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Abstract : In thermal power plants, it is an important theme to improve the control performance of 
main steam pressure and temperature etc. during load up/down. This paper focuses on temperature 
control that is the most difficult problem due to the non-linearity and long dead times of power plants. 
Model Reference Adaptive Control (MRAC) is applicable to the feed-forward control of power plants, 
but there are some problems. The most serious problem is that persistently exciting (PE) condition 
is not satisfied, and so it is difficult to estimate plant parameters using the well-known recursive least 
squares method. It is proposed in this paper that Jacobians of the neural networks (NN) are applied 
to identify the above mentioned plant parameters and control law is obtained by two methods, that is, 
one is the method to use the Jacobians of the NN plant model which is obtained by off line forward 
model learning, the other is the method to utilize the Hessian of the cost function. This method is 
evaluated by a detailed simulator that represents accurately the dynamics of power plants, and 
usefulness and effectiveness of the proposed method is proved. 

Keywords : Control systems, Non-linear control, Thermal power plants, Neural networks

 1. Introduction 

 This paper describes the application of neural net-

works to the feed-forward control to thermal power 

plants. In thermal power plants, not only feedback 
control, but also feed-forward control is necessary to 

keep main steam temperature, pressure etc. to the 

set values during load up/down. It is difficult to 

determine this feed-forward control signal in the 

complex system such as a thermal plant. We have 

studied the application of MRAC1' to the problem 

mentioned above. But in the process control where 

the process value changes slowly, it has become clear 

that PE condition is not satisfied, so it is difficult to 

estimate the plant parameters by recursive least 

squares method of MRAC. In place of MRAC, we 

consider in this paper the application of NN to the 

control of the thermal power plant. NN has been 

applied in many industrial fields such as, for example, 

pattern recognition, robotics etc., but only a few 
examples have been reported in the process control 

fields. Application of NN to the power system con-

trol involves many problems to be solved. The main 

problem is that frequent load up/down for training 
NN is not permissible, so it is difficult to train on line. 

Two off line NN training schemes can be employed in 

controller design, however they still have unsolved
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problems : 
 (a) Generalized learning2. An inverse NN model 

of the plant is trained and then used as a controller, 

which does not always give a well-trained good NN 

controller. 

 (b) Forward model learning. An inverse of a 
trained NN model of the plant is derived by a certain 

method and is employed as a controller, where the 

inversion is a relatively difficult task. Details of (a) 

and (b) will be discussed later. 

 In this paper we develop two methods to obtain the 

on line control law which are based on the off line 

forward model learning. One is the method to use 

the Jacobian of the NN plant model which is obtained 

by off line forward model learning, the other is the 

method to utilize the Hessian of the cost function. 

Temperature control of thermal power plants is dis-

cussed in the following sections, which is the most 

difficult theme for control because of non-linearity 

and long dead times. 

 We confirm that the proposed method is very effec-

tive by a detailed simulator that represents accurately 

the dynamics of plant. 

 The paper is organized as follows : Section 2 brief-

ly describes the plant model. In Section 3, several 

existing NN control schemes are surveyed with an 

emphasis on their drawbacks in their application to 

power plants control. The proposed NN control 
scheme is described in detail in Sections 4-7. Section 

8 gives simulation results of the proposed methods. 

Finally, Section 9 is devoted to discussions and conclu-

sions.



 2. Plant model 

 The conventional controller configuration and plant 
model are described in this Section, which serves as a 
basis for the proposed NN controller. Fig. 1 shows 
the outline of the conventional temperature control 
system. Fuel supply signal consists of the following 

three items. 

 (a) Statistic Feed-forward signal (SF) which corre-
sponds to Mega Watt Demand (MWD). 

 (b) Proportional and Integral  (PI) signal obtained by 
the feedback of the difference between set-point and 
measured temperature y(t). 

 (c) Transient Feed-forward signal (TF) which com-

pensates the control lag of the PI control. 
 The TF and PI parts are replaced with an NN 

based controller, whose output signal is denoted as 
Dynamic Feed-forward Control signal (DFC). Our 
objective in this paper is to determine the DFC of Fig. 
1 by an NN model. Approximating the plant by 
linearization, plant model is represented by (1), 

A(z-')y(t)=z-dB(z-1)u(t),(1) 
A(z-')=1+alz-'+a2z 2+••-+anz-n, 
B(z-1)=bo+b,z '+b2z-2+ +bmz-m. 

