
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Flexible Server Selection in Widely Distributed
Environments

Shimokawa, Toshihiko
Department of Computer Science and Communication Engineering, Graduate School of Information
Science and Electrical Engineering, Kyushu University

Yoshida, Norihiko
Department of Computer and Information Sciences,Nagasaki University

Ushijima, Kazuo
Department of Computer Science and CommunicationEngineering, Graduate School of Information
Science and Electrical Engineering, Kyushu University

https://doi.org/10.15017/1500430

出版情報：九州大学大学院システム情報科学紀要. 5 (1), pp.7-12, 2000-03-24. 九州大学大学院システ
ム情報科学研究院
バージョン：
権利関係：

九州大学大学院

システム情報科学研究科報告

第5巻 第1号 平成12年3月

Research Reports on Information Science and

Electrical Engineering of Kyushu University

 Vol.5, No.1, March 2000

 Flexible Server Selection in Widely Distributed Environments*

Toshihiko SHIMOKAWA**, Norihiko YOSHIDA***and Kazuo USHIJIMA**

 (Received December 10, 1999)

Abstract: Many service providers prepare multiple servers to cope with over loading . In such
cases, the problem is how to select the best server out of them. Existing server selection models

impose user extra effort or have less flexibility. In this paper , we describe a new server selection
mechanism. We add server selection function to DNS. This mechanism is flexible , and has wide
applicability.

Keywords: Internet, Load balancing, DNS, Name Server, Tenbin

 1. Introduction

 There are very many services on the Internet
these days. As the number of users has been in-
creasing dramatically, we face to a problem of serv-
er overloading. To solve this, service providers often

prepare multiple servers. Now the problem is how
to distribute requests among these servers. Put an-
other way, the problem is how to select best server
out of them.

 Server selection mechanisms used currently im-

pose heavy tasks on users, or have less flexibili-
ty. Consequently, we study on flexible server se-
lection mechanism for effective load balancing a-
mong multiple servers. To realize this, we intro-
duce "query preprocessor" attached to a Domain
Name System(DNS) server. It can coordinate vari-

ous server evaluation methods and selection mech-
anisms. It works as a proxy server, and imposes no

need of modifying working DNS network.
 The rest of this paper is organized as follows. Sec-

tion 2 overviews the server selection models which
are already used or proposed. We show our flexible
server selection mechanism in Section 3. We evalu-

ate our mechanism in Section 4. Section 5 overviews
related works. Section 6 is a conclusion.

 2. Server selection models

 2.1 The ideal model
 There are many kinds of services that suffer server

overload and require server multiplication. There-
fore, the model should not depend on the kind of

* This research was supported by the JSPS-RFTF-

96P00603.

** Department of Computer Science and Communication

Engineering

* * * Department of Computer and Information Sciences,

Nagasaki University

Fig.1 Client side se-

 lection model

Fig.2 Server side selec-

 tion model

service.
 Multiplied servers may locate in wide area.

Therefore, the model should be able to implement
distributedly.
 The model should be scalable, as the server selec-
tion should not be a new bottleneck.

 2.2 Existing models

 We classify server selection models by where to
select a server.

 1. Client side selection model
 2. Server side selection model
 3. Intermediate system selection model

 2.3 Client side selection model
 In this model, a client, or a user of the client,

selects a server(Fig.1). The client or the user is as-
sumed to have enough knowledge to distribute the
load among the multiplied servers. This assumption
is unrealistic. The user may be imposed an extra

effort.

 2.4 Server side selection model
 In this model, a server that receives a request

makes a selection(Fig.2). This front-end server,
which we name the "main server" , forwards the re-

quest to the best server out of back-end multiplied
servers.
 This model is flexible because it can adapt various

Fig.3 Network selection

 model

Fig.4 Application gate-

 way selection

 model

situations. However, the main server may become

a new bottleneck, therefore this model lacks scala-
bility.

 2.5 Intermediate system selection
 model

 There can be many intermediate systems between
clients and servers. Such intermediate systems se-
lect a server in this model. We classify this model
into the below three sub-models according to net-
work layers where selection takes place.

 2.5.1 Network selection model
 In this model, the network itself selects a

server(Fig.3). Anycast in IP version 6 is one of
the implementations of this model.

 All network-based applications use the network.
Therefore, this model has the best availability.
However, technologies to implement this model are

not enough matured. This model lacks flexibility of
server selection mechanisms.

