
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Privacy-Aware Cloud-based Input Method Editor

Kawamoto, Junpei
Kyushu University

Sakurai, Kouichi
Kyushu University

https://hdl.handle.net/2324/1498307

出版情報：Proceedings of the IEEE/CIC ICCC 2014 Symposium on Privacy and Security in
Commutations, pp.209-213, 2014. IEEE Computer Society
バージョン：
権利関係：



Privacy-Aware Cloud-based
Input Method Editor

Junpei Kawamoto
Kyushu University

744 Motooka, Nishiku
Fukuoka, Japan

Email: kawamoto@inf.kyushu-u.ac.jp

Kouichi Sakurai
Kyushu University

744 Motooka, Nishiku
Fukuoka, Japan

Email: sakurai@inf.kyushu-u.ac.jp

Abstract—Cloud services are useful but privacy concerns are
still one of the most important problem of them. In this paper, we
focus cloud-based input method editor and introduce a privacy-
aware framework of it. Input method editor (IME) is a kind
of software to help us to input Japanese, Chinese, Korean,
etc. It receives input words consists of alphabets and returns
transformed words consists of Kanji in Japanese, etc. We assume
to deploy this IME on a cloud server. In this case, input words
received IME may include people’s sensitive information eg.
credit card number. We employ a seachable encryption scheme
and introduce a framework that people send encrypted inputs
and IME computes transformed words without decrypting them.

I. INTRODUCTION

Cloud services are useful but privacy concerns are still one
of the most important problem of them. In this paper, we
focus cloud-based input method editor and introduce a privacy-
aware framework of it. Input method editor (IME) is a kind
of software to help us to input Japanese, Chinese, Korean,
etc. It receives input words consists of alphabets and returns
transformed words consists of Kanji in Japanese, etc. Actually,
some major companies developed cloud-based IME.

In the cloud-based IME, a user sends an input word to a
cloud server and the server returns a set of candidate words of
transformation. Service provide can update the mapping table
of input words and transformed words on the fly because the
mapping table is in the cloud server. Note that, traditional
IME stores the mapping table in the user’s computer and for
updating the user needs to download a new table. Using cloud
server, users do not need to download and update.

However, cloud-based services have a privacy concern.
Actually, a cloud-based IME collect users’ input in secret
and it became a big problem in Japan1. Input words received
IME may include people’s sensitive information eg. credit card
number. In order to use cloud-based IME without privacy
concern, we need to hide any input words to cloud-server but
obtain transformed words.

In this paper, we design a cloud-based IME and introduce
a new searchable encryption scheme to archive privacy-aware
cloud-based IME. Our IME is based on range queries on a

1http://www.techrepublic.com/blog/asian-technology/
japanese-government-warns-baidu-ime-is-spying-on-users/

database and our encryption scheme is a searchable encryption
for range queries. The rest of this paper is organized as
follows: we introduce related work in section 2; and design our
cloud-based IME in section3; then we introduce our searchable
encryption in section 4 and 5; finally we conclude this paper
in section 6.

II. RELATED WORK

Among many kinds of PIR work [1], the most related work
to our problem is cPIR (Computational Private Information
Retrieval) [2] which assumes only one database server and
ensures a private query based on complexity theory. Basic
cPIR approach does not support range queries nor allow
tuples have same Key attribute values. cPIR requires O(n)
computational cost on servers with the total number of tuples
n. bbPIR [3] is a weak cPIR protocol which relaxes the
security to reduce the computational cost on servers. It brings
the idea of k-anonymity [4] in cPIR. Clients on bbPIR protocol
sends a k-width bounding box containing the index which the
clients want to request. After that, the clients and the server
communicate with basic cPIR protocol on the sub-database
consists of tuples in the bounding box. bbPIR is able to hide
only which tuples in the k tuples the clients exactly request
but the computational cost on servers is smaller than basic
cPIR protocol.

For location-based services (LBS), there is a kind of private
range query using cPIR protocol [5]. In LBS, users request
some region to obtain points of interests (POIs) such as
restaurants, gas stations, etc. On the approach in [5], the 2-
dimensional space in the LBS is divided into n sub areas, in
such a way that each sub area has at most one POI. Clients
firstly compute the index of the sub area which contains the
really requesting region and then the clients request the index
using basic cPIR protocol. Therefore, this approach support a
limited range query and users cannot request flexible regions.

