未知の遅延・位相差を伴う軌跡群の同時検出

高橋, 伸弥 九州大学大学院システム情報科学府知能システム学専攻:博士後期課程

迫江, 博昭 九州大学大学院システム情報科学府知能システム学専攻

https://doi.org/10.15017/1498356

出版情報:九州大学大学院システム情報科学紀要.3(2), pp.191-196, 1998-06-22. 九州大学大学院シ ステム情報科学研究院 バージョン: 権利関係:

未知の遅延・位相差を伴う軌跡群の同時検出

高橋伸弥* · 迫江博昭**

Simultaneous Tracking of Multiple Trajectories with Unknown Delay

Shin'ya TAKAHASHI and Hiroaki SAKOE

(Received June 22, 1998)

Abstract: We investigate an algorithm to extract multiple trajectories with unknown delay in a noisy image. Individual target trajectories and their mutual relation are described in terms of a finite state automaton to form a model of trajectories. The algorithm analyzes the image searching for the optimum trajectories with delay according to this model using dynamic programming. An acceleration technique with beam search is also investigated. The effectiveness of the proposed algorithm is demonstrated by applying it to test images.

Keywords: Multiple trajectories, FSA model, Unknown delay, Unknown phase, Dynamic programming, Beam search

1. はじめに

画像からの軌跡の検出は、各種医用画像処理²⁾³⁾,各種 図面の自動認識⁴⁾⁵⁾等,多くの分野で問題となっている. 本研究では、このような画像中に含まれる、時間あるい はそれに代わるインデックスで順序づけられた連続な時 間関数信号を対象とする.ここで、信号が複数個存在す る場合、この信号を多元信号軌跡と呼び、対象とする信 号が1本の場合は単元信号軌跡と呼ぶ.

多元信号軌跡においては、それぞれの軌跡の性質だけ ではなく軌跡相互間の関係を考慮することで、より高精 度な検出が可能となる.筆者らは、この考え方に基づい て、複数の信号軌跡を雑音画像中から検出するアルゴリ ズムを提案した¹⁾.

しかし、このアルゴリズムでは複数の軌跡の同時刻に おける特徴を用いるために、時間軸方向のずれに対応で きないという問題点があった。例えば、線形システムの ステップ応答を撮影した画像における入出力信号間に生 じる遅延や、心臓エコーによる心臓壁運動のトラッキン グ画像³⁾における位相のずれには対応できない。

そこで本論文では,文献1)で提案したアルゴリズムを 拡張し,未知の遅延・位相差(以下,両者とも「遅延」と 呼ぶ)を伴う軌跡群を検出するアルゴリズムを提案する. このアルゴリズムでは,0遅延状態での個々の軌跡の振舞 いと軌跡間の相互関係とを出力記号とする有限状態オー トマトン(以下FSA)を用いて,軌跡群をモデル化する. このモデルをもとに,遅延量を最適化パラメータに含め た探索問題を動的計画法(以下DP)により計算し,最もモ デルに一致する軌跡群を検出する。

以下,準備として,文献1)で提案した遅延のない軌跡 群の検出アルゴリズムを説明した後,これを遅延を伴う 軌跡群の検出アルゴリズムに拡張する.さらに,ビーム サーチを用いた計算量の低減を検討する.テスト画像を 用いた実験を行い,アルゴリズムの有効性を確認した. また,ビームサーチにより約2桁の高速化を実現した.

2. 多元信号軌跡

Fig.1に多元信号軌跡の例を示す. この例は2本の正弦 曲線に雑音を重畳したものである. 画素を量子化単位と して横方向に時間軸t (t = 0, 1, ..., T)を配し,縦軸に位 置座標x ($0 \le x \le X$)を想定する. a(x,t)は時刻t, 位 置xにおける濃度値である. この画像中のk本の軌跡 $x(t) = (x_1(t), x_2(t), ..., x_k(t))$ が求める多元信号軌跡で ある. 以下では, $x_i \le x_{i+1}$ とし,軌跡の位置関係が入れ 替わることはないものとする.

このように、2次元図形であって、

Fig.1 An example of image with multiple trajectories.