 2.5.2 Application gateway selection model
 There are many intermediate systems between

clients and servers in the application layer. Proxy
servers at firewalls or cache servers to reduce com-

munication traffics are typical examples of these in-
termediate systems. We call these application-layer
intermediate systems "application gateways' .

 In this model, an application gateway selects a
server(Fig.4). Flexibility of this model is the same
as flexibility of the application gateway. For em-

ploying this model, all applications must use the
application gateway, therefore this model lacks ap-

plicability.
 2.5.3 Meta server selection model

 There are meta services used before real service
such as DNS, SLP(Service Location Protocol), URL

Resolveri), and so on. In this model, servers for
such meta services select a server. Flexibility and
applicability of this model depend on flexibility and
applicability of the meta services.

Fig.5 Meta server selection model

 2.6 Widely used models

 The client side selection model and meta serv-

er selection model using round robin DNS are two

widely used models today.

 We show weak points of the client side model in

Section 2.3. This model is easy to implement, how-

ever not appropriate.

 The meta server selection model using round

robin DNS has wide applicability. Almost all ap-

plications use DNS to resolve hostnames to IP ad-
dresses. Therefore, this approach has wide applica-

bility. It is transparent and independent from the

kind of service, client software and server software.

DNS servers work distributedly. Therefore, they do

not become a bottleneck. However this model has

less flexiblity. This model can select a server using

a simple round robin algorithms only.

 3. Flexible server selection using DNS

 We propose new server selection mechanism2) .

We add flexible server selection capability to DNS.

Almost all applications use DNS to resolve host-

names to IP addresses. Therefore, this approach

has wide applicability. It is service, client software

and server software independent and transparent.

DNS servers work distributedly. Therefore, they do

not become a bottleneck.

 We introduce "query preprocessor" attached to

existing DNS network. Our "query preprocessor"

is desinged as a proxy server. We show a detail at

Section 3.1.

 Many flexible server evaluation criterions can in-

tegrate into "query preprocessor." Therefore, our

method can adopt many situations. We show these

criterions at Section 3.2.
 "Query preprocessor" can act server selection at

both server side and client side. Many of other serv-

er selection methods can act on server side only. We

show a detail in next section. Therefore, if service

providers prepare multiple servers and they do not

prepare any sophisticated server selection mecha-
nisms, users cannot enjoy these multiple servers e-

nough. However, at this situation, users can use

"query preprocessor" at client side. Then, they en-

joy multiple servers.
 When selecting on client side, the problem is how

to make candidates for selection. Because to know
which hosts are multiplied servers is not obvious.
We show the solution at Section 3.3.

 3.1 Separate preprocessor
 Now we introduce a "query preprocessor". An ex-

isting DNS server contains both hostname database
and query processor. When it receives a request, it
searches hostname database and returns an answer.

 We separate these two tasks. "Query preproces-
sor" not only answers to requests, but also selects
an IP address for the hostname using some server
selection criterions. It works as a proxy server, and
imposes no need of modifying working DNS net-
work.

 Clients must change only one configuration item
to use "query preprocessor." The item is a DNS
server they use. If clients use DHCP or PPP,
the DNS server should be configured automatical-
ly. Therefore, in these cases, users do not need be
aware of this configuration change.

 3.2 Criterions
 There are various criterions for selecting a server:

for example, round trip time, through put, load of
servers, and so on. In this paper we focus on net-

work status like round trip time. Because, we can
evaluate it easily from client side.

 "Query preprocessor" communicates with "ob-

server" to collect network status. The observer

probes network status periodically. There are two
observation methods. One is active observation,
and the other is passive observation.

 3.2.1 Active observation
 In this method, the observer collect network sta-

tus actively, for example:
 o observe by probe packets

 o observe by service packets
 The service packets mean packets which client

and server communicate. The observer sends some

probe packets(ICMP echo request, for example) and
measures their round trip time. It uses the results
to evaluate network status.

 If a service that a client wants to use is known
beforehand, the observer can use this real service

to probe. For example, the observer may request
WWW servers to transfer some contents and mea-
sure its transfer time. However, there are no general
methods to know the service beforehand. Therefore,

we assume a service based on a hostname alias de-
fined in RFC22193 . For example, if a client requests

resolving a hostname that begins with "WWW" ,
then "query preprocessor" assumes that the client
wants to use WWW(http)service. Therefore, the
observer can try to use http packets to evaluate net-
work.
 One of weak point of the active observation

method is that observer generates useless traffics.