Some work about encrypted database (EDB) [6] is also
achieving weak private query. In the context of EDB, all
tuples on servers are encrypted and the main interest is how to
execute queries over the encrypted tuples. Therefore, queries
also do not contain plain values and in this meaning, EDB is
achieving a kind of private query. Bucketization described in
[6][7] splits the domain of each attribute into some labeled



buckets and each attribute value is updated to the label of
which the bucket contains the plain value by clients. This
approach needs statistic information about the domains to
make each bucket have almost same number of tuples, and
re-builting buckets may be necessary after lots of new tuples
are inserted. [8] points a problem that attackers can obtain
some information about plain values by comparing the re-
builted buckets and old buckets. Order Preserving Encryption
Scheme (OPES) [9] provides range queries over EDB, i.e.
weak private range query, and needs statistic information
about domains. SCONEDB [10] provides a kind of private
query using a matrix based encryption. The main purpose of
SCONEDB is to achieve k-nearest neighbor (kNN) query over
encrypted vector databases. SCONEDB provides a querying
approach without decrypting encrypted vectors on servers.
Those approaches about EDB are able to hide plain values
from queries. However, in those approaches, queries which
request a same range are transformed to a same query for
EDB. It means those approach cannot protect the frequency
analysis attack so that attackers, who know the distribution
of plain queries, are able to compute the plain queries from
queries for EDBs.

On the other hands, our proposal IPP method adds pertur-
bations to queries in addition to matrix based encryption. As a
result, IPP method makes transformed queries associated with
a same plain query varied, so that it ensure to protect the
frequency analysis of attackers. Additionaly, IPP method does
not need any statistical information about domains so that IPP
method is also suitable to growing databases. Thus, we choose
IPP method as a basic algorithm for cloud-based input method
editor we introduce in this paper.

III. DESIGN OF CLOUD-BASED INPUT METHOD EDITOR

In this section, we design a cloud-based input method editor
and its security model.

A. Input Method Editor

In our input method editor (IME), a user sends a word
consists of alphabets to a cloud server and receives a set of
transformed words. We assume there are N alphabets and
denote the alphabets by a1, a2, · · · , aN . We also denote the
set of alphabets by Σ = {a1, a2, · · · , aN}. Let ϵ be the empty
alphabet and we extend the set of alphabet as Σ+ = Σ∪{ϵ}.

Our IME accepts at longest L-length words. w denotes a
word and W denotes a set of words which IME accepts as
input. Letting the length of w be ℓ, we denote it by

w = w1w2 · · ·wℓ (∀i, wi ∈ Σ).

Where ℓ < L, we can normalize w adding L − ℓ empty
alphabets and make the length L. We denote the normalized
word by

w̃ = w ϵϵ · · · ϵ︸ ︷︷ ︸
L−ℓ

,

and the set of normalized words by W̃ . Note that w̃ dose not
include empty word ϵ.

We define an order on the normalized words. We firstly
define an order on set of alphabets Σ+. The order function,
ord : Σ+ → Z, is as follows;

ord(a) =

{
0 (a = ϵ),

i (a = ai).
(1)

We define an index function, index : W̃ → N, for
normalized word w̃ = w1w2 · · ·wL.

Definition 3.1 (Index of normalized words): Letting w̃ ∈
W̃ be normalized word w̃ = w1w2 · · ·wL, the index of w̃
is defined as

index(w̃) =
L∑

i=1

ord(wi)N
L−i. (2)

We next define neighborhoods of words by the index.
Definition 3.2 (δ-neighbor word): We say two words w̃

and w̃′ are δ-neighbor iff

index(w̃)− index(w̃′) = δ,

and we denote them by

w̃ = w̃′ + δ, w̃′ = w̃ − δ.

We design IME in this paper as a system receiving word
w from a user and returning transformed words associated
with the input. We assume any inputs would be normalized
and have length of L. Since there could be homonyms, some
inputs would have some candidates of transformed words. We
denote the set of candidates of transformed words associated
with normalized input w̃ by R(w̃). Finally, we would define
the IME system formally.

Definition 3.3 (Simple Input Method Editor): Simple input
method editor is a system receiving input w̃ and returning set
of transformed words R(w̃).

Actually, real IMEs are more complicated. One of the
features usual IMEs have is collecting wrong inputs i.e. typos.
Users sometimes use wrong inputs but IME should return
transformed words associated with collect inputs. We design
our IME would return not only transformed words associated
with input w but also ones associated with δ-neighbors. In
other words, we extend the simple IME as follows.