平成 10 年 6 月 22 日受付

^{*} 知能システム学専攻博士後期課程

^{**} 知能システム学専攻

- (1) いずれかの方向に時間軸(t)が展開できる
- (2) 時間軸に直交するようなx軸をとり、位置
 (x,t)での濃度値a(x,t)で表現される
- (3) 濃い点の連続した軌跡として時間信号x(t)
 が含まれている

という条件を満たす画像を対象とする.この画像中に軌跡として含まれる信号を信号軌跡と呼ぶ.信号が複数ありうることを明示する場合「多元」を付ける.以下では,説明の簡略化のため2本の軌跡すなわち2元の場合について記述し,4.3節でk元信号軌跡への一般化を検討する.

3. 遅延のない軌跡群の検出

遅延を伴う軌跡群を検出する方法を説明する前に,そ の準備として文献1)で提案した方法について説明する.

3.1 多元信号軌跡のモデル化

まず,検出対象となる多元信号軌跡のモデル化を行う. 2本の軌跡の時刻tにおける位置(x1,t),(x2,t)に対して, 個々の局所的特徴とそれらの軌跡間の関係を基本動作と して定義する.次に,この基本動作を出力とするFSAに よって2本の軌跡をモデル化する.このFSAの各出力記 号が実際の画像信号との接点となる.FSAは, Table-1 によって定義される.

ここで、個々の軌跡の局所的特徴を単元基本動作、2 本の軌跡間の関係を2元基本動作と呼ぶことにする. **Table-2**に、単元基本動作の例を示す.表中の制約 条件は、隣接する時刻でのx座標であるx = x(t)と y = x(t-1)との間の関係を与える. Δ は検出対象とする 軌跡の最大傾斜である(5.1節以降の実験では $\Delta = 2$ とし た).また**Table-3**は2元基本動作を示し、2本の軌跡の 隣接する時刻におけるx座標 $x_1 = x_1(t), x_2 = x_2(t)$ と $y_1 = x_1(t-1), y_2 = x_2(t-1)$ との間の関係を与える.

多元軌跡の各時刻での性質は、単元としての制約と2 元としての制約の積集合として与えられる。多元の場合 の基本動作の記号に対する意味付けは、軌跡の元数 k、単元基本動作指定(Table-2)、2元基本動作指定 (Table-3)の組で行われる。Table-4に、単元、2元基 本動作の記述(辞書)の例を示す。表中の"-"は、基本動 作を特に指定しない場合、もしくは他の基本動作により 自明である場合を意味する。

Table 1 FSA definition.

$\mathrm{FSA} = \langle Q, \Sigma, \delta, q_0, F \rangle$
a finite set of states, $\{p\}$
a finite set of output symbols, $\{n\}$ (a symbol
n corresponds to a basic feature.)
the state transition rules, $(\delta(p, n) = q \text{ means})$
$p \xrightarrow{n} q$, where $p, q \in Q, n \in \Sigma$)
the initial state, $q_0 \in Q$

F: the set of final states, $\{f\} \subseteq Q$

 Table 2
 Examples of the basic features of a single trajectory.

	basic feature of a single trajectory	constraint conditions
r1	continuous	$x-\Delta \leq y \leq x+\Delta$
	(default)	$(\Delta \ge 0)$
r2	vertical	$y < x - \Delta, \ x + \Delta < y$
r3	horizontal	y = x
r4	monotonically	$x-\Delta \leq y \leq x$
	increasing	
r5	monotonically	$x\leq y\leq x+\Delta$
	$\operatorname{dec}\mathbf{reasing}$	

 Table 3
 Examples of the basic features between two trajectories.

	1	
	basic feature	
	between two	constraint conditions
	trajectories	
s_{\neq}	separate	blank exists between
		x_1 and x_2
s_{\pm}	parallel	$y_1 - y_2 = x_1 - x_2$
$s_{<}$	widening	$y_1 - y_2 < x_1 - x_2$
$s_>$	narrowing	$y_1 - y_2 > x_1 - x_2$
$s \leq$	parallel or	$y_1-y_2 \leq x_1-x_2$
	widening	
s_{\geq}	parallel or	$y_1-y_2 \geq x_1-x_2$
	narrowing	
s_{\approx}	approximately	$x_1-1 \leq y_1 \leq x_1+1$
	parallel	$x_2 - 1 \le y_2 \le x_2 + 1$

以上に定義した記号を出力とするFSAにより,全時間 領域の軌跡群をモデル化する。例として**Fig.2**に2本の平 行な台形波のFSAを示す。出力記号には**Table**-4の記号 を用いている。このFSAによって出力される記号列は {*c*b*d*b**}*で,"単調減少","水平","単調増加","水 平"を繰り返す"平行"な2本の軌跡を生成する。

3.2 遅延のない場合の軌跡の検出アルゴリズム

以上のモデルを対象画像に当てはめ、軌跡上の濃度値 の総和が最大となる軌跡群をDPにより探索する。時刻tで軌跡が座標値 x_1, x_2 をとり、かつFSA が状態qである 可能性を評価するための探索空間 $(x_1, x_2, t \mid q)$ を考える。 いま、状態間の遷移が状態遷移規則 $\delta(p, n) = q$ によって 行われるとする $(p, q \in Q, n \in \Sigma)$.

