
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Design and Implementation of Extended Parallel
Sequoia 2000 Benchmark

Wang, Botao
Department of Intelligent Systems, Graduate School of Information Science and Electrical
Engineering, Kyushu University : Visiting Researcher

Jin, Taiyong
Department of Intelligent Systems, Kyushu University : Graduate Student

Tamura, Kenichi
Department of Intelligent Systems, Kyushu University : Graduate Student

Kimura, Kenichiro
Department of Intelligent Systems, Kyushu University : Graduate Student

他

https://doi.org/10.15017/1500429

出版情報：九州大学大学院システム情報科学紀要. 5 (1), pp.1-6, 2000-03-24. 九州大学大学院システ
ム情報科学研究院
バージョン：
権利関係：

九州大学大学院

システム情報科学研究科報告

第5巻 第1号 平成12年3月

Research Reports on Information Science and

Electrical Engineering of Kyushu University

 Vol.5, No.1, March 2000

Design and Implementation of Extended Parallel Sequoia 2000 Benchmark

 Botao WANG* , Taiyong JIN**, Kenichi TAMURA** , Kenichiro KIMURA**,

Kunihiko KANEKO***and Akifumi MAKINOUCHI***

 (Received December 10, 1999)

Abstract: Performance is a major issue in the acceptance of database, especially for the database
holding massive data. It's natural to apply parallel technology to handle these large data sets.
ShusseUo is an Object Database Management Systems(ODBMSs) and it provides persistent global
object management on persistent Distributed Shared Virtual Memory (DSVM) distributed on Net-
work Of Workstations (NOWs). This paper introduces the performance evaluation of ShusseUo
using extended Sequoia 2000 benchmark. The goal is to test the scalability and speedup of
ShusseUo while dealing with mass size of extended spatial benchmark data in parallel. Experi-
ments show that good scalability and speedup can be gotten by ShusseUo.

Keywords: Distributed shared virtual memory, Parallel spatial query, Benchmark

 1. Introduction

 There is the same trend that applications such

as scientific database, data warehouse and digital
libraries, will generate and use massive data. It is
natural to apply parallel technology to improve per-
formance in such kinds of applications. ShusseUo is
an ODBMS built on NOW which is a platform for

parallel processing. Benchmark is the crucial tool
on performance evaluation of database system. In
this report, we will introduce our design and imple-
mentation of extended parallel Sequoia 2000 bench-
mark 6) on ShusseUo. The scalability and speedup
of ShusseUo are tested based on the benchmark.

 2. Background

 2.1 ShusseUo

 NOW is a set of workstations which are connect-
ed via high speed network. Originally NOW was

proposed for the parallel computing applications.
However, database system can take advantage of
the merits of NOW 1). Distributed Shared Virtual
Memory (DSVM) of ShusseUo is a virtual shared

memory space which consists of the memory space
distributed on NOW. ShusseUo is an ODBMS. It
is built using DSVM and currently consists of two
layers: WAKASHI and INADA. WARASA is under
development now. The Fig.1 shows the layers of
ShusseUo.

 2.1.1 WAKASHI
WAKASHI8) is a distributed persistent object

storage system. It runs on the distributed UNIX

Fig.1 Layers of ShusseUo (WARASA is currently under
 development)

* Department of Intelligent Systems, Visiting Researcher

** Department of Intelligent Systems, Graduate Student

* * * Department of Intelligent Systems

platform. WAKASHI is peer-to-peer model. The
main idea of WAKASHI is mapping: persistence
is provided by memory-to-disk mapping and glob-
al data sharing is supported by DSVM mapping.
In detail, memory-to-disk mapping is realized by

UNIX mmap() system call and DSVM mapping
is realized in WAKASHI server by means of OS's

paging mechanism. After mapping, all the clients
can deal with data in database locally by local disk
caching. The heap is the basic storage unit. Fig.2
shows the architecture of WAKASHI. WAKASHI

consists of two parts: 1) servers that run as daemon

processes, 2) a client library that is linked by user
programs (client programs). The server performs
data access control and transaction management.
Page-level locking and cache coherence protocol are

used. The client library provides communication
interfaces between a client and the server on the a
site.