Definition 3.4 (δ-typing-error-friendly Input Method Editor):
δ-typing-error-friendly Input Method Editor is a system
receiving input w and returning transformed words defined
as

Rδ(w̃) =
∪

w∈[w̃−δ,w̃+δ]

R(w), (3)

where δ is a given parameter.
In order to achieve the δ-typing-error-friendly IME on

a cloud server by considering users’ privacy, i.e. keeping
inputs secret, we need a searchable encryption scheme. In the
following section, we introduce a scheme which satisfies our
requirement.



B. Searchable Encryption for Range Queries

We assume a service provide (SP) of our cloud IME stores
a dictionary to compute transformed words on a cloud server
(server). A user of our IME (user) sends normalized input w̃
and receives transformed words Uδ(w̃). In this scenario, SP
and the user does not trust the server completely thus the user
wants to encrypt the input. Searchable encryption for range
queries (SERQ) is a scheme that allows the server to compute
results without decryption the input from the user.

We assume SP stores a set of data t in the server and
we denote the set of data by D. We also assume data t
consists of key attribute k and value attribute v. In other words,
t = (k, v). Our SERQ scheme supports searching only key
attribute values. We write key attribute v and value attribute
v of data t by two functions key and value, respectively, i.e.
key(t) = k, value(t) = v. We only consider a search to find
data t of which key attribute key(t) ∈ [α, β] (α ≤ β ∈ N).
Thus, we denote the range queries by qD(α, β) and

qD(α, β) = {t ∈ D | α ≤ key(t) ≤ β}.

Our SERQ consists of four algorithms; key generation,
encryption, query generation, testing.

Definition 3.5 (Key Generation): SP generates secret key
skc shared with the user and secret key sks for the server.
The algorithm of key generation (KeyGen) receives parameter
n and returns the pair of secret keys (skc, sks), i.e.

(skc, sks)← KeyGen(n).

Note that the server must maintain the secret key sks carefully.
Definition 3.6 (Key Encryption): SP encrypts key attribute

k = key(t) ∈ N for any data t to encrypted key vector ke.
The encryption algorithm (SERQ) has plain key attribute k and
secret key for SP and the user skc as inputs and computes the
encrypted key vector ke, i.e.

ke ← SERQ(k, skc).

SP, then, sends (ke, v) to the server.
Definition 3.7 (Query Generation): The user computes en-

crypted query vector qe and additional information x associ-
ated with range query [α, β](α ≤ β ∈ N). The algorithm to
compute queries (Query) receives querying range [α, β] and
secret key of user skc, and returns encrypted query vector qe

and additional information x i.e.

(qe, x)← Query([α, β], skc).

The user sends (qe, x) to the server.
Definition 3.8 (Testing): The server which receives query

(qe, x) from the user tests all data (kei, vi) (i = 1, 2, · · · )
satisfying the range query by an algorithm (Test). The algo-
rithm receives encrypted key vector kei, query (qe, x) and
secret key of the server sks, and returns resi ∈ {0, 1} i.e.

resi ← Test(kei,qe, x, sks)

The server collect data ti of which resi and make a set of vi,
finally the server sends the set to the user.

Fig. 1: Framework of the searchable encryption for range
queries.

Algorithm 1 Server process of our cloud-based input method
editor.
Require: Query (qe, x)
Require: Set of candidate data D
Require: Encryption key of the server sks

1: Res← ∅
2: for each tuple t in D do
3: ke ← key(t)
4: if Test(ke,qe, x, sks) = 1 then
5: Res← Res ∪ value(t)
6: end if
7: end for
8: return Res

C. Secure Input Method Editor

Figure ?? shows the framework of SERQ we introduced
in section III-B. In this section, we design a privacy-aware
cloud-based IME based on the framework.

We assume the service provide of our cloud-based IME has
set of transformed words R(w̃) for each normalized word w̃.
The assumption is as same as usual IME. SP stores those
sets into the server as t = (w̃, R(w̃) (∀w ∈ W ). In order
to employ the SERQ framework we introduce the previous
section, key attribute values must be a natural number. Thus,
we employ the index we defined in equation (2) and use
encrypted key vector

ke = SERQ(index(w̃), skc).

SP computes (SERQ(index(w̃), skc), R(w̃)) for all w̃ ∈ W̃
and sends them to the server.

When the user inputs word w and translates it by our cloud-
based IME, the client of the IME normalizes the input and
makes query (qe, x) by the algorithm Query, i.e.

(qe, x) = Query(index(w̃)− δ, index(w̃) + δ, skc).

