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    Abstract: Probabilistic Universal Learning Networks (PrULNs) are proposed, which are learning 
    networks with a capability of dealing with stochastic signals. PrULNs are extensions of Univer-
    sal Learning Networks (ULNs). ULNs form a superset of neural networks and were proposed to 

    provide a universal framework for modeling and control of nonlinear large-scale complex systems. 
    A generalized learning algorithm has been devised for ULNs which can also be used in a unified 

    manner for almost all kinds of learning networks. However, the ULNs can not deal with stochastic 
   variables. Specific value of a stochastic signal can be propagated through a ULN, but the ULN 

    does not provide any stochastic characteristics of the signals propagating through it. The PrULNs 

    proposed here are equipped with machinery to calculate stochastic properties of signals and to 
    train network parameters so that the signals behave with the pre-specified stochastic properties. 

   The PrULNs will contribute to the solution of the following problems: (1) improving the gener-
    alization capability of the learning networks, (2) more sophisticated stochastic control than the 

    conventional stochastic control, (3) designing problems for the complex systems such as chaotic 
    systems. In this paper, PrULN is proposed and is applied to a nonlinear control system with 

     noise. 

    Keywords: Learning networks, Neural networks, Probabilistic networks, Control systems, Com-

    plex systems, Nonlinear systems, Gradient method, Forward propagation, Backward propagation, 
    Mean, Covariance, Stochastic signals

 1. Introduction 

 Universal Learning Networks (ULNs) have been 

proposed as general and effective tools for mod-
eling and control of nonlinear large-scale complex 
systems including physical, social and economical 

phenomenal) 2) 3) . ULNs are natural but farthest ex-
tensions of discrete-time recurrent neural networks; 
they consist of a number of inter-connected nodes 
where the nodes may have any continuously differ-
entiable nonlinear functions in them and each pair 

of nodes can be connected each other by multiple 
branches with arbitrary (positive, zero, or even neg-
ative) time delays. The class of ULNs contains any 

particular type of neural networks as its sub-class; it 
includes static or dynamic networks, multi-layered 

or recurrent networks, and time delay neural net-
works (TDNNs). 

 For this generic type of learning networks, a gen-
eralized learning algorithm has been also proposed 
based on the gradient method where the gradient is 

calculated by either forward or backward propaga-
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tion. Moreover, not only the first order derivatives 

(gradients) but also the higher order derivatives can 
be calculated systematically. This feature of ULNs 
has been successfully utilized in the design of robust 

control systems and chaotic control systems4)5)6) 
 However, the ULNs are not equipped with any 

machinery that can deal with stochastic variables. 
Specific values of a stochastic signal can be prop-
agated through a ULN, but the ULN does not 

provide any stochastic characteristics of the signal 
propagating through it, such as distributions, means 
and covariances. 

 If the stochastic characteristics, e.g. means and 

covariances, of the output signals of ULNs are avail-
able based on the characteristics of its internal or 
external stochastic signals, it will extend the ap-

plicability of ULNs significantly. For example, if a 
ULN has small variances of its output variables in 

spite of relatively large variances of the input vari-
ables, it means that the input-output mapping is a 
smooth one, and it in turn leads to a high general-
ization ability of the network. Also, such ULNs that 
can deal with stochastic signals will realize more so-

phisticated stochastic control than the conventional 
ones that are based on the correlation functions. 

 Other useful applications will be found in design-



ing problems of the complex systems. Although ac-

tive research on the complex systems and  develop-
ment of the chaos information theory based on en-
tropy arid mutual information are in progress, their 

main topics are only the analysis of the systems. In 
ULNs, large output variances for small initial value 
variances mean that the outputs vary significantly 
depending on the small changes in the initial values, 
in other words, that the outputs show chaotic be-

haviors. Thus, by changing the target values of the 
output variances, we will be able to design ULNs 
that produce chaotic or non-chaotic signals as we 
want. 

 In this paper, first, ULNs that can deal with s-
tochastic signals, Probabilistic Universal Learning 
Networks (PrULNs), are presented. The complete 
characterization of a stochastic signal can be done 
by the probabilistic distribution and its dependen-

cy on time. However, the general treatment of the 
distribution is not easy. Therefore, here we charac-
terize the stochastic property of a signal by several 
moments, such as mean and covariance. 