Fig.2 Architecture of WAKASHI

 2.1.2 INADA
 INADA offers an application platform for build-

ing object databases with a database language for
 object management. The language provides the

facilities to manage persistent objects with C++
based interface. An INADA program runs as a

WAKASHI's client and it uses the client library pro-
vided by WAKASHI. INADA provides users with
a library that allows the users to directly manip-
ulate global persistent objects (i.e., persistent ob-

jects shared by different clients on different sites).
In detail, it provides facilities of manipulating col-

lections and writing distributed parallel programs
7). ODMG2) C++ binding interface is integrated
into INADA.

 2.2 Sequoia 2000 Benchmark
 The Sequoia 2000 Project `) explores technologies

to earth science problems. The Sequoia 2000 bench-

mark 6) uses real data sets and defines 11 queries.
It is designed to represent the needs of engineering
and scientific computing. The raster, point, poly-

gon and graph types of data are defined and used
in the benchmark queries.

 3. Design for Parallel Processing

 Basically, the main source of parallelism is

partitioned parallelism9)4). There are two main
requirements for achieving effective partitioned

parallelism. First, good data declustering tech-
niques are required to evenly distribute the data
across the nodes in the parallel system. It is related

to data partition. Second, the operations must be
designed such that the operations running at a par-
ticular node accesses only the data stored locally. It
is related to the design of parallel query.

 3.1 Data Partition
 There are 3 basic partitioning techniques, round-

robin partition, range partition and hash partition.
As analyzed in 9)4), considering its best possible
data load balance, the round-robin partitioning is

selected in our implementation of benchmark. For
N sites, round-robin algorithm distributes the kth
object to site((k-1)mode N)+1. The storage unit
heap is used as one partition unit. While building
database, all kinds of data will be partitioned ac-
cording to round-robin algorithm to different heaps
and these heaps will be distributed to different sites

for parallel queries.

 3.2 Parallel Query
 The parallel query here is based on round-robin

partition. The architecture of parallel query execu-
tion is shown in Fig.3. There are N+1 sites. One

site is named coordinate site, mainquery processes
run there. This process coordinates the running of

parallel queries. At the other N sites which are
named subquery sites, the query commands sent
from coordinate site are executed by subquery pro-
cess there.

Fig.3 Architecture for parallel query

 The parallel query executes in the four phases

shown in Fig.4:

 • Phasel

 The mainquery process creates a number of

threadst1 in the coordinate site. Each of the

 threads corresponds to one of the subquery

ti Threads are "light weight processes" (LWPs). The idea
is that a process has five fundamental parts: code ("text"),
data (VM), stack, file I/O, and signal tables. "Heavy-weight
processes" (HWPs) have a significant amount of overhead
when switching: all the tables have to be flushed from the

processor for each task switch. Threads reduce overhead by
sharing fundamental parts. By sharing these parts, switching
happens much more frequently and efficiently.

 sites. The mainquery process sends the query

 commands to the threads, then waits for the

 results from the threads.

• Phase2

 On the coordinate site, the threads created at

 phase1 send the query commands to the sub-

 query sites where the subquery processes are
 started beforehand, and then the threads wait

 for the results from the subquery sites. The

 query commands and their inputs are same for

 all the subquery sites.

Fig.4 Procedure of query

 • Phase3
 One each subquery site, the subquery process

 receives the command from the thread and exe-
 cutes the command locally. After the execution

 of query, the results are returned to its corre-
 sponding thread created by mainquery process

 on coordinate site.
 • Phase4

 The threads receive the results from their cor-

 responding subquery sites and transfer them
 to mainquery process. After collecting results

 from all threads, the mainquery process merges
 the results and returns the results to caller.

 3.3 Parallel Queries Based on Spatial
 Types

 Most queries over spatial types involve proximi-
ty rather than exact matching. The result objects
are generally gotten by two steps: filtering and re-
finement. Filtering is the step based on Minimum
Bounding Rectangle(MBR) of objects. The refine-

ment is done based on the exact shape of objects.
For the queries like spatial join and spatial recur-
sive, the procedure shown in Fig.4 will be looped
more than one time.

 Because the parallel queries are based on round
robin partition, for each loop, the input should be
broadcasted to all the subquery sites. Compared

with numeral attribute data, the spatial attribute
data(polygon and graph) become very large. For

example, the polygon have average 50 sides') which
means average 50 points data(the size of one point
is 4Bytes) are used to represent its exact geom-
etry shape, because the exact geometric shape is
necessary for refinement. The size of query com-

mand sent by mainquery process become much larg-
er. Considering the time of synchronization opera-
tions of mainquery and the time of data transfer-
ring, it's kind of overhead compared to traditional

parallel computation.

