On the zeros of Eisenstein series for $\Gamma_0^*(p)$ and $\Gamma_0(p)$ of low levels

Shigezumi, Junichi
Graduate School of Mathematics, Kyushu University: Student (M2): Algebraic Combinatorics

http://hdl.handle.net/2324/1498287
On the Zeros of Eisenstein Series for $\Gamma_0^*(p)$ and $\Gamma_0(p)$ of Low Levels.
~ Master Thesis ~

ON THE ZEROS OF EISENSTEIN SERIES FOR $\Gamma_0^*(p)$ AND $\Gamma_0(p)$ OF LOW LEVELS.

Junichi Shigezumi

Graduate School of Mathematics Kyushu University
Hakozaki 6-10-1 Higashi-ku, Fukuoka, 812-8581 Japan

E-mail : ma204010@math.kyushu-u.ac.jp
j.shigezumi@math.kyushu-u.ac.jp (after and on April)
ON THE ZEROS OF EISENSTEIN SERIES
FOR $\Gamma^*_0(p)$ AND $\Gamma_0(p)$ OF LOW LEVELS

JUNICHI SHIGEZUMI

Abstract. We decide the locating of all the zeros of Eisenstein series associated with the Fricke groups $\Gamma^*_0(2)$ and $\Gamma^*_0(3)$ in their fundamental domains with applying the method of F. K. C. Rankin and H. P. F. Swinnerton-Dyer [RSD]. Also, we give some more consideration on $\Gamma^*_0(p)$ and $\Gamma_0(p)$ of low levels.

1. Introduction

The motive of this research is to decide the locating the zeros of modular forms from codes and lattices. Then Eisenstein series seems to be one of the most important modular forms. For example, $\text{SL}_2(\mathbb{Z})$ is generated by E_4 and E_6, which are Eisenstein series associated with $\text{SL}_2(\mathbb{Z})$.

In [RSD], F. K. C. Rankin and H. P. F. Swinnerton-Dyer considered the locating the zeros of Eisenstein series for $\text{SL}_2(\mathbb{Z})$. They proved, in 1970, that for $k = 12n + s$ ($s = 4, 6, 8, 10, 0, \text{and} 14$), then n zeros in their fundamental domain are on

$$A := \{z \in \mathbb{C} ; |z| = 1, \pi/2 < \text{Arg}(z) < 2\pi/3\}.$$

We calculated the locating of the zeros of some modular forms from codes in computers. For some codes, all the zeros seems to be on A. However, for the other codes, it does not hold.

In last May, we (Tsuyoshi Miezaki, Hiroshi Nozaki, and I) were introduced Fricke group $\Gamma^*_0(2)$ and $\Gamma^*_0(3)$ by Professor Eiichi Bannai. Then he adviced us to try to consider the locating the zeros of them. We applied the method of F. K. C. Rankin and H. P. F. Swinnerton-Dyer (RSD Method) to the Eisenstein series E^*_k,p associated with $\Gamma^*_0(p)$ for $p = 2, 3$. Define

$$A^*_2 := \{z \in \mathbb{C} ; |z| = 1/\sqrt{2}, \pi/2 < \text{Arg}(z) < 3\pi/4\},$$

$$A^*_3 := \{z \in \mathbb{C} ; |z| = 1/\sqrt{3}, \pi/2 < \text{Arg}(z) < 5\pi/6\}.$$

Then we have $\overline{A^*_2} = A^*_2 \cup \{i/\sqrt{2}, e^{3\pi/4}/\sqrt{2}\}$, and $\overline{A^*_3} = A^*_3 \cup \{i/\sqrt{3}, e^{5\pi/6}/\sqrt{3}\}$.

We proved the next theorems.

Theorem 1. Let $k \geq 4$ be an even integer. $E^*_k,2(z)$ has all zeros on $\overline{A^*_2}$.

Theorem 2. Let $k \geq 4$ be an even integer. $E^*_k,3(z)$ has all zeros on $\overline{A^*_3}$.

After that we tried for $\Gamma^*_0(p)$ of upper levels and for $\Gamma_0(p)$ of low levels. I succeeded to decide almost all the zeros (exactly, all the zeros except for at most 2 zeros) of Eisenstein series for $\Gamma^*_0(5)$ and $\Gamma^*_0(7)$, and decided all zeros of Eisenstein series of low weights (such that $4 \leq k \leq 40$) for $\Gamma_0(2)$ and $\Gamma_0(3)$.

In section 2, we recall definitions concerning modular group and some groups, then in section 3, we recall classical methods for modular group. Section 4 gives definitions concerning $\Gamma^*_0(p)$ as a preliminaries for $\Gamma^*_0(p)$. In section 5, we give the proof of the above theorems, and consider about $\Gamma^*_0(p)$ of low levels. Finally, section 6 gives the results for $\Gamma_0(p)$ of low levels, where we decide the locating of many zeros. However, it is far from “complete”, which means to decide locating of all zeros.
2. General theory

2.1. The modular group and some groups.

2.1.1. The modular group. (See §[VII.1] [SE], [I-I] [SI], and §[III.1] [KO])

We have a special linear group defined by following:

\[\text{SL}_2(\mathbb{R}) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}; \forall a, b, c, d \in \mathbb{R} \text{ s.t. } ad - bc = 1 \right\}. \]

Write \(H := \{ z \in \mathbb{C}; \Im(z) > 0 \} \), which is complex upper half-plane. We consider an action of \(\text{SL}_2(\mathbb{R}) \) on \(\mathbb{H} \cup \{\infty\} \) in the following way:

For every \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{R}) \) and every \(z \in \mathbb{H} \), we put

\[\gamma z := \frac{az + b}{cz + d}. \]

Now we have \(-\gamma z = \gamma z \) for every \(z \in \mathbb{H} \). So we may consider \(\text{PSL}_2(\mathbb{R}) = \text{SL}_2(\mathbb{R})/\{\pm I\} \) instead of \(\text{SL}_2(\mathbb{R}) \), where \(I := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \). But we discuss \(\text{SL}_2(\mathbb{R}) \) in this note.

Furthermore, note that

\[\Im(\gamma z) = \frac{\Im(z)}{|cz + d|^2}. \]

In this note, we consider some discrete subgroups of \(\text{SL}_2(\mathbb{R}) \).

For example, we have

\[\text{SL}_2(\mathbb{Z}) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}; \forall a, b, c, d \in \mathbb{Z} \right\}, \]

which is called the (full) modular group. (Sometimes, \(\text{PSL}_2(\mathbb{Z}) = \text{SL}_2(\mathbb{Z})/\{\pm I\} \) is called the modular group instead.) This group is a classical Fuchsian group of the first kind.

2.1.2. Congruence subgroup. (See §[III.1] [KO])

For another example of discrete subgroups of \(\text{SL}_2(\mathbb{R}) \), for a positive integer \(N \), we have

\[\Gamma(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}); a \equiv d \equiv 1, b \equiv c \equiv 0 \pmod{N} \right\}. \]

This group is a subgroup of the modular group \(\text{SL}_2(\mathbb{Z}) \), and it is called the principal congruence subgroup of level \(N \).

Also, if \(\Gamma' \) is a subgroup of \(\text{SL}_2(\mathbb{Z}) \) such that \(\Gamma' \supset \Gamma(N) \), then \(\Gamma' \) is called a congruence subgroup of level \(N \). Here are some examples:

\[\Gamma_0(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}); c \equiv 0 \pmod{N} \right\}, \]

\[\Gamma_1(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}); a \equiv d \equiv 1, c \equiv 0 \pmod{N} \right\}. \]

These groups are the most important examples of congruence subgroups.

2.1.3. Fricke group. (See [KR], [Q])

For a positive integer \(N \), we consider the Fricke group \(\Gamma_0^*(N) \). We define the following:

\[\Gamma_0^*(N) := \Gamma_0(N) \cup \Gamma_0(N) W_N, \quad W_N := \frac{0}{\sqrt{N}} - \frac{1}{\sqrt{N}}. \]

This group is not subgroup of the modular group \(\text{SL}_2(\mathbb{Z}) \), but it is discrete subgroup of \(\text{SL}_2(\mathbb{R}) \) and commensurable with \(\text{SL}_2(\mathbb{Z}) \). This is as an important and interesting group as the modular group and congruence subgroups.
2.2. Fundamental domain. (See §VII.1 [SE], §I-I.4 [SI])

We refer to [SI] for definitions, and refer to [SE] for proofs of propositions.

Let \(\Gamma \) be a discrete subgroup of \(\text{SL}_2(\mathbb{R}) \).

Definition 2.1. \(\Gamma \) is a fundamental domain if and only if it satisfies following conditions:

(FD1) For every \(z \in H \), there exists \(\gamma \in \Gamma \) such that \(\gamma z \in \Gamma \).

(FD2) For every two distinct points \(z_1, z_2 \in \Gamma \), there does not exist \(\gamma \in \Gamma \) such that \(\gamma z_1 = z_2 \).

Define \(T(x) := (x, \frac{1}{x}) (\in \text{SL}_2(\mathbb{R})) \) and \(P := \{ \pm T(x); x \in \mathbb{R} \} \). In many cases, at least for the subgroups in this paper, we have

\[
\Gamma \cap P \setminus \{ \pm I \} \neq \phi.
\]

We assume that the above inequality holds.

Put \(u := \min \{ x > 0; T(x) \in \Gamma \} \), then we define

\[
\overline{F}_{0, \Gamma} := \{ z \in H; -u/2 < Re(z) < u/2, |cz + d| > 1 \text{ for } \forall \gamma = (\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}) \in \Gamma \setminus P \}.
\]

Also, we have

\[
\overline{F}_{0, \Gamma} = \{ z \in H; -u/2 \leq Re(z) \leq u/2, |cz + d| \geq 1 \text{ for } \forall \gamma = (\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}) \in \Gamma \setminus P \}.
\]

(See Theorem 1.7 and 1.15, §I-I.4 & 5 [SI])

Now, we have the following fact:

Proposition 2.1.

(i) \(\overline{F}_{0, \Gamma} \) satisfies the condition (FD1).

(ii) \(F_{0, \Gamma} \) satisfies the condition (FD2).

Proof. (cf. proof of Theorem 1, §VII.1 [SE])

(i) Let \(z \in H \) be a fixed point. Recall that \(Im(\gamma z) = Im(z)/|cz + d|^2 \) for every \(\gamma = (\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}) \in \Gamma \) (See formula (3)).

Considering that \(\Gamma \) is a discrete group, numbers \(|cz + d| \) have a lower bound greater than 0. Thus there exists \(\gamma \in \Gamma \) which maximizes \(Im(\gamma z) \). Furthermore, there exists \(v \in \mathbb{Z}^2 \) such that

\[-u/2 \leq Re(T(v)\gamma z) \leq u/2 \quad \text{and} \quad |cT(v)\gamma z + d'| < 1.
\]

Suppose \(T(v)\gamma z \notin \overline{F}_{0, \Gamma} \), then there exists \(\gamma' = (\begin{smallmatrix} a' & b' \\ c' & d' \end{smallmatrix}) \in \Gamma \) such that \(|c' T(v) \gamma z + d'| < 1 \). Now,

\[Im(\gamma' T(v) \gamma z) = Im(T(v) \gamma z)/|c' T(v) \gamma z + d'|^2 > Im(T(v) \gamma z) = Im(\gamma z).
\]

This contradicts the way of choosing \(\gamma' \). Thus \(T(v)\gamma z \in \overline{F}_{0, \Gamma} \).

(ii) By the definition of \(F_{0, \Gamma} \), for every \(z \in \overline{F}_{0, \Gamma} \) and every \(\gamma = (\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}) \in \Gamma \), \(Im(\gamma z) = Im(z)/|cz + d|^2 < Im(z) \). Let \(z_1, z_2 \) be distinct points of \(\Gamma \).

Suppose that there exist \(\gamma = (\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}) \in \Gamma \) such that \(\gamma z_1 = z_2 \), then \(Im(z_2) = Im(\gamma z_1) < Im(z_1) \). Note that \(\gamma^{-1} z_2 = z_1 \) and \(\gamma^{-1} \in \Gamma \), then \(Im(z_1) = Im(\gamma^{-1} z_2) < Im(z_2) \). These facts contradict each other. Thus there does not exist \(\gamma \in \Gamma \) such that \(\gamma z_1 = z_2 \).

\[\square\]

Here, \(\overline{F}_{0, \Gamma} \) does not satisfy the condition (FD2). We can, however, remove points from \(\overline{F}_{0, \Gamma} \) to satisfy (FD2). Define

\[
F_{1, \Gamma} := \left\{ z \in H; -\frac{u}{2} \leq Re(z) < \frac{u}{2}, |cz + d| \geq 1 \text{ if } Re(z) \leq -\frac{d}{c}, |cz + d| > 1 \text{ if } Re(z) > -\frac{d}{c}, \forall \gamma = (\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}) \in \Gamma \setminus P \right\}
\]

Then we have \(F_{0, \Gamma} \subset F_{1, \Gamma} \subset \overline{F}_{0, \Gamma} \). Moreover, we have following:

Lemma 2.1. Let \(z \in \partial \overline{F}_{0, \Gamma} \). (i.e. \(|cz + d| \geq 1 \) for \(\forall \gamma = (\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}) \in \Gamma \setminus P \))

(i) If \(|cz + d| = 1 \) for some \(\gamma_0 = (\begin{smallmatrix} a_0 & b_0 \\ c_0 & d_0 \end{smallmatrix}) \in \Gamma \setminus P \), then there exist \(\gamma = (\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}) \in \Gamma \setminus P \) such that \(\gamma z \in \partial \overline{F}_{0, \Gamma} \) uniquely.

(ii) For every \(\gamma' = (\begin{smallmatrix} a' & b' \\ c' & d' \end{smallmatrix}) \in \Gamma \setminus P \) such that \(|c' z + d'| > 1 \), \(\gamma' z \notin \overline{F}_{0, \Gamma} \).

Proof.
(i) Write \(z = (e^{i\theta} - d)/c \) for \(\theta \in [0, \pi] \), then we have \(\gamma z = (e^{i(\pi-\theta)} + a)/c \) for \(\gamma = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \Gamma \setminus P \). Let \(n = -\lceil Re(\gamma z)/u + 1/2 \rceil \), then \(-u/2 \leq Re(T(nu)\gamma z) < u/2 \). Here, we have \(T(nu)\gamma = (a + cnu b + dnu)/c \). Thus we can choose “\(u \)” such that \(-u/2 \leq Re(\gamma z) < u/2 \). We may assume \(-u/2 \leq Re(\gamma z) < u/2 \).

Also, write \(z' = \gamma z = (e^{i(\pi-\theta)} + a)/c \). We have \(-cz' + a| = 1/|cz + d| = 1 \), so \(z' \notin F_{0,\Gamma} \).

Suppose \(z' \notin \partial F_{0,\Gamma} \) (i.e. \(z' \notin F_{0,\Gamma} \)), then \(|z'+d'| < 1 \) for some \(\gamma' = (a', b') \in \Gamma \setminus P \). For \(\gamma' \gamma = \begin{pmatrix} \alpha_{cd} + \beta' c & a' b + b' d \\ \alpha c + c' d & b' c + d' c \end{pmatrix} \),

\[
| (ac' + cd')z + (be' + dd') | = \left| \frac{(ac' + cd')e^{i\theta} - c'}{c} \right |
= \left| c' e^{i(\pi-\theta)} + (ac' + cd') \right| = \left| c' z' + d' \right| < 1.
\]

This inequality contradicts \(z \in \overline{F_{0,\Gamma}} \). Thus \(z' \in \partial F_{0,\Gamma} \).

Now, the rest of the uniqueness of \(\gamma \). Suppose \(\gamma'' z \in \partial F_{0,\Gamma} \) for some \(\gamma'' = (a'', b'') \in \Gamma \setminus P \), then \(\gamma''\gamma^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in \Gamma \). Furthermore, \(a''b' - a'b'' = n'u \) for some \(n' \in \mathbb{Z} \). So we have \(\gamma'' z = z' + n' u \). If \(n' \neq 0 \), then \(Re(\gamma z) \notin [-u/2, u/2] \), and then \(\gamma' z \notin F_{0,\Gamma} \). Thus \(n' = 0 \). In conclusion, we have \(\gamma' = \gamma \).

(ii) Let \(\gamma' = \begin{pmatrix} a'' & b'' \\ c'' & d'' \end{pmatrix} \in \Gamma \setminus P \) satisfy \(|c'z + d'| > 1 \), and write \(z'' = \gamma' z \). Then we have \(Im(z'') = Im(\gamma' z) = Im(z) < c'z + d' \leq Im(z) \).

Suppose \(z'' \in \overline{F_{0,\Gamma}} \), then \(-cz'' + a'| \geq 1 \). Also, we have \(Im(z) = Im(\gamma'^{-1} z'') = Im(z'') \leq Im(z'') \). These facts contradict each other.

Let \(z, z' \in \partial F_{0,\Gamma} \). By Lemma 2.1, if \(\gamma z = z' \) for some \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \setminus P \), then \(|cz + d| = 1 \). Also, we have \(z = (e^{i\theta} - d)/c \) and \(z' = (e^{i(\pi-\theta)} + a)/c \). So we can remove the points with \(\theta \in [0, \pi/2] \) from \(\partial F_{0,\Gamma} \).

Thus we have following;

Proposition 2.2. \(\mathbb{F}_{1,\Gamma} \) satisfies the condition (FD2).

However, if \(|c z + d| = 1, Re(\gamma z) \leq -d/c_1 \) for some \(\gamma_1 = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \in \Gamma \setminus P \) and \(|c z + d| = 1, Re(\gamma z) > -d/c_2 \) for some \(\gamma_2 = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} \in \Gamma \setminus P \), then we can write \(z = (e^{i\theta_1} - d)/c_1 = (e^{i\theta_2} - d)/c_2 \). Because \(Re(\gamma z) \leq -d/c_1 \), we have \(\theta \in [\pi/2, \pi] \), so we should not remove \(z \) from \(\partial F_{0,\Gamma} \). On the other hand, because \(Re(\gamma z) > -d/c_2 \), we have \(\theta \in [0, \pi/2] \), so we should remove \(z \). These contradict each other. We need another consideration on these points.

We define

\[
V_0 := \left\{ z \in \partial F_{0,\Gamma} ; \begin{array}{l}
|cz + d| = 1, Re(\gamma z) \leq -d/c_1 \quad \text{for} \quad \exists \gamma_1 = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \in \Gamma \setminus P \\
|cz + d| = 1, Re(\gamma z) > -d/c_2 \quad \text{for} \quad \exists \gamma_2 = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} \in \Gamma \setminus P
\end{array} \right\}
\]

(12)

Furthermore, we can remove points from \(V_0 \) to satisfy the condition (FD2). Let \(V' \) be the subset of \(V_0 \) which satisfies (FD2). Then we have the following theorem:

Theorem 2.1. \(\mathbb{F}_{1,\Gamma} \cup V' \) is a fundamental domain of \(\Gamma \).

Let \(\Gamma^1 \) be a set of representatives of \(\Gamma / (\Gamma \cap P) \), then \(\Gamma = \Gamma^1 \Gamma \cap P \), and define

\[\Gamma^0 := \{ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma^1 ; |cz + d| = 1 \} \]

for \(\exists z \in \mathbb{F}_{1,\Gamma} \).

Now, let \(G \) be the subgroup of \(\Gamma \) generated by \(\Gamma^0 \cup \{ T(u) \} \), then \(\mathbb{F}_{1,\Gamma} \cup V' \) is a fundamental domain of \(G \). For every \(\gamma \in \Gamma \) and a fixed point \(z \in \mathbb{F}_{0,\Gamma} \), there exist some \(\gamma' \in G \) such that \(\gamma' z \in \mathbb{F}_{1,\Gamma} \). Because \(\gamma' \in \Gamma \), we have \(\gamma' \gamma z = z \). Put \(\gamma' = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \), then \(|cz + d| = 1 \). Thus \(\gamma = \gamma'^{-1} \) or \(-\gamma'^{-1} \in G \). In conclusion, the next corollary follows:

Corollary 2.1.1. If \(\Gamma \not\supsetneq I \), then \(\Gamma^0 \cup \{ T(u), \} \) generates \(\Gamma \). On the other hand, if \(\Gamma \not\supsetneq I \), \(\Gamma^0 \cup \{ T(u) \} \) generates \(\Gamma \).
2.3. Modular forms.

2.3.1. Preliminaries. (See §§III.2, 3 [KO] and §§VII.1 [SE])

Let Γ be a discrete subgroup of $\text{SL}_2(\mathbb{R})$. For a cusp κ of Γ, we define

$$\Gamma_\kappa := \{ \gamma \in \Gamma : \gamma \kappa = \kappa \}.$$

In the previous section, we assume that $\Gamma \cap P \setminus \{ \pm I \} \neq \emptyset$. Then ∞ is one of the cusps of Γ, and we have $\Gamma_\infty = \Gamma \cap P$. Furthermore, there exist some $\gamma_\kappa \in \text{SL}_2(\mathbb{R})$ such that $\gamma_\kappa \infty = \kappa$ and $\Gamma_\kappa = \gamma_\kappa \Gamma_\infty \gamma_\kappa^{-1}$.

Let f be a function on \mathbb{H}. The relation

$$(13) \quad f(\gamma z) = (cz + d)^k f(z) \quad \text{for every } z \in \mathbb{H} \text{ and every } \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$$

is called the transformation rule for Γ.

Incidentally, since $\text{SL}_2(\mathbb{Z}) = \langle \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \rangle$ (See (37)), transformation rule for $\text{SL}_2(\mathbb{Z})$ is equivalent to the following two equations:

$$(14) \quad f(z + 1) = f(z),$$

$$(15) \quad f\left(\frac{-1}{z}\right) = z^k f(z).$$

We also have the following Fourier expansion for every cusp κ of Γ:

$$(16) \quad (cz + d)^{-k} f(\gamma_\kappa z) = \sum_{n \in \mathbb{Z}} a_{\kappa,n} q^n \quad \text{for } \gamma_\kappa = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad \text{where } q = e^{2\pi iz}.$$

We say f is meromorphic at κ if $a_{\kappa,n}$ is zero for n small enough. Also, we call f holomorphic at κ if $a_{\kappa,n}$ is zero for every negative integer n.

Definition 2.2. Let f be a meromorphic function on \mathbb{H}. f is called a modular function for Γ if f is meromorphic at every cusp and satisfies transformation rule for Γ.

When f is holomorphic at a cusp κ, $f(\kappa) = 0$ if and only if $a_{\kappa,0} = 0$.

Definition 2.3. Let f be a modular function for Γ which is holomorphic on \mathbb{H}. f is called modular form for Γ if f is holomorphic at its every cusp. In addition, if f is equal to 0 at its every cusp, we call f cusp form for Γ.

For a function f, let $v_p(f)$ be the order of f at $p \in \mathbb{H}$. In addition, we also define the order of f at a cusp κ:

$$v_\kappa(f) := \min\{n \in \mathbb{Z} : a_{\kappa,n} \neq 0\}.$$

Finally, we have following facts:

Proposition 2.3. Let f be a modular form for Γ such that every coefficient of Fourier expansion is real. Then we have

$$(17) \quad f(\overline{z}) = \overline{f(z)}.$$

Proof. (See [G]) Let f be a modular form for Γ, and let

$$f(z) = \sum_{n \geq 0} a_n e^{2\pi inz}$$

be a Fourier expansion of f with real coefficients a_n. Put $z = x + yi$, then we have

$$f(z) = \sum_{n \geq 0} a_n e^{2\pi n(-y + xi)},$$

$$f(\overline{z}) = \sum_{n \geq 0} a_n e^{2\pi n(-y - xi)}.$$

\square
Corollary 2.1.2. Let f be a modular form for Γ such that every coefficient of Fourier expansion is real. Then we have
\begin{equation}
(18) \quad v_p(f) = v_p(f).
\end{equation}

Proof. Let f be a modular form for Γ such that every coefficient of Fourier expansion is real, and let r be a positive number such that $\{z : 0 < |z - r| \leqslant r\}$ has no zeros of f. Then
\[
v_p(f) = \frac{1}{2\pi i} \int_{|z - r| = r} \frac{df(z)}{f(z)} = -\frac{1}{2\pi i} \int_{|z - (-r)| = r} \frac{df(-z)}{f(-z)} \]
\[
= \frac{1}{2\pi i} \int_{|z - (-r)| = r} \frac{df(z)}{f(z)} = v_p(f) = v_p(f).
\]

2.3.2. Eisenstein series. (See [SU])

Let Γ be a discrete subgroup of $\text{SL}_2(\mathbb{R})$.

Definition 2.4. For $z \in \mathbb{H}$,
\begin{equation}
(19) \quad E_{k,\kappa} := e \sum_{\gamma \in \Gamma_{\kappa} \backslash \Gamma} j(\gamma^{-1}z, z) - k \quad (e : \text{fixed number})
\end{equation}
is the Eisenstein series associated with Γ for a cusp κ, where $j(\gamma, z) := cz + d$ for $\gamma = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \Gamma$. e is often selected so that the constant term of $E_{k,\kappa}$ is 1.

Note that Eisenstein series $E_{k,\kappa}$ is modular function for Γ of weight k.

For the cusp ∞, any elements of Γ_{∞} stabilize (c, d) of $\gamma = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \Gamma$. Thus we have only to consider about the pairs (c, d) as representatives of $\Gamma_{\infty} \backslash \Gamma$.

For example, let $\Gamma = \text{SL}_2(\mathbb{Z})$, then we have only ∞ as the cusp of $\text{SL}_2(\mathbb{Z})$. Now, for an even integer $k \geqslant 4$, we have
\begin{equation}
(20) \quad E_k(z) := \frac{1}{2} \sum_{(c,d)=1} (cz + d)^{-k}
\end{equation}
as the Eisenstein series associated with $\text{SL}_2(\mathbb{Z})$.

2.3.3. Some notations. For a prime p, we define
\begin{equation}
(21) \quad D_{k,p}(z) := \frac{1}{2} \sum_{(c,d)=1 \atop p \mid cd} (cz + d)^{-k},
\end{equation}
\begin{equation}
(22) \quad B_{k,p}(z) := \frac{1}{2} \sum_{(c,d)=1 \atop p \nmid cd} (cz + d)^{-k}, \quad C_{k,p}(z) := \frac{1}{2} \sum_{(c,d)=1 \atop p \mid d} (cz + d)^{-k}.
\end{equation}

Then we have
\[
B_{k,p}(z) = \frac{1}{2} \sum_{n \in \mathbb{N}} \sum_{(c,d)=1 \atop p \nmid cd} (p^n z + d)^{-k} = \sum_{n \in \mathbb{N}} D_{k,p}(p^n z),
\]
\[
C_{k,p}(z) = \frac{1}{2} \sum_{n \in \mathbb{N}} \sum_{(c,d)=1 \atop p \mid cd} (z + p^n d)^{-k} = \sum_{n \in \mathbb{N}} p^{-kn} D_{k,p} \left(\frac{z}{p^n} \right).
\]

Furthermore
\[
E_k(z) = D_{k,p}(z) + C_{k,p}(z) + B_{k,p}(z)
\]
\[
= D_{k,p}(z) + \sum_{n \in \mathbb{N}} D_{k,p}(p^n z) + \sum_{n \in \mathbb{N}} p^{-kn} D_{k,p} \left(\frac{z}{p^n} \right).
\]
Conversely, let us consider to write $B_{k,p}$ and $C_{k,p}$ with E_k.

$$E_k(pz) = p^{-k}D_{k,p}(z) + \sum_{n \in \mathbb{N}} D_{k,p}(p^nz) + \sum_{n \in \mathbb{N}} p^{-k(n+1)}D_{k,p}\left(\frac{z}{p^n}\right).$$

Then $E_k(z) - p^kE_k(pz) = (1 - p^k)\sum_{n \in \mathbb{N}} D_{k,p}(p^nz) = (1 - p^k)B_{k,p}(z)$. In conclusion,

$$B_{k,p}(z) = \frac{1}{1 - p^k} \left(E_k(z) - p^kE_k(pz) \right).$$

Similarly,

$$C_{k,p}(z) = \frac{1}{1 - p^k} \left(E_k(z) - E_k\left(\frac{z}{p}\right) \right).$$

Furthermore, similar to equations (14) and (15),

$$D_{k,p}(z + p) = D_{k,p}(z) \quad D_{k,p}(-1/z) = z^k D_{k,p}(z),$$

$$B_{k,p}(z + 1) = B_{k,p}(z) \quad B_{k,p}(-1/z) = z^k B_{k,p}(z),$$

$$C_{k,p}(z + p) = C_{k,p}(z) \quad C_{k,p}(-1/z) = z^k C_{k,p}(z).$$

In the last part of this subsection, for $0 \leq n \leq p - 1$, we define

$$D_{k,p}^n(z) := \frac{1}{2} \sum_{(c,d) = 1 \atop d \equiv nc \pmod{p}} \sum_{p \nmid cd} (cz + d)^{-k}.$$

Then we have $D_{k,p}^n(z) = C_{k,p}(z)$, $\sum_{1 \leq n \leq p-1} D_{k,p}^n(z) = D_{k,p}(z)$, and

$$D_{k,p}(z + 1) = D_{k,p}^{n+1}(z).$$

2.3.4. Eta function. (See §[III.2] [KO])

We put

$$\Delta(z) := \frac{1}{1728} \left((E_4(z))^3 - (E_6(z))^2 \right).$$

Δ is a cusp form for $SL_2(\mathbb{Z})$ of weight 12. Now, we have

Theorem 2.2 (Jacobi’s product formula).

$$\Delta(z) = q \prod_{n=1}^{\infty} (1 - q^n)^{24} \quad \text{where} \quad q = e^{2\pi i z}.$$

Also, we have

$$\eta(z) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n),$$

which is called the Dedekind η-function. Then we have

$$\eta(z + 1) = e^{\frac{2\pi i}{24}} \eta(z) \quad \text{and} \quad \eta\left(-\frac{1}{z}\right) = \sqrt{z} \eta(z) \quad (\text{See [KO]}),$$

where \sqrt{z} denote a square root which has nonnegative real part. Furthermore, we have

$$\eta\left(\frac{az + b}{cz + d}\right) = e^{\frac{2\pi i}{24}} \eta(z) \quad \text{for} \quad \left(\begin{array}{cc}a & b \\ c & d \end{array}\right) \in SL_2(\mathbb{Z}),$$

where ϵ is one of the 24th-roots of 1 which depends on $a, b, c,$ and d.
3. Modular group $\text{SL}_2(\mathbb{Z})$

3.1. Eisenstein series. Let k be an even integer greater than 4. We have Eisenstein series associated with $\text{SL}_2(\mathbb{Z})$:

$$E_k(z) = \frac{1}{2} \sum_{(c,d)=1} (cz+d)^{-k}.$$ (36)

We also have its Fourier Expansion:

$$(33) E_k(z) = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n,$$

where $q := e^{2\pi i z}$, $\sigma_k(n) := \sum_{d|n} d^k$ which is called divisor function, and B_k are Bernoulli number which are defined by

$$\frac{xe^x - 1}{e^x - 1} = \sum_{k=0}^{\infty} B_k \frac{x^k}{k!}.$$

For example:

$$E_4(z) = 1 + 240q + 2160q^2 + 6720q^3 + 17520q^4 + \cdots$$
$$E_6(z) = 1 - 504q - 16632q^2 - 122976q^3 - 532728q^4 - \cdots$$

It is easy to show that $E_k(z)$ is modular form (not cusp form) for $\text{SL}_2(\mathbb{Z})$ for every $k \geq 4$.

For $k = 2$, we can define $E_2(z)$ as $E_k(z)$ for $k \geq 4$.

$$(34) E_2(z) := \frac{1}{2} \sum_{(c,d)=1} (cz+d)^{-2} = 1 - 24 \sum_{n=1}^{\infty} \sigma_1(n)q^n$$

$$= 1 - 24q - 72q^2 - 96q^3 - 168q^4 - \cdots$$

However, $E_2(z)$ is not modular form for $\text{SL}_2(\mathbb{Z})$. $E_2(z)$ satisfies transformation rule (14), but it does not satisfy (15). We have

$$(35) E_2 \left(\frac{-1}{z} \right) = z^2 E_2(z) + \frac{12}{2\pi i} z.$$

3.2. Fundamental domain. For deciding a fundamental domain, we consider the following condition:

$$(C) |cz+d| > 1, -1/2 < Re(z) < 1/2 \quad \text{for } \forall \gamma = \left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right] \in \text{SL}_2(\mathbb{Z}) \setminus P.$$

By $\left[\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix} \right] \in \text{SL}_2(\mathbb{Z})$, we have the condition $|z| > 1$. In addition, by $-1/2 < Re(z) < 1/2$, we have $Im(z) > \sqrt{3}/2$. If $|c| \geq 2$ or $d \neq 0$, then we have $Im(z) < \sqrt{3}/2$ for $z \in \mathbb{H}$ such that $|cz+d| = 1$ and $-1/2 < Re(z) < 1/2$. Thus the condition

$$(C_0) |z| > 1, -1/2 < Re(z) < 1/2$$

is a sufficient condition for (C). Now, we have a fundamental domain for $\text{SL}_2(\mathbb{Z})$ as follows:

$$(36) \mathbb{F} := \left\{ |z| \geq 1, -\frac{1}{2} \leq Re(z) \leq 0 \right\} \cup \left\{ |z| > 1, 0 \leq Re(z) < \frac{1}{2} \right\}$$

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{SL2Z.png}
\caption{$\text{SL}_2(\mathbb{Z})$}
\end{figure}
We have \((0 - 1)² = -1\). Thus, by corollary 2.1.1, we have

\[
\text{SL}_2(\mathbb{Z}) = \{(\begin{smallmatrix} 1 & 1 \\ 0 & 0 \end{smallmatrix}), (\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix})\}.
\]

3.3. RSD Method. (See [RSD])

At the beginning of the proof of [RSD], they considered the following:

\[
F_k(\theta) := e^{ik\theta/2}E_k\left(e^{i\theta}\right),
\]

which is real for \(\forall \theta \in \mathbb{R}\). Considering the four terms with \(c² + d² = 1\), they proved

\[
F_k(\theta) = 2\cos(k\theta/2) + R_1,
\]

where \(R_1\) is the rest of the series (i.e. \(c² + d² > 1\)). Moreover they showed

\[
|R_1| \leq 1 + \left(\frac{1}{2}\right)^{k/2} + 4\left(\frac{2}{5}\right)^{k/2} + \frac{20\sqrt{2}}{k-3}\left(\frac{9}{2}\right)^{(3-k)/2}.
\]

They computed the value of the right-hand side of (40) at \(k = 12\) whose value is 1.03562. At this point, it is obviously monotonically decreasing in \(k\). Thus they could show \(|R_1| < 2\) for \(\forall k \geq 12\).

For \(\pi/2 \leq \theta \leq 2\pi/3\), we obtain \(\frac{4}{3}\pi \leq k\theta/2 \leq \frac{2}{3}\pi\). So for any integer \(m \in \left[\frac{4}{3}, \frac{2}{3}\right]\), if \(m\) is even or odd, then \(\cos(k\theta/2)\) is +1 or -1, respectively; and \(F_k(2m\pi/k)\) is positive or negative, respectively.

How many integers are there in \(\left[\frac{4}{3}, \frac{2}{3}\right]\)? If \(k\) is indivisible by 4, i.e. \(k = 4l + 2\ (\exists l \in \mathbb{N})\), then \(\left[\frac{4}{3}, \frac{2}{3}\right] = \left[l + \frac{1}{4}, \frac{5l+2}{4}\right]\). Then it has \(\left\lfloor \frac{5l}{4} - \frac{1}{2} \right\rfloor + 1\) integers. On the other hand, if \(k\) is divisible by 4, then by the same consideration, it has \(\frac{k}{12}\) + 1 integer points. Write \(m(k) := \left\lfloor \frac{k}{12} \right\rfloor - \frac{1}{2}\), where \(t \equiv k \pmod{4}\). Then \(k = 12m(k) + s\ (s = 4, 6, 8, 10, 0\), and 14).

In conclusion, they proved that \(m(k)\) zeros were in \(A\).