Then, the user sends the query to the server.
The server runs the algorithm Test for all data t ∈ D and

collect a set of data t of which the result of Test is 1. Finally,
the server makes a set of value(t) in the set and returns it to



user. Algorithm 1 shows the process in the server. Considering
discussions in this section, we can say Res which the server
sends to the user consists of transformed words associated with
words in [w̃− δ, w̃+ δ], where w̃ is the normalized input. In
other words, Res is equal to Rδ(w̃) defined in equation (3).

IV. QUERY PROCESSING BY INNER PRODUCT PREDICATE

We introduce a scheme of searchable encryption for range
queries named IPP method [11]. IPP method adds random
perturbations to key attribute values and queries in order to
keep them secret. We extend the scheme for our cloud-based
IME. In this section, we introduce the basic idea of IPP
method.

IPP method adds random perturbation rk to key attribute
value k. It is chosen from 0 < rk < 1/2 and the perturbed
value is k+rk. We denote the function of adding perturbation
by

per : N× R→ R, per(x; rk) = x+ rk.

IPP method adds perturbations all key attribute value in the
set of data D. We denote the new data set consists of perturbed
key attribute by PD, thus, PD is defined by

PD = {(per(key(t); rk ←
r
[0,

1

2
]), value(t)) | ∀t ∈ D},

where rk ←
r
[0, 1/2] denotes a process to choose random value

rk from [0, 1/2]. Query qD(α, β) for perturbed data set PD
is also modified and

qPD(α, β) = {t ∈ PD|α− 1

2
≤ key(t) ≤ β +

1

2
}.

Note that since k ∈ N and 0 < rk < 1/2, qPD(α, β) exact
requesting data t of which key attribute key(t) is in [α, β].

A. Polynomial Predicate

In order to add perturbations to queries, we represent
queries by inner product predicates. We introduce polynomial
predicate which is the base of inner product predicate.

In polynomial predicate, we represent queries using a kind
of polynomial function p : N→ R. The range of the function
is rial number, but we employ the following sign function,

sign(x) =

{
1 (x ≥ 0)

0 (otherwise),

and employ sign ◦ p in order to design the algorithm Test we
introduce in section III-B.

There are possible polynomial functions suitable for repre-
senting range query qD. We choose one of the simplest one
i.e.

p[α,β](k) = −(k − α)(k − β).

For this function, sign ◦ p[α,β](k) = 1 iff k ∈ [α, β].
We extend the query qD to qPD in order to handle perturbed

data. Thus, we also extend the polynomial function p[α,β](k)
to represent qPD, and that is

p′[α,β](k) = −(k − α+
1

2
)(k − β − 1

2
).

We next add a perturbation to the polynomial function
p′[α,β](k). We choose positive random value rq and multiply
(k + rq) to p′[α,β](k). Thus, the perturbed query function
p̃′[α,β];rq (k) associated with p′[α,β](k) is

p̃′[α,β];rq (k) = per(p′[α,β](k); rq) = −(k−α+
1

2
)(k−β−1

2
)(k+rq).

(4)
Since we assume k ∈ N, equation (4) will be grater than or
equal to zero if k ∈ [α, β]. In other words, sign◦p̃′[α,β];rq (k) =
1 iff k ∈ [α, β].

B. Inner Product Predicate

We now introduce the inner product predicate. Generally,
any polynomial functions of a single variable can be repre-
sented by inner product of two vectors. We use the fact and
represent equation (4) as an inner product of constant vector

q[α,β];rq =


−1

α+ β − rq
−(α− 1

2 )(β + 1
2 ) + (α+ β)rq

−(α− 1
2 )(β + 1

2 )rq


t

(5)

and variable vector k = (k3, k2, k, 1)t i.e. q[α,β];rq · k, where
xt denotes a transposed vector of x and x ·y denotes an inner
product of x and y.

We use key vector (k3, k2, k, 1)t instead of key attribute
value k. Then, an inner product predicate associated with range
query qD is

IPP[α,β],rq (k) = q[α,β],rq · k.

We add a perturbation to the key attribute value and
per(k, rk) = k + rk, thus key vector associated with the
perturbed key value per(k, rk) is

k′ = (per(k; rk)
3, per(k; rk)

2, per(k; rk), 1)
t. (6)

As we discussed in previous section, polynomial predicate
p̃′[α,β],rq ≥ 0 iff k ∈ [α, β]. Since the inner product predi-
cate IPP[α,β];rq is as same as p̃′[α,β],rq , IPP[α,β];rq ≥ 0 iff
k ∈ [α, β]. Finally, sign ◦ IPP[α,β];rq (k) = 1 iff k ∈ [α, β].