 Two issues are involved in the PrULNs, name-
ly analysis and synthesis. In the analytical phase, 
the moments of the signals flowing through the net-
works are calculated. And synthesis means that, 

given the specification of moments of particular sig-
nals, we design a network that meets the moments 
specification. 
 Hitherto, a method for calculating central mo-

ments for nonlinear static mappings was studied7), 

and recently it was applied to a new neural network-
based electric load forecasting') . These address the 
analytic issues only, and treat stochastic signals in 
static neural networks. The PrULNs allow recur-
rent architectures and thus can deal with dynamic 

or nonstationary stochastic signals in both analytic 
and synthetic phases. 

 In the next section, the analytic issues are dis-
cussed where a generic method is described for cal-
culating moments of signals flowing in static or dy-

namic networks. And in Section 3, the synthetic 
issues are addressed: the moments specification is 
incorporated in the criterion function, and param-
eter training is done so as to minimize it where 

the calculation method of higher order derivatives 
for ULNs3) plays an essential role. The discussions 
concentrate on the first and second order moments, 
namely mean and covariance, for simplicity of de-
scription. However, the same arguments apply to 

the higher order moments. 
 In the last section, an application of PrULN to

a nonlinear crane control system is presented, in 
which a controller is designed to reduce the effect of 
the noise added to the system. 

 2. Calculation Method for Means and 
    Covariances of the Node Outputs in 

    PrULNs 

 2.1 Node Outputs 
 The structure of a ULN is depicted in Fig.A.1 in 

Appendix. Output of a node p in a recurrent ULN 
and a multi-layered ULN can be represented by the 
following two equations, respectively, 

yp(t) = Dynamic(xr(t1), x2(t2), • • • , xe(te)), (1) 
yp = Static(xi, x2i .. • , xe),(2) 

where 
        t : Time instant, 

xi(ti) : Node output at initial time ti < t 
             or external input fed to the re-

             current ULN at time ti, 

x, : External input to the multi-

             layered ULN, 

 Dynamic : Mapping from initial values and 

              external inputs to a particular 

              node output of the recurrent 

            ULN, 

   Static : Mapping from external inputs to 

             a particular node output of the 

              multi-layered ULN. 
 The static systems are special cases of the dy-

namic systems, and therefore mainly the dynamic 

systems will be studied in the sequel. 

 The following symbols are used: 

E[.] : Ensemble average of a random 
             variable, 

Cov[•, •] : Covariance between two random 
             variables, 

Var[•] : Variance of a random variable, 
,u3[., •, •] : Third order central moment a-

             mong three random variables. 

 2.2 Means 
 First, let us calculate the first order moment, that 

is the ensemble average E[yp(t)] of a node output 
yp(t). 
 The following equation is obtained by expanding 

Eq.(1) in Taylor series up to the second order term 
around the point (E[xr (tr )], - - - , E[xf(te)]): 

yp(t) Dynamic(E[xr(tr)], E[x2(t2)], • - • , 

E[xe(te)]) +E49±,(t) (xi(ti) — E[xi(ti)]) 
axi (ti )



  1a+2,,  
  +2 axi(ti)3xj(tj)(x2(t2)— E[xi(ti)]) 

J •(x(t ,) — (t j)1),(3) 

                     8+2t whereaxy(t(t)anda~z(t~)a((t~)are the ordered 
derivatives proposed by Werbos9) and are evaluated 

at (E[xi(ti)], ... , E[x.e(te)])• 
  Taking the ensemble average of the both sides of 

Eq. (3) with noting that the ensemble average of the 
second term in the right hand side is zero leads to 

the following equation, 

E[yp(t)] 

Dynamic(E[xi(ti)], E[x2(t2)], ... , E[xe(te)]) 

 +1~~ 
           a+2,,p(t) 

Cov[xi(ti), xj (tj)]. (4) 2
i jaxi (ti )axj (tj ) 

Eq.(4) is the basic equation for computing the 
first order moment of the node output yp(t) from 
the first and second order moments of the node out-
put initial values and the external inputs, E[xi (ti )] 
and Cov [xi (ti) , x, j (t j) ] . The second order deriva-
tives that appear in the equation are calculated by 
the already proposed rnethod3) which is also de-
scribed briefly in Appendix. 