Remark 3.1. (i) \(F_k(\theta)\) is real. (ii) \(\left[\frac{4}{3}, \frac{2}{3}\right]\) has \(m(k)\) integers. (iii) For any integer \(m \in \left[\frac{4}{3}, \frac{2}{3}\right]\), if \(m\) is even or odd, then \(F_k(2m\pi/k)\) is positive or negative, respectively.

They said in the last part of their paper [RSD], “This method can equally well be applied to Eisenstein series associated with subgroup of the modular group.” However, it seems unclear how widely this claim holds.

3.4. Valence formula. In order to decide the locating of all zeros of \(E_k(z)\), we need the valence formula:

Proposition 3.1 (valence formula). Let \(f\) be a modular function of weight \(k\) for \(\text{SL}_2(\mathbb{Z})\), which is not identically zero. We have

\[
v_\infty(f) + \frac{1}{2}v_i(f) + \frac{1}{3}v_\rho(f) + \sum_{p \in \text{SL}_2(\mathbb{Z}) \setminus \mathbb{Z}} v_p(f) = \frac{k}{12},
\]

where \(v_p(f)\) is the order of \(f\) at \(p\), and \(\rho := e^{2\pi i/3}\). (See [SE])

Proof. Let \(f\) be a nonzero modular function of weight \(k\) for \(\text{SL}_2(\mathbb{Z})\), and let \(\mathcal{E}\) be a contour of \(\mathbb{F}\) represented in Figure 2., whose interior contains every zero and pole of \(f\) except for \(i\) and \(\rho\). By the Residue theorem, we have

\[
\frac{1}{2\pi i} \int_\mathcal{E} \frac{df}{f} = \sum_{p \in \mathbb{P}_{\setminus\{i, \rho\}}} v_p(f).
\]

(i) For the arc \(EA\), we have

\[
\frac{1}{2\pi i} \int_E \frac{df}{f} = \frac{1}{2\pi i} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{f'(u + Ki)}{f(u + Ki)} \, du = \frac{1}{2\pi i} \int_{\{|q|=e^{-2\pi K}\}} \frac{f'(q)}{f(q)} \, dq = -v_\infty(f).
\]

(ii) For the arcs \(BB'\) which is a part of the circle around \(\rho\), when the radius of the arc tends to 0, the angle of it tends to \(\pi/3\). Then we have

\[
\frac{1}{2\pi i} \int_{B} B' \frac{df}{f} \to -\frac{1}{6}v_\rho(f).
\]
Similarly, when the radii of the arcs CC' and DD' tend to 0, the angles of them tend to π and $\pi/3$, respectively. We have

$$\frac{1}{2\pi i} \int_C \frac{df}{f} \to -\frac{1}{2}v_i(f) \quad \text{and} \quad \frac{1}{2\pi i} \int_D \frac{df}{f} \to -\frac{1}{6}v_{\rho}(f).$$

(iii) For the arcs AB and $D'E$, since $f(Tz) = f(z)$ for $T = (\frac{1}{2} \frac{1}{2})$,

$$\frac{1}{2\pi i} \int_A \frac{df}{f} + \frac{1}{2\pi i} \int_{D'} \frac{df}{f} = \frac{1}{2\pi i} \int_A \frac{df}{f} + \frac{1}{2\pi i} \int_B \frac{df}{f} = 0.$$

(iv) For the arcs $B'C$ and $C'D$, since $f(Sz) = z^k f(z)$ for $S = (0 \ 0) = (1 \ 0)$, we have

$$\frac{df(Sz)}{dz} = kz^{k-1}f(z) + z^k \frac{df(z)}{dz}, \quad \frac{df(Sz)}{f(Sz)} = k \frac{dz}{z} + \frac{df(z)}{f(z)}.$$

When the radii of the arcs BB', CC', DD' tend to 0, the angle of the arc $B'C$ tend to $\pi/6$. Thus we have

$$\frac{1}{2\pi i} \int_{B'} \frac{df(z)}{f(z)} + \frac{1}{2\pi i} \int_{C'} \frac{df(z)}{f(z)} = \frac{1}{2\pi i} \int_{B'} \frac{df(z)}{f(z)} + \frac{1}{2\pi i} \int_C \frac{df(Sz)}{f(Sz)}$$

$$= \frac{1}{2\pi i} \int_{B'} \left(\frac{df(z)}{f(z)} - \frac{df(Sz)}{f(Sz)} \right)$$

$$= \frac{1}{2\pi i} \int_{B'} \left(-k \frac{dz}{z} \right) \to k \frac{1}{12}.$$

(v) Finally, when f has a zero or pole on $\partial F \setminus \{i, \rho\}$, we can transform \mathcal{E} as Figure 3. Then we can show in a similar way to Figure 2.

By previous subsection (RSD Method), $E_k(z)$ has $m(k)$ zeros on A, so

$$\sum_{\substack{p \in SL_2(\mathbb{Z}) \setminus \{i, \rho\} \atop p \neq i, \rho}} v_p(E_k) \geq m(k).$$

If $k \equiv 4, 6, 8, 10$, and 0 (mod 12), then $k/12 - m(k) < 1$, so any other zero does not exist except for i and ρ. Thus all zeros of $E_k(z)$ is on $A \cup \{i, \rho\}$.

But if $k \equiv 2$ (mod 12), we need another consideration because we have $k/12 - m(k) > 1$.

Recall that $E_k(z)$ is a modular form of weight k for $SL_2(\mathbb{Z})$. By the equation (15), substituting i for z, we have $E_k(i) = (i^k E_k(i))$. Because $k \equiv 0$ (mod 4), $E_k(i) = 0$. Thus i is a zero of $E_k(z)$, i.e. $v_i(E_k) \geq 1$, then we have $k/12 - m(k) - v_i(E_k)/2 < 1$.
In conclusion, for every even integer $k \geq 4$, all zeros of $E_k(z)$ are on $A \cup \{i, \rho\}$.

3.5. The space of modular forms. Let M_k be the space of modular forms for $\SL_2(\mathbb{Z})$ of weight k, and let M_k^0 be the space of cusp forms for $\SL_2(\mathbb{Z})$ of weight k. Because $\dim(M_k/M_k^0) \leq 1$, $M_k = \mathbb{C}E_k \oplus M_k^0$.

As a classical result, we have the following theorem (See [SE]):

Theorem 3.1. Let k be an even integer, and let $\Delta := \frac{1}{1728}(E_4^3 - E_6^2)$.

1. For $k < 0$ and $k = 2$, $M_k = 0$.
2. For $k = 0,4,6,8,10$, and 14, we have $M_k^0 = 0$, and $\dim(M_k) = 1$ with a base E_k.
3. $M_k^0 = \Delta M_{k-12}$.

Furthermore, for a non-negative integer k, $\dim(M_k) = \lfloor k/12 \rfloor$ if $k \equiv 2 \pmod{12}$, and $\dim(M_k) = \lfloor k/12 \rfloor + 1$ if $k \not\equiv 2 \pmod{12}$.

Let k be an even integer $k \geq 4$. Write $n := \dim(M_k) - 1$, then $k - 12n = 0, 4, 6, 8, 10,$ or 14. Because $E_k - E_{k-12n}E_{12n} \in M_k^0$, we have $M_k = \mathbb{C}E_{k-12n}E_{12n} \oplus M_k^0$. Then

$$M_k = E_{k-12n}(\mathbb{C}E_{12n} \oplus \mathbb{C}E_{12(n-1)} \Delta \oplus \cdots \oplus \mathbb{C} \Delta^n)$$

Thus, for every $p \in \mathbb{H}$ and for every $f \in M_k$, $v_p(f) \geq v_p(E_{k-12n})$.

In the previous subsection, we have $v_p(E_k) = \sum_{n \in \mathbb{Z}_2(\mathbb{Z}) \setminus \{1\}} v_p(E_k) = 0$ for $k = 0, 4, 6, 8, 10$, or 14.

Thus, by the valence formula, $v_\infty(E_k) = \frac{1}{2} + \frac{1}{3} = k/12$. In conclusion, the next proposition follows:

Proposition 3.2. Let $k \geq 4$ be an even integer. For every $f \in M_k$, we have

$$v_i(f) \geq s_k \quad (s_k = 0,1 \text{ such that } 2s_k \equiv k \pmod{4}),$$

$$v_p(f) \geq t_k \quad (t_k = 0,1,2 \text{ such that } -2t_k \equiv k \pmod{6}).$$

In particular, if f is a constant multiple of E_k, then the equalities hold.

Remark 3.2. Every modular form for $\SL_2(\mathbb{Z})$ is generated by E_4 and E_6.

3.6. On $E_k(i)$ and $E_k(\rho)$. We consider the bound for $|R_1|$ again. Let $k \geq 4$ be an even integer.

Define $v_k(c,d,\theta) := |c e^{i \theta/2} + d e^{-i \theta/2}|^{-k}$, then $v_k(c,d,\theta) = 1/(c^2 + d^2 + 2cd \cos \theta)^{k/2}$ and $v_k(c,d,\theta) = v_k(-c,-d,\theta)$.

Now we will consider the next three cases, namely $N = 2, 5$, and $N \geq 10$. Considering $\theta \in [\pi/2, 2\pi/3]$, we have the following:

When $N = 2$,

$$v_k(1,1,\theta) = \left(\frac{1}{2 + 2 \cos \theta}\right)^{k/2} \leq 1, \quad v_k(1,-1,\theta) = \left(\frac{1}{2 - 2 \cos \theta}\right)^{k/2} \leq \left(\frac{1}{2}\right)^{k/2}.$$
When $N = 5$,
\[v_k(1, 2, \theta) = \left(\frac{1}{5 + 4 \cos \theta} \right)^{k/2} \leq \left(\frac{1}{3} \right)^{k/2}, \quad v_k(1, -2, \theta) = \left(\frac{1}{5 - 4 \cos \theta} \right)^{k/2} \leq \left(\frac{1}{5} \right)^{k/2}. \]

When $N \geq 10$,
\[|ce^{i\theta/2} \pm de^{-i\theta/2}|^2 \geq c^2 + d^2 - 2|cd| \cos \theta \]
\[= \frac{1}{2} ((|c| - |d|)^2 + |cd| (1 - 2| \cos \theta |) + \frac{1}{2} (c^2 + d^2) \]
\[\geq \frac{1}{2} (c^2 + d^2) = \frac{1}{2} N, \]
and the rest of the question is about the number of terms with $c^2 + d^2 = N$. The number of $|c|$ is not more than $N^{1/2}$, and we consider four terms $(\pm (c, d), \pm (c, -d))$ and the number 1/2 which is the coefficient of the summation. Thus the number of terms is not more than $2N^{1/2}$. Then
\[|R_1|_{N \geq 10} = \sum_{N=10}^{\infty} 2N^{1/2} \left(\frac{1}{2} \right)^{-k/2} \leq 2\sqrt{2} \int_0^{\infty} \left(\frac{1}{2} x \right)^{(1-k)/2} dx \]
\[= \frac{8\sqrt{2}}{k-3} \left(\frac{2}{9} \right)^{(k-3)/2} = \frac{108}{k-3} \left(\frac{2}{9} \right)^{k/2}. \]
Thus
\[|R_1| \leq 1 + \left(\frac{1}{2} \right)^{k/2} + 2 \left(\frac{1}{3} \right)^{k/2} + 2 \left(\frac{1}{5} \right)^{k/2} + \frac{108}{k-3} \left(\frac{2}{9} \right)^{k/2} \]
\[\leq 1.61013... \quad (k \geq 6) \]

Similarly, for $\theta = \pi/2$, we have the following:
When $N = 2$,
\[v_k(1, 1, \pi/2) = v_k(1, -1, \pi/2) = \left(\frac{1}{2} \right)^{k/2}. \]
When $N = 5$,
\[v_k(1, 2, \pi/2) = v_k(1, -2, \pi/2) = \left(\frac{1}{5} \right)^{k/2}. \]
When $N \geq 10$,
\[|ce^{(\pi/2)/2} \pm de^{-(\pi/2)/2}|^2 = c^2 + d^2 = N, \]
and the number of terms is not more than $2N^{1/2}$. Then
\[|R_1|_{N \geq 10, \theta=\pi/2} = 2 \sum_{N=10}^{\infty} N^{(1-k)/2} \leq \frac{108}{k-3} \left(\frac{2}{9} \right)^{k/2}. \]
Thus
\[|R_1|_{\theta=\pi/2} \leq 2 \left(\frac{1}{2} \right)^{k/2} + 4 \left(\frac{1}{5} \right)^{k/2} + \frac{108}{k-3} \left(\frac{1}{3} \right)^{k} \leq 1.99333... \quad (k \geq 4) \]

Now, we have
\[F_{4k}(\pi/2) = e^{ik\pi} F_{4k}(i) = 2 \cos(k\pi) + R_1, \]
\[F_{6k}(2\pi/3) = e^{2k\pi} F_{6k}(\rho) = 2 \cos(2k\pi) + R_1. \]
For both equations, we have the bound $|R_1| < 2$. Thus we have following proposition:

Proposition 3.3. Let $k \geq 4$ be an even integer. We have
\[
E_k(i) \begin{cases}
> 0 & k \equiv 0 \pmod{4} \\
= 0 & k \equiv 2 \pmod{4}
\end{cases}, \\
E_k(\rho) \begin{cases}
> 0 & k \equiv 0 \pmod{6} \\
= 0 & k \not\equiv 0 \pmod{6}
\end{cases}.
\]
4. Preliminaries for Congruence subgroups $\Gamma_0(p)$

4.1. Fundamental domain. Let p be a prime. We consider the following condition for every $m \in \mathbb{N}$:

$(C_m) \quad |z - n/mp| > 1/mp, -1/2 < \text{Re}(z) < 1/2$ for $\forall n \in \mathbb{N}$ such that $(mp,n) = 1$.

It is easy to show that $|z - n/mp| > 1/mp$ is a necessary condition for $|z - [n/m]/p| > 1/p$. Thus the condition

$(C_0) \quad |z - n/p| > 1/p, -1/2 < \text{Re}(z) < 1/2$ for $\forall n \in \mathbb{N}$ such that $1 \leq |n| \leq p/2$.

is sufficient condition for (C_m) for every $m \in \mathbb{N}$.

\[
\begin{array}{c}
\includegraphics[width=0.4\textwidth]{figure4.png}
\end{array}
\]

Figure 4. Congruence subgroups $\Gamma_0(p)$

By corollary 2.1.1, we have

$\Gamma_0(p) = \langle -I, (\frac{a}{p} \ \frac{b}{p}) \rangle \subset \Gamma_0(p)/(\Gamma_0(p) \cap P) : 1 \leq |n| \leq p/2$.

For example: (these are for subsection 4.3, cf. [RD])

\[
\begin{align*}
\Gamma_0(2) & = \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle, \Gamma_0(3) = \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle, \Gamma_0(5) = \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle, \Gamma_0(7) = \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle, \Gamma_0(11) = \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle, \\
\Gamma_0(13) & = \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle, \Gamma_0(17) = \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle, \Gamma_0(19) = \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle, \Gamma_0(23) = \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle.
\end{align*}
\]

Calculation.

For $p = 2$, we have

\[
\begin{align*}
\frac{1}{2}(-1) \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle & = \frac{1}{2}(-1) \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle = (-1) \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle = (-1) \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle.
\end{align*}
\]

For $p = 3$, we have

\[
\begin{align*}
\frac{1}{3}(-1) \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle & = \frac{1}{3}(-1) \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle = \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle = \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle.
\end{align*}
\]

For $p = 5$, we have

\[
\begin{align*}
\frac{1}{5}(-1) \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle & = \frac{1}{5}(-1) \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle = \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle = \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle.
\end{align*}
\]

For $p = 7$, we have

\[
\begin{align*}
\frac{1}{7}(-1) \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle & = \frac{1}{7}(-1) \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle = \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle = \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle.
\end{align*}
\]

For $p = 11$, we have

\[
\begin{align*}
\frac{1}{11}(-1) \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle & = \frac{1}{11}(-1) \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle = \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle = \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle.
\end{align*}
\]

For $p = 13$, we have

\[
\begin{align*}
\frac{1}{13}(-1) \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle & = \frac{1}{13}(-1) \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle = \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle = \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle.
\end{align*}
\]

For $p = 17$, we have

\[
\begin{align*}
\frac{1}{17}(-1) \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle & = \frac{1}{17}(-1) \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle = \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle = \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle.
\end{align*}
\]

For $p = 19$, we have

\[
\begin{align*}
\frac{1}{19}(-1) \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle & = \frac{1}{19}(-1) \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle = \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle = \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle.
\end{align*}
\]

For $p = 23$, we have

\[
\begin{align*}
\frac{1}{23}(-1) \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle & = \frac{1}{23}(-1) \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle = \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle = \langle (\frac{1}{0} \ \frac{-1}{1}) \rangle.
\end{align*}
\]
For $p = 13$, we have $\left(-\frac{5}{13} - \frac{2}{5} \right)^2 = -I$, $\left(\frac{1}{13} \right)^{-1} = \left(\frac{1}{13} \right)^{-1},$
$\left(-\frac{5}{13} - \frac{2}{5} \right)^2 = -I$,
and $\left(\frac{1}{13} \right)^{-1} = \left(\frac{1}{13} \right)^{-1}.$

For $p = 17$, we have $\left(\frac{1}{17} \right)^{-1} = \left(\frac{1}{17} \right)^{-1},$
$\left(\frac{1}{17} \right)^{-1} = \left(\frac{1}{17} \right)^{-1},$
and $\left(\frac{1}{17} \right)^{-1} = \left(\frac{1}{17} \right)^{-1}.$

For $p = 19$, we have $\left(\frac{1}{19} \right)^{-1} = \left(\frac{1}{19} \right)^{-1},$
$\left(\frac{1}{19} \right)^{-1} = \left(\frac{1}{19} \right)^{-1},$
and $\left(\frac{1}{19} \right)^{-1} = \left(\frac{1}{19} \right)^{-1}.$

For $p = 23$, we have $\left(\frac{1}{23} \right)^{-1} = \left(\frac{1}{23} \right)^{-1},$
$\left(\frac{1}{23} \right)^{-1} = \left(\frac{1}{23} \right)^{-1},$
and $\left(\frac{1}{23} \right)^{-1} = \left(\frac{1}{23} \right)^{-1}.$

\[E_{k,p}(z) := \frac{1}{2} \sum_{(c,d) \equiv 1 \pmod{p}} (cz + d)^{-k}. \]

as the Eisenstein series associated with $\Gamma_0(p)$ for the cusp ∞. Incidentally, we have $E_{k,p}(z) = B_{k,p}(z)$. Then we can write
\[E_{k,p}(z) = \frac{1}{1 + \frac{1}{p^k}} \left(E_k(z) - p^k E_k(pz) \right). \]

For the cusp ∞, we only consider about the pairs (c, d) of $\gamma = (a, b) \in \Gamma_0(p)$ as representatives of $\Gamma_\infty \setminus \Gamma_0(p)$. Then we have
\[E_{k,p}(z) := \frac{1}{2} \sum_{(c,d) \equiv 1 \pmod{p}} (cz + d)^{-k}. \]

as the Eisenstein series associated with $\Gamma_0(p)$ for the cusp 0. Incidentally, we have $E_{k,p}(z) + E_{k,p}(z) = E_k(z)$. Then we can write
\[E_{k,p}(z) = \frac{1}{1 - \frac{1}{p^k}} \left(E_k(z) - E_k(pz) \right). \]
It is easy to show that $E_{k,p}^\infty(z)$ and $E_{k,p}^0(z)$ are holomorphic on \mathbb{H} and at ∞ by equations (45), (47). For $\gamma_0 = W_p$, we have

$$
(\sqrt{p}z)^{-k}E_{k,p}^\infty(W_pz) = (p^{-k/2})E_{k,p}^0(z),
$$

$$
(\sqrt{p}z)^{-k}E_{k,p}^0(W_pz) = (p^{k/2})E_{k,p}^\infty(z).
$$

Thus both of them are holomorphic at cusp 0, i.e. $E_{k,p}^\infty(z)$ and $E_{k,p}^0(z)$ are modular form for $\Gamma_0(p)$.

Furthermore, we have $E_{k,p}^\infty(0) = E_{k,p}^0(\infty) = 0$, $E_{k,p}^\infty(\infty) \neq 0$ and $E_{k,p}^0(0) \neq 0$. Then, $E_{k,p}^\infty(z)$ and $E_{k,p}^0(z)$ are not cuspidal form for $\Gamma_0(p)$.

4.3. Eta function.

Let p be a prime, and let k be a minimum positive even integer such that $24 \mid k(p+1)$ (i.e. $k = 24/(p+1, 12)$). We put

$$(48) \quad \Delta_p(z) := \eta^k(z)\eta^k(pz),$$

then for $T = (\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix})$ by the equations (31), we have $T: z \mapsto z + 1$ and

$$(49) \quad \Delta_p(Tz) = \eta^k(z+1)\eta^k(pz+p) = e^{2\pi i k(p+1)/24}\eta^k(\eta^k(pz)) = \Delta_p(z).$$

Also, for $W_p = \begin{pmatrix} 0 & -1/\sqrt{p} \\ \sqrt{p} & 0 \end{pmatrix}$, we have $W_p, W_p^{-1}: z \mapsto -1/pz$ and

$$(50) \quad \Delta_p(W_pz) = \eta^k \left(-\frac{1}{pz} \right) \eta^k \left(-\frac{1}{z} \right) = \left(\sqrt{p}z \right)^k \Delta_p(z).$$

Then for $S_p := (\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix})$, because $S_p = W_p T^{-1} W_p^{-1}$ and k is even, we have

$$(51) \quad \Delta_p(S_pz) = (pz + 1)^k \Delta_p(z).$$

Furthermore, we have next proposition:

Proposition 4.1. Let $\gamma = (\begin{smallmatrix} a & b \\ c & d \end{smallmatrix})$ be a element of $\Gamma_0(p)$. If $c = bp$, then we have

$$(52) \quad \Delta_p(\gamma z) = (cz + d)^k \Delta_p(z).$$

Proof. For $\gamma = (\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}) \in \Gamma_0(p)$, if $c = bp$, then $\gamma W_p = \begin{pmatrix} b\sqrt{p} & -a/\sqrt{p} \\ d/\sqrt{p} & -b/\sqrt{p} \end{pmatrix}$, and put $\gamma' := \gamma W_p$. In addition, we put $\gamma_1 := (\begin{smallmatrix} b & -a \\ d & -b \end{smallmatrix})$ and $\gamma_2 := (\begin{smallmatrix} bp & -a \\ d & -b \end{smallmatrix})$, then we have $\gamma_1, \gamma_2 \in \text{SL}_2(\mathbb{Z})$, $\gamma'z = \gamma_1(pz), p \cdot \gamma'z = \gamma_2z$. Moreover, because $\gamma_1\gamma_2 = I$, $\gamma_1w = z$ for $w := \gamma_2z$. By the equation (31), for some $\epsilon_1, \epsilon_2 : 24$-th-roots of 1, we have

$$\eta(\gamma_1z) = \epsilon_1 \sqrt{dz-bp \over i} \eta(z), \quad \eta(\gamma_2z) = \epsilon_2 \sqrt{dz-bp \over i} \eta(z).$$

Now,

$$\eta(z) = \eta(\gamma_1w) = \epsilon_1 \sqrt{dw-bp \over i} \eta(w) = \epsilon_1 \epsilon_2 \sqrt{dw-bp \over i} \sqrt{dz-bp \over i} \eta(z).$$

Furthermore,

$$\frac{dw-bp}{i} = \frac{1}{dz-b} = \frac{-dz-b}{i[dz-b]}.\frac{dz-b}{i[dz-b]} = 1.$$

Thus we have $\eta(z) = \epsilon_1 \epsilon_2 \eta(z)$, and $\epsilon_1 \epsilon_2 = 1$.

In conclusion,

$$\eta(\gamma'z)\eta(p \cdot \gamma'z) = \eta(\gamma_1(pz))\eta(\gamma_2z) = \epsilon_1 \epsilon_2 \sqrt{dpz-bp \over i} \sqrt{dz-bp \over i} \eta(z) \eta(pz)$$

$$= \frac{d\sqrt{pz} - b\sqrt{p}}{i} \eta(z) \eta(pz),$$

and

$$\Delta_p(\gamma'z) = \frac{(d\sqrt{pz} - b\sqrt{p})^k}{i^k} \Delta_p(z).$$
Thus
\[
\Delta_p(\gamma z) = \Delta_p(\gamma' W_p^{-1} z) = \Delta_p \left(\gamma' \left(-\frac{1}{pz} \right) \right)
\]
\[
= (-d/\sqrt{pz} - b/\sqrt{pz})^k \Delta_p \left(-\frac{1}{pz} \right) = (-d/\sqrt{pz} - b/\sqrt{pz})^k \cdot (\sqrt{pz})^k \Delta_p(z)
\]
\[
= (cz + d)^k \Delta_p(z).
\]

Proposition 4.2. Let \(\gamma = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \) be a element of \(\Gamma_0(p) \). If \(d = -a \), then we have
\[
\Delta_p(\gamma z) = (cz + d)^k \Delta_p(z).
\]

\(\square \)

Proof. \(k \equiv 0 \pmod{4} \) (i.e., \(\gamma^2 = -I \)) This proof is similar to that of Proposition 4.1.

For \(\gamma = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \Gamma_0(p) \), assume that \(d = -a \), and write \(c = c'p \) for some \(c' \in \mathbb{Z} \). Then we have \(\gamma := \left(\begin{smallmatrix} a & b \\ c' & c'p - a \end{smallmatrix} \right) \) and \(|\gamma| = -a^2 - bc'p = 1 \). Here, we have \(a^2 \equiv -1 \pmod{p} \), i.e., \(-1\) is a quadratic residue modulo \(p \). Then, by the Euler’s criterion, we have \(p \equiv 1 \pmod{4} \). Thus \(k \equiv 0 \pmod{4} \).

We put \(\gamma' := \left(\begin{smallmatrix} a & bp \\ c' & c'p - a \end{smallmatrix} \right) \), then we have \(\gamma' \in SL_2(\mathbb{Z}) \). \(p \cdot \gamma z = \gamma'(pz) \). Moreover, because \(\gamma^2 = -I \), \(\gamma w = z \) for \(w := \gamma z \). By the equation (31), for some \(\epsilon_1, \epsilon_2 : 24\text{th}-\text{roots of 1} \), we have
\[
\eta(\gamma z) = \epsilon_1 \sqrt{cz^2 - a} \eta(z), \quad \eta(\gamma' z) = \epsilon_2 \sqrt{cz^2 - a} \eta(z).
\]
Now, we have
\[
\eta(z) = \epsilon_1^4 \sqrt{cz^2 - a} \eta(z),
\]
and \(c'p w - a = -1/(c'p - a) \), \(\sqrt{(c'p w - a)/i \sqrt{(c'p - a)/i}} = 1 \). Thus we have \(\epsilon_1^2 = 1 \). Also, because \(\gamma^2 = -I \), we have \(\epsilon_1^2 = 1 \).

In conclusion, \(\eta^4(\gamma z)\eta^4(p \cdot \gamma z) = \epsilon_1^4 \epsilon_2^4 ((c'p - a)/i)^4 \eta^4(z) \eta^4(pz) = (cz + d)^4 \eta^4(z) \eta^4(pz) \). Thus, because \(k \equiv 0 \pmod{4} \),
\[
\Delta_p(\gamma z) = (cz + d)^k \Delta_p(z).
\]

\(\square \)

Remark 4.1. For definition of the integer \(k \) for prime \(p \), we need the condition \(24 \mid k(p+1) \) for the transformation rule for \(T \). The other condition \(k \) : even is for \(-I \), which is a element of \(\Gamma_0(p) \).

In the subsection 4.1, we have the basis of \(\Gamma_0(p) \) for \(2 \leq p \leq 23 \). We have \(c = bp \) or \(d = -a \) for all the bases except for \(T \) and \(\pm S_p \), which is the condition for the Proposition 4.1 or 4.2, respectively. Thus \(\Delta_p \) satisfies the transformation rule for \(\Gamma_0(p) \). In addition, because \((\Delta_p(z))^p+1 = \Delta(z)\Delta(pz) \) or \((\Delta(z)\Delta(pz))^2 \), it is easy to show that \(\Delta_p \) is a cusp form for \(\Gamma_0(p) \) for \(2 \leq p \leq 23 \).

Finally, we have the following proposition:

Proposition 4.3. (See [KO]) For \(p = 2, 3, 5, \) and \(11 \), every nonzero cusp form for \(\Gamma_0(p) \) of weight \(k \) is a constant multiple of \(\Delta_p \).

Proof. For \(p = 2, 3, 5, \) and \(11 \), let \(f \) be a nonzero cusp form for \(\Gamma_0(p) \) of weight \(k \). Because \((\Delta_p(z))^p+1 = \Delta(z)\Delta(pz) \), and because \(v_\infty(\Delta) = 0 \) for every \(z \in \mathbb{H} \), we have \(v_\infty(\Delta_p) = 0 \) for every \(z \in \mathbb{H} \). In addition, by the definition of \(\Delta_p \), \(v_\infty(\Delta_p) = v_\infty(\Delta_p) = 1 \). Thus \(f/\Delta_p \) is a modular form of weight 0, then it is clear that \(f/\Delta_p \in \mathbb{C} \). \(\square \)

Remark 4.2. By the equation (50), if \(p = 2 \) and \(p \equiv 1 \pmod{4} \), then \(k \equiv 0 \pmod{4} \) and \(\Delta_p \) is a cusp form of \(\Gamma_0(p) \). On the other hand, if \(p \equiv 3 \pmod{4} \), then \(k \equiv 2 \pmod{4} \) and \((\Delta_p)^2 \) is a cusp form of \(\Gamma_0(p) \).

Furthermore, similar to Proposition 4.3, for \(p = 2 \) and \(5 \), every nonzero cusp form for \(\Gamma_0(p) \) of weight \(k \) is a constant multiple of \(\Delta_p \).
5. FRICKE GROUP $\Gamma_0^*(p)$

5.1. Preliminaries.

5.1.1. Fundamental domain. Let p be a prime. Similarly to $\Gamma_0(p)$, we consider the following condition:

$$(C_0) \quad |z - n/p| > 1/p, -1/2 < \Re(z) < 1/2 \quad \text{for } \forall n \in \mathbb{N} \text{ such that } 1 \leq |n| \leq p/2.$$

In addition, we need to consider the following condition for every $m \in \mathbb{N}$ such that $(m, p) = 1$ for $\Gamma_0(p)W_p$:

$$(C_{p,m}) \quad |z - n/m| > 1/m \sqrt{p}, -1/2 < \Re(z) < 1/2 \quad \text{for } \forall n \in \mathbb{N} \text{ such that } (m, n) = 1.$$

By W_p, we have the condition $|z| > 1/\sqrt{p}$. In addition, by (C_0), we have $\Im(z) > \sqrt{3}/2p$. Thus we need $(C_{p,m})$ only for $m < \sqrt{4p/3}$. In conclusion, we have following condition:

$$|z - n/m| > 1/m \sqrt{p}, -1/2 < \Re(z) < 1/2$$

for $\forall m \in \mathbb{N}$ such that $m < \sqrt{4p/3}$

$\forall n \in \mathbb{Z}$ such that $(m, n) = 1, |n| < m/2 + 1/\sqrt{p}$.

It seems that (C_p) is a sufficient condition for (C_0), but it is not clear.

5.1.2. Eisenstein series. Let p be a prime. $\Gamma_0^*(p)$ has only ∞ as a cusp. For $\gamma = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \Gamma_0(p)$, $\gamma W_p = \left(\begin{smallmatrix} b \sqrt{p} & a \sqrt{p} \\ d \sqrt{p} & c \sqrt{p} \end{smallmatrix} \right)$. Thus we have only to consider about the pairs (c, d) and $(d \sqrt{p}, c \sqrt{p})$. Then we have

$$E_{k,p}^*(z) := \frac{1}{2} \sum_{(c,d) = 1 \atop p \nmid c} (cz + d)^{-k} + \frac{p^{k/2}}{2} \sum_{(c,d) = 1 \atop p \nmid d} (c(pz) + d)^{-k}$$

as the Eisenstein series associated with $\Gamma_0^*(p)$ for the cusp ∞. Furthermore, we have $E_{k,p}^*(z) = B_{k,p}(z) + p^{k/2} E_{k,p}(pz)$. By the equations (23) and (24), we have

$$E_{k,p}^*(z) = \frac{1}{p^{k/2} + 1} \left(p^{k/2} E_k(pz) + E_k(z) \right).$$

We can use each of the expression as a definition.
5.2. $\Gamma_0^\ast(2)$ (Proof of Theorem 1).

5.2.1. Preliminaries. In the previous subsection, we have two conditions for a fundamental domain for $\Gamma^\ast_0(2)$:

$$(C_0) \quad |z \pm 1/2| > 1/2, -1/2 < \text{Re}(z) < 1/2.$$

$$(C_p) \quad |z - n| > 1/\sqrt{2}, -1/2 < \text{Re}(z) < 1/2 \quad \text{for } n = 0, \pm 1.$$

By the condition $|z| > 1/\sqrt{2}$ and $-1/2 < \text{Re}(z) < 1/2$, we have $\text{Im}(z) > 1/2$. For $z \in \mathbb{H}$ such that $|z \pm 1/2| = 1/2$ or $|z \pm 1| = 1/\sqrt{2}$, and $-1/2 < \text{Re}(z) < 1/2$, we have $\text{Im}(z) < 1/2$. Thus

$$|z| > 1/\sqrt{2}, -1/2 < \text{Re}(z) < 1/2$$

is a sufficient condition for (C_0) and (C_p). Furthermore, we have the following transformation:

$$W_2 : e^{i\theta}/\sqrt{2} \rightarrow e^{i(\pi-\theta)}/\sqrt{2}.$$

Then we have $V_{\Gamma^\ast_0(2)} = \{e^{3\pi/4}/\sqrt{2}\}$ (Theorem 2.1).

Now, we have a fundamental domain for $\Gamma^\ast_0(2)$ as follows:

$$(56) \quad F^\ast(2) := \left\{ |z| \geq 1/\sqrt{2}, -1/2 \leq \text{Re}(z) \leq 0 \right\} \bigcup \left\{ |z| > 1/\sqrt{2}, 0 \leq \text{Re}(z) < 1/2 \right\}.$$

![Figure 5. $\Gamma^\ast_0(2)$](image)

5.2.2. The function $F^\ast_{k,2}(\theta)$. We give the next definition:

$$(57) \quad F^\ast_{k,2}(\theta) := e^{ik\theta/2}E^\ast_{k,2}\left(e^{i\theta}/\sqrt{2}\right).$$

Before proving Theorem 1, we consider an expansion of $F^\ast_{k,2}(\theta)$.

In the definition of $E^\ast_{k,2}(z)$ (cf. (54)), when $2 \mid c$, then we can write $c = 2c'$ for $\exists c' \in \mathbb{Z}$, and have $2 \nmid d$. Also, when $2 \mid d$, then we have $2 \mid c$ and $d = 2d'$ for $\exists d' \in \mathbb{Z}$. Then

$$F^\ast_{k,2}(z) = e^{ik\theta/2} \sum_{(c,d)=1 \atop 2 \mid d} \frac{(ce^{i\theta}/\sqrt{2} + d)^{-k}}{2} \sum_{(c,d)=1 \atop 2 \mid c} \frac{(2ce^{i\theta}/\sqrt{2} + d)^{-k}}{2}$$

$$= e^{ik\theta/2} \sum_{(c,d)=1 \atop 2 \mid d} (\sqrt{2}c'e^{i\theta} + d)^{-k} + \frac{e^{ik\theta/2}}{2} \sum_{(c,d)=1 \atop 2 \mid c} (\sqrt{2}ce^{i\theta} + 2d')^{-k}$$

$$= \frac{1}{2} \sum_{(c,d)=1 \atop 2 \mid d} (de^{-i\theta/2} + \sqrt{2}c'e^{i\theta/2})^{-k} + \frac{1}{2} \sum_{(c,d)=1 \atop 2 \mid c} (ce^{-i\theta/2} + \sqrt{2}d'e^{-i\theta/2})^{-k}$$

Thus we can write as follows:

$$(58) \quad F^\ast_{k,2}(\theta) = \frac{1}{2} \sum_{(c,d)=1 \atop c \ odd} (ce^{i\theta/2} + \sqrt{2}de^{-i\theta/2})^{-k} + \frac{1}{2} \sum_{(c,d)=1 \atop c \ odd} (ce^{-i\theta/2} + \sqrt{2}de^{i\theta/2})^{-k}.$$

Hence we use this expression as a definition.