 Applying (1) to the temperature control of Fig. 1, 
the input variable, the output variable and the distur-

bance added to the input correspond to DFC (u(t)), 
temperature (y(t)) and MWD (w(t)), respectively. So 
the plant is rewritten by (2), 

A(z-)y(t)=z-dB(z-')u(t)+C(z-`)w(t),(2) 
A(z-1)=1+aiz-'+a2z-2+•••+anz-n, 
B(z-') = bo+ biz' + b2z-2+ • • + bmz-m, 
C(z-')=co+ciz '+c2z-2+••'+ckZ-k, 
w(t) : disturbance• • • MWD, 

 u(t) : control law•••fuel (DFC=PI=TF), 

 y(t) : controlled object—temperature, 
(set-point—measured temperature) 

d : dead time. 

 First it is necessary to determine the value of n, m, 
k in (2) before applying NN to the power plant. 
Response of temperature from fuel is approximately 
expressed by first order lag and dead time, and that 
from MWD by first order lag. So, the simplified 
model of the power plant is shown in Fig. 2. 
Therefore the relation between y(t), u(t) and w(t) is 

given by 
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Fig. 1 Outline of main steam temperature control sys-

       tem

Fig. 2 Simplified model

 By the z-transformation of (3), the following differ-
ence equation is obtained : 

(1 + a1z-' + a2z-2+a3z-3)y(t) =z-d(bo+ biz-')u(t) 
+ (co + c1z-'+ + cdz-d)w(t).(4) 

 Applying Diophantine equation (1=A(z-')S(z-1) 

+z-dR(z-')) to (4), the following equation is obtained : 

 y(t+d)={A(z-1)S(z-')+z-dR(z-1)}y(t+d) 
=R(z-1)y(t)+B(z-')S(z-1)u(t) 

+C(z-')S(z-')w(t+d). (5) 

 The order of S, R, BS, CS is d-1, 2, d, 2d-1, respec-
tively, so R, BS and CS are given by 

R(z-')=ao+alz-'+a2z-2,(6) 
B(z-')S(z-')=bo+biz-'+•••+bdz-d (7) 

C(z-')S(z-1) =co+ciz' + + c2d-1(2d-1) (8) 

 3. Application of NN 

 An NN is a mean to describe the input/output 
relationship and the first step is to use an NN to 
identify the plant model (5). The plant model (5) 
should be represented by the Eq.(9) due to its non-
linearity, 

y(t +d)=f[u(t),u(t-1),• • •,u(t—d),w(t+d), 
w(t+d-1),—,w(t—d+1), 

y(t),y(t —1),y(t —2)]. (9) 

 Therefore utilizing an NN to identify the plant 

model is to construct Eq.(9) by the NN. From now



on, time t is indicated by a suffix. 

 Some training and control methods have been 

already proposed, for example, feedback error learn-

ing (Fig.  3(a))3', special learning (Fig. 3(b)2), general-

ized learning (Fig. 3(c))2), forward model learning 

(Fig. 3(d)), and forward and inverse model learning 

(Fig. 3(e)). Feedback error learning and special 
learning can be executed only when the plant model is 

known. This paper is focused on the problem where 

the plant is unknown. In the following, the learning 

and control methods are summarized which are appro-

priate for the case where the plant model is difficult to 
make, and the problems with these existing methods 

will be clarified. 

A. Generalized learning  

 The input to the NN is the plant output, and the 

desired output is the control signal, i.e., by this learn-
ing method an inverse model of the plant is obtained. 

In this case, learning corresponds to determination of 

the following non-linear function that is the inverse of 

(9).

Fig. 3 Various training method

ut—g[ut_i,ut-2,• • -,ut-d,Wt+d,Wt+d-1,•',Wt—d+1 

,Yt+d,Yt,Yt-1,34-2](10) 

 After training the non-linear function, it is used in 
the on line control. But in this case function g con-
tains errors (inevitable in NN), and so ut has some 
errors, where ut+1 is a function of ut, in the same way 
Ut+2 is a function of ut+1, and so on. As the result, 
errors of control input ut are accumulated. We have 

confirmed this by simulations. 
B. Forward model learning  

 The input to the NN is the control signal, and the 

desired output is the plant output, i.e., this learning 
method corresponds to the creation of the forward 
model of the plant. Thus non-linear function (9) is 
obtained. Therefore control input ut can be obtained 
by the inverse of NN. Although the learning error is 
smaller than that of generalized learning, it is difficult 
to obtain control input by inverting Eq.(9) because of 
its non-linearity. 