 2.3 Covariances 
 Next let us calculate the covariance of yp(t) and 

yq(s). From Eq.(3) and (4), the following equation 
is obtained, 

yp(t) — E[yp(t)] 

E a--------+yp(t) (xi(ti) — E[xi(ti)]) axi (ti) 

1at2yp(t)  
   +2a xi(ti)axj(t3) (Xi (ti)— E[xi(ti)]) 

'(Xj(t3) — E[xj(t3)]) 
1 a+2yp(t)  

   2      EEaxi(ti)axj(tj) 3 
.Cov [xi (ti), xj (tj )].(5) 

Similar equation can be obtained for yq(s) — 
E[yq(s)]. 
 Covariance of yp(t) and yq(s) is derived from 

Eq.(5) and the equation for yq(s) — E[yq(s)] con-
sidering up to the third order terms as follows,

Cov[yp(t), yq(s)] 

   E[(yp(t)—E[yp(t)])(yq(s)—E[yq(s)])] 
a+yp(t)+yq(s) C

ov[xi(ti), xJ (t. )] a
xi(ti) axj(tj) 

j 1a+2yq(s)  a+yp(t)  
2 ~~ I axi(ti)axj(tj) axk(tk) 

J 

. t3[xi(ti),x3(t3),xk(tk)] 
1a+2yp(t)  a+yq(s)  

   +2a xi(ti)axj (tj)axk(tk) 

Vµ3 [xi (ti), xj(ti), xk(tk)].(6) 

Eq.(6) is the basic equation for computing the 
covariance of yp(t) and yq(s) from the first, second 
and third moments of the node output initial values 
and the external inputs. 

 3. Learning Algorithm of Parameters 

  In this section, the synthetic issue is addressed, 
and a learning algorithm of PrULNs is proposed. 
PrULNs or the mappings Dynamic or Static which 
appear in Eq.(1) or (2) contain adjustable parame-
ters A„,. The parameters are trained so as to min-
imize a criterion function L by a gradient method. 
Here, the higher order derivatives play an important 
role again. 

  The criterion function should measure how well 
the PrULN under consideration generates stochas-
tic signals with specified stochastic properties. As 
stated before, we use the first and second order mo-
ments in stochastic property specification. There-
fore, let the criterion function L be represented by 
Eq. (7) , 

LMV = LM + LV(7) 

LM = E >(E[yp(t)] — 4)(0)2 
p t 

Lv = EEEEapq(t,^) 

•(Cov[yp(t), yq(s)]ypq(t, s))2~ 
where 

yp(t) : Target value of E[yp(t)], 
yp°q(t, s) : Target value of Cov[yp(t), yq(s)], 
apq (t, s) : Weighting coefficient. 

 By minimizing the criterion function, the param-
eters are adjusted so that the ensemble average of 
yp(t) approaches y(t) and the covariance of yp(t) 
and yq(s) approaches ypq(t, s).



 The training of parameters  Arn is done by the gra-
dient method in the same way as parameter training 
of the Universal Learning Networks, 

a+LMV() A
m <— Am—'}as8 

              m 

    -y > 0 : learning coefficient. 

The derivative a+Lwty can be obtained by differen-
tiating Eq.(7) as follows, 

a+LMv  
aam

a+E[yp (t)]  = 2 E E(E'[yp(t)] - yp(t)) 
OA, 

p t 

+2EEEEapq(t, s) 
p q t s 

(COV[yp(t), yq(s)] ypq(t, s)) 
a+Cov[yp(t), yq(s)](9) 

0A71, 

      0+ and+c°v[y~(t),yy(s)1 can be derived 
from Eq.(4) and (6) as follows, 

a+E[yp(t)]  
aarn 
a+yp(t) 1 0+3yp(t)  

aAm + 2 4 4 axi (ti)axj (tj )3A, 
•Cov [xi (t i ), x7 (tj)1,(10) 

a+Cov[yp(t), yq(s)]  
aArn, 

  _ 3+2yp(t) a+yq(s)  
EE           8xi (ti )aAm axj(ti) 