(1)式のDP漸化式によって各状態での軌跡を評価し、 t = 0の初期状態 q_0 からt = Tの最終状態 $f \in F$ まで至る

Table 4 An example of the symbol dictionary.

		· · · · · · · · · · · · · · · · · · ·	•		
symbol	the number of	the number of basic feature of		basic feature	
(n)	${ m trajectories}, k$	the trajectory x_1	the trajectory x_2	between trajectories x_1 and x_2	
(a)	2 r5		r3	_	
(b)	2	r3	r3	_	
(c)	2	r5	r5	s_	
(d)	2	r4	r4	s_	

Symbols (a)-(d) stand for the following local behaviors of trajectories: (a) The trajectory 1 is monotonically decreasing and the trajectory 2 is horizontal; (b) The trajectories 1 and 2 are horizontal; (c) The trajectories 1 and 2 are monotonically decreasing and are parallel with each other; (d) The trajectories 1 and 2 are monotonically increasing and are parallel with each other.

Fig.2 An FSA model for two parallel trapezoidal waves. (S: initial state, A: final state)

経路のうち最大の累積濃度値g(x₁, x₂, T | f) を与える経 路を見つける。

$$g(x_1, x_2, t \mid q) = a(x_1, x_2, t) + \max_{\substack{p \\ \delta(p, n) = q}} \max_{y_1, y_2} \left[g(y_1, y_2, t - 1 \mid p) \right] \quad (1)$$

$$a(x_1, x_2, t) = a(x_1, t) + a(x_2, t)$$
(2)

ここで, $g(x_1, x_2, t \mid q)$ は, 状態qの2本の軌跡が $(x_1, t), (x_2, t)$ を通るとしたときの累積濃度値を記憶する. (x_1, x_2) において, 与えられた状態遷移規則の出力記号 $n(すなわち基本動作)の制約に従うような(y_1, y_2)の集合$ に対して(1)式を計算することで, 軌跡群がこの時刻で状態 <math>qにあることの可能性が評価される.

4. 遅延を伴う軌跡群の検出

2本の軌跡の間に遅延が存在する場合の検出方法を考 える。例としてFig.3に,遅延により位相ずれが生じた2 本の正弦曲線を示す。遅延がある場合には,(2)式による 同時刻t での軌跡群評価が意味をなさないため,文献1)の アルゴリズムでは対応できない。

そこで,前節のFSAを0位相状態すなわち遅延のない状態でのモデルとして用意し,そのモデルで与えられた基本動作を入力画像内の時刻をずらした2点に対して評価することで,未知の遅延に対応する.例えば**Fig.3**の軌跡

は、2本の軌跡を平行な正弦曲線と同様のモデルで表し、 これの軌跡 x_2 に遅延が生じたものとみなす。具体的には、 軌跡 x_1 に対する軌跡 x_2 の遅延をdとして、 $a(x_1,t)$ と $a(x_2,t+d)$ とを対応させ、この2本の軌跡の間で基本動 作を評価する。このdを新たに探索パラメータに含め、 最適な対応を示す軌跡群を検出する。

4.1 遅延を伴う軌跡群の検出アルゴリズム

遅延によるずれ幅の探索範囲を $-D \le d \le D$ とし、 $0 \le t \le T$ の軌跡 x_1 と、 $d \le t \le T + d$ の軌跡 x_2 を検 出することを考える。入力画像のサイズは、 $X \times (T+D)$ とする。Fig.4に遅延の探索範囲と入力画像の関係を示 す。探索の結果、最もモデルに一致する遅延とその軌跡 が決定される。例えばFig.4では、 $d \le t \le T$ の範囲で軌 跡を検出する。

4.1.1 解析テーブル

まず、与えられたFSAモデルの各状態qに対応して、次のような解析テーブルを定義しておく.