In the last part of this section, we compare the two series in this expression. Note that for any pair (c,d), $(ce^{i\theta/2} + \sqrt{2}de^{-i\theta/2})^{-k}$ and $(ce^{-i\theta/2} + \sqrt{2}de^{i\theta/2})^{-k}$ are conjugates of each other. The next lemma follows.
Lemma 5.1. $F^{*}_{k,2}(\theta)$ is real, for $\forall \theta \in \mathbb{R}$.

Define $m_2(k) := \lfloor \frac{k}{8} - \frac{1}{4} \rfloor$, where $t = 0, 2$ is chosen so that $t \equiv k \pmod{4}$, and $[n]$ is the largest integer not more than n.

Remark 5.1. By Lemma 5.1, $F^{*}_{k,2}(\theta)$ is real. Also, it can easily be shown that $\left\lfloor \frac{k}{8}, \frac{3k}{8} \right\rfloor$ has $m_2(k) + 1$ integers. Furthermore, for any integer $m \in \left\lfloor \frac{k}{4}, \frac{4k}{8} \right\rfloor$, if m is even or odd, then $F^{*}_{k,2}(2m\pi/k)$ is positive or negative, respectively. (cf. Remark 3.1)

5.2.3. Application of the RSD Method. We will apply the method of F. K. C. Rankin and H. P. F. Swinnerton-Dyer (RSD Method) to the Eisenstein series associated with $\Gamma_0^*(2)$. We note that $N := c^2 + d^2$.

Firstly, we consider the case $N = 1$. Because c is odd, there are two cases, $(c, d) = (1, 0)$ and $(c, d) = (-1, 0)$. Then

$$\frac{1}{2} \left(e^{i\theta/2} \right)^{-k} + \left(e^{-i\theta/2} \right)^{-k} = 2 \cos(k\theta/2).$$

So we can write;

$$F^{*}_{k,2}(\theta) = 2 \cos(k\theta/2) + R^*_2,$$

where

$$R^*_2 = \frac{1}{2} \sum_{\substack{(c,d)=1 \\ c \text{ odd} \\ N>1}} (ce^{i\theta/2} + \sqrt{2}dc^{-i\theta/2})^{-k} + \frac{1}{2} \sum_{\substack{(c,d)=1 \\ c \text{ odd} \\ N>1}} (ce^{-i\theta/2} + \sqrt{2}dc^{i\theta/2})^{-k}.$$

Now,

$$|R^*_2| \leq \frac{1}{2} \sum_{\substack{(c,d)=1 \\ c \text{ odd} \\ N>1}} |ce^{i\theta/2} + \sqrt{2}dc^{-i\theta/2}|^{-k} + \frac{1}{2} \sum_{\substack{(c,d)=1 \\ c \text{ odd} \\ N>1}} |ce^{-i\theta/2} + \sqrt{2}dc^{i\theta/2}|^{-k}.$$

Let $v_k(c,d,\theta) := |ce^{i\theta/2} + \sqrt{2}dc^{-i\theta/2}|^{-k}$, then

$$v_k(c,d,\theta) = \left(|ce^{i\theta/2} + \sqrt{2}dc^{-i\theta/2}|^{-2} \right)^{k/2} = \left(\frac{1}{c^2 + 2d^2 + 2\sqrt{2}cd \cos \theta} \right)^{k/2},$$

and $v_k(c,d,\theta) = v_k(-c,-d,\theta)$.

Now we will consider the next three cases, namely $N = 2, 5$, and $N \geq 10$. Considering $\theta \in [\pi/2, 3\pi/4]$, we have the following:

When $N = 2$,

$$v_k(1,1,\theta) = \left(\frac{1}{3 + 2\sqrt{2} \cos \theta} \right)^{k/2} \leq \frac{1}{1},$$

$$v_k(1,-1,\theta) = \left(\frac{1}{3 - 2\sqrt{2} \cos \theta} \right)^{k/2} \leq \left(\frac{1}{3} \right)^{k/2}.$$
When \(N \geq 10 \),
\[
|ce^{\theta/2} + \sqrt{2}de^{-i\theta/2}|^2 \geq c^2 + 2d^2 - 2\sqrt{2}|cd|\cos \theta \\
= \frac{1}{3} \left(\sqrt{2}|c| - \sqrt{5}|d| \right)^2 + 2|cd| \left(\sqrt{10}/3 - \sqrt{2}\cos \theta \right) + \frac{1}{3}(c^2 + d^2) \\
\geq \frac{1}{3}(c^2 + d^2) = \frac{1}{3}N,
\]
and the rest of the question is about the number of terms with \(c^2 + d^2 = N \). Because \(c \) is odd, \(|c| = 1, 3, \ldots, 2N' - 1 \leq N^{1/2} \), so the number of \(|c| \) is not more than \((N^{1/2} + 1)/2 \). Thus the number of terms with \(c^2 + d^2 = N \) is not more than \(2(N^{1/2} + 1) \leq 3N^{1/2} \), for \(N \geq 5 \). Then
\[
\sum_{(c,d)\in 1\atop N\geq 10} |ce^{\theta/2} + \sqrt{2}de^{-i\theta/2}|^{-k} = \sum_{N=10}^{\infty} 3N^{1/2} \left(\frac{1}{3}N \right)^{-k/2} \leq 3\sqrt{3} \int_0^{\infty} \left(\frac{1}{3}x \right)^{1-k/2} dx \\
= \frac{18\sqrt{3}}{k-3} \left(\frac{1}{3} \right)^{(k-3)/2} = \frac{162}{k-3} \left(\frac{1}{3} \right)^{k/2}.
\]
Thus
\[
|R_s^2| \leq 2 + 2 \left(\frac{1}{3} \right)^{k/2} + 2 \left(\frac{1}{5} \right)^{k/2} + 2 \left(\frac{1}{3} \right)^{k} + \frac{162}{k-3} \left(\frac{1}{3} \right)^{k/2}.
\]

5.2.4. Expansion of the RSD Method (1). In the previous subsection, we could not get a good bound for \(|R_s^2|\). The point was the case \((c,d) = (1,1)\). Notice that \(v_k(1,1,\theta) < 1 \Leftrightarrow \theta < 3\pi/4\). Furthermore, \(v_k(1,1,\theta) < 1 \Leftrightarrow \theta < 3\pi/4\). So we can easily expect that we get a good bound for \(\theta \in [\pi/2, 3\pi/4 - x] \) for small \(x \). But if \(k = 8n \), we need \(|R_s^2| < 2 \) for \(\theta = 3\pi/4 \) in this method. We will consider the case when \(k = 8n, \theta = 3\pi/4 \) in the next section.

Let \(k = 8n + s \) \((n = m_2(k), s = 4, 6, 0, \text{ and } 10)\). We may assume that \(k \geq 8 \).

The first problem is how small \(s \) should be. We consider each of the cases \(s = 4, 6, 0, \text{ and } 10 \).

When \(s = 4 \), for \(\pi/2 \leq \theta \leq 3\pi/4 \), \((2n + 1)\pi \leq k\theta/2 = (4n + 2)\theta \leq (3n + 1)\pi + \pi/2 \). So the last integer point \(i.e. \pm 1 \) is \(k\theta/2 = (3n + 1)\pi \), then \(\theta = 3\pi/4 - \pi/k \). Similarly, when \(s = 6, \text{ and } 10 \), the last integer points are \(\theta = 3\pi/4 - \pi/2k, 3\pi/4 - 3\pi/2k, \) respectively. When \(s = 0 \), the second to the last integer point is \(\theta = 3\pi/4 - \pi/k \). Thus we need \(x \leq \pi/2k \).

Lemma 5.2. Let \(k \geq 8 \). For \(\forall \theta \in [\pi/2, 3\pi/4 - x] \) \((x = \pi/2k)\), \(|R_s^2| < 2 \).

Before proving the above lemma, we need the following preliminaries.

Proposition 5.1.

(1) If \(0 \leq x \leq \pi/2 \), then \(\sin x \geq 1 - \cos x \).
(2) If \(0 \leq x \leq \pi/16 \), then \(1 - \cos x \geq \frac{\pi}{16} x^2 \).

This proposition is easily proved. The number \(\frac{\pi}{16} \) in Proposition 5.1 (2) is near to and less than \(\frac{1}{2} \cos(\pi/16) \). We use the previous proposition for the following proof:

Proof of Lemma 5.2. Let \(k \geq 8 \) and \(x = \pi/2k \), then \(0 \leq x \leq \pi/16 \).
\[
|e^{\theta/2} + \sqrt{2}e^{-i\theta/2}|^2 = 3 + 2\sqrt{2}\cos \theta \geq 3 + 2\sqrt{2}\cos(3\pi/4 - x) \\
= 1 + 2(1 - \cos x) + 2\sin x \\
\geq 1 + 4(1 - \cos x) \quad (\text{Prop.5.1(1)}) \\
\geq 1 + \frac{31}{16} x^2. \quad (\text{Prop.5.1(2)})
\]
\[
|e^{i\theta/2} + \sqrt{2}e^{-i\theta/2}|^k \geq \left(1 + \frac{31}{16}x^2\right)^{k/2} \\
= 1 + \frac{k}{2} \frac{31}{16}x^2 + \binom{k/2}{2} \frac{31}{16}x^4 + \ldots \\
\geq 1 + \frac{k}{2} \frac{31}{16}x^2 \geq 1 + \frac{31}{4}x^2 (k \geq 8).
\]

\[\nu_k(1, 1, \theta) \leq \frac{1}{1 + (31/4)x^2} = 1 - \frac{(31/4)x^2}{1 + (31/4)x^2} \leq 1 - \frac{31 \times 256}{31\pi^2 + 1024x^2}.\]

Thus
\[2\nu_k(1, 1, \theta) \leq 2 - \frac{31 \times 512}{31\pi^2 + 1024}x^2 = 2 - \frac{31 \times 512}{31\pi^2 + 1024} \frac{\pi^2}{2k^2} \leq 2 - \frac{265}{9} \frac{1}{k^2}.
\]

In inequality (60), replace 2 with the bound \(2 - \frac{265}{9} \frac{1}{k^2}\). Then
\[|R_2^2| \leq 2 - \frac{265}{9} \frac{1}{k^2} + 2 \left(\frac{1}{3}\right)^{k/2} + 2 \left(\frac{1}{5}\right)^{k/2} + 2 \left(\frac{1}{3}\right)^{k/2} + \frac{162}{k-3} \left(\frac{1}{3}\right)^{k/2}.
\]

Furthermore,
\[2 \left(\frac{1}{3}\right)^{k/2} + 2 \left(\frac{1}{5}\right)^{k/2} + 2 \left(\frac{1}{3}\right)^{k/2} + \frac{162}{k-3} \left(\frac{1}{3}\right)^{k/2} = \left(2 + 2 \left(\frac{3}{5}\right)^{k/2} + 2 \left(\frac{1}{3}\right)^{k/2} + \frac{162}{k-3} \left(\frac{1}{3}\right)^{k/2}\right) \leq 35 \left(\frac{1}{3}\right)^{k/2} (k \geq 8).
\]

Now if we can show that
\[35 \left(\frac{1}{3}\right)^{k/2} < \frac{265}{9} \frac{1}{k^2} \text{ or } \frac{3k^2}{35} > \frac{9}{265} k^2,
\]
then the bound is less than 2. Then the proof will be complete.

Put \(f(x) := (1/35)3^{x/2} - \frac{9}{265} x^2\), then \(f'(x) = (\log 3/70)3^{x/2} - \frac{18}{265} x\), \(f''(x) = ((\log 3)/140)3^{x/2} - \frac{18}{265}\).

Firstly, \(f''\) is monotonically increasing for \(x \geq 8\), and \(f''(8) = 0.63038... > 0\), so \(f'' > 0\) for \(x \geq 8\).

Secondly, \(f'\) is monotonically increasing for \(x \geq 8\), and \(f'(8) = 0.72785... > 0\), so \(f' > 0\) for \(x \geq 8\).

Finally, \(f\) is monotonically increasing for \(x \geq 8\), and \(f(8) = 0.14070... > 0\), so \(f > 0\) for \(x \geq 8\). \(\square\)

5.2.5. Expansion of the RSD Method (2). For the case \(k = 8n, \theta = 3\pi/4\), we need the next lemma.

Lemma 5.3. Let \(k\) be an integer such that \(k = 8n\) for \(\exists n \in \mathbb{N}\). If \(n\) is even, then \(F_{k,2}^*(3\pi/4) > 0\). On the other hand, if \(n\) is odd, then \(F_{k,2}^*(3\pi/4) < 0\).

If we can show this lemma, then we consequently show that for any integer \(m \in \left[\frac{3k}{4}, \frac{3k}{2}\right]\), if \(m\) is even or odd, then \(F_{k,2}^*(2m\pi/k)\) is positive or negative, respectively. (Remark 5.1)

Proof of Lemma 5.3. Let \(k = 8n (n \geq 1)\). By the definition of \(E_{k,2}^*(z), F_{k,2}^*(z)\) (cf. (54),(57)), we have
\[
F_{k,2}^*(\theta) = \frac{e^{ik\theta/2}}{2^{k/2} + 1} \left(2^{k/2}E_k(\sqrt{2}e^{i\theta}) + E_k\left(e^{i\theta}/\sqrt{2}\right)\right).
\]
\[
F_{k,2}^*(3\pi/4) = \frac{e^{ik(3\pi/8)}}{2^{k/2} + 1} \left(2^{k/2}E_k(-1 + i) + E_k\left(-\frac{1 + i}{2}\right)\right).
\]

By using the equations (14) and (15),
\[E_k(-1 + i) = E_k(i),\]
Theorem 5.1.

$$E_k \left(\frac{-1 + i}{2} \right) = E_k \left(-\frac{1}{1 + i} \right) = (1 + i)^k E_k(1 + i) = 2^{k/2} E_k(i).$$

Then

$$F_{k,2}^*(3\pi/4) = 2e^{i(3k/8)\pi} \frac{2^{k/2}}{2^{k/2} + 1} E_k(i)$$

$$= 2e^{i(k/8)\pi} \frac{2^{k/2}}{2^{k/2} + 1} e^{i(k/2)} E_k \left(e^{i(\pi/2)} \right)$$

$$= 2e^{i(k/8)\pi} \frac{2^{k/2}}{2^{k/2} + 1} F_k(\pi/2). \quad (\text{cf.}(38))$$

When $k = 8n$,

$$F_{8n,2}^*(3\pi/4) = 2e^{in\pi} \frac{2^{4n}}{2^{4n} + 1} F_{8n}(\pi/2).$$

Here $\frac{e^{in\pi}}{2^{4n} + 1} > 0$. By proposition 3.3, we have $F_{8n}(\pi/2) = e^{2n\pi} E_{8n}(i) > 0$. So the sign($\pm$) of $F_{8n,2}^*(3\pi/4)$ is that of $e^{in\pi}$. Thus the proof is complete. \hfill \Box

5.2.6. Valence formula for $\Gamma_0^r(2)$. By previous subsections, $E_{k,2}^*(z)$ has $m_2(k)$ zeros on A_2^r. In order to decide the locating of all zeros of $E_{k,2}^*(z)$, we need the valence formula for $\Gamma_0^r(2)$:

Proposition 5.2. Let f be a modular function of weight k for $\Gamma_0^r(2)$, which is not identically zero. We have

$$v_\infty(f) + \frac{1}{2} v_{i/\sqrt{2}}(f) + \frac{1}{4} v_{p_2}(f) + \sum_{p \in \Gamma_0^r(2) \setminus \mathbb{N}} v_p(f) = \frac{k}{8},$$

where $p_2 := e^{3\pi/4}/\sqrt{2}$.

The proof of this proposition is similar to Proposition 3.1 because the figure of fundamental domain of $\Gamma_0^r(2)$ is similar to that of $\text{SL}_2(\mathbb{Z})$ (cf. Figure 1. and 5., and see [SE]). The angle of the arc around p_2 (BB' in Figure 2.) tends to $\pi/4$ when radius of it tends to 0, thus the coefficient of $v_{p_2}(f)$ is 1/4. Furthermore, because the angle of the arc A_2^r is $\pi/4$, the right-hand side is $k/8$.

If $k \equiv 4, 6, 0 \pmod{8}$, then $k/8 - m_2(k) < 1$. Thus all zeros of $E_{k,2}^*(z)$ are on $A_2^r \cup \{i/\sqrt{2}, p_2\}$.

But if $k \equiv 2 \pmod{8}$, we need another consideration because we have $k/8 - m_2(k) > 1$.

Recall that $E_{k,2}^*(z)$ is the modular form of weight k for $\Gamma_0^r(2)$. Any weight k modular form for $\Gamma_0^r(2)$ satisfies

$$f \left(\frac{az + b}{cz + d} \right) = (cz + d)^k f(z)$$

for every $z \in \mathbb{H}$, and $\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma_0^r(2)$. When $z = i/\sqrt{2}$ and $\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = W_2$, we have $E_{k,2}^*(i/\sqrt{2}) = i^k E_{k,2}^*(i/\sqrt{2})$. Because $k \not\equiv 0 \pmod{4}$, $E_{k,2}^*(i/\sqrt{2}) = 0$. Thus we have $k/8 - m_2(k) - v_{i/\sqrt{2}}(E_{k,2}^*)/2 < 1$.

In conclusion, for every even integer $k \geq 4$, all zeros of $E_{k,2}^*(z)$ is on $A_2^r \cup \{i/\sqrt{2}, p_2\}$.

5.2.7. The space of modular forms. Let $M_{k,2}^*$ be the space of modular forms for $\Gamma_0^r(2)$ of weight k, and let $M_{k,2}^0$ be the space of cusp forms for $\Gamma_0^r(2)$ of weight k. When we consider the map $M_{k,2}^* \ni f \mapsto f(\infty) \in \mathbb{C}$, the kernel of the map is $M_{k,2}^0$. So $\dim(M_{k,2}^*/M_{k,2}^0) \leq 1$, and $M_{k,2}^* = CE_{k,2}^* \oplus M_{k,2}^0$. Recall that $\Delta_2 = \eta^8(z)\eta^8(2z)$. We have following theorem:

Theorem 5.1. Let k be an even integer.

1. For $k < 0$ and $k = 2$, $M_{k,2}^0 = 0$.
2. For $k = 0, 4, 6, \text{ and } 10$, we have $M_{k,2}^0 = 0$, and $\dim(M_{k,2}^*) = 1$ with a base $E_{k,2}^*$.
3. $M_{k,2}^0 = \Delta_2 M_{k-8,2}^*$.
Proof. Let \(f \) be a nonzero function of \(M^*_k,2 \), then \(v_p(f) \geq 0 \) for every \(p \in \mathbb{H} \). By the valence formula for \(\Gamma_0^*(2) \) (Proposition 5.2), we have \(k \geq 0 \).

For every \(f \in M^*_k,2 \), we have \(v_p(f/\Delta_2) \geq 0 \) for every \(p \in \mathbb{H} \). Thus \(f/\Delta_2 \in M^*_k,8,2 \). This proves (3).

By (3) and \(M^*_k,2 = 0 \) for \(k < 0 \), we have \(M^*_k,2 = 0 \) for \(k = 0, 2, 4, 6 \). We also have \(\dim(M^*_k,2) = 1 \) for \(k = 0, 4, 6 \) with a base \(E^*_k,2 \).

Let \(f \) be a nonzero function of \(M^*_2,2 \). By the valence formula, we have \(v_{\rho_2}(f) = 1 \) and \(v_p(f) = 0 \) for every \(p \neq \rho_2 \). Because \(f^3 \in M^*_0,2 \), \(f^3 = CE^*_0,2 \) for some \(c \in \mathbb{C} \). So \(f^3(i/\sqrt{2}) = CE^*_0,2(i/\sqrt{2}) = 0 \). This contradicts \(v_{i/\sqrt{2}}(f) = 0 \). Thus \(M^*_2,2 = 0 \). This proves (1).

Moreover, by (3), \(M^*_1,2 = 0 \) and \(\dim(M^*_1,2) = 1 \) with a base \(E^*_1,2 \). This makes the proof of this theorem complete.

Furthermore, for a non-negative integer \(k \), \(\dim(M^*_k,2) = \lfloor k/8 \rfloor \) if \(k \equiv 2 \) (mod \(8 \)), and \(\dim(M^*_k,2) = \lfloor k/8 \rfloor + 1 \) if \(k \not\equiv 2 \) (mod \(8 \)).

Let \(k \) be an even integer such that \(k \geq 4 \). Write \(n := \dim(M^*_k,2) - 1 \), then \(k = 8n = 0, 4, 6, \) or 10.

Because \(E^*_k,2 - E^*_k,8,2(E^*_4,2)^{2n} \in M^*_k,2 \), we have \(M^*_k,2 = CE^*_k,8,2(E^*_4,2)^{2n} \oplus M^*_k,2 \). Then

\[
M^*_k,2 = CE^*_k,8,2(E^*_4,2)^{2n} \oplus \Delta_2 M^*_k,8,2
\]

\[
= CE^*_k,8,2(E^*_4,2)^{2n} \oplus CE^*_k,8,2(E^*_1,2)^{2(n-1)} \oplus \Delta_2^2 M^*_k,16,2
\]

\[
\vdots
\]

\[
= E^*_k,8,2(CE^*_4,2)^{2n} \oplus CE^*_4,2(E^*_2)^{2(n-1)} \oplus \cdots \oplus \Delta_2^n
\]

Thus, for every \(p \in \mathbb{H} \) and for every \(f \in M^*_k,2 \), \(v_p(f) \geq v_p(E^*_k,8,2) \).

By the valence formula and equation (63), we have \(v_{i/\sqrt{2}}(E^*_4,2) = 0 \), \(v_{\rho_2}(E^*_4,2) = 2 \), and \(v_{i/\sqrt{2}}(E^*_6,2) = v_{\rho_2}(E^*_6,2) = 1 \). For \(k = 10 \), we have \(E^*_4,2(E^*_6,2)^2 \in M^*_1,2 = CE^*_1,2 \). Thus \(E^*_1,2 = E^*_4,2(E^*_6,2)^2 \), and \(v_{i/\sqrt{2}}(E^*_1,2) = 1 \), \(v_{\rho_2}(E^*_1,2) = 3 \).

In conclusion, the next proposition follows:

Proposition 5.3. Let \(k \geq 4 \) be an even integer. For every \(f \in M^*_k,2 \), we have

\[
v_{i/\sqrt{2}}(f) \geq s_k \quad (s_k = 0, 1 \text{ such that } 2s_k \equiv k \pmod{4}),
\]

\[
v_{\rho_2}(f) \geq t_k \quad (t_k = 0, 1, 2, 3 \text{ such that } -2t_k \equiv k \pmod{8}.
\]

In particular, if \(f \) is a constant multiple of \(E^*_k,2 \), then the equalities hold.

Remark 5.2. Every modular form for \(\Gamma_0^*(2) \) is generated by

\[
E^*_4,2, \quad E^*_6,2, \quad \text{and} \quad \Delta_2.
\]
5.3. $\Gamma_0^*(3)$ (Proof of Theorem 2).

5.3.1. Preliminaries. In the subsection 5.1, we have two conditions for a fundamental domain for $\Gamma_0^*(3)$:

(C0) \[|z + 1/3| > 1/3, \quad -1/2 < \text{Re}(z) < 1/2. \]

(Cp) \[|z - n| > 1/\sqrt{3}, \quad -1/2 < \text{Re}(z) < 1/2 \quad \text{for } n = 0, \pm 1. \]

It is easy to show that
\[|z| > 1/\sqrt{3}, \quad -1/2 < \text{Re}(z) < 1/2 \]
is a sufficient condition for (C0) and (Cp). Furthermore, we have the following transformation:

$W_3 : e^{i\theta}/\sqrt{3} \rightarrow e^{i(\pi - \theta)}/\sqrt{3}$

Then we have $V_{\Gamma_0^*(3)} = \{ e^{5\pi i/6}/\sqrt{3} \}$ (Theorem 2.1).

Now, we have a fundamental domain for $\Gamma_0^*(3)$ as follows:

\begin{align*}
F^*(3) := \left\{ |z| \geq 1/\sqrt{3}, \quad -\frac{1}{2} \leq \text{Re}(z) \leq 0 \right\} \bigcup \left\{ |z| > 1/\sqrt{3}, \quad 0 \leq \text{Re}(z) < \frac{1}{2} \right\}.
\end{align*}

![Figure 6. $\Gamma_0^*(3)$](image)

5.3.2. The function $F^*_{k,3}(\theta)$. We give the next definition:

\begin{align*}
F^*_{k,3}(\theta) := e^{i\theta/2} E^*_k \left(e^{i\theta}/\sqrt{3} \right).
\end{align*}

Before proving Theorem 1, we consider an expansion of $F^*_{k,3}(\theta)$.

In the definition of $E^*_k(z)$ (cf. (54)), when $3 \mid c$, then we can write $c = 3c'$ for $\exists c' \in \mathbb{Z}$, and have $3 \nmid d$. Also, when $3 \nmid d$, then we have $3 \nmid c$ and $d = 33d'$ for $\exists d' \in \mathbb{Z}$. Then

\begin{align*}
F^*_{k,3}(z) &= \frac{e^{ik\theta/2}}{2} \sum_{\substack{c,d=1 \atop 3 \mid c}} \frac{(ce^{i\theta}/\sqrt{3} + d)^{-k} + 3^{k/2} e^{ik\theta/2}}{2} \sum_{\substack{c,d=1 \atop 3 \mid d}} (ce^{i\theta}/\sqrt{3} + d)^{-k} \\
&= \frac{1}{2} \sum_{\substack{c,d=1 \atop 3 \mid d}} (de^{-i\theta/2} + \sqrt{3}e^{i\theta/2})^{-k} + \frac{1}{2} \sum_{\substack{c,d=1 \atop 3 \mid c}} (ce^{i\theta/2} + \sqrt{3}d'e^{-i\theta/2})^{-k}
\end{align*}

Thus we can write as follows:

\begin{align*}
F^*_{k,3}(\theta) &= \frac{1}{2} \sum_{\substack{c,d=1 \atop 3 \mid d}} (e^{i\theta/2} + \sqrt{3}de^{-i\theta/2})^{-k} + \frac{1}{2} \sum_{\substack{c,d=1 \atop 3 \mid c}} (e^{-i\theta/2} + \sqrt{3}de^{i\theta/2})^{-k}.
\end{align*}

Hence we use this expression as a definition.

Note that for any pair (c,d), $(e^{i\theta/2} + \sqrt{3}de^{-i\theta/2})^{-k}$ and $(e^{-i\theta/2} + \sqrt{3}de^{i\theta/2})^{-k}$ are conjugates of each other. The next lemma follows.

Lemma 5.4. $F^*_{k,3}(\theta)$ is real, for $\forall \theta \in \mathbb{R}$.

Define $m_3(k) := \left\lfloor \frac{k}{6} - \frac{1}{3} \right\rfloor$, where $t = 0, 2$ is chosen so that $t \equiv k \pmod{4}$.

Remark 5.3. By Lemma 5.4, $F^*_{k,3}(\theta)$ is real. Also, it can easily be shown that $\left\lfloor \frac{k}{6} \right\rfloor$ has $m_3(k) + 1$ integers. Furthermore, for any integer $m \in \left[\frac{k}{6}, \frac{5k}{12} \right]$, if m is even or odd, then $F^*_{k,3}(2m\pi/k)$ is positive or negative, respectively. (cf. Remark 3.1)
5.3.3. Application of the RSD Method. We note that \(N := c^2 + d^2 \).

Firstly, we consider the case \(N = 1 \). Then we can write;

\[
F^*_{k,3}(\theta) = 2 \cos(k\theta/2) + R^*_3,
\]

where

\[
R^*_3 = \frac{1}{2} \sum_{\substack{(c,d) = 1 \mod 3c \\mid N>1}} (ce^{i\theta/2} + \sqrt{3}de^{-i\theta/2})^k + \frac{1}{2} \sum_{\substack{(c,d) = 1 \mod 3c \\mid N>1}} (ce^{-i\theta/2} + \sqrt{3}de^{i\theta/2})^k.
\]

Now,

\[
|R^*_3| \leq \sum_{\substack{(c,d) = 1 \mod 3c \\mid N>1}} |ce^{i\theta/2} + \sqrt{3}de^{-i\theta/2}|^k.
\]

Let \(v_k(c, d, \theta) := |ce^{i\theta/2} + \sqrt{3}de^{-i\theta/2}|^k \), then \(v_k(c, d, \theta) = \left(\frac{1}{c^2 + 3d^2 + 2\sqrt{3}cd\cos\theta} \right)^{k/2} \), and \(v_k(c, d, \theta) = v_k(-c, -d, \theta) \).

Now we will consider the next cases, namely \(N = 2, 5, 10, 13, 17, \) and \(N \geq 25 \). Considering \(\theta \in [\pi/2, 5\pi/6] \), we have the following:

<table>
<thead>
<tr>
<th>When (N = 2),</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_k(1, 1, \theta) = \left(\frac{1}{4 + 2\sqrt{3}\cos\theta} \right)^{k/2} \leq 1),</td>
</tr>
<tr>
<td>(v_k(1, -1, \theta) = \left(\frac{1}{4 - 2\sqrt{3}\cos\theta} \right)^{k/2} \leq \left(\frac{1}{2} \right)^k).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>When (N = 5),</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_k(1, 2, \theta) = \left(\frac{1}{13 + 4\sqrt{3}\cos\theta} \right)^{k/2} \leq \left(\frac{1}{7} \right)^{k/2}),</td>
</tr>
<tr>
<td>(v_k(1, -2, \theta) = \left(\frac{1}{13 - 4\sqrt{3}\cos\theta} \right)^{k/2} \leq \left(\frac{1}{13} \right)^{k/2}),</td>
</tr>
<tr>
<td>(v_k(2, 1, \theta) = \left(\frac{1}{7 + 4\sqrt{3}\cos\theta} \right)^{k/2} \leq 1),</td>
</tr>
<tr>
<td>(v_k(2, -1, \theta) = \left(\frac{1}{7 - 4\sqrt{3}\cos\theta} \right)^{k/2} \leq \left(\frac{1}{7} \right)^{k/2}).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>When (N = 10),</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_k(1, 3, \theta) = \left(\frac{1}{28 + 6\sqrt{3}\cos\theta} \right)^{k/2} \leq \left(\frac{1}{19} \right)^{k/2}),</td>
</tr>
<tr>
<td>(v_k(1, -3, \theta) = \left(\frac{1}{28 - 6\sqrt{3}\cos\theta} \right)^{k/2} \leq \left(\frac{1}{28} \right)^{k/2}).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>When (N = 13),</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_k(2, 3, \theta) = \left(\frac{1}{31 + 12\sqrt{3}\cos\theta} \right)^{k/2} \leq \left(\frac{1}{13} \right)^{k/2}),</td>
</tr>
<tr>
<td>(v_k(2, -3, \theta) = \left(\frac{1}{31 - 12\sqrt{3}\cos\theta} \right)^{k/2} \leq \left(\frac{1}{31} \right)^{k/2}).</td>
</tr>
</tbody>
</table>
When $N = 17$,
\[
v_k(1, 4, \theta) = \left(\frac{1}{49 + 8\sqrt{3}\cos \theta} \right)^{k/2} \leq \left(\frac{1}{37} \right)^{k/2},
\]
\[
v_k(1, -4, \theta) = \left(\frac{1}{49 - 8\sqrt{3}\cos \theta} \right)^{k/2} \leq \left(\frac{1}{7} \right)^{k/2},
\]
\[
v_k(4, 1, \theta) = \left(\frac{1}{19 + 8\sqrt{3}\cos \theta} \right)^{k/2} \leq \left(\frac{1}{1} \right)^{k/2},
\]
\[
v_k(4, -1, \theta) = \left(\frac{1}{19 - 8\sqrt{3}\cos \theta} \right)^{k/2} \leq \left(\frac{1}{19} \right)^{k/2}.
\]

When $N \geq 25$,
\[
|ce^{i\theta}/2 + \sqrt{3}de^{-i\theta}/2|^2 \geq c^2 + 3d^2 - 2\sqrt{3}|cd|\cos \theta|
\]
\[
= \frac{1}{6} \left(\sqrt{5}|c| - \sqrt{17}|d| \right)^2 + 2|cd| \left(\sqrt{85}/6 - \sqrt{3} \cos \theta \right) + \frac{1}{6}(c^2 + d^2)
\]
\[
\geq \frac{1}{6} N,
\]
and the rest of the question is about the number of terms with $c^2 + d^2 = N$. Because $3 \nmid c$, $|c| = 1, 2, 4, 5, 7, \ldots \leq N^{1/2}$, so the number of $|c|$ is not more than $(2/3)N^{1/2} + 1$. Thus the number of terms with $c^2 + d^2 = N$ is not more than $4((2/3)N^{1/2} + 1) \leq (11/3)N^{1/2}$, for $N \geq 16$. Then
\[
\sum_{(c,d)=1 \atop 3 \nmid c \atop N \geq 25} |ce^{i\theta}/2 + \sqrt{3}de^{-i\theta}/2|^{-k} \leq \sum_{N=25}^{\infty} \frac{11}{3} N^{1/2} \left(\frac{1}{6} \right)^{k/2} \leq \frac{11\sqrt{6}}{3} \sum_{N=25}^{\infty} \left(\frac{1}{6} \right) \left(\frac{1}{x} \right)^{(1-k)/2}
\]
\[
\leq \frac{11\sqrt{6}}{3} \int_{24}^{\infty} \left(\frac{1}{6} \right)^{(1-k)/2} dx = \frac{352\sqrt{6}}{k-3} \left(\frac{1}{2} \right)^k.
\]
Thus
\[
|R_3^s| \leq 4 + 2 \left(\frac{1}{2} \right)^k + 6 \left(\frac{1}{7} \right)^{k/2} + 4 \left(\frac{1}{13} \right)^{k/2} + 4 \left(\frac{1}{19} \right)^{k/2}
\]
\[
+ 2 \left(\frac{1}{25} \right)^{k/2} + 2 \left(\frac{1}{31} \right)^{k/2} + 2 \left(\frac{1}{37} \right)^{k/2} + 2 \left(\frac{1}{7} \right)^{k/2} + \frac{352\sqrt{6}}{k-3} \left(\frac{1}{2} \right)^k.
\]

Recalling the “RSD Method” subsection, we want to show that $|R_3^s| < 2$. But the right-hand side is much greater than 2, so this bound is not good. The cases $(c, d) = \pm(1, 1), \pm(2, 1)$ give us bound equal to 4. We will consider the expansion of the method in the following sections.

5.3.4. Expansion of the RSD Method (1). In the previous subsection, we could not get a good bound for $|R_3^s|$. The points were the cases $(c, d) = \pm(1, 1), \pm(2, 1)$. Notice that $v_k(1, 1, \theta) < 1 \Leftrightarrow \theta < 5\pi/6$, and $v_k(2, 1, \theta) < 1 \Leftrightarrow \theta < 5\pi/6$. So we can easily expect that we get a good bound for $\theta \in [\pi/2, 5\pi/6 - x]$ for small $x > 0$. But if $k = 12n$, we need $|R_3^s| < 2$ for $\theta = 5\pi/6$. We will consider the case when $k = 12n$, $\theta = 5\pi/6$ in the next subsection.

How small should x be? Let $k = 12m(k) + s$ $(s = 4, 6, 8, 10, 0, \text{ and } 14)$. We may assume that $k \geq 8$. When $s = 4, 6, 8, 10 \text{ and } 14$, the last integer points are $\theta = 5\pi/6 - 4\pi/3k, 5\pi/6 - \pi/k, 5\pi/6 - 2\pi/3k, 5\pi/6 - \pi/3k, \text{ and } 5\pi/6 - 5\pi/3k$, respectively. When $s = 0$, the second to the last integer point is $\theta = 5\pi/6 - 2\pi/k$. Thus we need $x \leq \pi/3k$.