V. SEARCHABLE ENCRYPTION BY CYCLIC MATRIX

IPP method [11] employs a regular matrix M to encrypt key
vector k⃗′ and query vector q⃗[α,β];rq . The encrypted vectors of
them are M−1k⃗′ and M tq⃗[α,β];rq , respectively, and the inner
product of them can be computed as

M tq⃗[α,β];rq ·M
−1k⃗′ = q⃗t[α,β];rqMM−1k⃗′ = q⃗[α,β];rq · k⃗′.

It means the encryption scheme does not change inner product
by encryption.

On the other hand, in this framework, an attacker who
obtains a key vector and a query vector would know the key
vector satisfies the query by computing inner product of them.
We introduce secret key of the server and avoid attackers
compute inner products.



Algorithm 2 KeyGen

Require: Big prime parameter n
1: Generate n-ordered cyclic matrix A
2: Choose c, s < n, where c and s are relatively prime
3: skc ← (A,n, c, s), sks ← As

4: return (skc, sks)

A. Encryption by Cyclic Matrix

We employ a n-ordered cyclic matrix as an encryption key.
Definition 5.1: We say matrix A is a n-ordered cyclic

matrix iff
An = E, Ai ̸= E (i < n),

where E be the unit matrix.
We define secret key of the user skc by skc = (A,n, c, s),
where c and s are random numbers less than n and must be
relatively prime. The secret key of the server is sks = As.

The encryption algorithm of key vector k′ is as follows.
At first, it generates a random number re, then computes
reA

ck′ as the encrypted key vector ke. On the other hand,
the encryption algorithm of query vector q generates a random
number r and computes (Ar)tq as the encrypted query vector
qe. It also solves x of the formulation

sx+ c+ r = 0 (mod n), (7)

and use x as the additional information of the query.
Theorem 5.1 (Inner product of encrypted vectors): The

server computes inner product of plain key vector q · k′ by
computing qe · (As)xke with the secret key of the server As.

Proof:

qe · (As)xke = (Ar)tq · (As)xreA
ck′

= req
tArAsxAck′

= req
tAsx+c+rk′

= req
tk′ = q · k′

Thus, the server can find data t satisfies a query by checking

sign(qe · (As)xke) (8)

is 1. Additionally, attackers who obtain key vectors and query
vectors no more compute inner products without the secret
key sks.

B. Algorithms of SERQ

SP generates secret key of the user skc and secret key of the
server sks by the algorithm KeyGen described in Algorithm 2.
KeyGen generates a four dimension n-ordered cyclic matrix
A, and random and relatively prime numbers c and s, where
n be a given parameter. KeyGen, then, computes two secret
keys and outputs them. SP finally sends skc to the user and
sks to the server.

To add new data (k, v), SP encrypts k to encrypted key
vector ke by the algorithm SERQ shown in Algorithm 3.
SERQ at first generates random value rk ∈ [0, 1/2] and

Algorithm 3 SERQ

Require: Attribute value k ∈ N
Require: Encryption key of clients skc = (A,n, c, s)

1: rk ←
r
[0, 1/2]

2: k′ =
(
per(k; rk)

3,per(k; rk)
2,per(k; rk), 1

)t
3: re ←

r
R+

4: ke ← reA
ck′

5: return ke

Algorithm 4 Query

Require: Querying range [α, β](α ≤ β ∈ DK)
Require: Encryption key of clients skc = (A,n, c, s)

1: Compute q by (5)
2: r ←

r
Z

3: qe ← (Ar)tq
4: Solve for x: sx+ c+ r = 0 (mod n)
5: return (qe, x)

Algorithm 5 Test

Require: Encrypted key vector kei

Require: Query (qe, x)
Require: Secret key of the server sks = As

1: return sign(qe · (As)xkei)

Algorithm 6 Encrypted Range Search with Query

Require: Query (qe, x)
Require: Database PD
Require: Encryption key of the server sks = As

1: Res← ∅
2: for each tuple t in PD do
3: ke ← key(t)
4: if Test(ke,qe, x, sks) = 1 then
5: Res← Res ∪ {value(t)}
6: end if
7: end for
8: return Res

computes key vector k′ defined by equation (6). SERQ then
generates another random value re and encrypts the key vector
by A and c from the secret key skc. SP finally sends data with
encrypted key vector (ke, v) to the server.