If we use service packets, traffic and server load is
not negligible. On the other hand, probe packets
like ICMP echo are often filtered out by firewalls;

probe packets cannot reach servers, and the observ-
er cannot evaluate network, while service packets

are rarely filtered out, and the observer can evalu-
ate network.

 3.2.2 Passive observation
 In this method, the observer passively observes

network status. Merit of this method is small net-
work overhead. Examples of passive observation
targets are listed below.

 o traffic of service packets
 o routing information

 When observing these traffic of service packets,
network evaluation would be more accurate.

 Routing information contains information to se-
lect a network route. The observer can use this in-

formation to evaluate network. For example, BGP

packets contain AS path list. The observer can corn-
pare all AS path length for all of multiple servers.

 3.3 Candidates
 When running "query preprocessor" on server

side, getting candidates is easy work. However run-
ning on client side, it is not easy. We have to collect
candidates by some way. Actual candidates are IP
addresses of the corresponding servers.

 We collect candidates from DNS in the first place.

There are four cases how multiplied servers' host-
names and IP addresses stored in DNS.

 1. Single hostname and single IP address
 2. Single hostname and multiple IP addresses

 3. Multiple hostnames and single IP address
 4. Multiple hostnames and multiple IP addresses

 In the case 1, we can collect only one IP address
and one hostname. The only candidate is this IP
address. Therefore, we cannot act selecting.

 In the case 2, we can collect all the multiple IP
addresses from DNS. We use these as candidates.

 In the case 3, we can collect only one IP address

like case 1. However, it is unusual to use this for
load balancing. Frequently, it used for virtual host-

ing.

 In the case 4, we want to collect all the multiple

IP addresses. To do this, we have to collect all the

hostnames at first. However, unfortunately, there

are no general methods to do it. Collecting these

hostnames automatically is impossible. Therefore,

we collect these by hand. We show a detail in next

section.

 3.3.1 Multiple hostnames and multiple IP

 addresses

 It is common to prepare multiple servers for load

balancing. Giving them indivisual hostnames is not

special, in these days. There are no general meth-

ods to know these hostnames automatically. We

must list up these hostnames by hand. Then, re-

solve these hostnames to IP addresses. We use these

IP addresses for candidates.

 We use all these IP addresses for candidates to

resolve all these hostnames. "Query preprocessor"

may answer an IP address that a requested host-

name does not have.

 Suppose for example that there are two IRC

servers "irc.foo.org" and "irc.bar.net." The IP ad-

dress of irc.foo.org is 133.5.0.1, and irc.bar.net is

192.50.13.250. When "query preprocessor" receives

request to resolve irc.foo.org, it use either 133.5.0.1

or 192.50.13.250 for candidates. It can answer

192.50.13.250 that irc.foo.org does not have.
 "Query preprocessor" can cope with multiple

hostnames and multiple IP addresses. However,

there is a limitation of applicability because we have

to make a list by hand.

 4. Consideration

 4.1 Implementation of prototype sys-

 tem

 We implement a prototype system. We call this
"Tenbinti" . Tenbin contains a request receiver, a

criterion database, a criterion decider, and some

server evaluators, each of which has a selection cri-

terion.

 When the request receiver receives a request from

clients to resolve a hostname, Tenbin parses the re-

quest. If Tenbin does not know type of request,
Tenbin forwards the request to predefined existing

DNS server. The criterion decider selects a server-

selecting criterion for other requests. The decider

searches the criterion database using the request-

ed hostname. In current implementation, we must

t1 Tenbin stands for "Tenbin is Experimental Name server
for load Balanced Internet"

 Table 1 Selection counts at Kyushu Univ.

hostname - count ratio(%)

ring.nacsis.ac.jp. 1486 51.1

ring.ocn.ad.jp. 602 20.7
ring. erl.go.jp. 223 7.68

ring.aist.go.jp. 150 5.16
ring.asahi-net.oe.jp. 130 4.47

ring.so-net.ne.jp. 124 4.27

ring.crl.go.jp.74 2.54
ring.jah.ne.jp.55 1.89

ring. shibaura-it. ac. j p. 43 1.48
ring.omp.ad.jp.9 0.31

ring.ip-kyoto.ad.jp.9 0.31
ring.htcn.ne.jp1 0.03

register all the hostnames that they want to use

Tenbin's server-selecting mechanism beforehand.

 All the server evaluators have their own evalua-

tion executors. Each evaluation executor communi-

cates with the observer to obtain some information

they need, if necessary. Tenbin passes the request

to a decided evaluation executor, and it evaluates

servers and resolves the hostname to IP address.

