Match, 

we can obtain an algorithm using a stack to con-

struct a binary tree from its traversals. If we pay at-

tention to that the left pointer of a node is not used 

after the node is created until the node is popped 

from the stack, we can only use a pointer Virtu-

alStack instead of the stack. Thus, we obtain the 

following algorithm ConstructTree. 

Algorithm ConstructTree 
procedure ConstructTree; 
begin 

VirtualStack:=CreateNode(a); 
CurrentNode: =CreateNode(inorder[n] ); 
CurrentNodeT . right: =nil; 
CurrentNodel .left: =V irtualStack; 
VirtualStack: =CurrentNode; 
SubTree:=nil; inindex:=n — 1; preindex:=n; 

  while (preindex> 1) do 
  begin 

while (VirtualStacki.label�preorder[preindex]) do 
     begin 

CurrentNode:=CreateNode(inorder[inindex] ); 
CurrentNodeT . right: =SubTree; 
CurrentNodel.left: =VirtualStack; 
VirtualStack: =CurrentNode; 
SubTree:=nili; 
inindex:=inindex-1; 
     end; 

CurrentNode: =V irtualStack; 
VirtualStack:=CurrentNodel.left; 
CurrentNodel .left: =SubTree; 
SubTree:=CurrentNode; 

preindex:=preindex-1; 
  end; 

  if (inindex= 1) then 
  begin 

root:=CreateNode(inorder[1]); 
root l.left: =nil; 
root T. right: =SubTree; 

   end else 
  begin 

root:=VirtualStack; 
V in ualStack: =root 1.left; 

     root T.left: =SubTree; 
  end; 

  dispose(VirtualStack); { i.e., a } 
end.

 Similarly, based on piT,„ (A, B) PTS,,,, (A, B), 
ipTn (A, B) PTST, (A, B) or ipT„ (A, B) 
PTST, (B`', A<), the corresponding algorithms can 
be easily obtained for the match and the tree con-
struction. 

 4. Analysis and contrast 
  The number of comparison operations is used as 

a measure of time complexity for the CBTf IT prob-
lem in this article. In this section, the algorithm 
ConstructTree is analyzed and contrasted with 
the best two previous sequential algorithms, i.e., A. 
Andersson and S. Carlsson's and E. Makinen's. 

 4.1 Lower and upper bounds 

(1) A. Andersson and S. Carlsson's Algorithm'  
 The algorithm is shown in Appendix B. There 

are 5 comparisons in turn, i.e., 

 1. C,1 : not Empty(IN), 
 2. Cdi : currentT.data�First(IN), 

 3. C.2 : not Empty(IN), 

  4. C?11 : currenti.right=nil, and 
 5. Cd2 : First(IN)�currentT.right.data . 

Ce1 i Cc2 and C,d can be implemented simply by in-
teger comparisons, and Cd1 and Cd2 are label com-

parisons. The best case for the algorithm is that the 
binary tree to be constructed is a rightchain tree' , 

and in the case the number for integer comparisons 
is 3n and the number for label comparisons is n, 
while the worst case for the algorithm is that the 
binary tree is a leftchain treen'16), and in the case 
the number for integer comparisons is 4n — 1 and 

the number for label comparisons is 3n — 2. In the 

general, A. Andersson and S. Carlsson's Algorithm 
needs 4n comparisons in its best case and 7n — 3 
comparisons in its worst case. 

(2) E. Makinen's Algorithmn10)  
  The algorithm is shown in Appendix C. There 

are 6 comparisons in turn, i.e., 

  1. Ca : preindex< n, 

  2. CA : preorder[preindex]=inorder[inindex], 
  3. Cd2 : inorder[inindex]7top1.label, 
  4. Cd3 : inorder[inindex] =top T.label, 

  5. Cd4 : inorder[inindex]=topT.label, and 
  6. Ci2 : preindex< n. 

Ca and Ci2 are integer comparisons, and Cdi, Cd2, 
Cd3 and Cd4 are label comparisons. The best case 
for the algorithm is that the binary tree to be con-
structed is a leftchain tree, and in the case the num-
ber for integer comparisons is n and the number for 

label comparisons is 2n — 2, while the worst case
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for the algorithm is that the binary tree is a  fall 
tree (when It is odd) or a tree with only one inter-

node without the left subtree (when n is even), and 
in the case the number for integer comparisons is 

[(n — 1)/2] and the number for label compar-
isons is 3n — 3 L(n — 1)/24. In the general, E. 