                       + a+yp(t) 0+2 yq(s) COV[xi(ti), xJ (tJ)] a
xi (ti) axJ (tJ )OA„, 

1 0+3yq(s)  a+yp(t)  
+2a xi(ti)axj(tj)0Am axk(tk) 

J a+2yq(s)0+2yp(t)  
+ ax-i(ti)axj(tj) axk(tk)aArn 
•N'3 [xi (ti), xJ (tj ), xk (tk )] 

 1^EEE       4a+3yp(t)  a+ yq(s)                 axi(ti)axj(tj)0Am axk(tk) 

J 3+2yp(t)  a+2yq(s)  
+ a

xi,(ti)axj (ti) axk(tk)aArn 

*tt3 [Xi (ti), xj(tj), xk(tk)]• (11) 

  The higher order derivatives in Eq.(10) and 
Eq.(11) can be calculated by the method of for-
ward propagation Universal Learning Networks3) as 

described in Appendix. And they are evaluated at 

(E[xi(ti)], • • , E[x,,(tF)]). For example, the third

Fig.1 Flowchart of parameter training

                          +3 order derivativea~~(t~)a.y((ti)ncan be calculated 
using the iterative equation Eq.(A.4) in Appendix, 

by putting hk(t) = yp(t), A1(t1) = xi(ti), A2(t2) 
x j(ti)  and A3 = Am. The equation contains first and 
second order derivatives which can be calculated by 
Eq.(A.2) and Eq.(A.3), respectively, by substitut-
ing relevant variables and parameters into them. 

  In summary, the parameters are updated ac-

cording to Eq.(8), where necessary derivatives are 

given by Eq.(9)-(11) and Eq.(A.2)-(A.4), and the 
node outputs are derived from the network mapping 
Eq.(1). And thus, given the stochastic properties of 

the initial state of the network and the external in-

puts, and the target values for the stochastic prop-
erties of the node outputs, we can obtain a PrULN



Fig.2 Transformation from initial value distribution to the desired output distribution by mapping  Dynarnic(xi(ti), xj (tj))

      Fig.3 Control system with stochastic noise 

whose stochastic properties are approximately equaI 
to those specified. 

 In Fig.1, the flowchart of parameter training is 
shown. 
 Fig.2 shows the mapping which is to be realized 

by the PrULN for a two-dimensional unimodal dis-
tribution case. The ellipsoid D(xi, x3) shows the 
contour in xi-xi space for a given probability, and 
D(yp, yq) is the desired contour in yp-yq space for 
the same probability. What is done by the learning 
algorithm described so far is to train the PrULN 
so that it transforms the inside of D(x2, x3) to the 
inside of D(yp, yq). Therefore, by changing the tar-
get values y°(t), yq°(s) and yp°q(t, s), we can obtain 
a proper PrULN with the stochastic properties that 

we want. 

 4. Application of PrULN to Nonlinear 

    Dynamic System Control 

 In this section, an application of PrULN to a non-

linear crane control system is presented, where the 

crane control system is contaminated with noise and 

an optimal controller should be designed to reduce 

the effect of the noise added to the system. 

 As is shown in Fig.3, the noise which is a stochas-

tic signal with known mean and covariance is insert-

ed in the output node of the crane control system. 

The problem is to design a neural network controller 

that gives the specified stochastic properties to the

Fig.4 Nonlinear crane system

crane system. 

 4.1 Nonlinear Crane Control System 
 The nonlinear crane control system shown in 

Fig.4 can be described by the following differential 
equations, 

d2x,  mg D +Gdx G 
 dt2 M---9 M dx+Mul' 

 d29 _M+mD+GdxG  
 dt2fMge£M dx  QM ui , (12) 

d2   C + Gin G,,,, 
 dt2 M dtm+u2 

In the above equations position of the crane 
stand, angle between the rope and vertical line, and 

position of the load are represented by x, 9, 1 re-
spectively. u1, u2 are input voltages to the motor 
for moving the crane stand and for rolling up the 
load, and C, G, G„2j D, M, m, g are system parame-
ters and gravity accelaration. 