 When there is no server evaluator for the re-

quest, Tenbin uses a default server evaluator. The
current default server evaluator simply forwards the

received request to predefined existing DNS server.

 This is how Tenbin works. The current imple-

mentation uses the active observation method using

probe packets, and the observer is embedded in the
server evaluator. We use an object-oriented script

language Ruby') for coding Tenbin.

 4.2 Evaluation using prototype system

 We examined Tenbin's capabilities and perfor-

mance on some networks.

 4.2.1 Result of selected hosts

 We examined transition of server selection results.

In this examination, we used ftp.ring.gr.jp.5> for

server selection targets. The ftp.ring.gr.jp has 14 IP

addresses, and they locate at 14 different networks.

We measured round trip time to each of them ev-

ery 30 minutes by sendig ICMP ECHO packets. We

show the result in Table 1, and plot selected servers

in Fig.6.

 The graph in Fig.6 illustrates that round trip

time between Tenbin and target servers does not

change often. Therefore, selected server does not

change often usually.

 UalO

Fig.6 round trip times

 4.2.2 Result difference by location
 Next, we studied difference of selected host by lo-

cation of Tenbin. We locate Tenbin some locations.

We show the result of selected hosts at Nagasa-
ki University(Table 2), WIDE Project FUKUO-
KA NOC(Table 3) and WIDE Project NEZU
NOC(Table 4). These tables show only top three
hosts of selected hosts.

 We see from Table 1 and Table 2 that these
two results are similar. From a network topology

standpoint of view, Kyushu University and Nagasa-
ki University locate at same AS(Autonomous Sys-
tem).
 We also see from these two tables that a tendency
of selected hosts show concentration.

 From a geographical location, Kyushu University
and WIDE Project FUKUOKA NOC are locate in
the same campus. However from a network topol-
ogy standpoint of view, they are locate at different
ASs. We see from Table 1 and Table 3 that these

two results are very different.
 From a view point of network topology, WIDE

Project FUKUOKA NOC and WIDE Project
NEZU NOC locate at same AS. However these two
result show different tendency. We think this differ-
ence comes with difference of connectivity between

other ASs.
 We see from Table 3 that the tendency of select-

ed hosts does not show concentration. This comes
from a change of network topology.

 For example, topology between WIDE Backbone
and NSPIXP3 t2 changed on October 14. Table 5
is a result of selected hosts before October 14. It

shows a tendency.
 These results show that Tenbin selects the nearest

server automatically. Users can use the best server

 t2 one of major Internet exchange in Japan

Table 2 Selected times at Nagasaki Univ.

hostname

ring.nacsis.ac.jp.

ring.ocn.ad.jp.

ring.shibaura-it.ac.jp.

ratio(%)

88.2

10.0

0.53

Table 3 Selected times at WIDE FUKUOKA NOC

hostname

ring.shibaura-it. ac. j p.

ring.asahi-net.or. jp.

ring.omp.ad.jp.

ring.ocn.ad.jp.

ratio(%)

20.0

16.4

10.6

10.6

Table 4 Selected times at WIDE NEZU NOC

hostname

ring.asahi-net.or.jp.

rmg.nacsis.ac.jp.

ring.ocn.ad.jp.

ratio(%)

58.0

29.1

12.2

Table 5 Selected times at WIDE FUKUOKA NOC

 (before 1999/10/14 10:00)

hostname

ring. omp.ad.jp.

ring.ip-kyoto.ad.jp.

ring.htcn.ne. jp.

ratio(%)

58.3

22.1

11.0

automatically.

 4.2.3 Overheads

 We examined an overhead of Tenbin. When Ten-

bin forwards a request to the existing DNS server,

average overhead time of Tenbin was 9.1 ms. We

think this overhead is negligible.

 4.3 Limitation

 4.3.1 Specific hosts

 There can be a case that users or administrators

want to use a specific server out of multiple servers.

Our DNS server may select another host. There are

two solutions for this problem.

 1. Use an IP address directly instead of the host-

 name. It is difficult to use the IP address for

 ordinary users. However, the case which users

 want to use a specific server must be a special

 case, administrative work for example. There-

 fore, this is practical.

 2. Giving individual hostnames one by one.

 Users can access a specific host using its specif-

 ic hostname. However, if users use this specific

 host to receive ordinary service, load balancing

 does not function.
 4.3.2 Select using only hostname

 To use a service, information other than host-
naine is required: the port number of TCP/UDP,

path name of contents for example. If these are
different between multiplied servers, our proposal
method is not usable.