C. Forward and inverse model learning  
 This learning method is shown in Fig. 3(e). In this 

case, the NN is trained by the deviation between the 
target value and output of the plant. In this case 

Jacobian of the plant is necessary, but it is impossible 
to know the Jacobian if the plant is unknown. But 
when the plant is replaced by the plant model trained 

by forward model learning, the NN controller can be 
trained by using Jacobian calculated by the plant 
model. But in this case the NN is trained through 
two stages by which the error is accumulated and so 

good control performance is not expected. We have 
also confirmed this by simulations. 
D. Determination of control law from forward model  

 Since forward model learning provides NN with 
small errors, an effective procedure for inverting 

them will be very useful in designing NN based con-
trollers. Iterative inverse method (IIM)5) was 

proposed for the calculation of control input from the 
forward model. The output of NN ; yt+d is decided 
by input yt,--,ut," ,wt+d--• (sequential data of output, 
control input and disturbance) and weights W. W is 
decided by the forward model learning. Key point in 
IIM is to determine ut by the same method as the 

determination of W with W being fixed. But this 
method has following three problems. i.e., iterative 
calculation is necessary, and we have to determine 
appropriate learning rate and iteration number which 
depend on the situations. There are some other 
methods as for the determination of control law from 
the forward model. e.g., simplex method, but it also 
has the same problems.



 We propose two methods to solve these problems. 

The first one is the method named Jacobian method 

based on the assumption that the plant model is 

approximated linearly, and the second one called 

Hessian method uses Hessian in order to compute the 

control input. 

 4. Learning of NN 

 The feature of training data measured from the 

thermal power plant is that it has a long duration and 

changes very slowly as compared with those from the 

servo systems such as robots. (refer to Fig. 12). We 

have to choose appropriate method for NN learning. 

These are various alternatives concerning the  learn-

ing of NN. (a) Structure of neural network : Layer-

ed network with external memory, Layered network 

with first order lag, Recurrent network. (b) Learning 

algorithm : BP (Back Propagation), BPTT (Back 

Propagation Trough Time), RTRL6) (Real Time 

Recurrent Learning), RS7) (Random Search). (c) 

Input method : Random input, Sequential input. (d) 

Updating timing of the weights : updating after pre-

sentation of all the data (1 cycle), updating per each 

data presentation. We studied what combination of 

them is appropriate for our purpose. Various combi-

nations are evaluated by simulations. Simulation 

results show that the combination of (a) layered net-

works with external memory, (b) BP, (c) random input 

and (d) updating per each data presentation is the best. 

  We used the off line forward model learning to 

model the power plant. Fig. 4 shows the configura-

tion of NN. 

 5. Iterative inverse method 

  The IIM proposed by A. Linden et. al is summar-

Fig. 4 Configuration of neural network

ized. Fig. 5(a) shows the forward model learning. 
Plant model is shown by yt+d=f (Yt, yt-i, •••, ut, ut-1, 

W). Inputs of NN are yt, •••, Ut, ••', 
Wt+d, •' •, and NN output ynn is compared to the super-
vised output yt+d, and weights W is adjusted to mini-
mize the difference between them as follows, 

 W(n)=W(n-1)—~'• a(yt+dWynn)2,(11) 

where 
: learning rate of W. 

 Fig. 5(b) shows the principle of IIM, ut can be 

calculated with W being fixed in almost the same way 
as the determination of W. Although W is trained 
off line in order to model the power plant, ut is 
calculated on line to control the plant. The method 
of calculating ut in Fig. 5(b) is as follows. 
The cost function is defined by Eq.(12), 

1      J = 
2((dt+d Yt+d)2+p'ut2),12() 

where 

p : Trade off coefficient between control accuracy 
and control energy. Inverse calculation of ut is per-
formed as follows in the same way as the adjusting of 
W, 

Ut(n) =ut(n-1) — 7) • aJ ,                    o~ut 

       //ay
y      =Ut(n-1)_77 • (\Yt+d — dt+d) •Outt+d + p . ut(n-1)l1, (13) 

where    

: Learning rate of ut. 