Makinen's Algorithm needs 3n — 2 comparisons in 
its best case and 5n —5+  (1— (-1)n)/2 comparisons 
in its worst case. 

(3) Our Algorithm  
Theorem 4. 
The algorithm ConstructTree needs 3n — 2 com-
parisons in its best case and 3n — 1 comparisons in 
its worst case. 
Proof. 
Note that in the algorithm Construct'I4'ee, 

 1. there are only three clauses including com-
   parison operations, i.e., the while clause 

   with '(preindex> 1)', the while clause with 
' (VirtualStackT .label�preorder [preindex] )' and 

   the if clause with '(inindex= 1)'; 
 2. the initial values of the variables preindex and 

inindex are 'n and n — 1 respectively; 
 3. the variables preindex and inindex are sub-

   tracted by 1 for each time in the body of its 
   while clause respectively; 

 4. the final value of the variable preindex is 1, 
   while the final value of the variable inindex 

   is 1 when preorder[1]=inorder[1] or 0 when 
preorder [ 1 ] � inorder [1]  ; 

 5. the if clause is executed for only one time. 
Therefore, for the algorithm ConstructTree, the 
number of integer comparisons is n+1, and the num-
ber of label comparisons is (n — 1) (n — 2) = 2n — 3 
when preorder[1]=inorder[1] or (n — 1) (n — 1) = 
2n-2 when preorder [1]�inorder[1]. This completes 
the proof. ^

 4.2 Average linear coefficients 
 For the three linear algorithms above, we can cre-

ate a table to show their average linear coefficients 
by 

 1. using an algorithm in 17) or 18) to enumerate 
   binary trees, 

 2. obtaining its preorder and inorder traversals 
   for each tree, 

 3. constructing the tree from the traversals by 
   each of the three algorithms, and 

 4. adding up the number of comparisons. 

Such a table is given in Table 1, where, 
Cm,: the nth Catalan Number, i.e., the number 

   of binary trees with n nodes9), 
ACT,: the number of comparisons needed by A. 

Andersson and S. Carlsson's algorithm to con-
   struct all the binary trees with n nodes, 

Mn: the number of comparisons needed by E. 
Makinen's algorithm to construct all the binary 

   trees with n nodes, 
XUn: the number of comparisons needed by our 

   algorithm to construct all the binary trees with 
    n nodes, 

ALCacn: the average linear coefficient of A. 
   Andersson and S. Carlsson's algorithm, i.e., 

(ACf/CT,) /n, 
ALCmn: the average linear coefficient of E. 

   Makinen's algorithm, i.e., (Mn/Cn)/n, and 
ALCxu,n: the average linear coefficient of our al-

   gorithm, i.e., (XUn/Cn)/n. 

 From Table 1, it is known that 

 1. XUn <ACn and XUn <Mn when n > 2, 
 2. ALCacn > 5.7, ALCmn > 4, and ALCxu7,, < 

   3 (limn_,OALCxun = 3) when n > 12, and 
 3. XUn/ACn is about 50% and XUn/Mn is less 

   than 73% when n > 10.



 5. Conclusion 

 The intimate relation has been revealed further 
between the stack and the binary tree, and more 
efficient sequential algorithm has been derived for 
the CBTf IT problem. 

 Algorithms in 2), 3) and 13) for computing the 

inorder-preorder sequence need 0(n2) or 0(nlogn) 
time, while based on the intimate relation between 
the stack and the binary tree, an efficient linear 
algorithm  can be obtained easily by modifying the 
Algorithm Match. Such an algorithm is given in 
Appendix A. 