Lemma 5.5. Let $k \geq 8$. For $\forall \theta \in [\pi/2, 5\pi/6 - x]$ $(x = \pi/3k)$, $|R_3^s| < 2$.

Proof. Let $k \geq 8$ and $x = \pi/3k$, then $0 \leq x \leq \pi/24$.

-

We try to prove Lemma 5.5 in a similar way to the proof of Lemma 5.2. Firstly, we have
\[
2 \left(\frac{1}{2} \right)^k + 6 \left(\frac{1}{7} \right)^{k/2} + 4 \left(\frac{1}{13} \right)^{k/2} + 4 \left(\frac{1}{19} \right)^{k/2} + 2 \left(\frac{1}{28} \right)^{k/2} + 2 \left(\frac{1}{31} \right)^{k/2} + 2 \left(\frac{1}{37} \right)^{k/2} + 2 \left(\frac{1}{7} \right)^k + \frac{352\sqrt{6}}{k-3} \left(\frac{1}{2} \right)^k
\]
\[
\leq 176 \left(\frac{1}{2} \right)^k \quad (k \geq 8)
\]
Here, we want to prove
\[
|R_3^+| \leq 2 - a_1 \pi^2 + 176 \left(\frac{1}{2} \right)^k < 2
\]
for some positive integer \(a_1\). Then we have to show
\[
176 \left(\frac{1}{2} \right)^k < \frac{a_1 \pi^2}{9} \frac{1}{k^2} \quad \text{or} \quad \frac{2^k}{176} > \frac{9}{a_1 \pi^2} k^2 \quad \text{for} \ k \geq 8.
\]
Put \(f(x) := (1/176)2^x - \frac{9}{a_1 \pi^2} x^2\), then \(f'(x) = (\log 2/176)2^x - \frac{18}{a_1 \pi^2} x^2\). If we can show \(f(x) > 0\) for \(x \geq 8\), then we can prove the above bound. \(f''\) is monotonically increasing for \(x \geq 8\), and
\[
f(8) > 0 \iff a_1 \geq \frac{99}{\pi^2} \cdot 4,
\]
\[
f'(8) > 0 \iff a_1 \geq \frac{99}{\log 2} \cdot \frac{1}{\pi^2}.
\]
\[
f''(8) > 0 \iff a_1 \geq \frac{99}{8(\log 2)^2} \cdot \pi^2.
\]
Thus we need \(a_1 \geq \frac{99}{\pi^2} \cdot 4\), then we can define \(a_1 := \frac{321}{8}\). Now, we have only to prove
\[
v_k(1,1,\theta) + v_k(2,1,\theta) \leq 1 - \frac{321}{16} x^2 \quad \text{for} \ \forall \theta \in [\pi/2, 5\pi/6 - x] \ (x = \pi/3k).
\]
In addition, because we have \(v_k(1,1,\theta) = (1 + (3 + 2\sqrt{3} \cos \theta))^{-k/2}\) and \(v_k(2,1,\theta) = (1 + 2(3 + 2\sqrt{3} \cos \theta))^{-k/2}\), we expect the following bounds:
\[
v_k(1,1,\theta) \leq \frac{2}{3} - \frac{107}{8} x^2,
\]
\[
v_k(2,1,\theta) \leq \frac{1}{3} - \frac{107}{16} x^2.
\]
To prove the former bound, we consider the following sufficient conditions:
\[
(4 + 2\sqrt{3} \cos \theta)^{k/2} \geq \frac{3}{2} + a_2 x^2
\]
\[
4 + 2\sqrt{3} \cos \theta \geq a_3 + a_4 x^2
\]
For the number \(a_2\), we want to show
\[
\frac{1}{3/2 + a_2 x^2} \leq \frac{2}{3} - \frac{107}{8} x^2.
\]
Then
\[
\frac{2}{3} \frac{1}{3/2 + a_2 x^2} \geq \frac{4a_2}{3(3 + 2a_2(\pi/3k)^2)} x^2 \geq \frac{107}{8} x^2,
\]
\[
a_2 \geq \frac{9 \cdot 107}{32 - 6 \cdot 107 \cdot (\pi/24)^2} \quad \text{for} \ k \geq 8.
\]
Thus we can define \(a_2 := \frac{64 \times 7 \times 13}{127}\).
For the numbers \(a_3\) and \(a_4\), we want to show
\[
(a_3 + a_4 x^2)^{\frac{k}{2}} \geq \frac{3}{2} + \frac{64 \times 7 \times 13}{127} x^2.
\]
Then
\[
(a_3 + a_4 x^2)^{\frac{k}{2}} \geq a_3^{\frac{k}{2}} + \frac{k}{2} a_3^{\frac{k-1}{2}} a_4 x^2 \geq \frac{3}{2} + \frac{64 \times 7 \times 13}{127} x^2.
\]
Thus we can define $a_3 := \left(\frac{3}{2}\right)^{2/k}$ and $a_4 := \frac{256\times7\times13}{3\times127k} \left(\frac{3}{2}\right)^{2/k}$.

In conclusion, we have

$$4+2\sqrt{3} \cos \theta \geq \left(\frac{3}{2}\right)^{2/k} \left(1 + \frac{256 \times 7 \times 13}{3 \times 127k} x^2 \right)$$

$$\Rightarrow (4 + 2\sqrt{3} \cos \theta)^{k/2} \geq \frac{3}{2} + \frac{64 \times 7 \times 13}{127} x^2$$

$$\Rightarrow v_k(1, 1, \theta) \leq \frac{2}{3} - \frac{107}{8} x^2.$$

Similarly, we have

$$7+4\sqrt{3} \cos \theta \geq \left(\frac{3}{2}\right)^{2/k} \left(1 + \frac{256 \times 7 \times 13}{3 \times 127k} x^2 \right)$$

$$\Rightarrow (7 + 4\sqrt{3} \cos \theta)^{k/2} \geq \frac{3}{2} + \frac{128 \times 7 \times 13}{127} x^2$$

$$\Rightarrow v_k(2, 1, \theta) \leq \frac{1}{3} - \frac{107}{16} x^2.$$

Finally, we need the following preliminaries.

Proposition 5.4.

1. For $k \geq 8$, $\left(\frac{3}{2}\right)^{2/k} \leq 1 + \frac{1}{k} \left(2 \log \frac{3}{2}\right)^2 \frac{1}{k^2}$.
2. For $k \geq 8$, $3 + 2\sqrt{3} \cos \left(\frac{5\pi}{6} - \frac{\pi}{3k}\right) \geq \frac{1}{k} \frac{\pi}{\sqrt{3} k}$.

Proof.

(1) For $k \geq 8$,

$$\left(\frac{3}{2}\right)^{2/k} = \sum_{n=0}^{\infty} \frac{(2 \log 3/2)^n}{n!} \frac{1}{k^n}$$

$$= 1 + \frac{2 \log 3/2}{k} + \sum_{n=2}^{\infty} \frac{(2 \log 3/2)^n}{n!} \frac{1}{k^n}$$

$$= 1 + \frac{2 \log 3/2}{k} + \sum_{n=0}^{\infty} \frac{(2 \log 3/2)^{n+2}}{(n+2)!} \frac{1}{k^{n+2}}$$

$$= 1 + \frac{2 \log 3/2}{k} + \frac{1}{2} \frac{2 \log 3/2}{2} \frac{1}{k^2} \sum_{n=2}^{\infty} \frac{2}{(n+1)(n+2)} \frac{(2 \log 3/2)^n}{n!} \frac{1}{k^n}$$

$$\leq 1 + \frac{2 \log 3/2}{k} + \frac{1}{2} \frac{2 \log 3/2}{2} \frac{1}{k^2} \sum_{n=2}^{\infty} \frac{(2 \log 3/2)^n}{n!} \frac{1}{k^n}$$

$$= 1 + \frac{2 \log 3/2}{k} + \frac{1}{2} \frac{2 \log 3/2}{2} \left(\frac{3}{2}\right)^{2/k} \frac{1}{k^2}.$$

(2) Let $k \geq 8$, and put

$$g(k) := 3 + 2\sqrt{3} \cos \left(\frac{5\pi}{6} - \frac{\pi}{3k}\right) - \frac{\pi}{\sqrt{3} k}.$$

Then $g'(k) = \frac{\pi}{\sqrt{3} k^2} \left(1 - 2 \sin \left(\frac{5\pi}{6} - \frac{\pi}{3k}\right)\right) \leq 0$ (by $k \geq 8$). Thus $g(k)$ is monotonically decreasing, and $\lim_{k \to \infty} g(k) = 0$, so $g(k) \geq 0$.

\[\square\]

Proposition 5.5.

1. For $k \geq 8$, $3^{2/k} \leq 1 + (2 \log 3)^{1/k} + \frac{1}{2} (2 \log 3)^2 3^{2/k} \frac{1}{k^2}$.
2. For $k \geq 8$, $6 + 4\sqrt{3} \cos \left(\frac{5\pi}{6} - \frac{\pi}{3k}\right) \geq \frac{2 \pi}{\sqrt{3} k}$.

The proof of above proposition is similar to that of Proposition 5.4.

Then, write
\[f_1(k) := 4 + 2\sqrt{3}\cos \left(\frac{5\pi}{6} - \frac{\pi}{3k} \right) - \left(\frac{3}{2} \right)^{2/k} \left(1 + \frac{256 \times 7 \times 13 \times \pi^2}{27 \times 127} \frac{1}{k^3} \right). \]

If \(k = 8 \), then \(f_1(8) = 0.00012876... > 0 \). Next, if \(k \geq 10, \) then
\[
f_1(k) = 1 + \left(3 + 2\sqrt{3}\cos \left(\frac{5\pi}{6} - \frac{\pi}{3k} \right) - \left(\frac{3}{2} \right)^{2/k} \right) - \frac{256 \times 7 \times 13 \times \pi^2}{27 \times 127} \left(\frac{3}{2} \right)^{2/k} \frac{1}{k^3} \]
\[
\geq 1 + \frac{\pi}{\sqrt{3} k} \left\{ 1 + \left(2 \log \frac{3}{2} \right) \frac{1}{k} + \frac{1}{2} \left(2 \log \frac{3}{2} \right)^2 \left(\frac{3}{2} \right)^{2/k} \frac{1}{k^2} \right\} - \frac{256 \times 7 \times 13 \times \pi^2}{27 \times 127} \left(\frac{3}{2} \right)^{2/k} \frac{1}{k^3} \]
\[
= \frac{1}{k} \left\{ \frac{\pi}{\sqrt{3}} - 2 \log \frac{3}{2} - \frac{1}{2} \left(2 \log \frac{3}{2} \right)^2 \left(\frac{3}{2} \right)^{2/k} \frac{1}{k^2} \right\} - \frac{256 \times 7 \times 13 \times \pi^2}{27 \times 127} \left(\frac{3}{2} \right)^{1/5} \frac{1}{k^2} \]
\[
\geq \frac{1}{k} \times 0.26904... \quad (k \geq 10) \quad 0.
\]

Similarly, we write
\[f_2(k) := 7 + 4\sqrt{3}\cos \left(\frac{5\pi}{6} - \frac{\pi}{3k} \right) - 3^{2/k} \left(1 + \frac{256 \times 7 \times 13 \times \pi^2}{27 \times 127} \frac{1}{k^3} \right). \]

If \(k = 8 \), then \(f_2(8) = 0.015057... > 0 \). Next, if \(k \geq 10, \) then
\[
f_2(k) = 1 + \left(6 + 4\sqrt{3}\cos \left(\frac{5\pi}{6} - \frac{\pi}{3k} \right) - 3^{2/k} \right) - \frac{256 \times 7 \times 13 \times \pi^2}{27 \times 127} 3^{2/k} \frac{1}{k^3} \]
\[
\geq \frac{1}{k} \left\{ \frac{\pi}{\sqrt{3}} - 2 \log \frac{3}{2} - \frac{1}{2} \left(2 \log \frac{3}{2} \right)^2 3^{2/k} \frac{1}{k^2} \right\} - \frac{256 \times 7 \times 13 \times \pi^2}{27 \times 127} 3^{2/k} \frac{1}{k^2} \]
\[
\geq \frac{1}{k} \times 0.29437... \quad 0.
\]

5.3.5. Expansion of the RSD Method (2). For the case “\(k = 12n, \theta = 5\pi/6 \),” we need the next lemma.

Lemma 5.6. Let \(k \) be the integer such that \(k = 12n \) for \(\exists n \in \mathbb{N} \). If \(n \) is even, then \(F_{k,3}^*(5\pi/6) > 0 \). On the other hand, if \(n \) is odd, then \(F_{k,3}^*(5\pi/6) < 0 \).

If we can show this lemma, then we consequently show that for any integer \(m \in \left[\frac{k}{12}, \frac{5k}{12} \right] \), if \(m \) is even or odd, then \(F_{k,3}^*(2m\pi/k) \) is positive or negative, respectively. (Remark 5.3)

Proof of Lemma 5.6. Let \(k = 12n \) \((n \geq 1)\). By the definition of \(E_{k,3}^*(z) \), \(F_{k,3}^*(z) \) (cf. (54),(67)), we have
\[
F_{k,3}^*(\theta) = \frac{e^{ik\theta/2}}{3^{k/2} + 1} \left(3^{k/2} E_k \left(\sqrt{3} e^{i\theta} \right) + E_k \left(e^{i\theta}/\sqrt{3} \right) \right).
\]
\[
F_{k,3}^*(5\pi/6) = \frac{e^{i(5k/12)\pi}}{3^{k/2} + 1} \left(3^{k/2} E_k \left(-3 + \sqrt{3}i \right)/2 \right) + E_k \left(-\sqrt{3} + i/2\sqrt{3} \right).
\]
By using the equations (14) and (15),
\[E_k \left(\frac{-3 + \sqrt{3}i}{2} \right) = E_k \left(\frac{-1 + \sqrt{3}i}{2} \right), \]
\[E_k \left(\frac{-\sqrt{3} + i}{2\sqrt{3}} \right) = E_k \left(\frac{-1}{3 + \sqrt{3}i} \right) = \left(\frac{3 + \sqrt{3}i}{2} \right)^k E_k \left(\frac{3 + \sqrt{3}i}{2} \right) = 3^{\frac{k}{2}} E_k \left(\frac{-1 + \sqrt{3}i}{2} \right). \]
Then
\[F^*_k(5\pi/6) = 2e^{i\delta(\pi/12)} \left(\frac{3^{\frac{k}{2}}}{2^{\frac{k}{2}} + 1} \right) E_k \left(\frac{-1 + \sqrt{3}i}{2} \right) \]
\[= 2e^{i\delta(\pi/12)} \left(\frac{3^{\frac{k}{2}}}{2^{\frac{k}{2}} + 1} \right) F_k(2\pi/3) \quad (cf.(38)) \]
When \(k = 12n, \)
\[F^*_{12n,3}(5\pi/6) = 2e^{i\delta(\pi/12)} \left(\frac{3^{6n}}{2^{6n} + 1} \right) F_{12n}(2\pi/3), \]
where \(\frac{3^{6n}}{2^{6n} + 1} > 0, F_{12n}(2\pi/3) = e^{i\delta(\pi/12)}E_{12n}(\rho) > 0 \) (Proposition 3.3). So the sign(\(\pm \)) of \(F^*_{12n,3}(5\pi/6) \) is that of \(e^{i\delta(\pi/12)}. \) Thus the proof is complete.

5.3.6. Valence formula for \(\Gamma_0^*(3). \) By previous subsections, \(E^*_k(3) \) has \(m_3(k) \) zeros on \(A^*_3. \) In order to decide the locating of all zeros of \(E^*_k(3), \) we need the valence formula for \(\Gamma_0^*(3). \)

Proposition 5.6. Let \(f \) be a modular function of weight \(k \) for \(\Gamma_0^*(3), \) which is not identically zero. We have
\[v_\infty(f) + \frac{1}{2} v_i/\sqrt{3}(f) + \frac{1}{6} v_{\rho_3}(f) + \sum_{\rho \in \Gamma_0^*(3) \backslash \mathbb{H}} v_p(f) = \frac{k}{6}, \]
where \(\rho_3 := e^{i5\pi/6}/\sqrt{3}. \)

The proof of this proposition is similar to Proposition 3.1, 5.2. (See [SE])

If \(k \equiv 4, 8, 10 \) and \(0 \pmod{12}, \) then \(k/6 - m_3(k) < 1. \) Thus all zeros of \(E^*_k(3) \) are on \(A^*_3 \cup \{ i/\sqrt{3}, \rho_3 \}. \)

But if \(k \equiv 2, 6 \pmod{12}, \) we need another consideration because we have \(k/6 - m_3(k) > 1. \) Because \(E^*_k(3) \) is the modular form of weight \(k \) for \(\Gamma_0^*(3), \) we have \(E^*_k(i/\sqrt{3}) = i^k E^*_k(i/\sqrt{3}). \) Because \(k \equiv 0 \pmod{4}, E^*_k(i/\sqrt{3}) = 0. \) Thus we have \(k/6 - m_3(k) - v_i/\sqrt{3}(E^*_k)/2 < 1. \)

In conclusion, for every even integer \(k \geq 4, \) all zeros of \(E^*_k(3) \) is on \(A^*_3 \cup \{ i/\sqrt{3}, \rho_3 \}. \)

5.3.7. The space of modular forms. Let \(M^*_{k,3} \) be the space of modular forms for \(\Gamma_0^*(3) \) of weight \(k, \) and let \(M^*_0 \) be the space of cusp forms for \(\Gamma_0^*(3) \) of weight \(k. \) Because \(\text{dim}(M^*_{k,3}/M^*_0) \leq 1, \) \(M^*_{k,3} = \mathbb{C}E^*_{k,3} \oplus M^*_0. \)

Recall that \(\Delta_3 = \eta^6(z) \eta^6(3z). \) We have following theorem:

Theorem 5.2. Let \(k \) be an even integer.

1. For \(k < 0 \) and \(k = 2, M^*_{k,3} = 0. \)
2. For \(k = 0, 4, 6, \) we have \(M^*_{k,3} = 0, \) and \(\text{dim}(M^*_{k,3}) = 1 \) with a base \(E^*_{k,3}. \)
3. Let \(\Delta_{3,8} := 4172((E^*_{k,3})^2 - E^*_{3,3}). \) We have \(M^*_{k,3} = \mathbb{C} \Delta_{3,8}. \)
4. Let \(\Delta_{3,10} := 92(E^*_{k,3}E^*_{6,3} - E^*_{10,3}). \) We have \(M^*_{10,3} = \mathbb{C} \Delta_{3,10}. \)
5. Let \(\Delta_{3,12} := (\Delta_3)^2, \) and \(\Delta_{3,12} := \Delta_{3,8}E^*_{3,3}. \) We have \(M^*_{12,3} = \mathbb{C} \Delta_{3,12}. \)
6. Let \(\Delta_{3,14} := \Delta_{3,10}E^*_{3,3}. \) We have \(M^*_{14,3} = \mathbb{C} \Delta_{3,14}. \)
7. \(M^*_{k,3} = M^*_{12,3}M^*_{k-12,3}. \)
Before proving above theorem, we decide the order of $E^*_k,3$ at $i/\sqrt{3}$ and ρ_3 for $k = 0, 4, 6, 8,$ and $10.

By section?!, we have $v_p(E^*_k,3) = 0$ for every $p \neq i/\sqrt{3}$ and ρ_3 and for $k = 0, 4, 6, 8,$ or $10.$ Thus, by the valence formula for $\Gamma_0(3)$ (Proposition 5.6), $v_j/\sqrt{3}(E^*_k,3)/2 + v_p (E^*_k,3)/6 = k/6.$

Recall that any weight k modular form for $\Gamma_0(3)$ satisfies $f \left(\frac{az + b}{cz + d} \right) = (cz + d)^k f(z)$ for every $z \in \mathbb{H}$ and every $\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \Gamma_0(3).$ When $z = i/\sqrt{3}$ and $\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) = W_3,$ we have $E^*_k,3(i/\sqrt{3}) = E^*_k,3(i/\sqrt{3})$. Then $v_j/\sqrt{3}(E^*_k,3) \geq 1$ if $k \neq 0 \pmod{4}$ Also, when $z = \rho_3$ and $\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) = \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix} \right) W_3,$ we have $E^*_k,2(\rho_3) = (e^{3\pi i/6})^k E^*_k,3(\rho_3).$ Then $v_p(E^*_k,3) \geq 1$ if $k \neq 0 \pmod{12}.$

Moreover, by the definition of $E^*_k,3(z)$ (cf. (54)), we have $E^*_k,3(i/\sqrt{3}) = \frac{1}{3^{3/2} - 1} (3^{k/2} E_k(\sqrt{3}i) + E_k(i/\sqrt{3})).$ And by the equation(15), if $k \equiv 0 \pmod{4},$ then $E_k(i/\sqrt{3}) = 3^{k/2} E_k(\sqrt{3}i).$ Thus, for $k \equiv 0 \pmod{4},$ $E^*_k,3(i/\sqrt{3}) = \frac{3^{3/2}}{2^{3/2} - 1} E_k(\sqrt{3}i) \neq 0,$ i.e. $v_j/\sqrt{3}(E^*_k,3) = 0.$

In conclusion, we have the following table:

<table>
<thead>
<tr>
<th>k</th>
<th>$v_j/\sqrt{3}(E^*_k,3)$</th>
<th>$v_p(\rho_3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

We can not decide the orders of $E^*_1,3$ without above theorem. We decide it after the proof of the theorem.

proof of Theorem 5.2.

(1), (2) Let f be a nonzero function of $M^0_3,$ then $v_p(f) \geq 0$ for every $p \in \mathbb{H}.$ By the valence formula for $\Gamma_0(3)$ (Proposition 5.6), we have $k \geq 0.$

Let f be a nonzero function of $M^0_3,$ then $v_\infty(f) \geq 1.$ By the valence formula, we have $M^0_3 = 0$ for $k = 0, 2, 4.$ We also have dim(M^0_3) = 1 for $k = 0, 4$ with a base $E^*_k,3.$

$\Delta_{3,10}$ is a cusp form of weight 10 with $v_j/\sqrt{3}(\Delta_{3,10}) \geq 1$ and $v_p(\Delta_{3,10}) = 1$ by the definition, and we have $v_\infty(\Delta_{3,10}) = v_j/\sqrt{3}(\Delta_{3,10}) = v_p(\Delta_{3,10}) = 1$ and $v_p(\Delta_{3,10}) = 0$ for every $f \neq i/\sqrt{3}, \rho_3, \infty$ by the valence formula.

Let Δ_3 be a nonzero cusp form of weight $6,$ then by $v_j/\sqrt{3}(\Delta_3) \geq 1$ and the valence formula, $v_\infty(\Delta_3) = 1$ and $v_p(\Delta_3) = 0$ for every $f \neq \infty.$ Then we have $v_j/\sqrt{3}(\Delta_3) \geq 0$ for every $p \in \mathbb{H},$ thus $\Delta_{3,10}/\Delta_3 \in M^0_3 = \mathbb{C} E^*_3,3$ and $\Delta_{3,10}/\Delta_3 \in \mathbb{C} E^*_3,3 \Delta_3.$ However, we have $v_j/\sqrt{3}(\Delta_{3,10}) = 1, v_j/\sqrt{3}(E^*_3,3) = 0.$ These are contradict each other. In conclusion, we have $M^0_3 = 0$ and dim(M^0_3) = 1 with a base $E^*_k,3.$

Let f be a nonzero function of $M_2,3.$ By the valence formula, we have $v_p(f) = 2$ and $v_\infty(f) = 0$ for every $p \neq \rho_3.$ Because $f^3 \in M_6,3,$ $f^3 = c E^*_6,3$ for some $c \in \mathbb{C}.$ So $f^3(i/\sqrt{3}) = c E^*_6,3(i/\sqrt{3}) = 0.$ It contradicts $f(i/\sqrt{3}) \neq 0.$ Thus $M_2,3 = 0.$

(3) $\Delta_{3,8}$ is a cusp form of weight 8 with $v_p(\Delta_{3,8}) = 2$ by the definition, and we have $v_\infty(\Delta_{3,8}) = 1$ and $v_p(\Delta_{3,8}) = 0$ for every $f \neq \rho_3, \infty$ by the valence formula. Let f be a nonzero function of $M^0_9,3,$ then we also have $v_p(f) = 2, v_\infty(f) = 1,$ and $v_p(f) = 0$ for every $p \neq \rho_3, \infty$ by the valence formula. Thus $f/\Delta_{3,8} \in M^0_3 = \mathbb{C},$ and $f \in \mathbb{C} \Delta_{3,8}.$ Note that

$v_j/\sqrt{3}(\Delta_{3,8}) = v_j/\sqrt{3}(E^*_3,8) = 0,$

$v_p(\Delta_{3,8}) = v_p(E^*_3,8) = 2.$

(4) Let f be a nonzero function of $M^0_{10,3},$ then we also have $v_\infty(f) = 1$ and $v_p(f) = 0$ for every $p \neq i/\sqrt{3}, \rho_3, \infty$ by the valence formula. However, for the other others, we consider two cases, (i) $v_j/\sqrt{3}(f) = v_p(f) = 1,$ and (ii) $v_j/\sqrt{3}(f) = 0$ and $v_p(f) = 4.$

For the first case(i), we have $f/\Delta_{3,10} \in M^0_{10,3} = \mathbb{C}. For the second case(ii), define $g := f/E^*_3,8.$ Then we have $v_\infty(g) = 1$ and $v_p(g) = 0$ for every $f \neq \infty.$ Thus $g \in M^0_3. However, M^0_6,3 = 0.$ It contradicts that f is nonzero function. In conclusion, we have $v_j/\sqrt{3}(f) = v_p(f) = 1,$ and $f \in \mathbb{C} \Delta_{3,10}.$ Note that

$v_j/\sqrt{3}(\Delta_{3,10}) = v_j/\sqrt{3}(E^*_1,8) = 1,$

$v_p(\Delta_{3,10}) = v_p(E^*_1,8) = 1.$
(5) \(\Delta_{3,12}^0 \) is a cusp form of weight 12 with
\[v_\infty(\Delta_{3,12}^0) = 2, \quad v_p(\Delta_{3,12}^0) = 0 \quad \text{for every } p \neq \infty \]
by the definition, and \(\Delta_1^1_{3,12} \) is a cusp form of weight 12 with
\[v_\infty(\Delta_1^1_{3,12}) = 1, \quad v_p(\Delta_1^1_{3,12}) = 6, \quad v_p(\Delta_{3,12}^0) = 0 \quad \text{for every } p \neq \rho_3, \infty \]
by the definition. Because \(\dim(M_{12,3}^0) \leq 2 \), we have \(M_{12,3}^0 = \mathbb{C}_\Delta_{3,12}^0 \oplus \mathbb{C}_1^1_{3,12} \).

(6) \(\Delta_{3,14} \) is a cusp form of weight 14 with \(v_\infty(\Delta_{3,14}) = v_{3/\sqrt{3}}(\Delta_{3,14}) = 1, \quad v_{\rho_3}(\Delta_{3,14}) = 5, \) and \(v_p(\Delta_{3,14}) = 0 \) for every \(p \neq i/\sqrt{3}, \rho_3, \infty \) by the definition. Let \(f \) be a nonzero function of \(M_{14,3}^0 \). If \(v_\infty(f) \geq 2 \), then \(v_\infty(f) = 2, \) \(v_{\rho_3}(f) = 2, \) and \(v_p(f) = 0 \) for every \(p \neq \rho_3, \infty \) by the valence formula. Define \(g := f/\Delta_{3,8} \), then \(v_\infty(g) = 1 \) and \(v_p(f) = 0 \) for every \(p \neq \infty \). Thus \(g \in M_{6,3}^0 \) is 0. It contradicts that \(f \) is nonzero function. Now, we have \(v_\infty(f) = 1 \). Then we can write \(f = a_1 q + a_2 q^2 + \cdots \). Also, we can write \(\Delta_{3,14} = q + b_1 q^2 + \cdots \). Thus, \(f - a_1 \Delta_{3,14} = (a_2 - a_1 b_2) q^2 + \cdots \in M_{14,3}^0 \). Because \(v_\infty(f - a_1 \Delta_{3,14}) \neq 2 \), we have \(f - a_1 \Delta_{3,14} = 0 \). Furthermore, \(f \in \mathbb{C}_\Delta_{3,14} \). Thus \(M_{14,3}^0 = \mathbb{C}_\Delta_{3,14} \).

Furthermore, because \(E_{14,3} - E_{10,3} E_4^* \in M_{14,3}^0 \), we have \(E_{14,3}^* - E_{10,3} E_4^* \in M_{14,3}^* \). In conclusion, we have
\[v_{3/\sqrt{3}}(\Delta_{3,14}) = v_3(\Delta_1^1_{3,14}) = 1, \quad v_{\rho_3}(\Delta_{3,14}) = v_3(\Delta_{12}^1) = 5. \]

(7) Let \(f \) be a nonzero function of \(M_{k,3}^* \). When \(v_\infty(f) \geq 2 \), \(v_\infty(f/\Delta_{k,12}^0) = v_\infty(f) - 2 \geq 0 \) and \(v_p(f/\Delta_{k,12}^0) = v_p(f) \geq 0 \) for every \(p \neq \infty \). Thus \(f/\Delta_{k,12}^0 \in M_{k-2,3}, \) and \(f \in \Delta_{k,12}^0 M_{k-1,3} \). On the other hand, when \(v_\infty(f) = 1 \), we can write \(f = a_1 q + a_2 q^2 + \cdots \) for some \(a_1 \neq 0 \). Also, we can write \(E_k - \Delta_{k-2,3}^1 = q + b_1 q^2 + \cdots \). Then \(f - a_1 E_{k-2,3}^* \Delta_{k-1,2}^1 = (a_2 - a_1 b_2) q^2 + \cdots \), and \(v_\infty(f - a_1 E_{k-2,3}^* \Delta_{k-1,2}^1) \geq 2 \). Thus \(f - a_1 E_{k-2,3}^* \Delta_{k-1,2}^1 \in M_{k-2,3} \). In conclusion, \(M_{k,3}^* \in CE_{k-2,3}^* \Delta_{k-1,2}^1 \oplus \Delta_{k-1,2}^1 M_{k-2,3} \subset M_{k-2,3} M_{k-1,3} \). This makes the proof of this theorem complete.

Furthermore, for a non-negative integer \(k \), \(\dim(M_{k,3}^*) = [k/6] \) if \(k = 2, 6 \) (mod 12), and \(\dim(M_{k,3}^*) = [k/6] + 1 \) if \(k \neq 2, 6 \) (mod 12).

Let \(k \) be an even integer \(k \geq 16 \). Write \(n := [k/12] - 1 \) if \(k \equiv 2 \) (mod 12), and \(n := [k/12] \) if \(k \not\equiv 2 \) (mod 12). Then \(n \geq 1 \) and \(k - 12 n = 0, 4, 6, 8, 10, \) or 14. Because \(E_{k,3}^* - E_{k-12n,3}^*(E_3^*)^n \in M_{k,3}^0 \), we have
\[
M_{k,3}^* = CE_{k-12n,3}^*(E_3^*)^n \oplus M_{k-12n,3}^0 M_{k-12,3}^*
\]
\[
= E_{k-12n,3}^* \left\{ CE_{4,3}^*(E_3^*)^n \oplus (E_3^*)^{(n-1)} M_{12,3}^1 \oplus (E_3^*)^{(n-2)} (M_{12,3}^2) \oplus \cdots \oplus (M_{12,3}^* \cdot (E_3^*)^n) \right\}
\]
If \(k - 12 n = 4, 6, 0 \), then \(M_{k-12n,3}^0 = 0 \). On the other hand, If \(k - 12 n = 8, 10, 14, \) then \(M_{k-12n,3}^* = \mathbb{C}_\Delta_{k-12n} \). Furthermore, we have \(v_{3/\sqrt{3}}(\Delta_{k-12n}^0) = v_{3/\sqrt{3}}(E_{k-12n,3}^*) \) and \(v_{\rho_3}(\Delta_{k-12n}^0) = v_{\rho_3}(E_{k-12n,3}^*) \). Thus, for \(p = i/\sqrt{3}, \rho_3 \) and for every \(f \in M_{k,3}^* \), \(v_p(f) \geq v_p(E_{k-12n,3}^*) \).

In conclusion, we have next proposition:

Proposition 5.7. Let \(k \geq 4 \) be an even integer. For every \(f \in M_{k,3}^* \), we have
\[
v_{3/\sqrt{3}}(f) \geq s_k \quad (s_k = 0, 1 \text{ such that } 2s_k \equiv k \pmod{4}),
\]
\[
v_{\rho_3}(f) \geq t_k \quad (t_k = 0, 1, 2, 3, 4, 5 \text{ such that } -2t_k \equiv k \pmod{12}).
\]

Remark 5.4. Every modular form for \(\Gamma_0^*(3) \) is generated by
\[E_{4,3}^*, E_{6,3}^*, \Delta_{3,8}, \Delta_{3,10} \text{ and } \Delta_3^2. \]
5.4. Fundamental domains. In the subsection 5.1, we have two conditions for a fundamental domain for \(\Gamma_0(p) \):

\[(C_0) \quad |z - n/p| > 1/p, \quad -1/2 < Re(z) < 1/2 \quad \text{for } \forall n \in \mathbb{N} \text{ such that } 1 \leq |n| \leq p/2.\]

\[(C_5) \quad |z - m| > 1/m\sqrt{p}, \quad -1/2 < Re(z) < 1/2 \quad \text{for } \forall m \in \mathbb{N} \text{ such that } m < \sqrt{4p/3} \quad \forall n \in \mathbb{Z} \text{ such that } (m, n) = 1, \ |n| < m/2 + 1/\sqrt{p}.\]

5.4.1. \(\Gamma_0^*(5) \). We have the following conditions for a fundamental domain for \(\Gamma_0^*(5) \):

\[(C_0) \quad |z \pm 1/5| > 1/5, \quad |z \pm 2/5| > 1/5, \quad -1/2 < Re(z) < 1/2.\]

\[(C_5) \quad |z| > 1/\sqrt{5}, \quad |z \pm 1/2| > 1/2\sqrt{5}, \quad -1/2 < Re(z) < 1/2.\]

Now,

\[|z| > 1/\sqrt{5} \Rightarrow |z \pm 1/5| > 1/5, \quad |z > 1/\sqrt{5} \text{ and } |z \pm 1/2| > 1/2\sqrt{5} \Rightarrow |z \pm 2/5| > 1/5.\]

Thus \((C_5)\) is a sufficient condition for \((C_0)\). Furthermore, we have the following transformation:

\[
W_5 : \begin{pmatrix} e^{i\theta} \rightarrow e^{i(\pi-\theta)} \\
\sqrt{5} \rightarrow \sqrt{5}
\end{pmatrix},

\[
\begin{pmatrix} -2 & -1 \\
5 & 2 \end{pmatrix}
\]

Then we have \(V_{\Gamma_0^*(5)} = \{i/2\sqrt{5}, -2/5 + i/5\} \) (cf. Theorem 2.1).

A fundamental domain for \(\Gamma_0^*(5) \) is represented as Figure 7.