 Equation(12) can be transformed into the discrete 

time network form shown in Fig.5 which is com-
monly used in applications using Universal Learning 
Networks'). 
 In Fig.5, Ni, • • . , N6 stand for the nodes of the



Fig.5 Control model of the crane system by ULN

Fig.6 Sample time series of Gaussian noise

nonlinear crane system, and N7,  •  •  • , Nlo represent 
the nodes of the crane controller. Each control input 
u1 or u2 is calculated by the linear function node N8 
or N10 which is connected recurrently with sigmoid 
function nodes N7 or N9. 

 In the simulations, the behavior of the system is 
calculated over a period of 10 [sec] which consists 
of a total of 500 sampling instants. An independent 
Gaussian noise d(t) with N(0, 1) is added to the 
measurement of x at arbitrarily chosen 30 instants 

out of the 500. An example time series of the noise 
is shown in Fig.6. 

 The crane should be controlled so that position 
x of the crane stand and of the load become the 

reference value xre f = 1.0[m] and QrF f = 0.5[m] as 
soon as possible and that angle 9 is as small as pos-
sible, assuming initial positions of the crane stand 
and the load to be 0.0[m], 1.0[m] respectively. 
  Simulation conditions are as follows: C = 

0.42[kg/sec], G = 1700[N/V], G71 = 0.98[N/V], 
D = 300[kg/sec], M = 40[kg], m = 20[kg], g 
9.8{m/sec2], At (sampling period) = 0.02[sec]. 

 4.2 Training of Parameters of Con-
      trollers 

  In this sub-section, training of parameters of two 
recurrent neural network controllers which consist 
of nodes N7, N8 and nodes N9, N10 in Fig.5 is

presented. 
 Three kinds of criterion functions were studied to 

compare the performance of the controllers designed 

by PrULN and a conventional method. 

 4.2.1 Conventional Criterion Function E 

 Usage of the following criterion function E cor-

responds to the conventional parameter training of 

neural network controllers, 

 E = 2E {Qnl(xref — x(S))2 + Qn39(8)2 
           sET 

                                                      •  

     +Qn4e(S)2 + Qn5(fref — e(s))2 

+ Rn1u1(s)2 + Rn2u2(s)2} 

    + Qn2x(t f)2 +)2](13) 
where 

  T : Set of time instants, 
t f : Final sampling instant, 

Qui, • .. , Q7-16 = 1.0, Rn1 = Rn2= 0.001 
: Coefficients. 

 In this case, calculation of the dynamics Eq.(1) 
with deterministic behavior is carried out suppos-
ing that a deterministic signal with value E[d(t)] is 
inserted to the system instead of Gaussian noise. It 

is clear that E[yp(t)] = yp(t), Coy [yp(t), yq(s)] = 0 
in Eq.(7) N Eq. (11) . Therefore, only the first order 
derivativeaas(t) = P1(p, t, )Am) is used to evaluate 
d+LMv in Eq .(8). 

    --rre 

 4.2.2 Criterion Function Evaluating Co-
         variance 

  The following criterion function LEV is studied 

to investigate the effect of covariance control, 

LEV = E + Lv,(14) 

  Lv = >{Qv1Var[x(s)] + Qv2Var[(s)] 
          sET 

      +Qv3Var[9(s)] + Qv4Var[9(s)]},(15) 
where Qvi = Qv3 = 20.0, Qv2 = Qv4 = 4.0 which 
were found to be appropriate. 

  For simplicity, this time only variance is consid-
ered and the target values of variances ypq (t, s) in 
Eq.(7) are set to zero. 

  The criterion function LEV means that parame-
ters of the controller are trained so that variance of 
x(t), x(t), 9(t) and 9(t) caused by the Gaussian ob-
servation noise of x(t) are minimized as well as the 
minimization of the criterion function E. 

  In the same way as described in 4.2.1, when cal-
culating E in Eq.(14), the dynamics using value 
E[d(t)] instead of Gaussian noise was adopted.



