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Abstract: A vector quantization scheme with a two-stage neural network coding(NNVQ) is de-
veloped, where an encoded vector is approximated by the output of the networks driven by a 
vector from an excitation codebook. The networks and the codebook are optimized to overcome 
some difficulties in conventional algorithms. The experimental results show that the NNVQ which 
employs the recurrent neural networks and the optimized learning algorithm performs the best 
among the reference versions of the VQ algorithms. 
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 1. Introduction 

 A vector quantization (abbr. as a VQ) is very 
important in the fields of signal compressing. The 

traditional VQ methods, i.e., the LBG algorithm 
and its improved algorithms 1)7), are so-called batch 
clustering learning algorithms, which update codes 
after the presentation of all training data. They 
however have drawbacks such as large coding com-

plexity and large storage requirement, especially in 
the cases of high coding rate or large vector dimen-
sion. 
 Recently some VQ techniques based on the neu-

ral networks have been proposed, e.g., Kohonen's 

self-organizing feature map 2), single- or multi-layer 
neural networks as front ends for the quantization 
and so on 4) . They can be regarded as generalized 
LBG algorithms. 

 To reduce computational efforts and storage de-

mand, the codebook-excited neural network vector 

quantizer(abbr. as an NNVQ) was developed 5)6) 
In NNVQ the weighting parameters of neural net-
works are substituted in place of the conventional 
codeword set in the LBG so that both the storage 

requirement and the computational load decrease 

greatly due to the efficient parallel neural comput-
ing 3). More significantly, owing to the peculiar 
mechanism of the neural networks, the quantization 
centroid becomes a function of the partition of the 
inputs, but not an arithmetic mean as in the LBG 

algorithms, and thus can be well approximated by 
means of some efficient learning methods. 
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 The objective of this paper is to present a bet-
ter neural network vector quantization system. We 

propose a new quantization scheme which utilizes a 
two-stage coding program. We use a recurrent neu-
ral network instead of single- or multi-layer feedfor-
ward network in order to improve the mapping char-
acteristics. Another contribution of this paper is to 
apply the optimization learning method to NNVQ 

in order to improve its comprehensive performance. 
The simulation results show that our new scheme 

performs better than other VQ methods. That is, 
concerning the experiments with a Gauss-Markov 

source, its generalization performance is close to the 
corresponding theoretical bounds, while the results 
obtained by using speech signal manifest that it im-

proved the quantization performance over conven-
tional algorithms. 

 2. NNVQ System 

 The vector quantization(VQ) can be stated as fol-
lows: Given a real vector X consisting of k continu-
ous samples, find a discrete code C that minimizes 
d(X, X ), where X denotes the recovered signal cor-
responding to C and d(.) is a given distortion mea-

sure, e.g., the Euclidean norm. The most important 

problem for it is how to determine the set of codes, 
i.e., the codebook. 

  Since the neural network contains many neuron 

parameters, we can expect that the assemble of the 
input signals can be modified so as to facilitate the 
classification. Hence we employ the neural networks 
in the fundamental coding systems to compose our 
NNVQ system. 

 2.1 Structure and Functions of NNVQ



Fig.1 Codebook excited neural networks vector quanti-
      zation  system(NNVQ)

     System 
 The overall architecture of the NNVQ system we 

propose in this paper is shown in Fig.1, which con-
sists of an encoding subsystem with a weight set We, 
a decoding subsystem with a weight set Wd and an 

excitation codebook CB as the codeword layer. The 
encoding and decoding subsystems use the neural 
networks of the same type shown in Sec.2.2. Their 

parameters are determined by a learning process be-
ginning with randomly initialized entries as will be 
explained in Sec.2.3. The initial excitation code-

book is chosen from Gaussian time series and then 
is optimized by the same learning process. 

 Let all dimensions of the input signal X, the dis-
crete mapping Ox of X, the excitation vector C 
and the output signal X in Fig.1 be k. That is, 

X, CX, C, X E Rk, if we denote one-dimensional 
real space by R. 