 For instance, some of IRC servers provide services
on multiple port for large number of clients. How-
ever, not all servers provide such service. Therefore,
we cannot make all these IRC servers as candidates.

 5. Related works

 Smart Clients') is a one of client side selection
models. Smart Clients use Java applet to deliver
server status to clients. This system have to modify
both server and client softwares. It lacks applica-

bility.
SWEB7> is a mixture of round-robin DNS and

server selection model. In this system, server selec-
tion was done by two steps. First step, DNS server
selects a first server by round-robin. Second step,
the selected first server selects a final server out of

multiple servers and re-direct request to the final
server. This system can evaluate server status on
the first server. However, to evaluate server sta-
tus, servers has to modify to collect server status.
Therefore, it lacks applicabity.

 The system by Shigechika et al. 8) uses network

selection model. It assigns a single IP address to
multiple servers, and lets routing mechanism select
an appropriate server.

 The weighted round robin algorithm') is a simple
extension of round-robin DNS. It assigns multiple
IP addresses to a server according to servers' ca-

pacity. It can evaluate servers' capacity and its load
occasionally. However, it cannot evaluate network
capacity and load.

 Approach of Cluster DNS10) is similar to ours. It
add server selection mechanism to DNS. However it,
and all of above except round-robin DNS, assume

that they, at least a part of them, run on server side.
Therefore, if service providers do not use these sys-
tems, users cannot enjoy multiple servers.

 Distributed Director') is a product for load bal-
ancing. It uses the applicabity gateway selection
model and the meta server selection model. It use

routing information to select a server. If service

providers cannot get enough routing information,
they cannot perform selection.

 6. Conclusion

 In this paper we propose a design for flexiblely
server selection mechanism using DNS server that
embeds various server evaluation criterions. This

system design has wide applicability, and runs dis-
tributedly. We implement a prototype system, and
evaluate it.

 The future direction of this study will include:
 o Detailed result analysis

 o Estimate using widely distributed service
 o Design and implement various criterion

 o Develop better criterion selection mechanisms

 Current Tenbin implements only active observa-
tion with probe packets. We must implement other
observation methods, and evaluate these.

 Acknowledgments

 We would like to thanks Mr. Hiroshi Esaki(Tokyo

University), and Mr. Ikuo Nakagawa (INTEC Sys-
tems Laboratory) for offering host for running Ten-
bin at WIDE Project NEZU NOC.

 References
 1) S. Kurihara, T. Hirotsu, T. Takada, S. Sugawara,

 "Adaptive routing selection for the URL resolver, "
 The Seventh Workshop on Multiagent and Cooperative

 Computation, Dec. 1998 (in Japanese)
 2) T. Shimokawa, N. Yoshida, K. Ushijima, "Flexible

 Load Balancing Mechanism using Name Server," In-
 ternet Conference '99, Dec. 1999 (in Japanese)

 3) M. Hamilton, R. Wright, "Use of DNS Aliases for Net-
 work Services," RFC 2219, Oct. 1997

 4) Y. Matsumoto, "Ruby the Object-Oriented Script Lan-
 guage, " http://www.ruby-lang.org/

 5) Ring Server Project, http://www.ring.gr.jp/
 6) C. Yoshikawa, B. Chun, P. Eastham, A. Vandat, T.

 Anderson, D. Culler. Using Smart Clients to Build S-
 calable Services., Usenix '97.

 7) D. Andresen, T. Yang, V. Holmedahl and O. Ibarra.,
SWEB: Towards a Scalable WWW Server on Multi-

 Computers, Proceedings of the 10th International Par-
 allel Processing Symposium, April, 1996.

 8) N. Shigechika, O. Nakamura, N. Sasakawa, J. Mu-
 rai, "Network and Information Providing System for

 Nagano Olympic" Journal of Information Processing
 Society of Japan Vol.39 No.2, 1998(in Japanese)

 9) T. Baba, S. Yamaguchi, "A DNS based implementa-
 tion on widely load balancing mechanism, " IPSJ SIG

 Notes, 98-DSM-9, pp.37-42, May 1998 (in Japanese)
10) V. Cardellini, M. Colajanni, P.S. Yu, DNS dispatch-

 ing algorithms with state estimators for scalable Web-
 server clusters, World Wide Web Journal, Baltzer Sci-
 ence, vol. 2, no. 3, July 1999, pp. 101-113.

11) CISCO Systems Inc. DistributedDirector, http://
 www.cisco.com/warp/public/cc/cisco/mkt/scale/distr