5.4.2. \(\Gamma_0^*(7) \). We have the following conditions for a fundamental domain for \(\Gamma_0^*(7) \):

\[(C_0) \quad |z \pm 1/7| > 1/7, \quad |z \pm 2/7| > 1/7, \quad |z \pm 3/7| > 1/7, \quad -1/2 < Re(z) < 1/2.\]

\[(C_7) \quad |z| > 1/\sqrt{7}, \quad |z \pm 1/2| > 1/2\sqrt{7}, \quad |z \pm 1/3| > 1/3\sqrt{7}, \quad -1/2 < Re(z) < 1/2.\]

Now,

\[|z| > 1/\sqrt{7} \text{ and } |z \pm 1/2| > 1/2\sqrt{7} \Rightarrow |z \pm 1/3| > 1/3\sqrt{7}, \quad |z| > 1/\sqrt{7} \Rightarrow |z \pm 1/7| > 1/7, \quad |z| > 1/\sqrt{7} \text{ and } |z \pm 1/2| > 1/2\sqrt{7} \Rightarrow |z \pm n/7| > 1/7 \quad (n = 2, 3).\]

Thus

\[(C_7,0) \quad |z| > 1/\sqrt{7}, \quad |z \pm 1/2| > 1/2\sqrt{7}, \quad -1/2 < Re(z) < 1/2\]

is a sufficient condition for \((C_0)\) and \((C_7)\). Furthermore, we have the following transformation:

\[
W_7 : \begin{pmatrix} e^{i\theta} \rightarrow e^{i(\pi-\theta)} \\
\sqrt{7} \rightarrow \sqrt{7}
\end{pmatrix},

\[
\begin{pmatrix} -3 & -1 \\
7 & 2 \end{pmatrix}
\]

Then we have \(V_{\Gamma_0^*(7)} = \{i/2\sqrt{7}, -5/14 + \sqrt{3}i/14\} \) (Figure 7)
5.4.3. $\Gamma_0^*(11)$. We have the following conditions for a fundamental domain for $\Gamma_0^*(11)$:

(C$_0$) \[|z \pm n/11| > 1/11 \quad (1 \leq n \leq 5), \quad -1/2 < Re(z) < 1/2. \]

(C$_{11}$) \[|z| > 1/\sqrt{11}, \ |z \pm 1/2| > 1/2\sqrt{11}, \ |z \pm 1/3| > 1/3\sqrt{11}, \quad -1/2 < Re(z) < 1/2. \]

Thus (C$_{11}$) is a sufficient condition for (C$_0$). Furthermore, we have the following transformation:

\[
W_{11} : \quad \frac{e^{i\theta}}{\sqrt{11}} \mapsto \frac{e^{i(\pi - \theta)}}{\sqrt{11}}, \quad \begin{pmatrix} -5 & -1 \\ 11 & 2 \end{pmatrix} W_{11} : \quad \frac{e^{i\theta}}{2\sqrt{11}} + \frac{1}{2} \mapsto \frac{e^{i(\pi - \theta)}}{2\sqrt{11}} - \frac{1}{2}, \quad \begin{pmatrix} 4 & 1 \\ 11 & 3 \end{pmatrix} W_{11} : \quad \frac{e^{i\theta}}{3\sqrt{11}} + \frac{1}{3} \mapsto \frac{e^{i(\pi - \theta)}}{3\sqrt{11}} + \frac{1}{3}, \quad \begin{pmatrix} -4 & 1 \\ 11 & -3 \end{pmatrix} W_{11} : \quad \frac{e^{i\theta}}{3\sqrt{11}} - \frac{1}{3} \mapsto \frac{e^{i(\pi - \theta)}}{3\sqrt{11}} - \frac{1}{3}.
\]

Then we have $V_{\Gamma_0^*(11)} = \{ i/2\sqrt{11}, \, -25/66 + \sqrt{35}i/66 \}$. (Figure 7)

5.4.4. $\Gamma_0^*(13)$. We have the following conditions for a fundamental domain for $\Gamma_0^*(13)$:

(C$_0$) \[|z \pm n/13| > 1/13 \quad (1 \leq n \leq 6), \quad -1/2 < Re(z) < 1/2. \]

(C$_{13}$) \[|z| > 1/\sqrt{13}, \quad |z \pm 1/m| > 1/m\sqrt{13} \quad (2 \leq m \leq 4), \quad -1/2 < Re(z) < 1/2. \]

Thus (C$_{13}$) is a sufficient condition for (C$_0$) and (C$_{13}$). Furthermore, we have the following transformation:

\[
W_{13} : \quad \frac{e^{i\theta}}{\sqrt{13}} \mapsto \frac{e^{i(\pi - \theta)}}{\sqrt{13}}, \quad \begin{pmatrix} -6 & -1 \\ 13 & 2 \end{pmatrix} W_{13} : \quad \frac{e^{i\theta}}{2\sqrt{13}} + \frac{1}{2} \mapsto \frac{e^{i(\pi - \theta)}}{2\sqrt{13}} - \frac{1}{2}, \quad \begin{pmatrix} -4 & -1 \\ 13 & 3 \end{pmatrix} W_{13} : \quad \frac{e^{i\theta}}{3\sqrt{13}} + \frac{1}{3} \mapsto \frac{e^{i(\pi - \theta)}}{3\sqrt{13}} - \frac{1}{3}.
\]

Then we have $V_{\Gamma_0^*(13)} = \{ i/2\sqrt{13}, \, -7/26 + \sqrt{3}i/26, \, -5/13 + i/13 \}$. (Figure 7)
5.4.5. $\Gamma_0'(17)$. We have the following conditions for a fundamental domain for $\Gamma_0'(17)$:

(C) \[|z| > 1/\sqrt{17}, \quad |z| > 1/|m\sqrt{17}| \quad (2 \leq m \leq 4), \quad -1/2 < Re(z) < 1/2. \]

Now,
\[|z| > 1/\sqrt{17}, \quad |z| > 1/m\sqrt{17} \quad (2 \leq m \leq 4), \quad -1/2 < Re(z) < 1/2. \]

Thus (C) is a sufficient condition for (C). Furthermore, we have the following transformation:

\[W_{17} : \quad e^{i\theta} \sqrt{17} \mapsto e^{i(\pi - \theta)} \sqrt{17}, \]

\[\begin{pmatrix} -8 & -1 \\ 17 & 2 \end{pmatrix} W_{17} : \quad e^{i\theta} \frac{2}{\sqrt{17}} + \frac{1}{2} \mapsto e^{i(\pi - \theta)} \frac{1}{2} - 1. \]

\[\begin{pmatrix} 6 & 1 \\ 17 & 3 \end{pmatrix} W_{17} : \quad e^{i\theta} \frac{3}{\sqrt{17}} + \frac{1}{3} \mapsto e^{i(\pi - \theta)} \frac{1}{3} + 1. \]

\[\begin{pmatrix} -6 & 1 \\ 17 & -3 \end{pmatrix} W_{17} : \quad e^{i\theta} \frac{3}{\sqrt{17}} - \frac{1}{3} \mapsto e^{i(\pi - \theta)} - 1. \]

\[\begin{pmatrix} -4 & -1 \\ 17 & 4 \end{pmatrix} W_{17} : \quad e^{i\theta} \frac{4}{\sqrt{17}} + \frac{1}{4} \mapsto e^{i(\pi - \theta)} - 1. \]

Then we have $V_{\Gamma_0'(17)} = \{ i/2\sqrt{17}, -20/51 + 2\sqrt{2}i/51, -4/17 + i/17 \}$. (Figure 7)

5.4.6. $\Gamma_0'(19)$. We have the following conditions for a fundamental domain for $\Gamma_0'(19)$:

(C) \[|z| > 1/\sqrt{19}, \quad |z| > 1/|m\sqrt{19}| \quad (2 \leq m \leq 5), \quad |z| > 2/5 \quad (2 \leq m \leq 5) \quad -1/2 < Re(z) < 1/2. \]

Now,
\[|z| > 1/\sqrt{19} \quad \text{and} \quad |z| > 1/|m\sqrt{19}| \quad (2 \leq m \leq 5), \quad -1/2 < Re(z) < 1/2. \]

Thus (C) is a sufficient condition for (C). Furthermore, we have the following transformation:

\[W_{19} : \quad e^{i\theta} \sqrt{19} \mapsto e^{i(\pi - \theta)} \sqrt{19}, \]

\[\begin{pmatrix} -8 & -1 \\ 17 & 2 \end{pmatrix} W_{19} : \quad e^{i\theta} \frac{2}{\sqrt{19}} + \frac{1}{2} \mapsto e^{i(\pi - \theta)} \frac{1}{2} - 1. \]

\[\begin{pmatrix} 8 & 1 \\ 17 & 3 \end{pmatrix} W_{19} : \quad e^{i\theta} \frac{3}{\sqrt{19}} + \frac{1}{3} \mapsto e^{i(\pi - \theta)} \frac{1}{3} + 1. \]

\[\begin{pmatrix} -6 & 1 \\ 17 & -3 \end{pmatrix} W_{19} : \quad e^{i\theta} \frac{3}{\sqrt{19}} - \frac{1}{3} \mapsto e^{i(\pi - \theta)} - 1. \]

\[\begin{pmatrix} -4 & -1 \\ 17 & 4 \end{pmatrix} W_{19} : \quad e^{i\theta} \frac{4}{\sqrt{19}} + \frac{1}{4} \mapsto e^{i(\pi - \theta)} - 1. \]

Then we have $V_{\Gamma_0'(19)} = \{ i/2\sqrt{19}, -20/51 + 2\sqrt{2}i/51, -4/17 + i/17 \}$. (Figure 7)
is a sufficient condition for \((C_0)\) and \((C_{19})\). Furthermore, we have the following transformation:

\[
W_{19} : \quad e^{i\theta} \mapsto e^{i(\pi - \theta)}.
\]

\[
\begin{align*}
(-9 &\quad -1) \quad W_{19} : \quad \frac{e^{i\theta}}{2\sqrt{19}} + \frac{1}{2} \mapsto \frac{e^{i(\pi - \theta)}}{2\sqrt{19}} - \frac{1}{2}, \\
(19 &\quad 2) \quad W_{19} : \quad \frac{e^{i\theta}}{3\sqrt{19}} + \frac{1}{3} \mapsto \frac{e^{i(\pi - \theta)}}{3\sqrt{19}} - \frac{1}{3}, \\
(-6 &\quad -1) \quad W_{19} : \quad \frac{e^{i\theta}}{4\sqrt{19}} + \frac{1}{4} \mapsto \frac{e^{i(\pi - \theta)}}{4\sqrt{19}} + \frac{1}{4}, \\
(19 &\quad 3) \quad W_{19} : \quad \frac{e^{i\theta}}{4\sqrt{19}} - \frac{1}{4} \mapsto \frac{e^{i(\pi - \theta)}}{4\sqrt{19}} - \frac{1}{4}, \\
(5 &\quad 1) \quad W_{19} : \quad \frac{e^{i\theta}}{4\sqrt{19}} + \frac{1}{4} \mapsto \frac{e^{i(\pi - \theta)}}{4\sqrt{19}} + \frac{1}{4}, \\
(-5 &\quad 1) \quad W_{19} : \quad \frac{e^{i\theta}}{4\sqrt{19}} - \frac{1}{4} \mapsto \frac{e^{i(\pi - \theta)}}{4\sqrt{19}} - \frac{1}{4}.
\end{align*}
\]

Then we have \(V_{\Gamma_{19}^{*}} = \{ i/2\sqrt{19}, -15/38 + \sqrt{3}/38, -21/76 + \sqrt{15i}/76 \}. \)

Figure 7. \(\Gamma_{\delta}^{*}(p)\)
5.5. The function $F^*_{k,p,m}(\theta)$. Let p be a prime. If $p \geq 5$, then the figure of a fundamental domain of $\Gamma_0^* (p)$ is more complex than $\Gamma_0^* (2)$, $\Gamma_0^* (3)$, and $\text{SL}_2(\mathbb{Z})$. We expect all the zeros are on the arcs $e^{i\theta}/\sqrt{p}$, $e^{i\theta}/2\sqrt{p} \pm 1/2$, $e^{i\theta}/3\sqrt{p} \pm 1/3$, ..., which form the boundary of the fundamental domain defined in the sense of Theorem 2.1 (Figure 7). We will begin with consider the function $F^*_{k,p,m}(\theta)$.

Again, Eisenstein series associated with $\Gamma_0^* (p)$ is denoted by

$$E_{k,p}^*(z) = \frac{1}{2} \sum_{(c,d)=1 \atop p|c} (cz + d)^{-k} + \frac{p^{k/2}}{2} \sum_{(c,d)=1 \atop p|d} (c(pz) + d)^{-k}.$$

5.5.1. For the arc $e^{i\theta}/\sqrt{p}$. We give the next definition;

(74) $$F^*_{k,p,1}(\theta) := e^{ik\theta/2} E_{k,p}^*(e^{i\theta}/\sqrt{p}).$$

We consider an expansion of $F^*_{k,p,1}(\theta)$. Similarly to $F^*_{k,2}(\theta)$, we have

$$F^*_{k,p,1}(z) = \frac{e^{ik\theta/2}}{2} \sum_{(c,d)=1 \atop p|c} (ce^{i\theta}/\sqrt{p} + d)^{-k} + \frac{p^{k/2}e^{ik\theta/2}}{2} \sum_{(c,d)=1 \atop p|d} (ce^{i\theta}/\sqrt{p} + d)^{-k}$$

$$= \frac{1}{2} \sum_{(c,d)=1 \atop p|d} (de^{-i\theta/2} + \sqrt{pd}e^{i\theta/2})^{-k} + \frac{1}{2} \sum_{(c,d)=1 \atop p|c} (ce^{-i\theta/2} + \sqrt{pd}e^{i\theta/2})^{-k}.$$

Thus we can write as follows;

(75) $$F^*_{k,p,1}(\theta) = \frac{1}{2} \sum_{(c,d)=1 \atop p|c} (ce^{i\theta/2} + \sqrt{pd}e^{-i\theta/2})^{-k} + \frac{1}{2} \sum_{(c,d)=1 \atop p|d} (ce^{-i\theta/2} + \sqrt{pd}e^{i\theta/2})^{-k}.$$

Hence we use this expression as a definition. Note that for any pair (c,d), $(ce^{i\theta/2} + \sqrt{pd}e^{-i\theta/2})^{-k}$ and $(ce^{-i\theta/2} + \sqrt{pd}e^{i\theta/2})^{-k}$ are conjugates of each other. The next proposition follows.

Proposition 5.8. $F^*_{k,p,1}(\theta)$ is real, for $\forall \theta \in \mathbb{R}$.

5.5.2. For the arcs $e^{i\theta}/2\sqrt{p} \pm 1/2$. Let p be a prime such that $p \geq 5$. Then we can write $p = 2n + 1$ for $\exists n \in \mathbb{Z}$, and we have the following transformation:

$$\begin{pmatrix} -n & -1 \\ p & 2 \end{pmatrix} W_p : \frac{e^{i\theta}}{2\sqrt{p}} + \frac{1}{2} \rightarrow \frac{e^{i(\pi-\theta)}}{2\sqrt{p}} - \frac{1}{2}.$$

Because we have the condition $-1/2 \leq \text{Re}(z) < 1/2$, we have only $e^{i\theta}/2\sqrt{p} - 1/2$ in our fundamental domain. Then we give the next definition;

(76) $$F^*_{k,p,2}(\theta) := e^{i\theta/2} E_{k,p}^*(e^{i\theta}/2\sqrt{p} - 1/2).$$
Thus we can write above terms as follows:

\[
F_{k,p,2}(z) = \frac{e^{ik\theta/2}}{2} \sum_{\substack{(c,d)=1 \\ p|d}} \left(c \left(\frac{e^{i\theta}}{2\sqrt{p}} - \frac{1}{2} \right) + d \right)^{-k} + \frac{e^{ik\theta/2}}{2} \sum_{\substack{(c,d)=1 \\ p|d}} \left(\frac{cp}{2} \left(\frac{e^{i\theta}}{2\sqrt{p}} - \frac{1}{2} \right) + d \right)^{-k} + \frac{p^{k/2}e^{ik\theta/2}}{2} \sum_{\substack{(c,d)=1 \\ p|d}} \left(\frac{cp}{2} \left(\frac{e^{i\theta}}{2\sqrt{p}} - \frac{1}{2} \right) + d \right)^{-k}
\]

\[
= \frac{e^{ik\theta/2}}{2} \sum_{\substack{(c,d)=1 \\ p|d}} \left(\frac{c}{2} \left(\frac{\sqrt{p}e^{i\theta}}{2} - \frac{p}{2} \right) + d \right)^{-k} + \frac{p^{k/2}e^{ik\theta/2}}{2} \sum_{\substack{(c,d)=1 \\ p|d}} \left(\frac{c}{2} \left(\frac{e^{i\theta}}{2\sqrt{p}} - \frac{1}{2} \right) + d'p \right)^{-k}
\]

\[
= \frac{e^{ik\theta/2}}{2} \sum_{\substack{(c,d)=1 \\ p|d}} \left(\frac{c}{2} \left(\frac{\sqrt{p}e^{i\theta}}{2} + \frac{2d - c'}{2} \right) + d' \right)^{-k} + \frac{p^{k/2}e^{ik\theta/2}}{2} \sum_{\substack{(c,d)=1 \\ p|d}} \left(\frac{c}{2} \left(\frac{e^{i\theta}}{2\sqrt{p}} + \frac{2d'c}{2} \right) + \sqrt{p}e^{-i\theta/2} \right)^{-k}
\]

Now, we split terms in two cases, namely \(2 \mid c\) or \(2 \nmid c\). Note that the parities of \(c\) and \(c'\) are same.

For the case \(2 \mid c\), we can write \(c' = 2c''\) and \(c = 2c'''\) for \(2c'', 2c''' \in \mathbb{Z}\). Then

\[
\frac{1}{2} \sum_{\substack{(c,d)=1 \\ p|d}} \left(\frac{2d - c'}{2} e^{-i\theta/2} + \frac{c'}{2} \sqrt{p}e^{i\theta/2} \right)^{-k} + \frac{1}{2} \sum_{\substack{(c,d)=1 \\ p|d}} \left(\frac{2d'c}{2} + \frac{2d' - c}{2} \sqrt{p}e^{-i\theta/2} \right)^{-k}
\]

\[
= \frac{1}{2} \sum_{\substack{(c,d)=1 \\ p|d}} \left(\frac{2d - c''}{2} e^{-i\theta/2} + \frac{c''}{2} \sqrt{p}e^{i\theta/2} \right)^{-k} + \frac{1}{2} \sum_{\substack{(c,d)=1 \\ p|d}} \left(\frac{2d'''}{2} + \frac{2d' - c''}{2} \sqrt{p}e^{-i\theta/2} \right)^{-k}
\]

Then we have \((d - c''p, c'') = 1\), \(p \nmid d - c''p, 2 \mid (d - c'')c''\), and \((c''', d' - c''') = 1\). \(p \mid c''', 2 \mid c''(d' - c''')\). Thus we can write above terms as follows:

\[
\frac{1}{2} \sum_{\substack{(c,d)=1 \\ p|d \ 2|c}} \left(ce^{-i\theta/2} + d\sqrt{p}e^{i\theta/2} \right)^{-k} + \frac{1}{2} \sum_{\substack{(c,d)=1 \\ p|d \ 2|c}} \left(ce^{i\theta/2} + d\sqrt{p}e^{-i\theta/2} \right)^{-k}
\]

For the other case \(2 \nmid c\),

\[
\frac{1}{2} \sum_{\substack{(c,d)=1 \\ p|d \ 2|c'}} \left(\frac{2d - c'}{2} e^{-i\theta/2} + \frac{c'}{2} \sqrt{p}e^{i\theta/2} \right)^{-k} + \frac{1}{2} \sum_{\substack{(c,d)=1 \\ p|d \ 2|c'}} \left(\frac{2d'c}{2} + \frac{2d' - c}{2} \sqrt{p}e^{-i\theta/2} \right)^{-k}
\]

\[
= \frac{k}{2} \sum_{\substack{(c,d)=1 \\ p|d}} \left((2d - c')e^{-i\theta/2} + c'\sqrt{p}e^{i\theta/2} \right)^{-k} + \frac{k}{2} \sum_{\substack{(c,d)=1 \\ p|d}} \left(ce^{i\theta/2} + (2d' - c)\sqrt{p}e^{-i\theta/2} \right)^{-k}
\]

Then we have \((2d - c', c') = 1\), \(p \nmid 2d - c'p, 2 \nmid (2d - c')c'\), and \((c, 2d' - c) = 1\). \(p \mid c, 2 \nmid c(d' - c)\). Thus we can write above terms as follows:

\[
\frac{k}{2} \sum_{\substack{(c,d)=1 \\ p|c \ 2|cd}} \left(ce^{-i\theta/2} + d\sqrt{p}e^{i\theta/2} \right)^{-k} + \frac{k}{2} \sum_{\substack{(c,d)=1 \\ p|c \ 2|cd}} \left(ce^{i\theta/2} + d\sqrt{p}e^{-i\theta/2} \right)^{-k}
\]
5.5.3. For the arcs $e^{i\theta}/3\sqrt{p} \pm 1/3$. Let p be a prime such that $p \geq 11$.

If $p \equiv 1 \pmod{3}$, then we can write $p = 3n + 1$ for $3n \in \mathbb{Z}$, and we have the following transformation:

$$
\begin{pmatrix}
-n \\
p \\
-3
\end{pmatrix} W_p : \frac{e^{i\theta}}{3\sqrt{p}} + \frac{1}{3} \mapsto \frac{e^{i(\pi - \theta)}}{3\sqrt{p}} - \frac{1}{3}.
$$

Thus we have only $e^{i\theta}/3\sqrt{p} - 1/3$ in our fundamental domain.

On the other hand, if $p \equiv -1 \pmod{3}$, then we can write $p = 3n - 1$ for $3n \in \mathbb{Z}$, and we have the following transformation:

$$
\begin{pmatrix}
1 \\
n \\
3
\end{pmatrix} W_p : \frac{e^{i\theta}}{3\sqrt{p}} + \frac{1}{3} \mapsto \frac{e^{i(\pi - \theta)}}{3\sqrt{p}} + \frac{1}{3},
$$

$$
\begin{pmatrix}
1 \\
n \\
-3
\end{pmatrix} W_p : \frac{e^{i\theta}}{3\sqrt{p}} - \frac{1}{3} \mapsto \frac{e^{i(\pi - \theta)}}{3\sqrt{p}} - \frac{1}{3}.
$$

Thus we have both $e^{i\theta}/3\sqrt{p} \pm 1/3$ in our fundamental domain.

Now, we give the next definition:

$$
F_{k,p,3}^*(\theta) := e^{ik\theta/2} F_{k,p}^* \left(e^{i\theta/3\sqrt{p}} - 1/3 \right),
$$

$$
F_{k,p,3}^{*,+} := e^{ik\theta/2} F_{k,p}^{*,+} \left(e^{i\theta/3\sqrt{p}} + 1/3 \right).
$$

We consider an expansion of $F_{k,p,3}^*(\theta)$. When $p \mid c$, then we can write $c = cp$ for $3c' \in \mathbb{Z}$, and have $p \mid c$. Also, when $p \nmid d$, then we have $p \mid c$ and $d = dp$ for $3d' \in \mathbb{Z}$. Similar to $F_{k,p,2}^*(\theta)$,

$$
F_{k,p,3}^*(z) = \frac{e^{ik\theta/2}}{2} \sum_{(c,d)=1 \atop p \mid c} \left(c \left(\frac{e^{i\theta}}{3\sqrt{p}} - \frac{1}{3} \right) + d \right)^{-k} + \frac{1}{2} \sum_{(c,d)=1 \atop p \mid d} \left(\frac{c}{3} \sqrt{p} e^{i\theta/2} \right)^{-k}.
$$

Now, we split terms in two cases, namely $3 \mid c$ or $3 \nmid c$. Note that the parities of c and c' are same.

For the case $3 \mid c$, we can write $c' = 3c''$ and $c = 3c''$ for $3c'' \in \mathbb{Z}$. Then

$$
\frac{1}{2} \sum_{(c,d)=1 \atop p \mid d} \left(3d - c' \right)^{-k} + \frac{1}{2} \sum_{(c,d)=1 \atop p \mid d} \left(\frac{c}{3} \sqrt{p} e^{i\theta/2} \right)^{-k} = \frac{1}{2} \sum_{(c,d)=1 \atop p \mid d} \left((d - c') e^{i\theta/2} + c'' \sqrt{p} e^{i\theta/2} \right)^{-k} + \frac{1}{2} \sum_{(c,d)=1 \atop p \mid d} \left(c'' e^{i\theta/2} + (d' - c'') \sqrt{p} e^{-i\theta/2} \right)^{-k}.
$$
Then we have \((d - c''p, c'') = 1, p \nmid d - c''p, d - c''p \not\equiv -p \cdot c'' \pmod{3}\), and \((c''', d' - c'''') = 1, p \nmid c''', c''' \not\equiv -(d' - c''') \pmod{3}\). Thus we can write above terms as follows:

\[
\frac{1}{2} \sum_{\substack{(c,d)=1 \\text{plc} \\ c \equiv -pd \pmod{3}}} \left(ce^{-i\theta/2} + d\sqrt{p}e^{i\theta/2} \right)^{-k} + \frac{1}{2} \sum_{\substack{(c,d)=1 \\text{plc} \\ c \equiv -d \pmod{3}}} \left(ce^{i\theta/2} + d\sqrt{p}e^{-i\theta/2} \right)^{-k}.
\]

For the other case \(3 \nmid c\),

\[
\frac{1}{2} \sum_{\substack{(c,d)=1 \\text{pld} \\ 3 \nmid c'}} \left(\frac{3d - c'p}{3} e^{-i\theta/2} + c' e^{i\theta/2} \right)^{-k} + \frac{1}{2} \sum_{\substack{(c,d)=1 \\text{plc} \\ 3 \nmid c}} \left(\frac{c}{3} e^{i\theta/2} + \frac{3d - c}{3} \sqrt{p}e^{-i\theta/2} \right)^{-k} = \frac{3k}{2} \sum_{\substack{(c,d)=1 \\text{pld} \\ c \equiv -pd \not\equiv 0 \pmod{3}}} \left(ce^{-i\theta/2} + d\sqrt{p}e^{i\theta/2} \right)^{-k} + \frac{3k}{2} \sum_{\substack{(c,d)=1 \\text{plc} \\ c \equiv -d \not\equiv 0 \pmod{3}}} \left(ce^{i\theta/2} + d\sqrt{p}e^{-i\theta/2} \right)^{-k}.
\]

Then we have \((3d - c'p, c') = 1, p \nmid 3d - c'p, 3d - c'p \equiv -p \cdot c' \not\equiv 0 \pmod{3}\), and \((c, 3d' - c) = 1, p \nmid c, c \equiv -(3d' - c) \not\equiv 0 \pmod{3}\). Thus we can write above terms as follows:

\[
\frac{3k}{2} \sum_{\substack{(c,d)=1 \\text{plc} \\ c \equiv -pd \not\equiv 0 \pmod{3}}} \left(ce^{-i\theta/2} + d\sqrt{p}e^{i\theta/2} \right)^{-k} + \frac{3k}{2} \sum_{\substack{(c,d)=1 \\text{plc} \\ c \equiv -d \not\equiv 0 \pmod{3}}} \left(ce^{i\theta/2} + d\sqrt{p}e^{-i\theta/2} \right)^{-k}.
\]

In conclusion, we can write as follows:

\[
F_{k,p,3}^*(\theta) = \frac{1}{2} \sum_{\substack{(c,d)=1 \\text{plc} \\ c \equiv -d \not\equiv 0 \pmod{3}}} \left(ce^{i\theta/2} + d\sqrt{p}e^{i\theta/2} \right)^{-k} + \frac{1}{2} \sum_{\substack{(c,d)=1 \\text{plc} \\ c \equiv -pd \not\equiv 0 \pmod{3}}} \left(ce^{-i\theta/2} + d\sqrt{p}e^{-i\theta/2} \right)^{-k} + \frac{3k}{2} \sum_{\substack{(c,d)=1 \\text{plc} \\ c \equiv -pd \not\equiv 0 \pmod{3}}} \left(ce^{-i\theta/2} + d\sqrt{p}e^{i\theta/2} \right)^{-k}.
\]

Again, if \(p \equiv 1 \pmod{3}\), then the condition “\(c \not\equiv -pd \pmod{3}\)” is equivalent to “\(c \not\equiv -d \pmod{3}\)”, and “\(c \equiv -pd \not\equiv 0 \pmod{3}\)” is equivalent to “\(c \equiv -d \not\equiv 0 \pmod{3}\)” in addition, for any pair \((c, d)\), \((c, d)\) are conjugates of each other. Thus \(F_{k,p,3}^*(\theta)\) is real.

On the other hand, if \(p \equiv -1 \pmod{3}\), then the condition “\(c \not\equiv -pd \pmod{3}\)” is equivalent to “\(c \not\equiv d \pmod{3}\)”, and “\(c \equiv -pd \not\equiv 0 \pmod{3}\)” is equivalent to “\(c \equiv d \not\equiv 0 \pmod{3}\)”. Thus we need more consideration.

Similarly to \(F_{k,p,3}^*(\theta)\), we have another expansion, which is for \(F_{k,p,3}^{*,+}(\theta)\):

\[
F_{k,p,3}^{*,+}(\theta) = \frac{1}{2} \sum_{\substack{(c,d)=1 \\text{plc} \\ c \equiv -d \not\equiv 0 \pmod{3}}} \left(ce^{i\theta/2} + d\sqrt{p}e^{i\theta/2} \right)^{-k} + \frac{1}{2} \sum_{\substack{(c,d)=1 \\text{plc} \\ c \equiv -pd \not\equiv 0 \pmod{3}}} \left(ce^{-i\theta/2} + d\sqrt{p}e^{-i\theta/2} \right)^{-k} + \frac{3k}{2} \sum_{\substack{(c,d)=1 \\text{plc} \\ c \equiv -pd \not\equiv 0 \pmod{3}}} \left(ce^{-i\theta/2} + d\sqrt{p}e^{i\theta/2} \right)^{-k}.
\]

Because \(p \equiv -1 \pmod{3}\), we have \(F_{k,p,3}^{*,+}(\theta) = F_{k,p,3}^*(\theta)\).

Thus next proposition follows:

Proposition 5.10. If \(p \equiv 1 \pmod{3}\), then \(F_{k,p,3}^*(\theta)\) is real. On the other hand, if \(p \equiv -1 \pmod{3}\), then we have \(F_{k,p,3}^{*,+}(\theta) = F_{k,p,3}^*(\theta)\).
5.5.4. For the arcs $e^{i	heta}/4\sqrt{p} \pm 1/4$. Let p be a prime such that $p \geq 17$, then p is odd.

If $p \equiv 1 \pmod{4}$, then we can write $p = 4n + 1$ for $\exists n \in \mathbb{Z}$, and we have the following transformation:

$$\begin{pmatrix} -n & 1 \\ p & 4 \end{pmatrix} W_p : \frac{e^{i\theta}}{4\sqrt{p}} + \frac{1}{4} \mapsto \frac{e^{i(\pi - \theta)}}{4\sqrt{p}} - \frac{1}{4}.$$

Thus we have only $e^{i\theta}/4\sqrt{p} - 1/4$ in our fundamental domain.

On the other hand, if $p \equiv -1 \pmod{4}$, then we can write $p = 4n - 1$ for $\exists n \in \mathbb{Z}$, and we have the following transformation:

$$\begin{pmatrix} n & 1 \\ p & -4 \end{pmatrix} W_p : \frac{e^{i\theta}}{4\sqrt{p}} - \frac{1}{4} \mapsto \frac{e^{i(\pi - \theta)}}{4\sqrt{p}} + \frac{1}{4}.$$

Thus we have both $e^{i\theta}/4\sqrt{p} \pm 1/4$ in our fundamental domain.

Now, we give the next definition:

- $F^*_{k,p,4}(\theta) := e^{ik\theta/2} E_{k,p} \left(e^{i\theta}/4\sqrt{p} - 1/4 \right)$,
- $F^+_{k,p,4}(\theta) := e^{ik\theta/2} E_{k,p} \left(e^{i\theta}/4\sqrt{p} + 1/4 \right)$.

We consider an expansion of $F^*_{k,p,4}(\theta)$. When $p \nmid c$, then we can write $c = c' p$ for $\exists c' \in \mathbb{Z}$, and have $p \mid d$. Also, when $p \mid d$, then we have $p \nmid c$ and $d = d' p$ for $\exists d' \in \mathbb{Z}$. Similar to $F^*_{k,p,2}(\theta)$,

$$F^*_{k,p,4}(z) = \frac{e^{ik\theta/2}}{2} \sum_{(c,d) = 1 \atop p \nmid c} \left(e \left(\frac{e^{i\theta}}{4\sqrt{p}} - \frac{1}{4} \right) + d \right)^{-k} + \frac{1}{2} \sum_{(c,d) = 1 \atop p \mid d} \left(c p \left(\frac{e^{i\theta}}{4\sqrt{p}} - \frac{1}{4} \right) + d \right)^{-k}.$$

Now, we split terms in three cases, namely “$4 \mid c$” or “$4 \mid c$ and $2 \mid c'$” or “$2 \mid c$”. Note that the parities of c and c' are same.

For the case “$4 \mid c$”, we can write $c' = 4c_1$ and $c = 4c'_1$ for $\exists c_1, c'_1 \in \mathbb{Z}$. Then

$$\frac{1}{2} \sum_{(c,d) = 1 \atop p \nmid d} \left(\frac{4d - c' p}{4} e^{-i\theta/2} + \frac{c' e^{i\theta/2}}{4\sqrt{p} e^{-i\theta/2}} \right)^{-k} + \frac{1}{2} \sum_{(c,d) = 1 \atop p \mid d} \left(\frac{c e^{i\theta/2} + 4d' - c}{4\sqrt{p} e^{-i\theta/2}} \right)^{-k}.$$

Then we have $(d - c_1 p, c_1) = 1$, $p \mid d - c_1 p$, $2 \mid (d - c_1 p) \cdot c_1$, and $(c'_1, d' - c'_1) = 1$, $p \nmid c'_1$, $2 \mid c'_1 \cdot (d' - c'_1)$. Thus we can write above terms as follows:

$$\frac{1}{2} \sum_{(c,d) = 1 \atop p \nmid c} \left(ce^{-i\theta/2} + d\sqrt{p} e^{-i\theta/2} \right)^{-k} + \frac{1}{2} \sum_{(c,d) = 1 \atop p \mid c} \left(ce^{-i\theta/2} + d\sqrt{p} e^{-i\theta/2} \right)^{-k}.$$

For another case “$4 \mid c$ and $2 \mid c$”, we can write $c' = 2c_2$ and $c = 2c'_2$ for $\exists c_2, c'_2 \in \mathbb{Z}$, which are odd integers. Then

$$\frac{1}{2} \sum_{(c,d) = 1 \atop p \mid d} \left(\frac{4d - c' p}{4} e^{-i\theta/2} + \frac{c' e^{i\theta/2}}{4\sqrt{p} e^{-i\theta/2}} \right)^{-k} + \frac{1}{2} \sum_{(c,d) = 1 \atop p \mid d} \left(\frac{c e^{i\theta/2} + 4d' - c}{4\sqrt{p} e^{-i\theta/2}} \right)^{-k}.$$

$$= \frac{q_k}{2} \sum_{(c,d) = 1 \atop p \mid d} \left(2d - c_2 p e^{-i\theta/2} + c_2 \sqrt{p} e^{i\theta/2} \right)^{-k} + \frac{q_k}{2} \sum_{(c,d) = 1 \atop p \mid c} \left(c_2 e^{i\theta/2} + (2d' - c'_2) \sqrt{p} e^{-i\theta/2} \right)^{-k}.$$
Then we have \((2d - c_2 p, c_2) = 1, p \equiv 2d - c_2 p, 2d - c_2 p \equiv p \cdot c_2 \equiv \pm 1 \pmod{4}\), and \((c_2', 2d' - c_2') = 1, p \equiv c_2', c_2' \equiv 2d' - c_2' \equiv \pm 1 \pmod{4}\) because \(2 \nmid d, 2d \equiv 2 \pmod{4}\). Thus we can write above terms as follows:

\[
\frac{2^k}{2} \sum_{(c,d)=1, \atop plc \atop 2\mid cd \atop c \equiv \pm pd \atop (4)} \left(ce^{-i\theta/2} + d\sqrt{pe^{-i\theta/2}}\right)^{-k} + \frac{2^k}{2} \sum_{(c,d)=1, \atop plc \atop 2\mid cd \atop c \equiv d \atop (4)} \left(ce^{i\theta/2} + d\sqrt{pe^{i\theta/2}}\right)^{-k}.
\]

For the other case \(\cdash\),

\[
\frac{1}{2} \sum_{(c,d)=1, \atop pld \atop 4/c} \left(\frac{4d - c' p}{4} e^{-i\theta/2} + \frac{c'}{4} \sqrt{pe^{i\theta/2}}\right)^{-k} + \frac{1}{2} \sum_{(c,d)=1, \atop plc \atop 4/c} \left(\frac{c}{4} e^{i\theta/2} + \frac{4d' - c}{4} \sqrt{pe^{-i\theta/2}}\right)^{-k} = \frac{4^k}{2} \sum_{(c,d)=1, \atop pld} \left((4d - c' p) e^{-i\theta/2} + c' \sqrt{pe^{i\theta/2}}\right)^{-k} + \frac{4^k}{2} \sum_{(c,d)=1, \atop plc} \left(ce^{i\theta/2} + (4d' - c) \sqrt{pe^{-i\theta/2}}\right)^{-k}.
\]

Then we have \((4d - c' p, c') = 1, p \nmid 4d - c' p, 2 \nmid (4d - c' p)c', 4d - c' p \equiv -p \cdot c' \neq 0 \pmod{4}\), and \((c, 4d' - c) = 1, p \nmid c, 2 \mid c(4d' - c), c \equiv -(4d' - c) \neq 0 \pmod{4}\). Thus we can write above terms as follows:

\[
\frac{4^k}{2} \sum_{(c,d)=1, \atop plc \atop 2\mid cd \atop c \equiv \pm pd \atop (4)} \left(ce^{-i\theta/2} + d\sqrt{pe^{i\theta/2}}\right)^{-k} + \frac{4^k}{2} \sum_{(c,d)=1, \atop plc \atop 2\mid cd \atop c \equiv d \atop (4)} \left(ce^{i\theta/2} + d\sqrt{pe^{-i\theta/2}}\right)^{-k}.
\]

In conclusion, we can write as follows:

\[
F_{k,p,4}(\theta) = \frac{1}{2} \sum_{(c,d)=1, \atop plc \atop 2\mid cd} \left(ce^{i\theta/2} + d\sqrt{pe^{i\theta/2}}\right)^{-k} + \frac{1}{2} \sum_{(c,d)=1, \atop plc \atop 2\mid cd} \left(ce^{-i\theta/2} + d\sqrt{pe^{-i\theta/2}}\right)^{-k} + \frac{2^k}{2} \sum_{(c,d)=1, \atop plc \atop 2\mid cd \atop c \equiv \pm pd \atop (4)} \left(ce^{i\theta/2} + d\sqrt{pe^{i\theta/2}}\right)^{-k} + \frac{2^k}{2} \sum_{(c,d)=1, \atop plc \atop 2\mid cd \atop c \equiv d \atop (4)} \left(ce^{-i\theta/2} + d\sqrt{pe^{-i\theta/2}}\right)^{-k} + \frac{4^k}{2} \sum_{(c,d)=1, \atop plc \atop 2\mid cd \atop c \equiv \pm pd \atop (4)} \left(ce^{i\theta/2} + d\sqrt{pe^{i\theta/2}}\right)^{-k} + \frac{4^k}{2} \sum_{(c,d)=1, \atop plc \atop 2\mid cd \atop c \equiv d \atop (4)} \left(ce^{-i\theta/2} + d\sqrt{pe^{-i\theta/2}}\right)^{-k}.
\]

Again, if \(p \equiv 1 \pmod{4}\), then the condition \(c \equiv pd \pmod{4}\) is equivalent to \(c \equiv d \pmod{4}\), and \(c \equiv -pd \pmod{4}\) is equivalent to \(c \equiv -d \pmod{4}\). In addition, for any pair \((c,d)\), \((ce^{i\theta/2} + \sqrt{pe^{i\theta/2}})^{-k}\) and \((ce^{-i\theta/2} + \sqrt{pe^{-i\theta/2}})^{-k}\) are conjugates of each other. Thus \(F_{k,p,4}(\theta)\) is real.