  The encoding subsystem(i.e., encoding mapping 
denoted by O) can be described by: 

ax = e(X, We) E Rk,(1) 

and the decoding subsystem(i.e., decoding mapping 
denoted by (I)) can be described by: 

X = cD(C, Wd) E Rk.(2) 

  As shown in Fig.1, the decoding subsystem is 

driven by a codeword vector selected from the ex-
citation codebook. Hence the coding procedure is 
that, for each input vector X, a vector CX Ek 
is chosen so as to minimize d(CX, C) over whole 
codebook. That is, 

d(CX, CX) = mincEcBd(CX, C)

Fig.2 Neural structure in NNVQ system

         = mincEcBd(e(X, We), C). (3) 

Thus the total coding distortion D over an input 
signal data set x is defined as follows: 

D = E min d(X, X) 
XEX 

  = E d(X, `1)(Cx,Wd)). (4) 
XEX 

We then define the partial distortion as follows: 

De= E d(CX, Cx) _ > d(e(X, We), CX)•(5) 
XEX'cc), 

 We first decide the neural structure in the NNVQ 
in Sec.2.2 and then introduce the learning and op-
timization algorithms for whole system in Sec.2.3. 

 2.2 Neural Structure in NNVQ Sys-
     tem 

 To improve the mapping characteristic(e and 
1) in the NNVQ, we apply the generalized neural 
model, i.e., the recurrent neural network(abbr. as 
an RNN) to implement the maps in the encoding 
and decoding subsystems shown in Fig.2. 

  Considering the neural networks with three layers 
in Fig.2, let N1 be the number of neurons in the lth 
layer, where 1 < 1 < 3 and N1 = N3 = k. At the 
iteration n, the outputs o,2)(n)(1 < i < N2) of the 
second layer neurons are determined by: 

N1 
07(2)(n) = f {E w(32 )o(il) (n) 

j=1 

            N2 

      + E S(r)°(rn2.) (n — 1) + I;.2) (n)}, (6) 
rn=1 

where o~•1 ) (j = 1, 2, • • , N1) are the outputs of the 
first layer neurons, e are the threshold values of 
neurons in the second layer, wT are the weights be-
tween the the second and the first layers, and s~2r,)



are the strengths of the recurrent connections within 

the the second layer, with 1  <  i,  m < N2. Note that 

in Fig.1 Wd and We denotes the total sets of the 

weighting parameters {wi3}, {Sim} and {bi} in each 
RNN. 
  If {sim} are all zero in Eq.(6), the network is 

a feedforward neural network(abbr. as a FNN). 
This model can be expected to have better map-

ping performance than the previous network using 
FNN 8). We assume that the the output neurons 
have linear activation functions, while the activa-
tion functions of the other layer units have the type 

of f(x) _ (1 - e-2x)/(1 e-2x). 

 2.3 Learning and Optimization Algo-
     rithms 

  In this section, we describe how to determine the 
excitation codebook CB and how to train the pa-
rameters We and Wd of two neural networks. 

  The excitation codebook CB obtained from 
Gaussian time series usually shows good perfor-
mance but is still room to be improved by learning. 

  We first train and CB together while fixing 
We and then we train e while using the trained Wd 

and CB. Both maps O and can be learned by 
taking into account the unknown probability den-
sity function of the full data set through the weight 
updating. 
  Fig.3 shows the flowchart for training the map 

and the codebook CB. We use the criterion D in 
Eq. (4) for training over the data set x. The purpose 
of the above training is to get CB* and Wd such as 

D(x, CB*, Wd*) < D(x, CB, Wd)•(7) 

The algorithm is as follows: 

OWd = i1DVwdOd,(8) 

and 

OCx* = 17DV cX Od,(9) 

where A denotes the change of the training objec-
tive, V the gradient with respect to its subscript, 

and Od the set of the outputs (e) (i = 1, 2, • • • N3) 
of the last layer neurons , which belongs to the de-
coding networks(correspondingly we define Oe those 
in the encoding networks), and 77 the corresponding 
learning rate prescribed as a small positive value. 