Fig.3 An example of two trajectories with delay d.

Fig.4 The relation between an input image and its delay search range.

- g(x1,x2,t,d|q):状態遷移に対応する2本の軌跡の 解析に用い、状態qの軌跡が時刻tおよび時刻t+dで それぞれ(x1,x2)を通るとしたときの、その時刻まで の最大累積濃度値を記憶する。
- bp(x1,x2,t,d | q):状態qの軌跡が時刻tおよび時刻 t+dでそれぞれ(x1,x2)を通るとしたときの,時刻 t-1,t-1+dにおける最適な位置と状態pを格納 する.

4.1.2 初期設定

まず以下のように初期設定を行う.

$$g(x_1, x_2, 0, d \mid p) = \begin{cases} 0 & p = q_0 \\ -\infty & p \neq q_0 \end{cases}$$
(3)

4.1.3 各t における処理

 $1 \le t \le T$ の各時刻tで,各状態qにおいて(4)式を評価 する.状態pから状態qへ遷移する各 x_1, x_2 に対して,p, y_1, y_2 をパラメータとして

$$g(x_1, x_2, t, d \mid q) = a(x_1, x_2, t, d) + \max_{\substack{p \\ \delta(p, n) = q}} \max_{y_1, y_2} [g(y_1, y_2, t - 1, d \mid p)]$$
(4)

を計算し、上式の最適なパラメータ (p, y_1, y_2) をバックポ インタとして $bp(x_1, x_2, t, d \mid q)$ に格納する. ここで、

$$a(x_1, x_2, t, d) = a(x_1, t) + a(x_2, t + d)$$
(5)

とする.

4.1.4 軌跡の生成

t = Tまでの処理が終了した時点で、

$$(\hat{x_1}, \hat{x_2}, \hat{d}, \hat{f}) = \operatorname*{argmax}_{x_1, x_2, d, f \in F} [g(x_1, x_2, T, d \mid f)]$$
(6)

によって、最終状態f で最大累積濃度値を与えるd と軌跡 の終端 $(\hat{x_1}, \hat{x_2})$ を決定する.最終的に(6)式で得た点 $(\hat{x_1}, \hat{x_2}, \hat{d}, \hat{f})$ から $bp(x_1, x_2, t, d \mid p)$ を参照してバックト ラックすることにより、求める軌跡を生成する.

4.2 ビームサーチによるアルゴリズムの高速化

計算時間を低減するための方法として,4.1節のアルゴ リズムにビームサーチを導入する.ビームサーチは,最 適経路として可能性の低いものは以後の計算から除外す るという枝刈りを行い,残ったビーム内の点だけを計算 することで,計算量の低減をはかる方法である.

枝刈りを行う具体的な基準として、各時刻t-1で $g_{max} = \max[g(x_1, x_2, t-1, d \mid q)]$ を求め、時刻t でのし きい値を $\theta(t) = g_{max} - \lambda (\lambda : 余裕分を与える定数)とす$ る. $g(x_1, x_2, t, d \mid q)$ が $\theta(t)$ 未満の状態 $(x_1, x_2, t, d \mid q)$ に続く軌跡の探索を打ち切る.ここで,余裕定数 λ を小 さくし過ぎると,最適な経路が中途段階で枝刈りされて しまう可能性がある.最適な λ の値は対象画像の品質や 与えられるモデルによって異なるため,実験的に求める 必要がある.

4.3 アルゴリズムの k元軌跡検出への一般化

前節のアルゴリズムを, k本の軌跡を検出するア ルゴリズムに一般化する. $x = (x_1, x_2, ..., x_k)$ に対し て,各軌跡の遅延を $d = (0, d_2, ..., d_k)$ と表現する. こ こで, d_l ($2 \le l \le k$) は軌跡 x_1 に対する軌跡 x_l の遅延 である. この時, (4)式に対応してDP漸化式は, p, $y = (y_1, y_2, ..., y_k)$ をパラメータとして,

$$g(\boldsymbol{x}, t, \boldsymbol{d} \mid q) = a(\boldsymbol{x}, t, \boldsymbol{d}) + \max_{\substack{p \\ \delta(p, n) = q}} \max_{\boldsymbol{y}} \left[g(\boldsymbol{y}, t - 1, \boldsymbol{d} \mid p) \right]$$
(7)

となる. ただし

$$a(\boldsymbol{x}, t, \boldsymbol{d}) = \sum_{l=1}^{k} a(x_l, t + d_l)$$
(8)

この場合も前節で説明したビームサーチを一般化して 適用することで,計算量の低減が可能である.