  Derivative dyt+d/aut in Eq.(13) is calculated as fol-

lows for our NN depicted in Fig. 4,

Fig. 5 Iterative inverse method



 ayt+d  —ayt+d • ao2i  
aut—aO21aut 

_ {f'(net3) • WI • f'(net2i) • WO , 

=f'(net3) • Wi • f'(net2i)'Wik, (14) 

  net2i=L~~~11O1k•Wik, net3—L~~1                                O2i•Wi• 
 ki 

 But, iterative equation (13) has the following essen-

tial problems when it is used on line. 

 (a) Iterative calculation is to be finished before 
measuring the new data. 

 (b) Determination of appropriate learning rate ri is 
necessary. 

 (c) Determination of iteration number is needed. 
 When weight W is calculated off line according to 

Eq.(11) in order to model the plant, then trial-and-

error search for good learning rate and iteration 

number is permissible. But calculation of ut is 

executed on line, so the time expenditure due to the 

iterative calculation mentioned above is not prefer-

able, especially the above trial-and-error process is 

not permissible. 

 6. Jacobian method 

 In this and the following sections, two new methods 

for calculating control input ut on line are presented 

in order to overcome those problems in the iterative 

inverse method mentioned in the previous section. 

The problems will be resolved if the inversion of the 

plant model can be performed either non-iteratively 
or with a fewer number of iterations. The first one is 

the Jacobian method that enables non-iteratine inver-

sion based on the concept that the linearized parame-

ters (6)—(8) are equal to the Jacobian of the NN 

obtained by the forward model learning. The other 

one is the Hessian method whose feature is the high 

speed of the calculation of ut by use of the second 

order derivative. 

 Recall that the linearized plant was represented by 

Eq.(5)—(8). Because of linearity of the equations, 

inversion of Eq.(5) can be easily performed, i.e. the 

equation is readily solved for ut. Therefore control 

input ut that minimizes the cost function Eq.(12) can 

be derived without any iterative calculation. How-

ever the parameters a1, b,, ck in Eq. (6) — (8) depend on 

the operating point, and their on line estimation is 

required. Here, it is important to point out that ai is 

equivalent to ayt+d/ayt-i, b, is equal to ayt+d/aut-,, and 

that ck corresponds to ayt+d/awt+d-k• Since we have 

an NN forward model of the plant, we can easily 

calculate the above Jacobians, ayt+d/dyt-i, ayt+d/aut-,, 

and ayt+d/awt+d-k• This is the basic idea underling

our Jacobian method. The detailed procedure is 

described below. 

A. Calculation of Jacobians  

 From Fig. 4, Jacobian is calculated as follows, 

ayt+d  _ayt+d aO21  
aXk—ao21aXk 

_ {f'(net3) • Wi • f'(net2i) • Wik}, 

=f'(net3) • E WI • f'(net2i) • Wik• (15) 

where xk stands for any of yt, yt-1, • • •, ut, ut-1, wt+d, 

wt+d-1, -- , and 

net21=EO1k•W1k, net3=EO21•W1• 
ki 

B. Determination of control input  

 To get a control input that minimizes the cost 

function (12), we differentiate it with respect to ut ant 

put it to zero : 

aJ  ayt+d 
   t=(yt+d—dt+d)aut+put(16) 

 Since ayt+d/out=bo, substituting Eq.(5)—(8) into Yt+d 

in Eq.(16) and solving it for ut, we get the following 

control law. 

   2d2d-I 

ut = ( Ea1yt-1 + Eb1ut-1 +ciwt+d — dt+d) 
i=01=11=0 

/(b0 + p/b0)(17) 

 If the dead time d is properly given, then bo is 

non-zero. Coefficient p in the cost function is usually 

set to be non-negative. Therefore the control law 

(17) is well defined. Here, the coefficients ai, bi and ci 
are given by the Jacobians that are derived from the 

NN model. The control input ut requires values of 

wt+d,wt+d-1,•••,wt+1• Since these are future external 

signals and thus not available, their predicted values 

are used instead. 