 4. Related Work

 As far as we know, 5) is related to this topic.
In 5), a parallel geospatial DBMS is built on PAR-
ADISE.

PARADISE5 3) is an Object-Relational Database
Management System aiming at handling geographi-
cal applications and provides an extended-relational

model for the applications. The built_in data types
for spatial data management are provided. Its im-

plementation is based on the Client-Server model.
 ShusseUo is an ODMG-based ODBMS, which is

not limited to special applications. The database
design is based on ODMG object database model

and data structures. Its implementation is based
on peer-to-peer model.

 In 5), the data are spatially partitioned across all
nodes on the network statically by range. The ad-
vantage of range partition is that high performance
can be expected for spatial join which do join opera-

tion based on spatial relationships(i.e. intersection,
nearest). The spatial join algorithm used there is
derived from parallel hash join') where spatial ob-

ject can be grouped by their position(coordinates).
But there are two problems which are critical for
the parallel range portioning.

 • One is that, when range partitioning non-point

 data (i.e., polygons or graph) is partitioned, the
 objects which span the partitions must be repli-

 cated in order to ensure that queries on the
 range attribute produce the correct result. For
 example, consider the two objects which are in-

 tersected each other in the real world. If they
 were put in different partitions where they span
 without replication, they can not be checked

 out by spatial join.
 • Another problem is skew. If the number of par-

 titions is small, skew becomes a major problem.

 As the number of partitions increases, the num-
 ber of spatial objects spanning multiple parti-

 tions will increase.

In our implementation, round robin partitioning is

used and the query command is broadcasted, so the

above two problems don't exist. The overhead in

our implementation is that the spatial data repre-

senting their exact geometry shape used as input

data rrmst be broadcasted.

ity is tested on the case the number of sites is 3, 6,

12. The data set used for speedup test are the data

set when the number of sites is 3.

 Table 1 Number of data set after scaleup

Table 2 Size of data set after scaleup

Fig.5 Example of spatial aggregation

 Further, for spatial aggregation type queries, the

parallel algorithm based on range partition can not
guarantee to get result at one step. One example
of such a query is `find the closest road for each

polygon with type of urban'. It's because the clos-
est road may be in the adjoining partition as shown
in Fig.5. At the same time, the copy of exact ge-
ometry shape must be sent to the sites where the

adjoining partitions are located. Conversely, the al-

gorithm based on round-robin can get result by one
step.

 5. Experimental Results

 5.1 Data Scaleup of Sequoia 2000
 Benchmark

 The goal of this report is to test the scalabili-

ty and speedup of ShusseUo based on benchmark

queries. This requires the data set can provide da-
ta at different level of size. The source data of the
benchmark are scaled up in our test. The "reso-
lution scaleup5}" is chosen in our experiment. It

means that the region under consideration is kept
constant while it is viewed at a higher resolution.
It's introduced in 5). The primary idea is that when
a user moves to a data set with a higher resolution,
the existing spatial features become more detailed,
and at the same time a number of smaller "satel-
lite" features that hover around the existing feature
become visible.

 Table 1 and Table 2 show the number and the
size of extended(scaleuped) data set when scalabil-

 5.2 Environment
 For subquery sites, a cluster of 12 Ultra5 Sun

workstations is used and each has 128 MB memory,
270 Mhz processor and 20GB disk for data caching.
For coordinate site, an Ultral0 Sun workstation is

used, which has 512MB memory and 440Mhz pro-
cessor and 100GBs disk where the database is built.
All these workstations are connected to 100M-bit
Ethernet switch.

 The OS is Solaris 7, all the query codes are imple-

mented in C++ and the compiler is SUN Workshop
C/C++ version 5.0.

 5.3 Results
 Mainly, we used queries related to range query,

spatial join and spatial recursive to test scalabili-
ty and speedup of ShusseUo 1-2 . The results are

shown in Table 3 and Table 4. For each query, it
is executed 20 times continuously. The input of the
first 10 times are created randomly and the input
the second 10 times are the same as those of first 10
times correspondingly. The average response time

of first 10 running is called warm result, and the av-
erage response time of second 10 running is called
hot result is

f2 The queries related to raster is not used in our test.
f3 Cold, warm and hot is the term of database benchmark
001 and 007. The status of hot means all the data needed
is in memory; the status of cold means that no data needed
is in memory; the status of warm means part of data needed

Table 3 The Scalability result

Table 4 The speedup result

Fig.7 Speedup of range query

 5.4 Analysis of Results
 5.4.1 Range Query

 The scalability and speedup of range query are
shown in Fig.6 and Fig.7 It is result of query6.

come slower when number of sites becomes bigger.