5.実 験

以下の実験では,入力画像は256階調の濃淡画像 である.実験には,CPU:Alpha 21164A(500MHz) (SPECint95:15.4,SPECfp95:21.1)の計算機を使用 した.

5.1 遅延を伴う2元軌跡の検出

Fig.5(a)を入力両像として,遅延を伴う2元軌跡の検 出実験を行った.この画像は人工的に生成した2値 (0,255),線幅1の2本の正弦軌跡(遅延d=7)を含んだ原 画像にランダム雑音を重畳したものである(SN 比 3.1 [dB]).入力画像はサイズ64×256 であり,この中に T = 200の軌跡を検出する.入力画像のSN 比は,次式で 計算した.

$$SNR = 10\log_{10} \frac{255^2}{雑音の平均電力} \quad [dB]$$
(9)

モデルには正弦曲線の台形波近似として, Table-4, Fig.2に示したFSAを使用した.

まず,提案アルゴリズムによる遅延検出の妥当性を確認するために, $-50 \le d \le 50$ の範囲の遅延dに対する累

Fig.5 An input image including two trajectories with delay and the detected trajectories.

Fig.6 The cumulative score at each delay.

積濃度値の変化を調べた. ビームサーチは行わずに, す べてのd に対してt = T の最終状態まで評価を行った。

Fig.6に実験結果を示す. 横軸は遅延, 縦軸は累積濃度 値である. 最大の累積濃度値を示すd = 7の時にモデル と最も一致する軌跡が検出されたことを示している. **Fig.5**(b)に, 軌跡の検出結果を示す. 当然, (6)式で d = 7が決定される. ここで, 検出率(tracking rate)は入 力画像中の真の軌跡と検出結果との一致の割合を表す.

以上の結果から,最適な対応を与える遅延で最も高い 累積濃度値を示し,遅延を伴う軌跡を検出できることが 確認できた.

5.2 ビームサーチによる高速化の効果

次に, ビームサーチによる高速化の効果について実験 を行った.入力画像は**Fig.5**(a)を使用し, T = 200の軌 跡の検出を行った.使用したモデルは, 5.1節と同様で ある.

Fig.7は,遅延の探索範囲を変化させた時の実行時間の 変化を示したものである.縦軸に実行時間を対数スケー ルで,横軸に遅延の探索範囲Dを示す.グラフ横軸の各D に対して, $-D+7 \le d \le D+7$ ($0 \le D \le 40$)の範囲で 探索を行った.実線はビームサーチを使用した場合の実 行時間,破線はビームサーチを使用しなかった場合の実

Fig.7 The beam search effect.

Fig.8 An FSA model for three sinusoidal waves (triangular wave approximation). (S: initial state, A: final state)

行時間である. 余裕定数は, $\lambda = 40$ とした. これは, **Fig.5**(a)の入力画像に対して, $-33 \le d \le 47$ の範囲であ らかじめ実験を行い, 最適な λ の値を求めておいたもの である. この λ により, どの探索範囲の場合でも累積濃度 値の低下を招くことなく, 最適な遅延とその軌跡が検出 することができた.

グラフから、4.2節で示したビームサーチにより計算量 の低減効果が得られていることがわかる。実行時間は探 索範囲幅Dに対して線形に増加している。結果として、約2桁の高速化が実現された。

5.3 遅延を伴う3元軌跡の検出

(7) 式においてk = 3として,遅延を伴う3元軌跡 の検出実験を行った.**Fig.9**(a)の入力画像(サイズ 64×256)から,T = 200の軌跡を検出する.この画像 は,周期が等しく振幅が異なる3本の正弦曲線(遅延 $d_2 = 6, d_3 = -5$)にランダム雑音を重畳したものである (SN比4.9 [dB]).モデルには,**Table**-5の各記号を出 力記号とする**Fig.8**のFSAを用いた.表中の2元動作1 および2は,それぞれ $x_1 \ge x_2$ の間の関係 $\ge x_2 \ge x_3$ の 間の関係を示している.ここでは,振幅が x_3, x_2, x_1 の順 に減衰する3本の正弦曲線を想定して,モデル化を行っ た.このFSAモデルによって生成される出力記号列は, $\{a^{*b^*c^*d^*c^*b^*\}}$ である.これは,3本とも"単調減少" かつ"間隔縮小","単調道加"かつ"ほぼ平行","単調増 加"かつ"間隔縮小","単調増加"かつ"ほぼ平行"を繰り 返す軌跡群を生成する.