 Training e is almost the same as training 1 ex-

cept for Wd, D, and Od replaced by We7 Def and

Fig.3 Flowchart for training map ' and codebook CB

0e7 respectively. That is, we obtain W: such that 

Dc(x, We*) C De(x, We),(10) 

by training over x. 
  The steepest gradient algorithm is often trapped 

with local minima. In order to get the optimiza-
tion design system we employed the simulated an-
nealing(SA) algorithm 10) in the learning procedure, 
regardless of the additional computation used. Be-
cause the NNVQ system is off-line trained, its com-
putational load in the design phase is a secondary 
concern. Here we use the following temperature 
schedule 10). Tn = a-2(1 - n/N)3, as the noise added 
to the parameters Wd, We or C at the nth training 
iteration, where 1Z defines the number of the train-
ing iterations and the variance a2 of the training 
data is set to the initial temperature. 

 After acquiring the optimized We , W(' and CB* 
by above learning, we construct a complete NNVQ 
system. Hence it is no doubt that the computational 
efforts in on-line quantization are very small. 

 3. Experimental Results 
 3.1 Simulation Results and Discussion 

  We usually use the Gauss-Markov source to train 
and evaluate our NNVQ system. That is, the 
signal {xn } is generated by a difference equation: 
xn+l = axn Gn, where {Gn} is a zero mean unit 
variance independent identical distribution Gaus-
sian time series. Here we set a = 0.9, which makes 
the source to be a highly correlated one such as the 
speech signals. 

 For the networks in the NNVQ, the number of the 
input and output units is a priori decided by the di-
mensions of the input signal and the excitation vec-
tor, as described in Sec.2.1, while the number N2 of 
the hidden neurons can be chosen experimentally. 

 First we compared the performance between our



Table 1 Performance comparisons between NNVQ and LBG algorithm

Table 2 Performance comparisons of NNVQ systems with different structures(coding rate  R=1bit/sample)

NNVQ and the traditional LBG algorithm under 
the same conditions. The NNVQ and the LBG are 
constructed for the input vector dimension k = 4 
with the coding rate R = 1, 2, 3, and 4 bits per 
input vector, and the number of the hidden units 
N2 = 2. 

 Table 1 summarizes the above comparisons of 
the resulting signal to noise ratios(SNRs measured 
by total energy of the input signal over that of the 

total coding distortion in decibels) of the test data, 
where the excitation codebook CB in the NNVQ 
system is untrained. In Table 1, the words "FN-
NVQ" and "RNNVQ" mean the NNVQ schemes by 
means of the feedforward and recurrent networks 

respectively, the prefix "SA" denotes that the SA 
algorithm is used in the training process of this 
scheme, and the prefix "FSVQ" means that the di-
rect "full-search" vector quantization algorithm is 
employed in the LBG scheme 1). 

 From Table 1, it can be concluded that the 
NNVQ using both RNNs and the SA algorithm per-
forms the best. Note that without SA, the RNN 
scheme improves little over the FNN and LBG ones, 
and even performs worse than the optimized LBG 

algorithm. This shows that the optimization in VQ 
is very important, because any VQ scheme is greatly 
influenced by the initial values. Note also that the 
optimized RNNVQ indeed performs better than the 
FSVQ and the optimized LBG algorithm. 

 Then we compared the performance among the 
NNVQs by varying some configurations: (a) the 
number of the hidden units N2i (b) whether the

excitation codebook being trained or not; (c) the 
network structure being recurrent or feedforward, 
while we fixed the coding rate R = 4 bits per in-

put vector and the dimension k = 4 of the input 
signal. The comparisons of the SNRs are shown in 
Table 2, where the words "UCB" and "TCB" are 
corresponding to the untrained codebook and the 
trained codebook respectively. 