 As for the efficient algorithm for computing the 

preorder-inorder sequence, it can be obtained by 
replacing 

"ipSequence[preindex]:=top" and 
  "ipSequence[1]:=top" with 

"piSequence [top] : =preindex" and 
  "piSequence [top] : =1" respectively 

in Appendix A. 
 In the same way based on the intimate relation 

between the stack and the binary tree, a binary bit-

pattern(or bit-string)4)'12)49) representing a binary 
tree can be regarded as the admissible sequence for 

passing the preorder of the binary tree through a 
stack into the inorder of the binary tree, in which 1 
stands for S and 0 stands for X. 
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  Appendix A. Algorithm GETipSEQUENCE 

procedure GETipSEQUENCE; 
begin 

inorder [0] : =cr; 

  push 0 to a stack as the bottom element; 
  push n to the stack; 

inindex:=n — 1; 

preindex:=n; 
  while (preindex> 1) do 

  begin 
    while (inorder [top] preorder [preindex]) do 

    begin 

       push inindex to the stack; 
inindex:=inindex-1; 
     end; 

ipSEQUENCE [preindex] : =top; 

     pop the top element; 
preindex:=preindex-1; 
  end; 

  if (inindex= 1) then ipSEQUENCE[1]:=1 else 
  begin 

ipSEQUENCE[1]:=top; 

     pop the top element; 
  end; 

  pop the top element (0) ; 
end.



            Appendix B. 

A.  Andersson and S. Carlsson's algorithm[1)p.24] 

procedure NonRecursive(var T: Tree; var PRE, 
IN: NodeList); 
var current, right-anc: Tree; 
begin 
   T:=CreateNode(First(PRE)); 

   Delete first element of PRE; 
    current:=T; 

   while not Empty(IN) do 
      if currentl.data#First(IN) then begin 

{ current has a nonempty left subtree } 
right-anc:=current; 
current{.left:=CreateNode(First(PRE)); 
          Delete first element of PRE; 
cu rrent:=current 1.left; 
currentT. right:=right-anc 

      end 
       else begin 

{ current's left subtree has been constructed } 
          Delete first element of IN; 

         if not Empty(IN) and 

(currentl.right=nil or First(IN) 
currentl.right.data) then begin 

             { current has a right subtree } 
right-anc:=currentT .right; 
currentl.right:= 
            CreateNode(First(PRE)); 
             Delete first element of PRE; 
current:=currentl.right; 
currenti.right:=right-anc 
         end 

          else begin 
{ current's right subtree is empty } 
right-anc:=current T.right; 
current 1.right:=nil; 
current:=right-anc 
         end 

      end 
end

            Appendix C. 

E. Makinen's algorithm[10)pp.574-575] 

procedure TreeConstruction; 
begin 

   inindex := 1; 

   preindex := 1; 
new(CurrentNode); 
   CurrentNode 1 .label := preorder[1]; 

   root := CurrentNode; 
   while preindex < n do begin 

      if preorder[preindex] = inorder[inindex] 
      then begin 

          preindex := preindex + 1; 
          inindex := inindex + 1; 

         if inorder[inindex] � top T .label 
          then begin 

             new(CurrentNode 1 .right); 
CurrentNode := CurrentNode T .right; 

              CurrentNode 1 .label := preorder[preindex] end 
           end 

          else begin 

preindex := preindex + 1; 
              push a pointer to CurrentNode to the stack; 

            new(CurrentNode T .left); 
              CurrentNode := CurrentNode ? .left; 

             CurrentNode T .label := preorder[preindex] end; 
      if inorder[inindex] = top T .label 

      then begin 
         while inorder[inindex] = top I .label do begin 

          CurrentNode := top; 

          pop the top element from the stack; 
inindex := inindex + 1 end; 

          if preindex < n 
          then begin 

             new(CurrentNode T .right); 
CurrentNode := CurrentNode 1 .right; 

             CurrentNode T .label := preorder[preindex];end; 
            end; 

end;{do} 
end; {TreeConstruction}