On the other hand, if \(p \equiv -1 \pmod{4}\), then the condition \(c \equiv pd \pmod{4}\) is equivalent to \(c \equiv -d \pmod{4}\), and \(c \equiv -pd \pmod{4}\) is equivalent to \(c \equiv d \pmod{4}\). Thus we need more consideration.
Proposition 5.11. If $p \equiv -1 \pmod{4}$, then we have

$$p \equiv -1 \pmod{4}$$

Thus next proposition follows:

Proposition 5.11. If $p \equiv -1 \pmod{4}$, then $F^*_p(\theta)$ is real. On the other hand, if $p \equiv -1 \pmod{4}$, then we have $F^*_p(\theta) = F^*_p(\theta)$.

5.6. Application of the RSD Method.

5.6.1. $\Gamma_0(p)$. We note that $N := c^2 + d^2$.

Firstly, we consider the case $N = 1$. Then we can write:

$$F^*_{k,5,1}(\theta) = 2 \cos(k\theta/2) + R^*_5,1$$

$$F^*_{k,5,2}(\theta) = 2 \cos(k\theta/2) + R^*_5,2$$

where $R^*_5,1$ and $R^*_5,2$ are the terms such that $N > 1$ of $F^*_{k,5,1}$ and $F^*_{k,5,2}$, respectively.

For $F^*_{k,5,1}(\theta)$,

$$|R^*_5,1| \leq \sum_{\substack{(c,d)=1 \\ N > 1}} |ce^{i\theta/2} + \sqrt{5}de^{-i\theta/2}|^{-k}.$$

Let $v_k(c,d,\theta) := |ce^{i\theta/2} + \sqrt{5}de^{-i\theta/2}|^{-k}$, then $v_k(c,d,\theta) = 1/ \left(c^2 + 5d^2 + 2\sqrt{5}cd \cos \theta \right)^{k/2}$, and $v_k(c,d,\theta) = v_k(-c,-d,\theta)$. Now we will consider the next cases, namely $N = 2, 5, 10$, and $N \geq 13$. Considering $-2/\sqrt{5} \leq \cos \theta \leq 0$, we have the following:

- **When $N = 2$,**

 $v_k(1,1,\theta) \leq (1/2)^{k/2}$, $v_k(1,-1,\theta) \leq (1/6)^{k/2}$.

- **When $N = 5$,**

 $v_k(1,2,\theta) \leq (1/13)^{k/2}$, $v_k(1,-2,\theta) \leq (1/21)^{k/2}$, $v_k(2,1,\theta) \leq 1$, $v_k(2,-1,\theta) \leq (1/3)^k$.

- **When $N = 10$,**

 $v_k(1,3,\theta) \leq (1/34)^{k/2}$, $v_k(1,-3,\theta) \leq (1/46)^{k/2}$, $v_k(3,1,\theta) \leq (1/2)^{k/2}$, $v_k(3,-1,\theta) \leq (1/14)^{k/2}$.

- **When $N \geq 13$,**

 $|ce^{i\theta/2} + \sqrt{5}de^{-i\theta/2}|^{k/2} \geq N/6$.

and the rest of the question is about the number of terms with $c^2 + d^2 = N$. Because $5 \nmid c$, the number of $|c|$ is not more than $(4/5)N^{1/2} + 1$. Thus the number of terms with $c^2 + d^2 = N$ is not more than $4((4/5)N^{1/2} + 1) \leq (21/5)N^{1/2}$ for $N \geq 13$. Then

$$|R^*_5,1|_{N \geq 13} = \frac{21\sqrt{6}}{5} \sum_{N=13}^{\infty} \left(\frac{1}{6} N \right)^{(1-k)/2} \leq \frac{1008\sqrt{6}}{5(k-3)} \left(\frac{1}{2} \right)^{k/2}.$$
On the other hand, for $F_{k,5,2}^*(\theta)$,

$$|R_{5,2}^*| \leq \sum_{N=1}^{\infty} \left|\frac{cc\theta/2 + d\sqrt{5}e^{-i\theta/2}}{2|c} \right|^k + \sum_{N=1}^{\infty} \left|\frac{cc\theta/2 + d\sqrt{5}e^{-i\theta/2}}{2|c} \right|^k.$$

Now we will consider the next cases, namely $N = 2, 5, 10, 13, 17, \text{ and } N \geq 25$. Considering $0 \leq \cos \theta \leq 1/\sqrt{5}$, we have the following:

When $N = 2$,

$$2^k \cdot v_k(1, 1, \theta) \leq (2/3)^{k/2}, \quad 2^k \cdot v_k(1, -1, \theta) \leq 1.$$

When $N = 5$,

$$v_k(1, 2, \theta) \leq (1/21)^{k/2}, \quad v_k(1, -2, \theta) \leq (1/17)^{k/2},$$

$$v_k(2, 1, \theta) \leq (1/3)^k, \quad v_k(2, -1, \theta) \leq (1/5)^{k/2}.$$

When $N = 10$,

$$2^k \cdot v_k(1, 3, \theta) \leq (2/23)^{k/2}, \quad 2^k \cdot v_k(1, -3, \theta) \leq (1/10)^{k/2},$$

$$2^k \cdot v_k(3, 1, \theta) \leq (2/7)^{k/2}, \quad 2^k \cdot v_k(3, -1, \theta) \leq (1/2)^{k/2}.$$

When $N = 13$,

$$v_k(2, 3, \theta) \leq (1/7)^k, \quad v_k(2, -3, \theta) \leq (1/37)^{k/2},$$

$$v_k(3, 2, \theta) \leq (1/20)^{k/2}, \quad v_k(3, -2, \theta) \leq (1/17)^{k/2}.$$

When $N = 17$,

$$v_k(1, 4, \theta) \leq (1/9)^k, \quad v_k(1, -4, \theta) \leq (1/73)^{k/2},$$

$$v_k(4, 1, \theta) \leq (1/21)^{k/2}, \quad v_k(4, -1, \theta) \leq (1/13)^{k/2}.$$

When $N \geq 25$,

$$|cc\theta/2 + \sqrt{5}de^{-i\theta/2}|^k \geq N/2,$$

and the number of terms with $c^2 + d^2 = N$ is not more than $4N^{1/2}$ for $N \geq 25$. Then

$$|R_{5,2}^*|_{N \geq 25} = 8\sqrt{2} \sum_{N=25}^{\infty} \left(\frac{1}{N}\right)^{1-k/2} \leq \frac{378\sqrt{6}}{k-3} \left(\frac{1}{3}\right)^{k/2}.$$

Thus

(88) \quad |R_{5,1}^*| \leq 2 + 4 \left(\frac{1}{2}\right)^{k/2} + 2 \left(\frac{1}{3}\right)^{k/2} + \cdots + 2 \left(\frac{1}{46}\right)^{k/2} + \frac{1008\sqrt{6}}{5(k-3)} \left(\frac{1}{2}\right)^{k/2},

(89) \quad |R_{5,2}^*| \leq 2 + 2 \left(\frac{2}{3}\right)^{k/2} + 2 \left(\frac{1}{2}\right)^{k/2} + \cdots + 2 \left(\frac{1}{9}\right)^{k} + \frac{378\sqrt{6}}{k-3} \left(\frac{1}{3}\right)^{k/2}.$$

Recalling the “RSD Method” subsection, we want to show that $|R_{5,1}^*| < 2$ and $|R_{5,2}^*| < 2$. But the right-hand sides of both bounds are greater than 2, so these bounds are not good. The cases $(c, d) = (2, 1)$ give us bound equal to 2 for $|R_{5,1}^*|$, and the cases $(c, d) = (1, -1)$ give us bound equal to 2 for $|R_{5,2}^*|$.

5.6.2. $\Gamma_0^1(7)$. We note that $N := c^2 + d^2$.

Firstly, we consider the case $N = 1$. Then we can write;

(90) \quad F_{k,7,1}^*(\theta) = 2 \cos(k\theta/2) + R_{7,1}^*,$

(91) \quad F_{k,7,2}^*(\theta) = 2 \cos(k\theta/2) + R_{7,2}^*,$

where $R_{7,1}^*$ and $R_{7,2}^*$ are the terms such that $N > 1$ of $F_{k,7,1}^*$ and $F_{k,7,2}^*$, respectively.

For $F_{k,7,1}^*(\theta)$,

$$|R_{7,1}^*| \leq \sum_{N=1}^{\infty} \left|\frac{cc\theta/2 + \sqrt{7}de^{-i\theta/2}}{2|c} \right|^k.$$

Let $v_k(c, d, \theta) := |cc\theta/2 + \sqrt{7}de^{-i\theta/2}|^{-k}$, then $v_k(c, d, \theta) = 1/\left(c^2 + 7d^2 + 2\sqrt{7}cd\cos \theta\right)^{k/2}$, and $v_k(c, d, \theta) = v_k(-c, -d, \theta)$. Now we will consider the next cases, namely $N = 2, 5, \cdots, 29$, and $N \geq 34$. Considering $-5/(2\sqrt{7}) \leq \cos \theta \leq 0$, we have the following:

When $N = 2$,

$$v_k(1, 1, \theta) \leq (1/3)^{k/2}, \quad v_k(1, -1, \theta) \leq (1/8)^{k/2}.$$

When $N = 5$,

$$v_k(1, 2, \theta) \leq (1/19)^{k/2}, \quad v_k(1, -2, \theta) \leq (1/29)^{k/2},$$

$$v_k(2, 1, \theta) \leq (1/7)^k, \quad v_k(2, -1, \theta) \leq (1/37)^{k/2},$$

$$v_k(3, 1, \theta) \leq (1/20)^{k/2}, \quad v_k(3, -1, \theta) \leq (1/17)^{k/2}.$$

$$v_k(4, 1, \theta) \leq (1/21)^{k/2}, \quad v_k(4, -1, \theta) \leq (1/13)^{k/2}.$$

When $N \geq 25$,

$$|cc\theta/2 + \sqrt{7}de^{-i\theta/2}|^k \geq N/2,$$

and the number of terms with $c^2 + d^2 = N$ is not more than $4N^{1/2}$ for $N \geq 25$. Then

$$|R_{5,2}^*|_{N \geq 25} = 8\sqrt{2} \sum_{N=25}^{\infty} \left(\frac{1}{N}\right)^{1-k/2} \leq \frac{378\sqrt{6}}{k-3} \left(\frac{1}{3}\right)^{k/2}.$$

Thus

(88) \quad |R_{5,1}^*| \leq 2 + 4 \left(\frac{1}{2}\right)^{k/2} + 2 \left(\frac{1}{3}\right)^{k/2} + \cdots + 2 \left(\frac{1}{46}\right)^{k/2} + \frac{1008\sqrt{6}}{5(k-3)} \left(\frac{1}{2}\right)^{k/2},

(89) \quad |R_{5,2}^*| \leq 2 + 2 \left(\frac{2}{3}\right)^{k/2} + 2 \left(\frac{1}{2}\right)^{k/2} + \cdots + 2 \left(\frac{1}{9}\right)^{k} + \frac{378\sqrt{6}}{k-3} \left(\frac{1}{3}\right)^{k/2}.$$

Recalling the “RSD Method” subsection, we want to show that $|R_{5,1}^*| < 2$ and $|R_{5,2}^*| < 2$. But the right-hand sides of both bounds are greater than 2, so these bounds are not good. The cases $(c, d) = (2, 1)$ give us bound equal to 2 for $|R_{5,1}^*|$, and the cases $(c, d) = (1, -1)$ give us bound equal to 2 for $|R_{5,2}^*|$.
and the rest of the question is about the number of terms with \(c^2 + d^2 = N\). Because 7 \(\nmid c\), the number of \(|c|\) is not more than \((6/7)N^{1/2} + 1\). Thus the number of terms with \(c^2 + d^2 = N\) is not more than \(4((6/7)N^{1/2} + 1) \leq (29/7)N^{1/2}\) for \(N \geq 34\). Then

\[
|R^*_7|_{N \geq 34} = \sum_{(c,d)=1}^{\infty} \frac{29\sqrt{7}}{7} \frac{\left(\frac{1}{11}N\right)^{(1-k)/2}}{N_{\geq 1}} \leq \left(\frac{1}{3}\right)^{k/2}.
\]

On the other hand, for \(F^*_{7,1,2}(\theta)\),

\[
|R^*_7| \leq \sum_{(c,d)=1}^{\infty} \left|\frac{ce^{i\theta} + \sqrt{d}e^{-i\theta}}{2^{k-1}}\right|^{-k} + 2k \sum_{(c,d)=1}^{\infty} \left|\frac{ce^{i\theta} + \sqrt{d}e^{-i\theta}}{2^{k-1}}\right|^{-k}.
\]

Now we will consider the next cases, namely \(N = 2, 5, 10, 13, 17,\) and \(N \geq 25\). Considering \(0 \leq \cos \theta \leq 2/\sqrt{7}\), we have the following:

When \(N = 2\),

\[
2^k \cdot v_k(1, 1, \theta) \leq (1/2)^{k/2}, \quad 2^k \cdot v_k(1, -1, \theta) \leq 1.
\]

When \(N = 5\),

\[
v_k(1, 2, \theta) \leq (1/20)^{k/2}, \quad v_k(1, -2, \theta) \leq (1/21)^{k/2}, \quad v_k(2, -1, \theta) \leq (1/3)^{k/2}.
\]

When \(N = 10\),

\[
2^k \cdot v_k(1, 3, \theta) \leq (1/4)^k, \quad 2^k \cdot v_k(3, 1, \theta) \leq (1/2)^k, \quad 2^k \cdot v_k(3, -1, \theta) \leq 1.
\]

When \(N = 13\),

\[
v_k(2, 3, \theta) \leq (1/60)^{k/2}, \quad v_k(3, 2, \theta) \leq (1/37)^{k/2}, \quad v_k(3, -2, \theta) \leq (1/14)^{k/2}.
\]

When \(N = 17\),

\[
v_k(1, 4, \theta) \leq (1/113)^{k/2}, \quad v_k(4, 1, \theta) \leq (1/23)^{k/2}, \quad v_k(4, -1, \theta) \leq (1/7)^{k/2}.
\]

When \(N \geq 25\),

\[
|ce^{i\theta} + \sqrt{7}de^{-i\theta}/2| \geq N/3,
\]

and the number of terms with \(c^2 + d^2 = N\) is not more than \((29/7)N^{1/2}\) for \(N \geq 25\). Then

\[
|R^*_7|_{N \geq 25} = \frac{58\sqrt{3}}{7} \sum_{N=25}^{\infty} \frac{\left(\frac{1}{12}N\right)^{(1-k)/2}}{N_{\geq 25}} \leq \frac{2784\sqrt{6}}{7} \left(\frac{1}{2}\right)^{k/2}.
\]
Thus
\begin{align*}
|R_{1,1}^*| & \leq 4 + 6 \left(\frac{1}{3} \right)^{k/2} + 4 \left(\frac{1}{7} \right)^{k/2} + \cdots + 2 \left(\frac{1}{179} \right)^{k/2} + \frac{1914 \sqrt{33}}{7(k-3)} \left(\frac{1}{3} \right)^{k/2}, \\
|R_{1,2}^*| & \leq 4 + 2 \left(\frac{1}{2} \right)^{k/2} + 2 \left(\frac{1}{3} \right)^{k/2} + \cdots + 2 \left(\frac{1}{113} \right)^{k/2} + \frac{2784 \sqrt{6}}{7(k-3)} \left(\frac{1}{2} \right)^{k/2}.
\end{align*}

We want to show that $|R_{1,1}^*| < 2$ and $|R_{1,2}^*| < 2$. But the right-hand sides of both bounds are much greater than 2. The cases $(c, d) = \pm(2, 1)$ and $\pm(3, 1)$ give us bound equal to 4 for $|R_{1,1}^*|$, and the cases $(c, d) = \pm(1, -1)$ and $\pm(3, -1)$ give us bound equal to 4 for $|R_{1,2}^*|$.

5.6.3. $\Gamma_0^*(11)$. We note that $N := c^2 + d^2$.

Firstly, we consider the case $N = 1$. Then we can write;
\begin{align*}
F_{k,11,1}^* & (\theta) = 2 \cos(k\theta/2) + R_{11,1}^*, \\
F_{k,11,2}^* & (\theta) = 2 \cos(k\theta/2) + R_{11,2}^*.
\end{align*}

where $R_{11,1}^*$ and $R_{11,2}^*$ are the terms such that $N > 1$ of $F_{k,11,1}^*$ and $F_{k,11,2}^*$ respectively.

For $F_{k,11,1}^*(\theta)$,
\[
|R_{11,1}^*| \leq \sum_{(c, d) = 1 \atop 11 \mid N \geq 1} |ce^{i\theta/2} + \sqrt{11}de^{-i\theta/2}|^{-k}.
\]

Let $v_k(c, d, \theta) := |ce^{i\theta/2} + \sqrt{11}de^{-i\theta/2}|^{-k}$, then $v_k(c, d, \theta) = 1/(c^2 + 11d^2 + 2\sqrt{11}cd\cos\theta)^{k/2}$, and
\[
v_k(c, d, \theta) = v_k(-c, -d, \theta).
\]

Now we will consider the next cases, namely $N = 2, 5, 10, 13, 17, 25$, and $N \geq 26$. Considering $-19/(6\sqrt{11}) \leq \cos \theta \leq 0$, we have the following:

When $N = 2$,
\[
v_k(1, 1, \theta) \leq (3/17)^{k/2}, \quad v_k(1, -1, \theta) \leq (1/12)^{k/2}.
\]

When $N = 5$,
\[
v_k(1, 2, \theta) \leq (3/97)^{k/2}, \quad v_k(1, -2, \theta) \leq (1/45)^{k/2},
\]
\[
v_k(2, 1, \theta) \leq (3/7)^{k/2}, \quad v_k(2, -1, \theta) \leq (1/15)^{k/2}.
\]

When $N = 10$,
\[
v_k(1, 3, \theta) \leq (1/9)^{k/2}, \quad v_k(1, -3, \theta) \leq (1/10)^{k/2},
\]
\[
v_k(3, 1, \theta) \leq 1, \quad v_k(3, -1, \theta) \leq (1/20)^{k/2}.
\]

When $N = 13$,
\[
v_k(2, 3, \theta) \leq (1/65)^{k/2}, \quad v_k(2, -3, \theta) \leq (1/103)^{k/2},
\]
\[
v_k(3, 2, \theta) \leq (1/15)^{k/2}, \quad v_k(3, -2, \theta) \leq (1/53)^{k/2}.
\]

When $N = 17$,
\[
v_k(1, 4, \theta) \leq (3/455)^{k/2}, \quad v_k(1, -4, \theta) \leq (1/177)^{k/2},
\]
\[
v_k(4, 1, \theta) \leq (3/5)^{k/2}, \quad v_k(4, -1, \theta) \leq (1/27)^{k/2}.
\]

When $N = 25$,
\[
v_k(3, 4, \theta) \leq (1/109)^{k/2}, \quad v_k(3, -4, \theta) \leq (1/185)^{k/2},
\]
\[
v_k(4, 3, \theta) \leq (1/30)^{k/2}, \quad v_k(4, -3, \theta) \leq (1/115)^{k/2}.
\]

When $N \geq 26$,
\[
|ce^{i\theta/2} + \sqrt{11}de^{-i\theta/2}|^{2} \geq 2N/25,
\]
and the rest of the question is about the number of terms with $c^2 + d^2 = N$. Because $11 \nmid c$, the number of $|c|$ is not more than $(10/11)N^{1/2} + 1$. Thus the number of terms with $c^2 + d^2 = N$ is not more than $4((10/11)N^{1/2} + 1) \leq (48/11)N^{1/2}$ for $N \geq 26$. Then
\[
|R_{11,1}^*|_{N \geq 26} = \frac{120\sqrt{3}}{11} \sum_{N=26}^{\infty} \left(\frac{2}{25}N \right)^{(1-k)/2} \leq \frac{12000}{11(k-3)} \left(\frac{1}{2} \right)^{k/2}.
\]

On the other hand, for $F_{k,11,2}^*(\theta)$,
\[
|R_{11,2}^*| \leq \sum_{(c, d) = 1 \atop 11 \mid c \atop 2 \mid cd \atop N > 1} |ce^{i\theta/2} + d\sqrt{11}e^{-i\theta/2}|^{-k} + 2^k \sum_{(c, d) = 1 \atop 11 \mid c \atop 2 \mid cd} |ce^{i\theta/2} + d\sqrt{11}e^{-i\theta/2}|^{-k}.
\]
Now we will consider the next cases, namely $N = 2, 5, 10, 13, 17$, and $N \geq 25$. Considering $0 \leq \cos \theta \leq 8/(3\sqrt{11})$, we have the following:

When $N = 2$,

\[
2^k \cdot v_k(1, 1, \theta) \leq (1/3)^{k/2}, \quad 2^k \cdot v_k(1, -1, \theta) \leq (3/5)^{k/2}.
\]

When $N = 5$,

\[
v_k(1, 2, \theta) \leq (1/45)^{k/2}, \quad v_k(1, -2, \theta) \leq (3/103)^{k/2},
\]

\[
v_k(2, 1, \theta) \leq (1/15)^{k/2}, \quad v_k(2, -1, \theta) \leq (3/13)^{k/2}.
\]

When $N = 10$,

\[
2^k \cdot v_k(1, 3, \theta) \leq (1/5)^{k}, \quad 2^k \cdot v_k(1, -3, \theta) \leq (1/21)^{k/2},
\]

\[
2^k \cdot v_k(3, 1, \theta) \leq (1/5)^{k/2}, \quad 2^k \cdot v_k(3, -1, \theta) \leq 1.
\]

When $N = 13$,

\[
v_k(2, 3, \theta) \leq (1/103)^{k/2}, \quad v_k(2, -3, \theta) \leq (1/71)^{k/2},
\]

\[
v_k(3, 2, \theta) \leq (1/53)^{k/2}, \quad v_k(3, -2, \theta) \leq (1/21)^{k/2}.
\]

When $N = 17$,

\[
v_k(1, 4, \theta) \leq (1/177)^{k/2}, \quad v_k(1, -4, \theta) \leq (3/467)^{k/2},
\]

\[
v_k(4, 1, \theta) \leq (1/27)^{k/2}, \quad v_k(4, -1, \theta) \leq (3/17)^{k/2}.
\]

When $N \geq 25$,

\[
|ce^{i\theta/2} \pm \sqrt{11}de^{-i\theta/2}|^2 \geq \frac{1}{3} N,
\]

and the number of terms with $c^2 + d^2 = N$ is not more than $(48/11)^{N^{1/2}}$ for $N \geq 25$. Then

\[
|R_{11,2}|_{N \geq 25} = \frac{96\sqrt{3}}{11} \sum_{N=25}^{\infty} \left(\frac{1}{12} N \right)^{-k/2} \leq \frac{4608\sqrt{6}}{11(k-3)} \left(\frac{1}{2} \right)^{k/2}.
\]

Thus

\[
|R_{11,1}| \leq 2 + 2 \left(\frac{3}{5} \right)^{k/2} + 2 \left(\frac{1}{3} \right)^{k/2} + \cdots + 2 \left(\frac{1}{185} \right)^{k/2} + 12000 \frac{1}{11(k-3)} \left(\frac{1}{2} \right)^{k/2},
\]

\[
|R_{11,2}| \leq 2 + 2 \left(\frac{3}{5} \right)^{k/2} + 2 \left(\frac{1}{3} \right)^{k/2} + \cdots + 2 \left(\frac{1}{177} \right)^{k/2} + \frac{4608\sqrt{6}}{11(k-3)} \left(\frac{1}{2} \right)^{k/2}.
\]

We want to show that $|R_{11,1}| < 2$ and $|R_{11,2}| < 2$. But the right-hand sides of both bounds are greater than 2. The cases $(c, d) = \pm(3, 1)$ give us bound equal to 2 for $|R_{11,1}|$, and the cases $(c, d) = \pm(3, -1)$ give us bound equal to 2 for $|R_{11,2}|$.

5.6.4. $\Gamma_0'(13)$. We note that $N := c^2 + d^2$.

Firstly, we consider the case $N = 1$. Then we can write;

\[
F_{k,13,1,1}(\theta) = 2 \cos(k\theta/2) + R_{k,13,1,1},
\]

\[
F_{k,13,2,1}(\theta) = 2 \cos(k\theta/2) + R_{k,13,2,1},
\]

\[
F_{k,13,3,1}(\theta) = 2 \cos(k\theta/2) + R_{k,13,3,1},
\]

where $R_{k,13,1,1}$, $R_{k,13,2,1}$, and $R_{k,13,3,1}$ are the terms such that $N > 1$ of $F_{k,13,1,1}$, $F_{k,13,2,1}$, and $F_{k,13,3,1}$, respectively.

Firstly, for $F_{k,13,1,1}(\theta)$,

\[
|R_{13,1,1}| \leq \sum_{\substack{(c,d)\neq 1 \mod 13 \ N > 1}} | ce^{i\theta/2} + \sqrt{13}de^{-i\theta/2}|^{-k}.
\]

Let $v_k(c, d, \theta) := | ce^{i\theta/2} + \sqrt{13}de^{-i\theta/2}|^{-k}$, then $v_k(c, d, \theta) = 1/(c^2 + 13d^2 + 2\sqrt{13}cd\cos \theta)^{k/2}$, and $v_k(c, d, \theta) = v_k(-c, -d, \theta)$. Now we will consider the next cases, namely $N = 2, 5, \cdots, 37$, and $N \geq 41$. Considering $-7/(2\sqrt{13}) \leq \cos \theta \leq 0$, we have the following:

When $N = 2$,

\[
v_k(1, 1, \theta) \leq (1/7)^{k/2}, \quad v_k(1, -1, \theta) \leq (1/4)^{k/2}.
\]

When $N = 5$,

\[
v_k(1, 2, \theta) \leq (1/39)^{k/2}, \quad v_k(1, -2, \theta) \leq (1/53)^{k/2},
\]

\[
v_k(2, 1, \theta) \leq (1/3)^{k/2}, \quad v_k(2, -1, \theta) \leq (1/17)^{k/2}.
\]

When $N = 10$,

\[
v_k(1, 3, \theta) \leq (1/97)^{k/2}, \quad v_k(1, -3, \theta) \leq (1/118)^{k/2}.
\]
When $N = 13$,
\[v_k(3, 1, \theta) \leq 1, \quad v_k(3, -1, \theta) \leq (1/22)^{k/2}. \]

When $N = 17$,
\[v_k(1, 4, \theta) \leq (1/181)^{k/2}, \quad v_k(1, -4, \theta) \leq (1/209)^{k/2}, \]
\[v_k(4, 1, \theta) \leq 1, \quad v_k(4, -1, \theta) \leq (1/29)^{k/2}. \]

When $N = 25$,
\[v_k(3, 4, \theta) \leq (1/133)^{k/2}, \quad v_k(3, -4, \theta) \leq (1/217)^{k/2}, \]
\[v_k(4, 3, \theta) \leq (1/39)^{k/2}, \quad v_k(4, -3, \theta) \leq (1/123)^{k/2}. \]

When $N = 26$,
\[v_k(1, 5, \theta) \leq (1/291)^{k/2}, \quad v_k(1, -5, \theta) \leq (1/326)^{k/2}, \]
\[v_k(5, 1, \theta) \leq (1/3)^{k/2}, \quad v_k(5, -1, \theta) \leq (1/38)^{k/2}. \]

When $N = 29$,
\[v_k(2, 5, \theta) \leq (1/255)^{k/2}, \quad v_k(2, -5, \theta) \leq (1/329)^{k/2}, \]
\[v_k(5, 2, \theta) \leq (1/7)^{k/2}, \quad v_k(5, -2, \theta) \leq (1/77)^{k/2}. \]

When $N = 34$,
\[v_k(3, 5, \theta) \leq (1/229)^{k/2}, \quad v_k(3, -5, \theta) \leq (1/334)^{k/2}, \]
\[v_k(5, 3, \theta) \leq (1/37)^{k/2}, \quad v_k(5, -3, \theta) \leq (1/142)^{k/2}. \]

When $N = 37$,
\[v_k(1, 6, \theta) \leq (1/426)^{k/2}, \quad v_k(1, -6, \theta) \leq (1/468)^{k/2}, \]
\[v_k(6, 1, \theta) \leq (1/7)^{k/2}, \quad v_k(6, -1, \theta) \leq (1/7)^{k/2}. \]

When $N \geq 41$,
\[
\left| ce^{i\theta/2} + \sqrt{13}de^{-i\theta/2} \right|^2 \geq N/20,
\]
and the rest of the question is about the number of terms with $c^2 + d^2 = N$. Because $13 \nmid c$, the number of $|c|$ is not more than $(12/13)N^{1/2} + 1$. Thus the number of terms with $c^2 + d^2 = N$ is not more than $4((12/13)N^{1/2} + 1) \leq (30/7)N^{1/2}$ for $N \geq 41$. Then
\[
|R_{13,1}|_{N \geq 41} = \frac{60\sqrt{5}}{7} \sum_{N=41}^{\infty} \left(\frac{1}{20}N \right)^{1-k/2} \leq \frac{4800\sqrt{10}}{13(k-3)} \left(\frac{1}{2} \right)^{k/2}.
\]

Secondly, for $F_{k,13,2}^*(\theta)$,
\[
|R_{13,2}^*| \leq \sum_{(c,d)=1 \atop \text{gcd} = 1} |c| v_k(c, d, \theta) + 2^k \sum_{(c,d)=1 \atop \text{gcd} = 1} v_k(c, d, \theta).
\]

Now we will consider the next cases, namely $N = 2, 5, \cdots, 26$, and $N \geq 29$. Considering $0 \leq \cos \theta \leq 3/\sqrt{13}$, we have the following:

When $N = 2$,
\[2^k \cdot v_k(1, 1, \theta) \leq (2/7)^{k/2}, \quad 2^k \cdot v_k(1, -1, \theta) \leq (1/2)^{k/2}. \]

When $N = 5$,
\[v_k(1, 2, \theta) \leq (1/53)^{k/2}, \quad v_k(1, -2, \theta) \leq (1/41)^{k/2}, \]
\[v_k(2, 1, \theta) \leq (1/17)^{k/2}, \quad v_k(2, -1, \theta) \leq (1/5)^{k/2}. \]

When $N = 10$,
\[2^k \cdot v_k(1, 3, \theta) \leq (2/59)^{k/2}, \quad 2^k \cdot v_k(1, -3, \theta) \leq (1/5)^k, \]
\[2^k \cdot v_k(3, 1, \theta) \leq (2/11)^{k/2}, \quad 2^k \cdot v_k(3, -1, \theta) \leq 1. \]

When $N = 13$,
\[v_k(2, 3, \theta) \leq (1/11)^k, \quad v_k(2, -3, \theta) \leq (1/85)^{k/2}, \]
\[v_k(3, 2, \theta) \leq (1/61)^{k/2}, \quad v_k(3, -2, \theta) \leq (1/5)^k. \]

When $N = 17$,
\[v_k(1, 4, \theta) \leq (1/209)^{k/2}, \quad v_k(1, -4, \theta) \leq (1/285)^{k/2}, \]
\[v_k(4, 1, \theta) \leq (1/29)^{k/2}, \quad v_k(4, -1, \theta) \leq (1/5)^{k/2}. \]

When $N = 25$,
\[v_k(3, 4, \theta) \leq (1/217)^{k/2}, \quad v_k(3, -4, \theta) \leq (1/145)^{k/2}, \]
\[v_k(4, 3, \theta) \leq (1/123)^{k/2}, \quad v_k(4, -3, \theta) \leq (1/51)^{k/2}. \]

When $N = 26$,
\[2^k \cdot v_k(1, 5, \theta) \leq (2/163)^{k/2}, \quad 2^k \cdot v_k(1, -5, \theta) \leq (1/74)^{k/2}. \]
When $N \geq 29$,
\[|ce^{i\theta/2} \pm \sqrt{13}de^{-i\theta/2}|^2 \geq 2N/7, \]
and the number of terms with $c^2 + d^2 = N$ is not more than $(22/5)N^{1/2}$ for $N \geq 29$. Then
\[|R_{13,2}^*|_{N\geq29} = \frac{22\sqrt{14}}{5} \sum_{N=29}^{\infty} \left(\frac{1}{4N} \right)^{(1-k)/2} \leq \frac{2464\sqrt{7}}{5(k-3)} \left(\frac{1}{2} \right)^{k/2}. \]

Finally, for $F_{k,13,3}(\theta)$,
\[|R_{13,3}^*| \leq \sum_{\substack{\{c,d\}=1 \\ 13|c}} v_k(c, d, \theta) + \sum_{\substack{\{c,d\}=1 \\ 13|c}} v_k(c, d, \theta) + 3^k \sum_{\substack{\{c,d\}=1 \\ 13|c}} v_k(c, d, \theta). \]

Now we will consider the next cases, namely $N = 2, 5, \cdots, 37$, and $N \geq 41$. Considering $-2/\sqrt{13} \leq \cos \theta \leq 5/(2\sqrt{13})$, we have the following:

When $N = 2$,
\[v_k(1, 1, \theta) \leq (1/10)^{k/2}, \]
\[3^k \cdot v_k(1, 1, \theta) \leq 1, \]
\[3^k \cdot v_k(1, 1, \theta) \leq (1/5)^{k/2}, \]
\[v_k(1, 2, \theta) \leq (1/5)^{k/2}, \]
\[v_k(2, 1, \theta) \leq 1, \]

When $N = 5$,
\[v_k(1, 3, \theta) \leq (1/106)^{k/2}, \]
\[v_k(3, 1, \theta) \leq (1/10)^{k/2}, \]
\[v_k(2, 3, \theta) \leq (1/97)^{k/2}, \]
\[v_k(3, 2, \theta) \leq (1/37)^{k/2}, \]

When $N = 10$,
\[v_k(1, 4, \theta) \leq (1/193)^{k/2}, \]
\[v_k(4, 1, \theta) \leq (1/13)^{k/2}, \]

When $N = 25$,
\[v_k(3, 4, \theta) \leq (1/13)^k, \]
\[v_k(4, 3, \theta) \leq (1/75)^{k/2}, \]

When $N = 26$,
\[v_k(1, 5, \theta) \leq (1/34)^{k/2}, \]
\[v_k(5, 1, \theta) \leq (1/2)^{k/2}, \]

When $N = 29$,
\[v_k(2, 5, \theta) \leq (1/13)^k, \]
\[v_k(5, 2, \theta) \leq (1/37)^{k/2}, \]

When $N = 34$,
\[v_k(3, 5, \theta) \leq (1/274)^{k/2}, \]
\[v_k(5, 3, \theta) \leq (1/82)^{k/2}, \]

When $N = 37$,
\[v_k(1, 6, \theta) \leq (1/444)^{k/2}, \]
\[v_k(6, 1, \theta) \leq (1/5)^k, \]

When $N \geq 41$,
\[|ce^{i\theta/2} \pm \sqrt{13}de^{-i\theta/2}|^2 \geq 9N/20, \]
and the number of terms with $c^2 + d^2 = N$ is not more than $(30/7)N^{1/2}$ for $N \geq 41$. Then
\[|R_{13,3}^*|_{N\geq41} = \frac{60\sqrt{5}}{7} \sum_{N=41}^{\infty} \left(\frac{1}{20N} \right)^{(1-k)/2} \leq \frac{4800\sqrt{10}}{7(k-3)} \left(\frac{1}{2} \right)^{k/2}. \]
Thus

\begin{align}
|R^*_1| &\leq 4 + 4 \left(\frac{1}{3}\right)^{k/2} + 6 \left(\frac{1}{7}\right)^{k/2} + \cdots + 2 \left(\frac{1}{468}\right)^{k/2} + \frac{4800\sqrt{10}}{7(k - 3)} \left(\frac{1}{2}\right)^{k/2}, \\
|R^*_2| &\leq 2 + 4 \left(\frac{1}{2}\right)^{k/2} + 2 \left(\frac{2}{7}\right)^{k/2} + \cdots + 2 \left(\frac{1}{285}\right)^{k/2} + \frac{2464\sqrt{7}}{5(k - 3)} \left(\frac{1}{2}\right)^{k/2}, \\
|R^*_3| &\leq 6 + 2 \left(\frac{1}{2}\right)^{k/2} + 2 \left(\frac{1}{3}\right)^{k/2} + \cdots + 2 \left(\frac{1}{444}\right)^{k/2} + \frac{4800\sqrt{10}}{7(k - 3)} \left(\frac{1}{2}\right)^{k/2}.
\end{align}

We want to show that $|R^*_1| < \varepsilon$, $|R^*_2| < \varepsilon$, and $|R^*_3| < \varepsilon$. But the right-hand side of every bound is greater than 2. The cases $(c, d) = \pm(3, 1)$ and $\pm(4, 1)$ give us bound equal to 4 for $|R^*_1|$, and the cases $(c, d) = \pm(3, -1)$ give us bound equal to 2 for $|R^*_2|$, and the cases $(c, d) = \pm(1, -1), \pm(2, 1)$, and $\pm(4, -1)$ give us bound equal to 6 for $|R^*_3|$.