 It is obvious from Table 2 that the performance 
of the NNVQ system using RNNs and the trained 
codebook is the best again. In fact this is the most 
encouraging quantization performance of the RN-
NVQ because its generalization performance is very 
near to the design performance. Such a conclusion 

can be further verified by Fig.4, where some theo-
retical and simulation performance is obtained for 
various dimensions of the input vector. 

 In Fig.4, the vertical axis represents the SNRs of 
the NNVQ results, while the horizontal axis denotes 
the dimension of the input vector, and the coding 
rate R is fixed at 1 bit per input sample. The the-
oretical performance 13.2dB of the Shannon lower 
bound D* to the rate-distortion function in this fig-

ure is given by 11) : 

 D* =  1  e-2(R— .)(11) 
27re 

where h - a log(27rea2) is the differential entropy 
rate of the source data we used and a is defined in 

Sec.2.3, while the asymptotically optimal.VQ bound 
Dk(R) is denoted by 12):



Fig.4 Comparison between quantization performance 
      of NNVQ and corresponding theoretical bounds 

      (coding rate R=lbit/sample)

where F(x) is the Gamma function and  Doo(R) is 
the theoretical value of the optimal VQ. 

  Fig.4 clearly shows that the performance of our 
NNVQ is very close to Dk (R), especially when 
k>5. 
  There exist some other important conclusions as 
follows: 

  The so-called "empty cell" problem in conven-
tional VQ systems is caused by a common factor 
that some codewords are rarely chosen due to the 

poor initial guesses. Obviously optimizing the exci-
tation codebook during the training can avoid this 

situation to a great extent, especially in the quan-
tizer with a large excitation codebook. Table 2 
denotes that the schemes using the optimized code-
book give the improved results over those with the 
untrained codebook. 

 The results in Table 2 also indicate that in all 

given number N2 of the hidden units, the differ-
ences of the SNRs between the training and test 
data for the RNN schemes are smaller, which, from 
another aspect, proves that the NNVQ using RNNs 

is a better scheme. In addition Table 2 shows that 
N2 = 2 yields a excellent trade-off between the ac-
curacy and the computational efforts for our NNVQ 
system. 

 3.2 An Example of Practical Applica-

Fig.5 Comparisons of CELP coding between conven-
      tional VQ and NNVQ 

Table 3 Comparisons of distortion between CELP 

      speech coding and CELP speech coding with 
     NNVQ(NCELP)

     tion 
  As an application of our scheme to speech cod-

ing, the Gaussian excitation codebook in the CELP 
speech coder 9) is replaced by an RNNVQ system. 

Some simulation results are shown in Fig.5 and Ta-
ble 3, where the SNRs are measured by the total 
energy of the original speech signal over that of the 
difference between the reconstructed and original 
signal. In simulation both the training and test data 

consist of 20 sentences from a set of English speech 
database 13) . In the CELP system we used here, 
the order of the short- and long-term linear predic-
tive filter are 12 and 3 respectively, the short- and 
long-term frame length is 160 samples(20ms) and 

40 samples(5ms) respectively, and the dimension of 
the excitation vector is 20. 

 The results also show that the RNNVQ performs 
better than the conventional VQ at a high coding 
vector dimension. 

 4. Conclusion 

 Based on a quasi-parallel neural computing ap-

proach, we have developed a codebook-excited re-



current neural network vector quantizer. The RN-

NVQ system has one notable advantage that the 

correlation information among the sources can eas-

ily be taken into account by the recurrent connec-

tions. Experimental results showed that the opti-

mization in the learning procedure could improve 

greatly the performance. Furthermore, due to the 

powerful mapping capacity, the codebook-excited 
recurrent neural networks can be applied to design 

vector quantizer with any required structural form 

on its code vectors. 
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