 The key point in this paper is to employ control law 

(17), together with the jacobian (15), and they are 
calculated at each time step. Fig. 6 shows the configu-

ration of the Jacobian method. Dotted lines and real 

lines show off line learning and on line control, respec-

tively. 

 7. Hessian method 

 We propose the Hessian method to improve the 

learning speed and to avoid the design parameters to 

be tuned appropriately depending on the problems. 

In the cost function (12), let the approximation value 

of ut satisfying ayt+d/aut=0 to be Ut, its current



Fig. 6 Configuration of Jacobian method

estimate to be  Ut° and Ut — Ut° to be E. 

ExpandingaaiJi
tUt by using Tailor expansion, we get 

2 

 auttit=----autU~+E•----JUt. (18) 
Putting     aj          tUt=0 gives       Ou 

 E= ----tUt°/i2Ut°.(19) 
Therefore ut is given in the following, 

 Ut=Ut°+E=Ut°—----aaiJitUt°/JUt°, (20)                       au 

where 

aJayt+d(21) 
  aut —(yt+d—dt+d)• +                    outp•ut, 

  a2J~  ayt+d  )2+(Yt+d—dt+d.ay+d L.t2+p.(22) 
Differentiating (14), we haveUU 

  at2d =f"(net3)•(EW1•f'(net2,)•(Wtk)2 

+f'(net3) • W, • f"(net2i) • Wik2.(23) 

Putting f(x)=--------1+e-g, its derivatives are given as 

f'=f•(1—f), f"=f•(1—f)•(1-2f). (24) 

 So we can obtain the approximate value of ut satis-
fying ayt+d/aut=0 from (20)—(24) and (14). Though 

the calculation is somehow complex, we can resolve 
the drawback of IIM in the on-line control. The ut 
obtained by Eq.(20) is assigned to Ut°, and calculation 
of Eq.(20) — (24) and (14) is repeated, then accuracy of 
calculation is improved. 

 Hessian method can be considered from another 

point of view. Tailor expansion of the cost function 
in the neighborhood of Ut° is expressed by Eq.(25), 

          aJ------                                   o)zz     °° •°utU                      —t aJ° J=JUt+(ut—Ut)•
outUt+2•2Ut 

+(higher order terms)(25)

Fig. 7 Iterative inverse method

Fig. 8 Hessian method

 Taking account of up to second order term of Eq. 

(25), J becomes a quadratic function of Ut. So minim-
izing J as the function of Ut, we can get (20). In other 

words IIM uses steepest descent method by first order 

derivative, while Hessian method uses second order 

derivative of the cost function. This corresponds to 

the fact that the learning of Gauss-Newton method is 

much faster than the usual back propagation method 

in the calculation of weights. It should be noted that 

weights' calculation time by Gauss-Newton method 

increases extraordinary with the number of weights. 

So it is not useful in the case of many weights. On 

the other hand as for ut, it is very useful because only 

one parameter Ut is to be calculated. Relation 

between IIM and Hessian method is shown in Fig. 7 

and 8. The ut that minimizes the cost function is 

obtained by IIM iteratively, and in the Hessian 

method ut is calculated that approximates ayt+d/aut= 

0 by using second order derivative. Fig. 9 shows the 

configuration of Hessian method. Dotted lines and 

real lines show off line learning and on line control, 

respectively. 

 8. Simulation results 

 Simulation system consists of a controller model 

and a power plant model. The power plant model



Fig. 9 Configuration of Hessian method

used in the simulations is constituted by the detailed 

simulator that represents accurately the dynamics of 

a typical power plant. Fig. 10 shows the simulation 

flow diagram. 

A. First  step  : Acquisition of plant data  

  Dead time of this plant simulator was about 50 sec., 

and considering that the sampling interval was 10 sec, 

we determined d=5. Fig. 11 shows the training data. 

In Fig. 11, 0 -125% etc. shows the full scale of each 

variable (the same convention is used in Fig. 12-17). 

This data shows the time sequence of yt (tempera-

ture), ut (control input) and wt (MWD), when the load 

is changed, for example, 50%-p 70%-* 100%-> 70%-> 

50%-* 100%-* 50% at load change rate 2%/min. or 

5%/min.  The sequential data (yt, • • •,ut, • • •,wt+d, • • •) to 

be fed to (9) are obtained from these data. 