 $d_1 = 0, 1 \le d_2 \le 10, -10 \le d_3 \le -1$ を遅延の探索範

	the number	basic feature	basic feature	the basic feature	basic feature	basic feature
symbol	of the trajectories	of the	of the	of the	between	between
(n)	k	trajectory x_1	trajectory x_2	trajectory x_3	x_1 and x_2	x_2 and x_3
(a)	3	r5	r5	r5	s_{\geq}	s_{\geq}
(b)	3	r5	r5	r5	s_{pprox}	s_{pprox}
(c)	3	r4	r4	r4	s_pprox	s_{pprox}
(d)	3	r4	r4	r4	$s_{<}$	$s_{<}$

Table 5 The symbol dictionary for detection of three sinusoidal curves (triangular wave approximation).

Symbols (a)-(d) stand for the following local behaviors of trajectories: (a) The trajectories 1,2 and 3 are monotonically decreasing and are parallel or narrowing with each other; (b) The trajectory 1,2 and 3 are monotonically decreasing and are approximately parallel with each other; (c) The trajectory 1,2 and 3 are monotonically increasing and are approximately parallel with each other; (d) The trajectory 1,2 and 3 are monotonically increasing and are parallel or widening with each other.

Fig.9 An input image including three trajectories with delay and the detected trajectories.

囲として設定し、ビームサーチに用いる余裕定数を $\lambda = 60$ として軌跡の検出を行い、モデルと最適な対応を とる軌跡群と、その最適な遅延量 $d_2 = 6, d_3 = -5$ を得 た. Fig.9(b)に検出された軌跡を示す.ビームサーチを 行わない場合の計算時間 1.4×10^5 秒に対し、ビームサー チを行った場合の計算時間は 5.2×10^2 秒となり、約2桁 の高速化となった.

5.1節の2元軌跡の検出結果と比較して検出率の低下が 見られるが、これは、5.1節で使用した2元基本動作s=(平 行)の制約条件に対し、**Table-5**で定義した2元基本動作 の制約条件が緩くなっていることが原因であると考えら れる.また、今回の実験で使用したモデルは、台形波、 もしくは三角波を表す近似モデルであり、正弦曲線を表 現するには近似が不十分であると言える。厳密に正弦曲 線を表すためには、モデルを文脈自由文法にレベルアッ プする必要がある.

6. む す び

本論文では、未知の遅延・位相差を伴う複数の軌跡を 雑音画像中から検出するアルゴリズムに関して検討した. このアルゴリズムは、0位相状態すなわち遅延による位置 ずれの無い場合の軌跡群をFSA でモデル化し、そのモデ ルに最も一致する軌跡群とその遅延量を検出するもので ある.遅延量を最適化パラメータに含めた探索問題を動 的計画法で計算することにより、未知の遅延を伴う軌跡 群の検出を可能とした.テスト画像を用いた実験を行い、 提案アルゴリズムによって遅延を伴う軌跡群を検出でき ることを確認した.またビームサーチの導入により約2 桁の高速化を実現した.

謝辞

本研究は文献1)の査読過程において匿名の査読者より 出された質問をきっかけとして行ったものである. なお 本研究は文部省科学研究費補助金(No.08680402)の一 部として行われた.

参考文献

- 1) 高橋伸弥, 迫江博昭, "雑音画像中の多元信号軌跡の解析", 信学論, vol. 11, no. J80-DII, pp.3011-3019, Nov. 1997.
- H. Yamada, C. Merritt and T. Kasvand, "Recognition of kidney glomerulus by dynamic programming matching method", IEEE Trans. PAMI vol. 10, no.5, pp.731-737, 1988.
- 佐藤宏明,金井活,中鉢憲賢,"ダイナミックプログラミン グを用いた心臓壁面運動のトラッキングによる心臓壁の微 少な振動計測",音響誌,vol. 1, no. 50, pp.11-21, 1994.
- U. Montanari, "On the Optimal Detection of Curves in Noisy Pictures", Comm. ACM vol. 14, pp. 335-345, May 1971.
- H. Ney, "Dynamic programming as a technique for pattern recognition", Proc. ICPR'82, pp. 1119-1125, 1982.

······