The reason is that the cost for synchronization of

subqueries and broadcasting spatial input data be-

come larger.

 The difference of time measured on coordinate

site and subquery site becomes larger for the above

reason too. But compared to the total response

time, such kind of cost is smaller.

 The result of query7 is range query too. From

Table 3 and Table 4, we can find that it has the

same changing trend with that of query6.

 5.4.2 Spatial Join

 The scalability and speedup of spatial join are

shown in Fig.8 and Fig.9 They are results of

Fig.6 Scalability of range query

The scalability at warm status becomes worse when
number of sites increases. The reason is that the
database is put in the coordinate site. The data in

database will be mapped(distributed) to the sub-

query sites after the query begins. The more the
number of site is, the more the time will cost. But
at hot status, the data used by query have been
mapped to subquery sites, there are no such kind of
data distribution, so the hot is ideal.

 The speedup of both warm and hot results be-

is in memory. Here the warm result includes the cold result,
because 1) the average time is used,2)the input is created
randomly and the response time is depended on input.

Fig.8 Scalability of spatial join

query8. The trend on scalability and speedup are
same with that of range query.

 5.4.3 Spatial Recursive
 The scalability and speedup of spatial query are

shown in Fig.10 and Fig.11 They are results of

queryll. The changing trends of scalability and
speedup are same with that of range query. In
this query, the times measured on coordinate site
and subquery site are almost same, the reason is
that multiple loops(analyzed in 3.3) are done in the

query. The response time is measured when the

Fig.9 Speedup of spatial recursive

Fig.10 Scalability of spatial recursive

Fig.11 Speedup of spatial recursive

query is started to the time when final results are

gotten on both coordinate site and subquery sites.

 6. Conclusion

 In this paper, we introduced the design and

implementation of extended parallel sequoia 2000

benchmark on an ODBMS ShusseUo. The data

partition and related parallel query algorithm were
discussed and compared with that of related sys-

tem. We measured the scalability and speedup of

ShusseUo. From results, we can concludes that
 • In the hot state, the system is scalable. In the

 warm state, the scalability become worse with

 the increment of number of sites.
 • The system has a good speedup on both warm

 and cold state.

 • The overhead derived from broadcasting spa-

 tial input data and synchronization of sub-

 queries become larger when the number of site
 increases. Compared to the total cost, such

 kinds of overhead have a little influence on sys-

 tem performance.

 References

 1) A.C. Arpaci-Dusseau, R.H. Arpaci-Dusseau, D.E.
 Culler, J.M. Hellerstein, and D.A.Patterson, "High-

 performance storing on network of workstation", Proc.
 of the 1997 ACM SIGMOD Conference, 1997.

 2) R.G.G. Cattell and Douglas K.Barry, The Object
 Database Standard: ODMG 2.0. Morgan Kaufmann

 Publishers, Inc. 1997 ISBN 1-55860-463-4
 3) David J. DeWitt, Navin Kabra, et.al., "Client-Server

 Paradise", Proc. of VLDB 94
 4) David DeWitt, Combining Object Relational & Paral-

 lel: Like Trying to Mix Oil and Water. VLDB 96.
 5) Jignesh Patel, JieBing Yu, Navin Kabra, et al., Build-

 ing s Scalable Geo-Spatial DBMS Technology, Imple-
 mentation, and Evaluation. SIGMOD 1997

 6) M. Stonebraker, J.Frew, K.Gardels and J.Meredith.
 The SEQUOIA 2000 storage benchmark. SIGMOD

 1993
 7) Kan Yamamoto, Multimedia Data Storage for the

 Object-Oriented Persistent Programming Language I-
 NADA, 1997, February. Master thesis, the Department

 of Intelligent Systems, Kyushu University, Japan
 8) G.Yu, K.Kaneko, G.Bai, and A. Makinouchi, "Trans-

 action Management for a Distributed Object Storage
 System WAKASHI-Design, Implementation and Per-

 formance", Proc. of ICDE 96, New Orleans, Louisiana,
 USA.

 9) Clement T. Yu, Weiyi. Meng. Principles of Database

 Query Processing for Advanced Applications. Morgan
 Kaufmann, San Francisco, 1998.