B. Second step : Off line learning  

 The NN is trained off line by the data of the 

combination of input (yt, • • •,ut, • • •, wt+d, • • •) and output 

yt+d. Fig. 12 shows training curves which illustrate 
the learning error (deviation between the desired 

value and measured value of the NN output) and some 

of weight values (training iterations : 200000). Error 

is about 7°C at the beginning of learning (somehow 

difficult to read it out from the chart), and decreases 
fast till 1000 iterations, after that decreases gradually , 
and final error is about 0.3°C and weights converge 

too. 

C. Third step : On line control  

 We studied control performance using Jacobian of 

NN obtained in the second step and control law (15)-

(17). Fig. 13 shows the result of temperature control 
in the case of load change rate : 2%/min., where only 

on the coventinal PI control (TF=0 in Fig. 1) is used 

on condition that the load changes 50%-> 70%-* 100% 
-> 70%-> 50% . Temperature deviation is large and 

becomes larger in the case of 5%/min. load change 
rafa

Fig. 10 Simulation flow diagram

Fig. 11 Examples of Learning Data

Fig. 12 Learning process of NN

 The simulation results by IIM are shown in Fig. 14 

and 15. Fig. 14 shows the result for the 2%/min. load 

up/down and NN learning with 7)=0.1 and the number 

of iteration=5. In this case the control input (fuel) 

and the plant output (temperature) are not preferable 

because of their hunting. Fig. 15 shows the result 

with 7)=0.1 and iteration=100. This case is prefer-

able compared to the case of iteration=5. In IIM 

there are two parameters i.e., learning rate and the 

number of iterations, so we have to determine them in



order to get favorable control input. Moreover large 

 71 gives hunting in the neighborhood of optimal value, 

on the other hand small i needs large iterations. 

Therefore the determination of i is a somehow diffi-

cult task. 

 Fig. 16, 17 show the simulation results derived from 

Jacobian method, each corresponds to load change 
rate 2%/min. and free load swing. Control perfor-

mance is improved very much as is evident from 

comparison between Fig. 13 and Fig. 16. Hessian 

method was simulated in the same case and as good 

performance was obtained as Jacobian method. In 
the Hessian method, though ut was calculated only 

once, temperature deviation and settling of control 

input were nearly equal to the case of the Fig. 15. 

 9. Conclusions 

 We have already shown that MRAC can not be 

applied to control the thermal power plant effectively 
because the persistently exciting conditions is not 

satisfied8). So, various kinds of neural networks have 

been studied in order to determine their best architec-

ture and learning algorithm. Especially in this paper, 

two types of new control laws named Jacobian 

method and Hessian method are proposed based on 

the above architecture and learning algorithm. 

Those methods are advanced versions of iterative 

inverse method proposed by A. Linden et. al., and the 

first feature of those methods is the improvement of 

on line control, and the number of iterative calcula-

1. MWD: 0-125% 2. TEMP.: 400-600°C 
3. DFC: -12-28 Horizontal axis: 10000sec. 

Fig. 15 Load change by IIM (2) (2%/min.)

  1. MWD: 0-125% 2. TEMP: 400-600°C 
  3. TF: -12-28 4. PI value: -12-28 

         Horizontal axis: 10000sec. 

Fig. 13 Load change by PI control (2%/min.)

  1. MWD: 0-125% 2. TEMP.: 400600°C 
  3. DFC: -12-28 Horizontal axis: 10000sec. 

Fig. 16 Load change by Jacobian method (2%/min.)

1. MWD: 0-125% 2. TEMP.: 400-600°C 
3. DFC: -12-28 Horizontal axis:10000sec. 

Fig. 14 Load change by IIM (1) (2%/min.)

    1. MWD: 0-125% 2. TEMP.: 400-600°C 
    3. DFC: -12-28 Horizontal axis: 10000sec. 

Fig. 17 Load change by Jacobian method (free load 

      swing)



tions for finding optimal control law is decreased 

dramatically. In other words, optimal characteris-

tics  of iterative inverse method is obtained in a short 

computation time using those methods without any 

adjustment. From the simulation results usefulness 

and effectiveness of the Jacobian method and Hessian 

method are proved. 
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