The user who wants to have data of which key attribute
value k in range [α, β] makes a query by the algorithm Query
shown in Algorithm 4. Query at first computes a query vector
defined in equation (5). Query then generates random natural
number r and computes encrypted query vector qe. It also
solves x from formulation (7). Finally, it outputs pair (qe, x).
The user sends (qe, x) to the server as the query.

The server who receives query (qe, x) from the user applies
the algorithm Test for all data it has in order to check each
data should be included into the returning data. Algorithm 5



shows the algorithm Test and it evaluates equation (8). The
server returns data for which the Test returns 1 to the user.
This process is shown in Algorithm 6.

Applying those algorithms to the discussion in section III-C,
we can archive a cloud-based IME of which users do not need
expose what they input to the server, i.e. privacy-aware cloud-
based IME.

VI. CONCLUSION

In this paper, we focus cloud-based input method editor
and introduce a privacy-aware framework of it. Our cloud-
based IME supports miss typing and archiving such IME
with encryption, we introduce a searchable encryption for
range query scheme. We employ an idea of inner product
predicate and our searchable encryption scheme is based on
cyclic matrix. We also introduce our querying process over the
encryption scheme and a theorem it can compute exact results
we want. As a future work, we will implement the IME and
evaluate computational costs and actual querying times.

ACKNOWLEDGMENT

This work is partly supported by The Nakajima Founda-
tion, Artificial Intelligence Research Promotion Foundation,
and Grant-in-Aid for Young Scientists (B) (26730065), Japan
Society for the Promotion of Science (JSPS).

REFERENCES

[1] R. Ostrovsky and W. E. Skeith, III, “A Survey of Single-Database PIR:
Techniques and Applications,” in Proc. of the 10th International Con-
ference on Practice and Theory in Public-key Cryptography. Beijing,
China: Springer, 2007, pp. 393–411.

[2] E. Kushilevitz and R. Ostrovsky, “Replication Is Not Needed: Single
Database, Computationally-Private Information Retrieval,” in Proc. of
the 38th Annual Symposium on Foundations of Computer Science.
Washington, DC, USA: IEEE Computer Society, 1997, pp. 364–373.

[3] S. Wang, D. Agrawal, and A. E. Abbadi, “Generalizing PIR for Practical
Private Retrieval of Public Data,” in Proc. of the 24th Annual IFIP
WG 11.3 Working Conference on Data and Applications Security and
Privacy. Rome, Italy: Springer, 2010, pp. 1–16.

[4] L. Sweeney, “k-Anonymity: A Model for Protecting Privacy,” Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
vol. 10, no. 5, pp. 1–14, 2002.

[5] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L.
Tan, “Private Queries in Location Based Services: Anonymizers are
Not Necessary,” in Proc. of the 28th ACM SIGMOD International
Conference on Management of Data. Vancouver, BC, Canada: ACM
Press, 2008, pp. 121–132.

[6] H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra, “Executing SQL over
Encrypted Data in the Database-Service-Provider Model,” in Proc. of
the 21st ACM SIGMOD International Conference on Management of
Data. Madison, WI, USA: ACM Press, 2002, pp. 216–227.

[7] B. Hore, S. Mehrotra, and G. Tsudik, “A Privacy-Preserving Index for
Range Queries,” in Proc. of the 30th International Conference on Very
Large Data Bases. Toronto, ON, Canada: VLDB Endowment, 2004,
pp. 720–731.

[8] R. C.-W. Wong, A. W.-C. Fu, J. Liu, K. Wang, and Y. Xu, “Global
Privacy Guarantee in Serial Data Publishing,” in Proc. of the 26th
International Conference on Data Engineering. Long Beach, CA, USA:
IEEE Computer Society, 2010, pp. 956–959.

[9] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order Preserving
Encryption for Numeric Data,” in Proc. of the 23rd ACM SIGMOD
International Conference on Management of Data. New York, NY,
USA: ACM Press, 2004, pp. 563–574.

[10] W. K. Wong, D. W.-L. Cheung, B. Kao, and N. Mamoulis, “Secure
kNN Computation on Encrypted Databases Categories and Subject
Descriptors,” in Proc. of the 35th SIGMOD International Conference
on Management of Data. Providence, RI, USA: ACM Press, 2009,
pp. 139–152.

[11] J. Kawamoto and M. Yoshikawa, “Private Range Query by Perturbation
and Matrix Based Encryption,” in Proc. of the Sixth IEEE International
Conference on Digital Information Management. Melbourne, Australia:
IEEE Computer Society, 2011, pp. 211–216.