 4.2.3 Criterion Function Evaluating Mean 
       and Covariance 

 The criterion function stated below corresponds 
to the original criterion function  LMV in Eq.(7), 
which means that the parameters are adjusted so 
that the ensemble average and covariance of the 

node output caused by the observation noise ap-

proach their target values, 

LMV = LM + Lv,(16) 

1 LM = —2 {Qml(xTe.f — E[x(s)])2 
               sET 

+Qrn3(E[9(s)f)2 + Qm4(E[O(S)1)2 

+Qm5(lref — E[l(S)])2 + Rmi(E[ui(s)1)2 

+Rm2(E[u2(9)1)2} +Qm2(E[x(tf)f)2 

+Qm6(E [l(tf )1)2] ,(17) 
where the following coefficients were adopted as 
they were found to be appropriate, 

Qrni = 4.0, Qm5 = 2.0, 
  Qm2 = Qm3 = Qm4 = Qrn6 = 1.0, 

  Rmi = Rm2 = 0.001, 

Qvn=8.0, Qv2 = 4.0, 
  Qv3 = 6.0, Qv4 = 2.0, 

in Eq.(15) and (17). 
  Parameters of the controllers which consist of 

nodes N7, Ng, N9 and N10 in Fig.5 can be trained 
by the gradient method minimizing one of the 
above three kinds of criterion functions using 
Eq.(8), • • • , (11), and higher order derivatives of 
Eq.(10) and Eq.(11) can be calculated using in-

teractive equations (A.2), • • • , (A.4) in Appendix B 
where P1, P2 and P3 are defined on not only neural 
network nodes but also the nodes which describe 
the nonlinear crane control system. 

 4.3 Simulation Results 
  Simulations were carried out five times per each 

criterion function with initial parameters being set 
randomly in [-0.1, 0.11, and five learning curves af-
ter 100,000 times training converged to almost the 

same values. 

  From Fig.7 showing the average learning curves 

for criteria E, LEV and LMV, it is shown that the 

criterion function E achieved the smallest value, on 

the other hand, the criterion function LMV attained 

the largest value. 

  After training the parameters of the controller to 

minimize the criterion functions E, L Ev and LMV,

Fig.7 Learning curve of E, LEV, LMV

dynamics of the crane control system was calculat-
ed for two cases: the case where Gaussian noise d(t) 
in Fig.6 was inserted in the observation point of x 
and another case that the crane control system was 

noise free. 
 Fig.8, Fig.9 and Fig.10 show the crane dynam-

ics without noise and dynamics contaminated with 
noise in the case of E, LEV and LMV respectively. 
When the criterion function E is used, which cor-

responds to the conventional design, the position x 
of the crane stand, the position 1 of the load and 
angle 0 between the rope and vertical line show the 
desirable characteristics if the system is noise free,

Fig.8 Control results in the case of criterion E



Fig.9 Control results in the case of criterion  LEv

but if the Gaussian noise d(t) with N(0, 1) is in-
serted on the observation point of x, x fluctuates 
heavily because xTe f is changed by the noise d(t), 
and 0 which is related to x also fluctuates, while 
dose not vibrate because is not influenced by the 
dynamincs of x as shown in Eq. (12) . 

 Fig.9 shows the dynamics using the controller ob-
tained by the criterion function LEv compared with 
the criterion function E. In this case, parameters 
of the controller are trained so that the variances of 
x(t), x(t), 0(t) and 0(t) should be minimized, even 
through the noise is inserted to the system. 

 From Fig.9 it is shown that the fluctuations of 
x and 0 are decreased dramatically at the small 
sacrifice of steady state error, quick response and 
damping characteristics of x. 

Fig.10 shows the dynamics of the crane control 
system when the criterion function LMv is used. 
Almost the same dynamics are obtained by the cri-
terion function LMv as compared with the criteri-
on function LEv. The difference is that the steady 
state error of x in the case of LMv is a little larger. 

 The conclusion is that PrULN can be utilized use-
fully to curb the effect caused by the noise, but care-
ful choice of coefficients Q and R is necessary in or-
der to meet the every kind of dynamic requirements 
such as samll steady state error, quick response and

Fig.10 Control results in the case of criterion LMv

damping characteristic. 