5.6.5. $R^*_0(17)$. We note that $N := c^2 + d^2$.

Firstly, we consider the case $N = 1$. Then we can write:

\begin{align}
F^*_{k, 17, 1}(\theta) &= 2 \cos(k\theta/2) + R^*_1, \\
F^*_{k, 17, 2}(\theta) &= 2 \cos(k\theta/2) + R^*_2, \\
F^*_{k, 17, 4}(\theta) &= 2 \cos(k\theta/2) + R^*_4,
\end{align}

where R^*_1, R^*_2, and R^*_4 are the terms such that $N > 1$ of $F^*_{k, 17, 1}$, $F^*_{k, 17, 2}$, and $F^*_{k, 17, 4}$, respectively.

Firstly, for $F^*_{k, 17, 1}(\theta)$,

$$|R^*_1| \leq \sum_{(c,d)=1 \atop \mathbb{N} > N} |ce^{it/2} + \sqrt{17}de^{-it/2}|^{-k}.$$

Let $v_k(c, d, \theta) := |ce^{it/2} + \sqrt{17}de^{-it/2}|^{-k}$, then $v_k(c, d, \theta) = 1/ (c^2 + 17d^2 + 2\sqrt{17}cd\cos \theta)^{k/2}$, and $v_k(c, d, \theta) = v_k(-c, -d, \theta)$. Now we will consider the next cases, namely $N = 2, 5, \cdots, 34$, and $N \geq 37$.

Considering $-4/\sqrt{17} \leq \cos \theta \leq 0$, we have the following:

When $N = 2$,

$$v_k(1, 1, \theta) \leq (1/10)^{k/2}, \quad v_k(1, -1, \theta) \leq (1/18)^{k/2},$$

When $N = 5$,

$$v_k(1, 2, \theta) \leq (1/53)^{k/2}, \quad v_k(1, -2, \theta) \leq (1/69)^{k/2},$$

When $N = 10$,

$$v_k(2, 1, \theta) \leq (1/5)^{k/2}, \quad v_k(2, -1, \theta) \leq (1/21)^{k/2},$$

When $N = 13$,

$$v_k(2, 3, \theta) \leq (1/109)^{k/2}, \quad v_k(2, -3, \theta) \leq (1/157)^{k/2},$$

When $N = 17$,

$$v_k(4, 1, \theta) \leq 1, \quad v_k(4, -1, \theta) \leq (1/33)^{k/2}.$$

When $N = 25$,

$$v_k(3, 4, \theta) \leq (1/185)^{k/2}, \quad v_k(3, -4, \theta) \leq (1/281)^{k/2},$$

When $N = 26$,

$$v_k(5, 1, \theta) \leq (1/380)^{k/2}, \quad v_k(5, -1, \theta) \leq (1/426)^{k/2},$$

When $N = 29$,

$$v_k(5, 2, \theta) \leq (1/349)^{k/2}, \quad v_k(5, -2, \theta) \leq (1/429)^{k/2},$$

When $N = 34$,

$$v_k(5, 3, \theta) \leq (1/314)^{k/2}, \quad v_k(5, -3, \theta) \leq (1/162)^{k/2}.$$
When \(N \geq 37 \),
\[
|ce^{i\theta/2} \pm \sqrt{17}de^{-i\theta/2}| \geq N/18,
\]
and the rest of the question is about the number of terms with \(c^2 + d^2 = N \). Because 17 \(\nmid c \), the number of \(|c| \) is not more than \((16/17)N^{1/2} + 1\). Thus the number of terms with \(c^2 + d^2 = N \) is not more than \(4((16/17)N^{1/2} + 1) \leq (22/5)N^{1/2}\) for \(N \geq 37 \). Then
\[
|R_{17, 1}^*|_{N \geq 37} = \frac{66\sqrt{2}}{5} \sum_{N=37}^{\infty} \left(\frac{1}{18}N\right)^{(1-k)/2} \leq \frac{9504}{5(k-3)} \left(\frac{1}{2}\right)^{k/2}.
\]
Secondly, for \(F_{k, 17, 2}^*(\theta) \),
\[
|R_{17, 2}^*| \leq \sum_{(c, d) = 1 \atop 17 \nmid c} v_k(c, d, \theta) + 2^k \sum_{(c, d) = 1 \atop 2 \mid cd \atop N > 1} v_k(c, d, \theta).
\]
Now we will consider the next cases, namely \(N = 2, 5, \cdots, 34 \), and \(N \geq 37 \). Considering \(0 \leq \cos \theta \leq 11/(3\sqrt{17}) \), we have the following:

When \(N = 2 \),
\[
2^k \cdot v_k(1, 1, \theta) \leq (2/9)^{k/2}, \quad 2^k \cdot v_k(1, -1, \theta) \leq (3/8)^{k/2}.
\]
When \(N = 5 \),
\[
v_k(1, 2, \theta) \leq (1/69)^{k/2}, \quad v_k(1, -2, \theta) \leq (3/163)^{k/2}, \quad v_k(2, -1, \theta) \leq (1/19)^{k/2}.
\]
When \(N = 10 \),
\[
2^k \cdot v_k(1, 3, \theta) \leq (2/77)^{k/2}, \quad 2^k \cdot v_k(1, -3, \theta) \leq (1/33)^{k/2}, \quad 2^k \cdot v_k(3, -1, \theta) \leq 1.
\]
When \(N = 13 \),
\[
v_k(2, 3, \theta) \leq (1/157)^{k/2}, \quad v_k(3, 2, \theta) \leq (1/77)^{k/2}, \quad v_k(1, -4, \theta) \leq (3/731)^{k/2}, \quad v_k(4, -1, \theta) \leq (3/11)^{k/2}.
\]
When \(N = 17 \),
\[
v_k(1, 4, \theta) \leq (1/273)^{k/2}, \quad v_k(4, 1, \theta) \leq (1/33)^{k/2}, \quad v_k(4, -1, \theta) \leq (3/11)^{k/2}.
\]
When \(N = 25 \),
\[
v_k(3, 4, \theta) \leq (1/281)^{k/2}, \quad v_k(3, -4, \theta) \leq (1/193)^{k/2}, \quad v_k(4, -3, \theta) \leq (1/9)^{k}.
\]
When \(N = 26 \),
\[
2^k \cdot v_k(1, 5, \theta) \leq (2/213)^{k/2}, \quad 2^k \cdot v_k(1, -5, \theta) \leq (3/292)^{k/2}, \quad 2^k \cdot v_k(5, -1, \theta) \leq (3/4)^{k/2}.
\]
When \(N = 29 \),
\[
v_k(2, 5, \theta) \leq (1/429)^{k/2}, \quad v_k(2, -5, \theta) \leq (3/1067)^{k/2}, \quad v_k(5, -2, \theta) \leq (3/89)^{k/2}.
\]
When \(N = 34 \),
\[
2^k \cdot v_k(3, 5, \theta) \leq (2/217)^{k/2}, \quad 2^k \cdot v_k(3, -5, \theta) \leq (1/9)^{k}, \quad 2^k \cdot v_k(5, -3, \theta) \leq (1/13)^{k/2}.
\]
When \(N \geq 37 \),
\[
|ce^{i\theta/2} \pm \sqrt{17}de^{-i\theta/2}| \geq 16N/81,
\]
and the number of terms with \(c^2 + d^2 = N \) is not more than \((22/5)N^{1/2}\) for \(N \geq 37 \). Then
\[
|R_{17, 2}^*|_{N \geq 37} = \frac{99}{5} \sum_{N=37}^{\infty} \left(\frac{4}{81}N\right)^{(1-k)/2} \leq \frac{9504}{5(k-3)} \left(\frac{3}{4}\right)^{k}.
\]
Finally, for \(F_{k, 17, 4}^*(\theta) \),
\[
|R_{17, 4}^*| \leq \sum_{(c, d) = 1 \atop 17 \mid c} v_k(c, d, \theta) + 2^k \sum_{(c, d) = 1 \atop 2 \mid cd \atop N > 1} v_k(c, d, \theta) + 4^k \sum_{(c, d) = 1 \atop 2 \mid cd \atop c \equiv d (4)} v_k(c, d, \theta).
\]
Now we will consider the next cases, namely \(N = 2, 5, \cdots, 34 \), and \(N \geq 37 \). Considering \(-5/(3\sqrt{17}) \leq \cos \theta \leq 1/\sqrt{17} \), we have the following:
When \(N = 2 \), \(2^k \cdot v_k(1, 1, \theta) \leq (3/11)^{k/2}, \quad 4^k \cdot v_k(1, -1, \theta) \leq 1. \)

When \(N = 5 \), \(v_k(1, 2, \theta) \leq (3/187)^{k/2}, \quad v_k(2, 1, \theta) \leq (3/43)^{k/2}, \quad v_k(1, -2, \theta) \leq (1/65)^{k/2}, \quad v_k(2, -1, \theta) \leq (1/17)^{k/2}. \)

When \(N = 10 \), \(4^k \cdot v_k(1, 3, \theta) \leq (1/3)^k, \quad 2^k \cdot v_k(1, -3, \theta) \leq (1/37)^{k/2}, \quad 4^k \cdot v_k(3, 1, \theta) \leq 1, \quad 2^k \cdot v_k(3, -1, \theta) \leq (1/5)^{k/2}. \)

When \(N = 13 \), \(v_k(2, 3, \theta) \leq (1/137)^{k/2}, \quad v_k(3, 2, \theta) \leq (1/57)^{k/2}, \quad v_k(2, -3, \theta) \leq (1/145)^{k/2}, \quad v_k(3, -2, \theta) \leq (1/65)^{k/2}. \)

When \(N = 17 \), \(v_k(1, 4, \theta) \leq (3/779)^{k/2}, \quad v_k(4, 1, \theta) \leq (3/59)^{k/2}, \quad v_k(1, -4, \theta) \leq (1/265)^{k/2}, \quad v_k(4, -1, \theta) \leq (1/5)^k. \)

When \(N = 25 \), \(v_k(3, 4, \theta) \leq (1/241)^{k/2}, \quad v_k(4, 3, \theta) \leq (1/129)^{k/2}, \quad v_k(3, -4, \theta) \leq (1/257)^{k/2}, \quad v_k(4, -3, \theta) \leq (1/145)^{k/2}. \)

When \(N = 26 \), \(2^k \cdot v_k(1, 5, \theta) \leq (3/307)^{k/2}, \quad 4^k \cdot v_k(1, -5, \theta) \leq (1/26)^{k/2}, \quad 2^k \cdot v_k(5, 1, \theta) \leq (3/19)^{k/2}, \quad 4^k \cdot v_k(5, -1, \theta) \leq (1/2)^{k/2}. \)

When \(N = 29 \), \(v_k(2, 5, \theta) \leq (3/1187)^{k/2}, \quad v_k(5, 2, \theta) \leq (3/209)^{k/2}, \quad v_k(2, -5, \theta) \leq (1/409)^{k/2}, \quad v_k(5, -2, \theta) \leq (1/83)^{k/2}. \)

When \(N = 34 \), \(4^k \cdot v_k(3, 5, \theta) \leq (1/24)^{k/2}, \quad 2^k \cdot v_k(3, -5, \theta) \leq (1/101)^{k/2}, \quad 4^k \cdot v_k(5, 3, \theta) \leq (1/7)^{k/2}, \quad 2^k \cdot v_k(5, -3, \theta) \leq (1/33)^{k/2}. \)

When \(N \geq 37 \), \(|c^e\theta/2 + \sqrt{17}de^{-\theta/2}|^2 \geq 4N/5,\) and the number of terms with \(c^2 + d^2 = N \) is not more than \((22/5)N^{1/2}\) for \(N \geq 41\). Then

\[
|R_{17,4}^*|_{N \geq 37} = \frac{44\sqrt{5}}{5} \sum_{N=37}^{\infty} \left(\frac{1}{20} N \right)^{(1-k)/2} \leq \frac{9504}{5(k-3)} \left(\frac{5}{9} \right)^{k/2}.
\]

Thus

\[
|R_{17,1}^*| \leq 2 + 4 \left(\frac{1}{2} \right)^{k/2} + 2 \left(\frac{1}{5} \right)^{k/2} + \cdots + 2 \left(\frac{1}{434} \right)^{k/2} + \frac{9504}{5(k-3)} \left(\frac{5}{9} \right)^{k/2},
\]

\[
|R_{17,2}^*| \leq 2 + 2 \left(\frac{3}{4} \right)^{k/2} + 2 \left(\frac{3}{8} \right)^{k/2} + \cdots + 2 \left(\frac{1}{429} \right)^{k/2} + \frac{9504}{5(k-3)} \left(\frac{3}{4} \right)^k,
\]

\[
|R_{17,4}^*| \leq 4 + 2 \left(\frac{1}{2} \right)^{k/2} + 2 \left(\frac{1}{3} \right)^{k/2} + \cdots + 2 \left(\frac{1}{409} \right)^{k/2} + \frac{9504}{5(k-3)} \left(\frac{5}{9} \right)^{k/2}.
\]

We want to show that \(|R_{17,1}^*| < 2, |R_{17,2}^*| < 2, \text{ and } |R_{17,4}^*| < 2\). But the right-hand side of every bound is greater than 2. The cases \((c, d) = \pm(4, 1)\) give us bound equal to 2 for \(|R_{17,1}^*|\), and the cases \((c, d) = \pm(3, -1)\) give us bound equal to 2 for \(|R_{17,2}^*|\), and the cases \((c, d) = \pm(1, -1)\) and \(\pm(3, 1)\) give us bound equal to 4 for \(|R_{17,4}^*|\).

5.6.6. \(\Gamma_0^*(19) \). We note that \(N := c^2 + d^2 \).

Firstly, we consider the case \(N = 1 \). Then we can write:

\[
F_{k,19,1}^*(\theta) = 2\cos(k\theta/2) + R_{19,1}^*,
\]

\[
F_{k,19,2}^*(\theta) = 2\cos(k\theta/2) + R_{19,2}^*,
\]

\[
F_{k,19,3}^*(\theta) = 2\cos(k\theta/2) + R_{19,3}^*.
\]

where \(R_{19,1}^*, R_{19,2}^*, \text{ and } R_{19,3}^* \) are the terms such that \(N > 1 \) of \(F_{k,19,1}^*, F_{k,19,2}^*, \text{ and } F_{k,19,3}^*, \) respectively.
Firstly, for $F_{k,19,1}(\theta)$,

$$|R_{19,1}^*| \leq \sum_{\substack{(c,d)=1 \\ 19 \nmid c \\ N > 1}} |ce^{i\theta/2} + \sqrt{19}de^{-i\theta/2}|^{-k}.$$

Let $v_k(c,d,\theta) := |ce^{i\theta/2} + \sqrt{19}de^{-i\theta/2}|^{-k}$, then $v_k(c,d,\theta) = 1/(c^2 + 19d^2 + 2\sqrt{19}cd\cos\theta)^{k/2}$, and $v_k(c,d,\theta) = v_k(-c,-d,\theta)$. Now we will consider the next cases, namely $N = 2, 5, \cdots, 41$, and $N \geq 50$. Considering $-17/(4\sqrt{19}) \leq \cos\theta \leq 0$, we have the following:

When $N = 2$,
$$v_k(1,1,\theta) \leq (2/23)^{k/2}, \quad v_k(1,-1,\theta) \leq (1/20)^{k/2}.$$

When $N = 5$,
$$v_k(1,2,\theta) \leq (1/60)^{k/2}, \quad v_k(1,-2,\theta) \leq (1/77)^{k/2},$$
$$v_k(2,1,\theta) \leq (1/6)^{k/2}, \quad v_k(2,-1,\theta) \leq (1/23)^{k/2}.$$

When $N = 10$,
$$v_k(1,3,\theta) \leq (2/293)^{k/2}, \quad v_k(1,-3,\theta) \leq (1/172)^{k/2},$$
$$v_k(3,1,\theta) \leq (2/5)^{k/2}, \quad v_k(3,-1,\theta) \leq (1/28)^{k/2}.$$

When $N = 13$,
$$v_k(2,3,\theta) \leq (1/124)^{k/2}, \quad v_k(2,-3,\theta) \leq (1/175)^{k/2},$$
$$v_k(3,2,\theta) \leq (1/34)^{k/2}, \quad v_k(3,-2,\theta) \leq (1/85)^{k/2}.$$

When $N = 17$,
$$v_k(1,4,\theta) \leq (1/271)^{k/2}, \quad v_k(1,-4,\theta) \leq (1/305)^{k/2},$$
$$v_k(4,1,\theta) \leq 1, \quad v_k(4,-1,\theta) \leq (1/35)^{k/2}.$$

When $N = 25$,
$$v_k(3,4,\theta) \leq (1/211)^{k/2}, \quad v_k(3,-4,\theta) \leq (1/313)^{k/2},$$
$$v_k(4,3,\theta) \leq (1/85)^{k/2}, \quad v_k(4,-3,\theta) \leq (1/187)^{k/2}.$$

When $N = 26$,
$$v_k(1,5,\theta) \leq (2/867)^{k/2}, \quad v_k(1,-5,\theta) \leq (1/476)^{k/2},$$
$$v_k(5,1,\theta) \leq (2/3)^{k/2}, \quad v_k(5,-1,\theta) \leq (1/44)^{k/2}.$$

When $N = 29$,
$$v_k(2,5,\theta) \leq (1/394)^{k/2}, \quad v_k(2,-5,\theta) \leq (1/479)^{k/2},$$
$$v_k(5,2,\theta) \leq (1/4)^{k}, \quad v_k(5,-2,\theta) \leq (1/101)^{k/2}.$$

When $N = 34$,
$$v_k(3,5,\theta) \leq (2/715)^{k/2}, \quad v_k(3,-5,\theta) \leq (1/485)^{k/2},$$
$$v_k(5,3,\theta) \leq (2/137)^{k/2}, \quad v_k(5,-3,\theta) \leq (1/13)^{k}.$$

When $N = 37$,
$$v_k(1,6,\theta) \leq (1/634)^{k/2}, \quad v_k(1,-6,\theta) \leq (1/685)^{k/2},$$
$$v_k(6,1,\theta) \leq (1/4)^{k/2}, \quad v_k(6,-1,\theta) \leq (1/55)^{k/2}.$$

When $N = 41$,
$$v_k(4,5,\theta) \leq (1/321)^{k/2}, \quad v_k(4,-5,\theta) \leq (1/491)^{k/2},$$
$$v_k(5,4,\theta) \leq (1/159)^{k/2}, \quad v_k(5,-4,\theta) \leq (1/329)^{k/2}.$$

When $N \geq 50$,
$$|ce^{i\theta/2} + \sqrt{19}de^{-i\theta/2}|^{2} \geq \frac{1}{22} N,$$
and the rest of the question is about the number of terms with $c^2 + d^2 = N$. Because $19 \nmid c$, the number of $|c|$ is more than $(18/19)N^{1/2} + 1$. Thus the number of terms with $c^2 + d^2 = N$ is not more than $4((18/19)N^{1/2} + 1) \leq (13/3)N^{1/2}$ for $N \geq 50$. Then

$$|R_{19,1}^*|_{N \geq 50} = \frac{13\sqrt{22}}{3} \sum_{N=50}^{\infty} \left(\frac{1}{22} N \right)^{(1-k)/2} \leq \frac{459\sqrt{402}}{33(k-3)} \left(\frac{22}{49} \right)^{k/2}.$$

Secondly, for $F_{k,19,2}(\theta)$,

$$|R_{19,2}^*| \leq \sum_{\substack{(c,d)=1 \\ 19 \nmid c \\ 2|cd \\ N > 1}} v_k(c,d,\theta) + 2^{k} \sum_{\substack{(c,d)=1 \\ 19 \nmid c \\ 2|cd}} v_k(c,d,\theta).$$

Now we will consider the next cases, namely $N = 2, 5, \cdots, 41$, and $N \geq 50$. Considering $0 \leq \cos\theta \leq 4/\sqrt{19}$, we have the following:
When $N = 2$, \[2^k \cdot v_k(1, 1, \theta) \leq (1/5)^{k/2}, \quad 2^k \cdot v_k(1, -1, \theta) \leq (1/3)^{k/2}.\]

When $N = 5$, \[v_k(1, 2, \theta) \leq (1/77)^{k/2}, \quad v_k(2, 1, \theta) \leq (1/23)^{k/2}, \quad v_k(1, -2, \theta) \leq (1/61)^{k/2}, \quad v_k(2, -1, \theta) \leq (1/7)^{k/2}.\]

When $N = 10$, \[2^k \cdot v_k(1, 3, \theta) \leq (1/43)^{k/2}, \quad 2^k \cdot v_k(3, 1, \theta) \leq (1/7)^{k/2}, \quad 2^k \cdot v_k(1, -3, \theta) \leq (1/37)^{k/2}, \quad 2^k \cdot v_k(3, -1, \theta) \leq 1.\]

When $N = 13$, \[v_k(2, 3, \theta) \leq (1/175)^{k/2}, \quad v_k(3, 2, \theta) \leq (1/85)^{k/2}, \quad v_k(1, -3, \theta) \leq (1/37)^{k/2}.\]

When $N = 17$, \[v_k(1, 4, \theta) \leq (1/305)^{k/2}, \quad v_k(4, 1, \theta) \leq (1/35)^{k/2}, \quad v_k(1, -4, \theta) \leq (1/273)^{k/2}, \quad v_k(4, -1, \theta) \leq (1/3)^{k/2}.\]

When $N = 25$, \[v_k(3, 4, \theta) \leq (1/313)^{k/2}, \quad v_k(4, 3, \theta) \leq (1/187)^{k/2}, \quad v_k(3, -4, \theta) \leq (1/217)^{k/2}, \quad v_k(4, -3, \theta) \leq (1/91)^{k/2}.\]

When $N = 26$, \[2^k \cdot v_k(1, 5, \theta) \leq (1/119)^{k/2}, \quad 2^k \cdot v_k(5, 1, \theta) \leq (1/11)^{k/2}, \quad 2^k \cdot v_k(1, -5, \theta) \leq (1/109)^{k/2}, \quad 2^k \cdot v_k(5, -1, \theta) \leq 1.\]

When $N = 29$, \[v_k(2, 5, \theta) \leq (1/479)^{k/2}, \quad v_k(5, 2, \theta) \leq (1/101)^{k/2}, \quad v_k(2, -5, \theta) \leq (1/399)^{k/2}, \quad v_k(5, -2, \theta) \leq (1/21)^{k/2}.\]

When $N = 34$, \[2^k \cdot v_k(3, 5, \theta) \leq (4/485)^{k/2}, \quad 2^k \cdot v_k(5, 3, \theta) \leq (2/13)^{k/2}, \quad 2^k \cdot v_k(3, -5, \theta) \leq (4/405)^{k/2}, \quad 2^k \cdot v_k(5, -3, \theta) \leq (1/29)^{k/2}.\]

When $N = 37$, \[v_k(1, 6, \theta) \leq (1/685)^{k/2}, \quad v_k(6, 1, \theta) \leq (1/55)^{k/2}, \quad v_k(1, -6, \theta) \leq (1/637)^{k/2}, \quad v_k(6, -1, \theta) \leq (1/7)^{k/2}.\]

When $N = 41$, \[v_k(4, 5, \theta) \leq (1/491)^{k/2}, \quad v_k(5, 4, \theta) \leq (1/329)^{k/2}, \quad v_k(4, -5, \theta) \leq (1/331)^{k/2}, \quad v_k(5, -4, \theta) \leq (1/13)^{k}.\]

When $N \geq 50$, \[|c e^{i \theta/2} \pm \sqrt{19} d e^{-i \theta/2}|^2 \geq 3 N/20,
\]
and the number of terms with $c^2 + d^2 = N$ is not more than $(13/3)N^{1/2}$ for $N \geq 50$. Then

\[|R_{19,2}^{19,3}| = \frac{52\sqrt{15}}{9} \sum_{N=50}^{\infty} \left(\frac{3}{80} N \right)^{(1-k)/2} \leq \frac{4459}{3(k-3)} \left(\frac{80}{147} \right)^{k/2}.\]

Finally, for $F_{19,3}^{19,3}(\theta)$,

\[|R_{19,3}^{19,3}| \leq \sum_{(c,d)=1 \atop 19 \mid d} v_k(c, d, \theta) + \sum_{(c,d)=1 \atop 19 \mid c} v_k(c, d, \theta) + 3^k \sum_{(c,d)=1 \atop 3 \mid c} v_k(c, d, \theta).\]

Now we will consider the next cases, namely $N = 2, 5, \ldots, 41$, and $N \geq 50$. Considering $-7/(2\sqrt{19}) \leq \cos \theta \leq 13/(4\sqrt{19})$, we have the following:

When $N = 2$, \[v_k(1, 1, \theta) \leq (1/13)^{k/2}, \quad 3^k \cdot v_k(1, -1, \theta) \leq (2/3)^{k/2}.\]

When $N = 5$, \[3^k \cdot v_k(1, 2, \theta) \leq (1/7)^{k/2}, \quad 3^k \cdot v_k(2, 1, \theta) \leq 1, \quad v_k(1, -2, \theta) \leq (1/8)^{k/2}, \quad v_k(2, -1, \theta) \leq (1/10)^{k/2}.\]

When $N = 10$, \[v_k(1, 3, \theta) \leq (1/151)^{k/2}, \quad v_k(3, 1, \theta) \leq (1/7)^{k/2}, \quad v_k(1, -3, \theta) \leq (2/305)^{k/2}, \quad v_k(3, -1, \theta) \leq (2/17)^{k/2}.\]

When $N = 13$, \[v_k(2, 3, \theta) \leq (1/133)^{k/2}, \quad v_k(2, -3, \theta) \leq (1/136)^{k/2}.\]
When $N = 17$,
\[v_3(3, 2, \theta) \leq (1/43)^{k/2}, \quad v_k(3, -2, \theta) \leq (1/46)^{k/2}. \]

When $N = 25$,
\[v_k(3, 4, \theta) \leq (1/229)^{k/2}, \quad v_k(4, 3, \theta) \leq (1/103)^{k/2}, \]

When $N = 26$,
\[3^k \cdot v_k(1, 5, \theta) \leq (1/7)^k, \quad 3^k \cdot v_k(5, 1, \theta) \leq 1. \]

When $N = 29$,
\[v_k(2, 5, \theta) \leq (1/409)^{k/2}, \quad v_k(5, 2, \theta) \leq (1/31)^{k/2}, \]

When $N = 34$,
\[v_k(3, 5, \theta) \leq (1/380)^{k/2}, \quad v_k(5, 3, \theta) \leq (1/91)^{k/2}, \]

When $N = 37$,
\[v_k(1, 6, \theta) \leq (1/643)^{k/2}, \quad v_k(6, 1, \theta) \leq (1/13)^{k/2}, \]

When $N = 41$,
\[3^k \cdot v_k(4, 5, \theta) \leq (1/39)^{k/2}, \quad 3^k \cdot v_k(5, 4, \theta) \leq (1/21)^{k/2}, \]

When $N \geq 50$, \[|c e^{i \theta/2} \pm \sqrt{19} d e^{-i \theta/2}|^2 \geq 27N/80, \]

and the number of terms with $c^2 + d^2 = N$ is not more than $(13/3)N^{1/2}$ for $N \geq 50$. Then
\[
|R_{19,3}^*|_{N \geq 50} = \frac{52\sqrt{15}}{9} \sum_{N=50}^{\infty} \left(\frac{3}{80} N \right)^{(1-k)/2} \leq \frac{4459}{3(k-3)} \left(\frac{80}{147} \right)^{k/2}.
\]

Thus
\[
\begin{align*}
|R_{19,1}^*| &\leq 2 + 2 \left(\frac{2}{3} \right)^{k/2} + 2 \left(\frac{2}{5} \right)^{k/2} + \cdots + 2 \left(\frac{1}{685} \right)^{k/2} + \frac{4459\sqrt{152}}{33(k-3)} \left(\frac{22}{49} \right)^{k/2}, \\
|R_{19,2}^*| &\leq 4 + 4 \left(\frac{1}{3} \right)^{k/2} + 2 \left(\frac{1}{5} \right)^{k/2} + \cdots + 2 \left(\frac{1}{685} \right)^{k/2} + \frac{4459}{3(k-3)} \left(\frac{80}{147} \right)^{k/2}, \\
|R_{19,3}^*| &\leq 6 + 2 \left(\frac{2}{3} \right)^{k/2} + 2 \left(\frac{1}{2} \right)^{k/2} + \cdots + 2 \left(\frac{1}{646} \right)^{k/2} + \frac{4459}{3(k-3)} \left(\frac{80}{147} \right)^{k/2}.
\end{align*}
\]

We want to show that $|R_{19,1}^*| < 2$, $|R_{19,2}^*| < 2$, and $|R_{19,3}^*| < 2$. But the right-hand side of every bound is greater than 2. The cases $(c, d) = (\pm 4, 1)$ give us bound equal to 2 for $|R_{19,1}^*|$, and the cases $(c, d) = (\pm 3, -1)$ and $(\pm 5, -1)$ give us bound equal to 4 for $|R_{19,2}^*|$, and the cases $(c, d) = (\pm 2, 1)$, $(\pm 4, -1)$, and $(\pm 5, 1)$ give us bound equal to 6 for $|R_{19,3}^*|$.

ON THE ZEROS OF EISENSTEIN SERIES FOR $\Gamma_0(p)$ AND $\Gamma_0(p)$ OF LOW LEVELS
5.7. Valence formula. In order to decide the locating of zeros of $E^*_{k,p}(z)$, we need the valence formula for $\Gamma_0^*(p)$:

5.7.1. Valence formula for $\Gamma_0^*(5)$.

Proposition 5.12. Let f be a modular function of weight k for $\Gamma_0^*(5)$, which is not identically zero. We have

$$v_\infty(f) + \frac{1}{2}v_{i/\sqrt{5}}(f) + \frac{1}{2}v_{\rho_5,1}(f) + \frac{1}{2}v_{\rho_5,2}(f) + \sum_{p \in \Gamma_0^*(5) \setminus \mathbb{H} \atop p \neq i/\sqrt{5}, \rho_5,1, \rho_5,2} v_p(f) = \frac{k}{4},$$

where $\rho_5,1 := -1/2 + i/(2\sqrt{5})$, $\rho_5,2 := -2/5 + i/5$.

Proof. Let f be a nonzero modular function of weight k for $\Gamma_0^*(5)$, and let C be a contour of its fundamental domain $F^*(5)$ represented in Figure 8, whose interior contains every zero and pole of f except for $i/\sqrt{5}$, $\rho_5,1$, and $\rho_5,2$. By the Residue theorem, we have

$$\frac{1}{2\pi i} \int_C \frac{df}{f} = \sum_{p \in \Gamma_0^*(5) \setminus \mathbb{H} \atop p \neq i/\sqrt{5}, \rho_5,1, \rho_5,2} v_p(f).$$

Similar to Proposition 3.1, (See [SE])

(i) For the arc GA, we have

$$\frac{1}{2\pi i} \int_G^A \frac{df}{f} = -v_\infty(f).$$

(ii) For the arcs BB', CC', DD', EE', and FF', when the radii of each arc tends to 0, then we have

$$\frac{1}{2\pi i} \int_E^F \frac{df}{f} = -\frac{1}{4}v_{\rho_5,1}(f), \quad \frac{1}{2\pi i} \int_D^E \frac{df}{f} = -\frac{1}{4}v_{\rho_5,2}(f).$$

(iii) For the arcs AB and F^*G, since $f(Tz) = f(z)$ for $T = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right)$,

$$\frac{1}{2\pi i} \int_A^K \frac{df}{f} + \frac{1}{2\pi i} \int_F^{F'} \frac{df}{f} = 0.$$
(iv) For the arcs $C'D$ and $D'E$, since $f(W_5z) = (\sqrt{5}z)^k f(z)$, we have
\[
\frac{df(W_5z)}{f(W_5z)} = k \frac{dz}{z} + \frac{df(z)}{f(z)}.
\]
When the radii of the arcs CC', DD', EE' tend to 0, then
\[
\frac{1}{2\pi i} \int_{C'}^{D} \frac{df(z)}{f(z)} + \frac{1}{2\pi i} \int_{E'}^{E} \frac{df(z)}{f(z)} = \frac{1}{2\pi i} \int_{C'}^{D} \left(-k \frac{dz}{z} \right) = k \frac{\theta_1}{2\pi},
\]
where $\tan \theta_1 = 2$.