 5. Conclusions 

 In this paper, Probabilistic Universal Learning 

Networks have been proposed. The PrULNs are ex-

tensions of conventional ULNs. They allow stochas-

tic signals to be propagated through them, and they 

are equipped with machinery to calculate mean-

s and covariances of the stochastic signals and to 

train their parameters so that the signals behave 

with the pre-specified statistic properties. 

 The calculation of higher order derivatives that 

are necessary in the training are done based on the 

forward propagation algorithm which has been al-

ready devised for non-probabilistic ULNs. It has 

been shown from the simulation studies that an op-

timal controller of a nonlinear system which is con-

taminated with noise can be easily and effectively 

designed by utilizing the PrULNs. And, in future, 

many application systems of PrULN such as design-

ing problems for stochastic systems will be devel-

oped.



              Appendix 

   A Universal Learning  Networks1)2)3) 
   A Universal Learning Network (ULN) is a 

  discrete-time learning network where any kinds of 
  nonlinearly operated nodes with a continuously 

 differentiable function can be connected arbitrarily 
 to each other by multiple branches that may have 

  arbitrary time delays as shown in Fig. A.1. 
   The basic equation of the ULNs is represented as 

  follows, 

hi(t) 
   = fj({hz(t — Dij(p)) I i E JF(i) ,p E B(i,.7)}, 

{rn(t) I n E N(j)}, {Arn(t) I m E M(j)}), 
j E J, t E T,(A.1) 

  where 
hi (t) : Output value of node j at time t, 
rn (t) : Value of n-th external input vari-

            able at time t, 

A,m (t) : Value of m-th parameter at time t, 
f3 : Nonlinear function of node j, 

DZj (p) : Time delay of p-th branch from n-
            ode i to node j, 

       J : Set of node indices, 
JF(j) : Set of indices of nodes which are 

             connected to node j, 
JB(j) : Set of indices of nodes which are 

             connected from node j, 
      N : Set of indices of external input 

              variables, 
N(j) : Set of indices of external input vari-

            ables which are fed to node j, 
      M : Set of parameter indices, 

M(j) : Set of indices of parameters which 
            directly affect output of node j, 

B(i, j) : Set of indices of branches from node 
            i to node j, 

       T : Set of time instants. 

   B Calculation of Higher Order Deriva-
     tives in ULNs 2)3) 

   For simplicity, let us denote the derivative of node 
 output hk(t) with respect to parameter Al (t1) by 
Pl (k, t, A1(t1) ). Likewise, we will use the symbols 

  P2 and P3 to denote second and third order deriva-
  tives: 

P2(k, t, )1(t1), )2(t2)) 

a+2hk(t)  
aAl (tl )aA2 (t2 )

  Fig.A.1 Architecture of a Universal Learning Network 

P3(k, t, A1(t1), A2(t2), A3(t3)) 

a+3hk(t)  

aa1(tl)aa2(t2)aa3(t3) 

 The first, second and third order derivatives are 
obtained by the following equations, 

Pi(k,t,Al(tl)) = E E 
                jEJF(k) pEB(j,k) 

ahk (t)  
ahj(t — Djk(p)) 

Pi(j, t — Djk(p)),)1(t1) 

ahk (t)  
+aA

i(tl), 
k e J,t E T,t1 <t, (A.2) 

P2(k,t,Al(6),A2(t2)) = E E 

   ( 

                      jEJF(k)pEB(j,k) 

[a+I E1hk(t) I 
8h~ (t—D~k(p)) 

3A2(t2) 

.Pi(j , t — Djk(p), Ai (ti)) 

ahk(t)  

                ahj(t — Djk(p)) 
jEJF(k) pEB(j,k) 

.P2(i, t — Djk(p), Al (t1), A2(t2) 

a+ 1 3A1ahk((tlt))J  + 
aa2(t2) 
           k E J,t E T, t1i t2 < t, (A.3)



 The derivative of a node output with respect to 
another node output, e.g. ahk(t)  /ahj(t — Djk(p)), 
in these equations can be calculated by using the 
calculation results of the dynamics Eq.(1) with its 
inputs being their mean values E[xi(ti)]. 
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