Similarly, for the arcs $B'C$ and $E'F$, since $f'(\left(\frac{-2}{5}, \frac{1}{2}\right) W_5z) = (2\sqrt{5}z + \sqrt{5})^k f(z)$, we have
\[
\frac{df'(\left(\frac{-2}{5}, \frac{1}{2}\right) W_5z)}{f'(\left(\frac{-2}{5}, \frac{1}{2}\right) W_5z)} = k \frac{dz}{z + 1/2} + \frac{df(z)}{f(z)}.
\]
When the radii of the arcs CC', DD', EE' tend to 0, then
\[
\frac{1}{2\pi i} \int_{B'}^{C} \frac{df(z)}{f(z)} + \frac{1}{2\pi i} \int_{E'}^{F} \frac{df(z)}{f(z)} = \frac{1}{2\pi i} \int_{B'}^{C} \left(-k \frac{dz}{z + 1/2} \right) = k \frac{\theta_2}{2\pi},
\]
where $\tan \theta_2 = 1/2$.

Thus, since $\theta_1 + \theta_2 = \pi/2$,
\[
k \frac{\theta_1}{2\pi} + k \frac{\theta_2}{2\pi} = k \frac{\pi}{4}
\]
\[
\square
\]

5.7.2. Valence formula for $\Gamma_0^*(7)$.

Proposition 5.13. Let f be a modular function of weight k for $\Gamma_0^*(7)$, which is not identically zero. We have
\[
(117) \quad v_\infty(f) + \frac{1}{2} v_{\sqrt{7}}(f) + \frac{1}{2} v_{\rho_{7,1}}(f) + \frac{1}{3} v_{\rho_{7,2}}(f) + \sum_{p \in \mathbb{P}(7) \setminus \{7\}} v_p(f) = \frac{k}{2},
\]
where $\rho_{7,1} := -1/2 + i/2\sqrt{7}$, $\rho_{7,2} := -5/4 + \sqrt{3}i/4$.

The proof of this proposition is similar to Proposition 3.1, 5.12.

5.7.3. Valence formula for $\Gamma_0^*(11)$.

Proposition 5.14. Let f be a modular function of weight k for $\Gamma_0^*(11)$, which is not identically zero. We have
\[
(118) \quad v_\infty(f) + \frac{1}{2} v_{\sqrt{11}}(f) + \frac{1}{2} v_{\rho_{11,1}}(f) + \frac{1}{2} v_{\rho_{11,2}}(f) + \sum_{p \in \mathbb{P}(11) \setminus \{11\}} v_p(f) + \frac{1}{2} v_{\rho_{11,3}}(f)
\]
\[
+ \sum_{p \in \mathbb{P}(11) \setminus \{11\}} v_p(f) = \frac{k}{2},
\]
where $\rho_{11,1} := -1/2 + i/(2\sqrt{11})$, $\rho_{11,2} := -1/3 + i/(3\sqrt{11})$, and $\rho_{11,3} := 1/3 + i/(3\sqrt{11})$.

Proof. Let f be a nonzero modular function of weight k for $\Gamma_0^*(11)$, and let C be a contour of its fundamental domain $\mathbb{F}^*(11)$ (Figure 7), whose interior contains every zero and pole of f except for $i/\sqrt{11}$, $\rho_{11,1}$, $\rho_{11,2}$, $\rho_{11,3}$, and $\rho_{11,4} := -25/66 + \sqrt{35}/66$ (cf. Figure 8). By the Residue theorem, we have
\[
\frac{1}{2\pi i} \int_C \frac{df}{f} = \sum_{p \in \mathbb{P}(11) \setminus \{11\}} v_p(f).
\]

(i) For the arc around ∞, we have $-v_\infty(f)$.
(ii) For the arcs around $i/\sqrt{13}$, $\rho_{11,1}, \cdots, \rho_{11,4}$, when the radii of each arc tends to 0, then we have
\[
\frac{1}{2}v_{i/\sqrt{13}}(f), \quad -\frac{1}{2}v_{\rho_{11,1}}(f), \quad -\frac{1}{2}v_{\rho_{11,2}}(f), \quad -\frac{1}{2}v_{\rho_{11,3}}(f),
\]

\[-v_{\rho_{11,4}}(f).
\]

(iii) For the arcs on $\{z : Re(z) = -1/2\}$ and $\{z : Re(z) = 1/2\}$, since $f(Tz) = f(z)$ for $T = (\frac{1}{1} \frac{1}{1})$, we have 0.

(iv) For the arcs on $\{z : |z| = 1/\sqrt{13}\}$, since $f(W_{13}z) = (\sqrt{13}z)^k f(z)$, we have $k\theta_1/(2\pi)$, where $\tan\theta_1 = 7/\sqrt{3}$. For the arcs on $\{z : |z + 1/2| = 1/(2\sqrt{13})\}$, since $f \left(\left(\frac{-1}{2} \frac{1}{2} \right) W_{13}z \right) = (2\sqrt{13}z + \sqrt{13})^k f(z)$, we have $k\theta_2/(2\pi)$, where $\tan\theta_2 = 8/\sqrt{35}$.

Furthermore, for the arcs on $\{z : |z + 1/3| = 1/(3\sqrt{13})\}$, since $f \left(\left(\frac{1}{1} \frac{-1}{3} \right) W_{13}z \right) = (3\sqrt{13}z + \sqrt{13})^k f(z)$, we have
\[
\frac{df \left(\left(\frac{-1}{1} \frac{1}{3} \right) W_{13}z \right)}{f \left(\left(\frac{-1}{1} \frac{1}{3} \right) W_{13}z \right)} = k_1 \frac{dz}{z + 1/3} + \frac{df(z)}{f(z)}, \quad \text{and} \quad k_1 \frac{\theta_3}{2\pi},
\]

where $\tan\theta_3 = 3/\sqrt{35}$.

Similarly, for the arcs on $\{z : |z - 1/3| = 1/(3\sqrt{13})\}$, since $f \left(\left(\frac{1}{1} \frac{1}{3} \right) W_{13}z \right) = (3\sqrt{13}z - \sqrt{13})^k f(z)$, we have $k\theta_3/(2\pi)$.

Thus, since $\theta_1 + \theta_2 + 2\theta_3 = \pi$,
\[
k_1 \frac{\theta_1}{2\pi} + k_2 \frac{\theta_2}{2\pi} + 2 \cdot k_3 \frac{\theta_3}{2\pi} = k.
\]

\[\square\]

5.7.4. Valence formula for $\Gamma_0'(13)$.

Proposition 5.15. Let f be a modular function of weight k for $\Gamma_0'(13)$, which is not identically zero. We have
\[
(119) \quad v_\infty(f) + \frac{1}{2}v_{i/\sqrt{13}}(f) + \frac{1}{2}v_{\rho_{13,1}}(f) + \frac{1}{2}v_{\rho_{13,2}}(f) + \frac{1}{2}v_{\rho_{13,3}}(f) + \frac{1}{3}v_{\rho_{13,4}}(f) + \sum_{p \in \mathbb{H}} v_p(f) = \frac{7}{12}k,
\]

where $\rho_{13,1} := -1/2 + i/(2\sqrt{13})$, $\rho_{13,2} := -5/13 + i/13$, and $\rho_{13,3} := -7/26 + \sqrt{3}/26$.

Proof. Let f be a nonzero modular function of weight k for $\Gamma_0'(13)$, and let \mathcal{C} be a contour of its fundamental domain $\mathbb{H}^*(13)$ (Figure 7), whose interior contains every zero and pole of f except for $i/\sqrt{13}$, $\rho_{13,1}$, $\rho_{13,2}$, and $\rho_{13,3}$ (cf. Figure 8). By the Residue theorem, we have
\[
\frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{df}{f} = \sum_{p \in \mathbb{H}} v_p(f).
\]

(i) For the arc around ∞, we have $-v_\infty(f)$.

(ii) For the arcs around $i/\sqrt{13}$, $\rho_{13,1}$, $\rho_{13,2}$, and $\rho_{13,3}$, when the radii of each arc tends to 0, then we have
\[
-\frac{1}{2}v_{i/\sqrt{13}}(f), \quad -\frac{1}{2}v_{\rho_{13,1}}(f), \quad -\frac{1}{2}v_{\rho_{13,2}}(f), \quad -\frac{1}{3}v_{\rho_{13,3}}(f).
\]

(iii) For the arcs on $\{z : Re(z) = -1/2\}$ and $\{z : Re(z) = 1/2\}$, since $f(Tz) = f(z)$ for $T = (\frac{1}{1} \frac{1}{1})$, we have 0.

(iv) For the arcs on $\{z : |z| = 1/\sqrt{13}\}$, since $f(W_{13}z) = (\sqrt{13}z)^k f(z)$, we have $k\theta_1/(2\pi)$, where $\tan\theta_1 = 7/\sqrt{3}$. For the arcs on $\{z : |z + 1/2| = 1/(2\sqrt{13})\}$, since $f \left(\left(\frac{-1}{2} \frac{1}{2} \right) W_{13}z \right) = (2\sqrt{13}z + \sqrt{13})^k f(z)$, we have $k\theta_2/(2\pi)$, where $\tan\theta_2 = 8/\sqrt{35}$.

Furthermore, for the arcs on $\{z : |z + 1/3| = 1/(3\sqrt{13})\}$, since $f \left(\left(\frac{1}{1} \frac{-1}{3} \right) W_{13}z \right) = (3\sqrt{13}z + \sqrt{13})^k f(z)$, we have $k(\theta_3 + \theta_3')/(2\pi)$, where $\tan\theta_3 = 5/(3\sqrt{3})$ and $\tan\theta_3' = 2/3$.

Thus, since $\theta_1 + \theta_2 + 2\theta_3 + \theta_3' = 7\pi/6$,
\[
k_1 \frac{\theta_1}{2\pi} + k_2 \frac{\theta_2}{2\pi} + k_3 \frac{\theta_3}{2\pi} + k_3' \frac{\theta_3'}{2\pi} = \frac{7}{12}k.
\]

\[\square\]
5.7.5. Valence formula for $\Gamma_0^*(17)$.

Proposition 5.16. Let f be a modular function of weight k for $\Gamma_0^*(17)$, which is not identically zero. We have

\begin{equation}
(120) \quad v_\infty(f) + \frac{1}{2} v_{i/\sqrt{17}}(f) + \frac{1}{2} v_{\rho_{17,1}}(f) + \frac{1}{2} v_{\rho_{17,3}}(f) + \frac{1}{2} v_{\rho_{17,4}}(f) + \frac{1}{2} v_{\rho_{17,5}}(f) + \sum_{p \in \Gamma_0^*(17) \setminus \mathbb{H}} v_p(f) = \frac{3}{4} k,
\end{equation}

where $\rho_{17,1} := -1/2 + i/(2\sqrt{17})$, $\rho_{17,2} := -1/3 + i/(3\sqrt{17})$, $\rho_{17,3} := -4/17 + i/17$, and $\rho_{17,4} := 1/3 + i/(3\sqrt{17})$.

Proof. Let f be a nonzero modular function of weight k for $\Gamma_0^*(17)$, and let \mathcal{C} be a contour of its fundamental domain $\mathbb{H}^*(17)$ (Figure 7), whose interior contains every zero and pole of f except for $i/\sqrt{17}$, $\rho_{17,1}, \ldots, \rho_{17,4}$, and $\rho_{17,5} := -20/51 + 2\sqrt{2}/51$ (cf. Figure 8). By the Residue theorem, we have

\[
\frac{1}{2\pi i} \int_{\mathcal{C}} \frac{df}{f} = \sum_{p \in \Gamma_0^*(17) \setminus \mathbb{H}} v_p(f).
\]

(i) For the arc around ∞, we have $-v_\infty(f)$.

(ii) For the arcs around $i/\sqrt{17}$, $\rho_{17,1}, \ldots, \rho_{17,5}$, when the radii of each arc tends to 0, then we have

\[
-\frac{1}{2} v_{i/\sqrt{17}}(f), \quad -\frac{1}{2} v_{\rho_{17,1}}(f), \quad -\frac{1}{2} v_{\rho_{17,3}}(f), \quad -\frac{1}{2} v_{\rho_{17,5}}(f).
\]

(iii) For the arcs on $\{z; \text{Re}(z) = -1/2\}$ and $\{z; \text{Re}(z) = 1/2\}$, since $f(Tz) = f(z)$ for $T = \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}\right)$, we have 0.

(iv) For the arcs on $\{z; |z| = 1/\sqrt{17}\}$, since $f(W_{17}z) = (\sqrt{17}z)^k f(z)$, we have $k\theta_1/(2\pi)$, where $\tan \theta_1 = 4$.

For the arcs on $\{z; |z| = 1/2\}$, since $f(W_{17}z) = (2\sqrt{17}z)^k f(z)$, we have $k\theta_2/(2\pi)$, where $\tan \theta_2 = 11/(4\sqrt{2})$.

For the arcs on $\{z; |z| = 1/3\}$, since $f((1/\sqrt{17} z)^{1/3} W_{17}z) = (3\sqrt{17}z + \sqrt{17})^k f(z)$, we have $k\theta_3/(2\pi)$.

Furthermore, for the arcs on $\{z; |z| = 1/4\}$, since $f((1/\sqrt{17} z)^{1/4} W_{17}z) = (4\sqrt{17}z + \sqrt{17})^k f(z)$, we have

\[
df((1/\sqrt{17} z)^{1/4} W_{17}z) \frac{dz}{f((1/\sqrt{17} z)^{1/4} W_{17}z)} = k \frac{dz}{z + 1/4} + \frac{df(z)}{f(z)}, \quad \text{and} \quad k \frac{\theta_4 + \theta_4'}{2\pi},
\]

where $\tan \theta_4 = 1/4$ and $\tan \theta_4' = 5/(8\sqrt{2})$.

Thus, since $\theta_1 + \theta_2 + 2\theta_3 + \theta_4 + \theta_4' = 3\pi/2$,

\[
k \frac{\theta_1}{2\pi} + k \frac{\theta_2}{2\pi} + 2k \frac{\theta_3}{2\pi} + k \frac{\theta_4 + \theta_4'}{2\pi} = \frac{3}{4} k.
\]

5.7.6. Valence formula for $\Gamma_0^*(19)$.

Proposition 5.17. Let f be a modular function of weight k for $\Gamma_0^*(19)$, which is not identically zero. We have

\begin{equation}
(121) \quad v_\infty(f) + \frac{1}{2} v_{i/\sqrt{17}}(f) + \frac{1}{2} v_{\rho_{19,1}}(f) + \frac{1}{3} v_{\rho_{19,3}}(f) + \frac{1}{2} v_{\rho_{19,5}}(f) + \frac{1}{2} v_{\rho_{19,4}}(f) + \sum_{p \in \Gamma_0^*(19) \setminus \mathbb{H}} v_p(f) = \frac{5}{6} k,
\end{equation}

where $\rho_{19,1} := -1/2 + i/(2\sqrt{19})$, $\rho_{19,2} := -1/3 + i/(3\sqrt{19})$, $\rho_{19,3} := -4/19 + i/19$, and $\rho_{19,4} := 1/3 + i/(3\sqrt{19})$.

□
where $\rho_{19, 1} := -1/2 + i/(2\sqrt{19})$, $\rho_{19, 2} := -15/38 + \sqrt{3}i/38$, $\rho_{19, 3} := -1/4 + i/(4\sqrt{19})$, and $\rho_{19, 4} := 1/4 + i/(4\sqrt{19})$.

Proof. Let f be a nonzero modular function of weight k for $\Gamma_0^*(19)$, and let \mathcal{C} be a contour of its fundamental domain \mathbb{H} (Figure 7), whose interior contains every zero and pole of f except for $i/\sqrt{19}$, $\rho_{19, 1}, \cdots, \rho_{19, 4}$, and $\rho_{19, 5} := 21/76 + \sqrt{15}i/76$ (cf. Figure 8). By the Residue theorem, we have

$$
\frac{1}{2\pi i} \int_{\mathcal{C}} \frac{df}{f} = \sum_{p \in \mathbb{H}, p \neq i/\sqrt{19}, \rho_{19, 1}, \cdots, \rho_{19, 5}} v_p(f).
$$

(i) For the arc around ∞, we have $-v_{\infty}(f)$.

(ii) For the arcs around $i/\sqrt{19}$, $\rho_{19, 1}, \cdots, \rho_{19, 5}$, when the radii of each arc tends to 0, then we have

$$
-\frac{1}{2}v_{i/\sqrt{19}}(f), \quad -\frac{1}{2}v_{\rho_{19, 1}}(f), \quad -\frac{1}{2}v_{\rho_{19, 2}}(f), \quad -\frac{1}{2}v_{\rho_{19, 3}}(f), \quad -\frac{1}{2}v_{\rho_{19, 4}}(f),
$$

$$
-\frac{1}{2}v_{\rho_{19, 5}}(f).
$$

(iii) For the arcs on $\{z; Re(z) = -1/2\}$ and $\{z; Re(z) = 1/2\}$, since $f(Tz) = f(z)$ for $T = (1/2 \ 1)$, we have 0.

(iv) For the arcs on $\{z; |z| = 1/\sqrt{19}\}$, since $f(W_{19}z) = (\sqrt{19}z)^k f(z)$, we have $k\theta_1/(2\pi)$, where $\tan \theta_1 = 17/\sqrt{15}$. For the arcs on $\{z; |z| \leq 1/2\}$, since $f((-1/2) W_{19}z) = (2/19z + \sqrt{19})^{k} f(z)$, we have $k\theta_2/(2\pi)$, where $\tan \theta_2 = 4/\sqrt{3}$. For the arcs on $\{z; |z| \leq 1/3\}$, since $f((-1/3) W_{19}z) = (3/19z + \sqrt{19})^{k} f(z)$, we have $k(\theta_3 + \theta_4)/(2\pi)$, where $\tan \theta_3 = 13/(3\sqrt{15})$ and $\tan \theta_4 = 7/(3\sqrt{3})$

Furthermore, for the arcs on $\{z; |z| = 1/4\}$, since $f((-1/4) W_{19}z) = (4/19z + \sqrt{19})^{k} f(z)$, we have $k\theta_5/(2\pi)$, where $\tan \theta_5 = 2/\sqrt{15}$. Similarly, for the arcs on $\{z; |z| = 1/4\}$, since $f((-1/4) W_{19}z) = (4/19z - \sqrt{19})^{k} f(z)$, we have $k\theta_6/(2\pi)$.

Thus, since $\theta_1 + \theta_2 + \theta_3 + \theta_4 + 2\theta_5 = 5\pi/3$,

$$
k\frac{\theta_1}{2\pi} + k\frac{\theta_2}{2\pi} + k\frac{\theta_3}{2\pi} + k\frac{\theta_4}{2\pi} + 2 \cdot k\frac{\theta_5}{2\pi} = \frac{5}{6} k.
$$

\[\square\]
5.8. $\Gamma_0^*(5)$.

5.8.1. Preliminaries. Let $\alpha_5 \in [0, \pi/2]$ such that $\tan \alpha_5 = 2$, then we denote

$$A_{5,1}^* := \{ z : |z| = 1/\sqrt{5}, \pi/2 < \text{Arg}(z) < \pi/2 + \alpha_5 \},$$

$$A_{5,2}^* := \{ z : |z + 1/2| = 1/(2\sqrt{5}), \alpha_5 < \text{Arg}(z) < \pi/2 \}.$$

Now we have

$$\rho_{5,2} = \frac{2}{5} + i \frac{1}{\sqrt{5}} = \frac{e^{i(\pi/2 + \alpha_5)}}{2\sqrt{5}} = \frac{e^{i\alpha_5} - 1}{2},$$

and we have

$$F_{k,5,1}^*(\pi/2 + \alpha_5) = e^{ik(\pi/2 + \alpha_5)/2}E_{k,5}^*(\rho_{5,2}),$$

$$F_{k,5,2}^*(\alpha_5) = e^{ik\alpha_5/2}E_{k,5}^*(\rho_{5,2}).$$

Now, we define

$$F_{k,5}^* (\theta) = \begin{cases} F_{k,5,1}^* (\theta) & \pi/2 \leq \theta \leq \pi/2 + \alpha_5 \\ F_{k,5,2}^* (\theta - \pi/2) & \pi/2 + \alpha_5 \leq \theta \leq \pi \end{cases}.$$

Then $F_{k,5}^*$ is continuous in the interval $[\pi/2, \pi]$. Note that $F_{k,5,1}^* (\pi/2 + \alpha_5) = e^{i(\pi/2)/2}F_{k,5,2}^*(\alpha_5)$.

Let f be a modular form for $\Gamma_0^*(5)$ of weight k, and let $k \equiv 2 \pmod{4}$. Then we have

$$f(i/\sqrt{5}) = f(W_5 i/\sqrt{5}) = i^k f(i/\sqrt{5}) = -f(i/\sqrt{5}),$$

$$f(\rho_{5,1}) = f((i \cdot -1) (-\frac{1}{2} \cdot \frac{1}{2}) W_5 \rho_{5,1}) = i^k f(\rho_{5,1}) = -f(\rho_{5,1}),$$

$$f(\rho_{5,2}) = f((-\frac{1}{2} \cdot \frac{1}{2}) \rho_{5,2}) = i^k f(\rho_{5,2}) = -f(\rho_{5,2}).$$

Thus $f(i/\sqrt{5}) = f(\rho_{5,1}) = f(\rho_{5,2}) = 0$, then we have $v_{i/\sqrt{5}}(f) \geq 1$, $v_{\rho_{5,1}}(f) > 1$, and $v_{\rho_{5,2}}(f) \geq 1$.

Let k be an even integer such that $k \equiv 0 \pmod{4}$. Then we have

$$E_{k,5}^* \left(i \frac{5}{\sqrt{5}} \right) = \frac{2 \cdot 5^{k/2}}{5^{k/2} + 1} E_k (i) \neq 0$$

$$E_{k,5}^*(\rho_{5,1}) = \frac{2 \cdot 5^{k/2}}{5^{k/2} + 1} E_k \left(-\frac{1}{2} + \frac{\sqrt{5}}{2} i \right) \neq 0$$

$$E_{k,5}^*(\rho_{5,2}) = \frac{1}{5^{k/2} + 1} (5^{k/2} + (2 + i)^k) E_k (i) \neq 0.$$

Thus $v_{i/\sqrt{5}} (E_{k,5}^*) = v_{\rho_{5,1}} (E_{k,5}^*) = v_{\rho_{5,2}} (E_{k,5}^*) = 0$.

5.8.2. E_{5}^* of low weights.

Let $k \geq 4$ be an even integer divisible by 4. We note that $N := c^2 + d^2$.

Firstly, we consider the case $N = 1$. Then we can write;

$$F_{k,5}^*(\pi/2) = F_{k,5,1}^*(\pi/2) = 2 \cos(k\pi/4) + R_{5,\pi/2}^*$$

where

$$|R_{5,\pi/2}^*| \leq \sum_{\substack{\{c,d\} \in \mathbb{Z}^2 \\text{ such that } c^2 + d^2 = N > 1}} |ce^{i\pi/4} + \sqrt{5}de^{-i\pi/4}|^{-k}.$$

Let $v_k(c,d, \theta) := |ce^{i\theta} + \sqrt{5}de^{-i\theta}|^{-k}$, then $v_k(c,d, \pi/2) = 1/(c^2 + 5d^2)^{k/2}$. Now we will consider the next cases, namely $N = 2, 5, 10, 13, 17$, and $N \geq 25$. We have the following:

When $N = 2$, $v_k(1,1, \pi/2) \leq (1/6)^{k/2}$.

When $N = 5$, $v_k(2,1, \pi/2) \leq (1/21)^{k/2}$, $v_k(2,1, \pi/2) \leq (1/3)^k$.

When $N = 10$, $v_k(1,3, \pi/2) \leq (1/46)^{k/2}$, $v_k(3,1, \pi/2) \leq (1/14)^{k/2}$.

When $N = 13$, $v_k(2,3, \pi/2) \leq (1/7)^k$, $v_k(3,2, \pi/2) \leq (1/29)^{k/2}$.

When $N = 17$, $v_k(1,4, \pi/2) \leq (1/21)^{k/2}$, $v_k(4,1, \pi/2) \leq (1/3)^{2k}$.
Furthermore, $e^2 + 5d^2 \geq N$,
and the number of terms with $e^2 + d^2 = N$ is not more than $(96/25)N^{1/2}$ for $N \geq 25$. Then
\[
|R_{5,\pi/2}|_{N \geq 25} \leq \frac{192}{25(k - 3)} \left(\frac{1}{24} \right)^{(k-3)/2}.
\]
Furthermore,
\[
|R_{5,\pi/2}| \leq 4 \left(\frac{1}{6} \right)^{k/2} + 4 \left(\frac{1}{3} \right)^k + \cdots + 4 \left(\frac{1}{3} \right)^{2k} + \frac{192}{25(k - 3)} \left(\frac{1}{24} \right)^{(k-3)/2},
\]
\[
\leq 1.77563... \quad (k \geq 4)
\]
In conclusion, we have the following:

Lemma 5.7. For an even integer $k \geq 4$,
\[
F_{k,5}^*(\pi/2) = \begin{cases}
> 0 & k \equiv 0 \pmod{8} \\
< 0 & k \equiv 4 \pmod{8} \\
0 & k \equiv 2 \pmod{4}
\end{cases}.
\]

$F_{k,5}^*(\pi/2 + \alpha_5)$. Let $k \geq 4$ be an even integer divisible by 4.
\[
F_{k,5}^*(\pi/2 + \alpha_5) = e^{2k(\pi/2 + \alpha_5)/2}E_{k,5}(\rho_{5,2})
= e^{2k(\pi/2 + \alpha_5)/2} \sum_{i=0}^{2k} \cos(k(\pi/2 + \alpha_5)/2)E_k(i).
\]
Here
\[
e^{2k(\pi/2 + \alpha_5)/2}(5^{k/2} + (2 + i)^k) = 5^{k/2}e^{2k(\pi/2 + \alpha_5)/2}(1 + e^{-2k(\pi/2 + \alpha_5)})
= 2 \cdot 5^{k/2} \cos(k(\pi/2 + \alpha_5)/2).
\]

In conclusion, we have the following:

Lemma 5.8. For an even integer $k \geq 4$,
\[
F_{k,5}^*(\pi/2 + \alpha_5) = \begin{cases}
\frac{2^{5^{k/2}}}{5^{k/2} + 1} \cos(k(\pi/2 + \alpha_5)/2)E_k(i) & k \equiv 0 \pmod{4} \\
0 & k \equiv 2 \pmod{4}
\end{cases}.
\]

Furthermore, by Proposition 3.3, we have $E_k(i) > 0$ for every $k \geq 4$ such that $k \equiv 0 \pmod{4}$.

$F_{k,5}^*(\pi)$. Let $k \geq 8$ be an even integer divisible by 4. We note that $N := e^2 + d^2$.
Firstly, we consider the case $N = 1$. Then we can write;
\[
F_{k,5}^*(\pi) = F_{k,5,2}^*(\pi/2) = 2 \cos(k\pi/4) + R_{5,\pi}^*.
\]
where
\[
|R_{5,\pi}| \leq \sum_{(c,d)=1 \atop 2|cd} \sum_{N=1} |ce^{i\pi/4} + d\sqrt{5}e^{-i\pi/4}|^{-k} + \sum_{(c,d)=1 \atop 2|cd} \sum_{N=1} |ce^{i\pi/4} + d\sqrt{5}e^{-i\pi/4}|^{-k}.
\]
Let $v_k(c,d,\theta) := |ce^{i\theta/2} + \sqrt{5}d e^{-i\theta/2}|^{-k}$, then $v_k(c,d,\pi/2) = 1/(e^2 + 5d^2)^{k/2}$. Now we will consider the next cases, namely $N = 2, 5, 10, 13, 17$, and $N \geq 25$. We have the following:

When $N = 2$, $v_k(1,1,\pi/2) \leq (2/3)^{k/2}$.
When $N = 5$, $v_k(1,2,\pi/2) \leq (1/21)^{k/2}$, $v_k(2,1,\pi/2) \leq (1/3)^k$.
When $N = 10$, $v_k(1,3,\pi/2) \leq (2/23)^{k/2}$, $v_k(3,1,\pi/2) \leq (2/7)^{k/2}$.
When $N = 13$, $v_k(2,3,\pi/2) \leq (1/7)^k$, $v_k(3,2,\pi/2) \leq (1/29)^{k/2}$.
When $N = 17$, $v_k(1,4,\pi/2) \leq (1/21)^{k/2}$, $v_k(4,1,\pi/2) \leq (1/3)^2k$.
When $N \geq 25$, $c^2 + 5d^2 \geq N$, and the number of terms with $c^2 + d^2 = N$ is not more than $(96/25)N^{1/2}$ for $N \geq 25$. Then

$$|R_{5,\pi}^*|_{N \geq 25} \leq \frac{1536}{25(k-3)} \left(\frac{1}{6}\right)^{(k-3)/2}.$$

Furthermore,

$$|R_{5,\pi}^*| \leq 4 \left(\frac{2}{3}\right)^{k/2} + \cdots + 4 \left(\frac{1}{3}\right)^{2k} + \frac{1536}{25(k-3)} \left(\frac{1}{6}\right)^{(k-3)/2},$$

$$\leq 0.95701 \cdots \quad (k \geq 8)$$

In conclusion, we have following:

Lemma 5.9. For an even integer $k \geq 8$,

$$F_{k,5}^*(\pi) \begin{cases} > 0 & k \equiv 0 \pmod{8} \\ < 0 & k \equiv 4 \pmod{8} \\ = 0 & k \equiv 2 \pmod{4} \end{cases}$$

$F_{k,5}^*(\theta)$ for $\pi/2 \leq \theta \leq 5\pi/6$. Let $k \geq 10$ be an even integer. We note that $N := c^2 + d^2$.

Firstly, we consider the case $N = 1$. Since $5\pi/6 < \pi/2 + \alpha_5$, we can write;

$$F_{k,5}^*(\theta) = F_{k,5,1}^*(\theta) = 2 \cos(k\theta/2) + R_{5,5\pi/6}^*$$

for $\theta \in [\pi/2, 5\pi/6]$, where

$$|R_{5,5\pi/6}^*| \leq \sum_{(c,d) = 1 \atop 5d \geq 1 \atop N \geq 1} \left|ce^{i\theta/2} + \sqrt{5}de^{-i\theta/2}\right|^{-k}.$$

Let $v_k(c, d, \theta) := |ce^{i\theta/2} + \sqrt{5}de^{-i\theta/2}|^{-k}$, then $v_k(c, d, \theta) = 1/ \left(c^2 + 5d^2 + 2\sqrt{5}cd\cos \theta\right)^{k/2}$. Now we will consider the next cases, namely $N = 2, 5, 10$, and $N \geq 13$. Considering $-\sqrt{3}/2 \leq \cos \theta \leq 0$, we have the following:

When $N = 2$,

$$v_k(1, 1, \theta) \leq 1/ \left(6 - \sqrt{15}\right)^{k/2}, \quad v_k(1, -1, \theta) \leq (1/6)^{k/2}.$$

When $N = 5$,

$$v_k(1, 2, \theta) \leq 1/ \left(21 - 2\sqrt{15}\right)^{k/2}, \quad v_k(1, -2, \theta) \leq (1/21)^{k/2},$$

$$v_k(2, 1, \theta) \leq 1/ \left(9 - 2\sqrt{15}\right)^{k/2}, \quad v_k(2, -1, \theta) \leq (1/3)^k.$$

When $N = 10$,

$$v_k(1, 3, \theta) \leq 1/ \left(46 - 3\sqrt{15}\right)^{k/2}, \quad v_k(1, -3, \theta) \leq (1/46)^{k/2},$$

$$v_k(3, 1, \theta) \leq 1/ \left(14 - 3\sqrt{15}\right)^{k/2}, \quad v_k(3, -1, \theta) \leq (1/14)^k.$$

When $N \geq 13$,

$$|ce^{i\theta/2} + \sqrt{5}de^{-i\theta/2}|^2 \geq N/5,$$

and the number of terms with $c^2 + d^2 = N$ is not more than $(21/5)N^{1/2}$ for $N \geq 13$. Then

$$|R_{5,5\pi/6}^*|_{N \geq 13} \leq \frac{1008\sqrt{3}}{5(k-3)} \left(\frac{5}{12}\right)^{(k-3)/2}.$$

Furthermore,

$$|R_{5,\pi/2}^*|_{N \geq 13} \leq 2 \left(\frac{1}{9 - 2\sqrt{15}}\right)^{k/2} + \cdots + 2 \left(\frac{1}{46}\right)^{k/2} + \frac{1008\sqrt{3}}{5(k-3)} \left(\frac{5}{12}\right)^{(k-3)/2},$$

$$\leq 1.34372 \cdots \quad (k \geq 10)$$

In conclusion, we have following:
Lemma 5.10. For an even integer \(k \geq 10 \),
\[
F_{k,5}^*(\theta) = 2\cos(k\theta/2) + R_{5,5\pi/6}^* \quad \text{for } \theta \in [\pi/2, 5\pi/6],
\]
where \(|R_{5,5\pi/6}^*| < 2 \).

The locating zeros of \(E_{4,5}^* \). We have \(F_{4,5}^*(\pi/2) < 0 \) by Lemma 5.7, and we have \(F_{4,5}^*(\pi/2 + \alpha_5) > 0 \) by Lemma 5.8 because \(\cos(2(\pi/2 + \alpha_5)) = 3/5 > 0 \). Thus \(E_{4,5}^* \) has at least one zero in \(\mathbb{A}_{5,1}^* \). Furthermore, by the valence formula for \(\Gamma_0^*(5) \) (Proposition 5.12), \(E_{4,5}^* \) has no other zero. Thus we have following:

Lemma 5.11. \(E_{4,5}^* \) has only one zero in \(\mathbb{A}_{5,1}^* \), and we have \(v_{i/\sqrt{\alpha}}(E_{4,5}^*) = v_{p_{5,1}}(E_{4,5}^*) = v_{p_{5,2}}(E_{4,5}^*) = 0 \).

The locating zeros of \(E_{6,5}^* \). By previous subsection, we have \(v_{i/\sqrt{\alpha}}(E_{6,5}^*) \geq 1 \), \(v_{p_{6,1}}(E_{6,5}^*) \geq 1 \), and \(v_{p_{6,2}}(E_{6,5}^*) \geq 1 \). Furthermore, by the valence formula for \(\Gamma_0^*(5) \), \(E_{6,5}^* \) has no other zero. Thus we have following:

Lemma 5.12. We have \(v_{i/\sqrt{\alpha}}(E_{6,5}^*) = v_{p_{5,1}}(E_{6,5}^*) = v_{p_{5,2}}(E_{6,5}^*) = 1 \), and \(E_{6,5}^* \) has no other zero.

The locating zeros of \(E_{8,5}^* \). We have \(F_{8,5}^*(\pi/2) > 0 \) by Lemma 5.7, and we have \(F_{8,5}^*(\pi/2 + \alpha_5) > 0 \) by Lemma 5.8 because \(\cos(4(\pi/2 + \alpha_5)) = -7/25 < 0 \), and we have \(F_{8,5}^*(\pi) > 0 \) by Lemma 5.9. Thus \(E_{8,5}^* \) has at least two zeros in each arc \(\mathbb{A}_{5,1}^* \) and \(\mathbb{A}_{5,2}^* \). Furthermore, by the valence formula for \(\Gamma_0^*(5) \), \(E_{8,5}^* \) has no other zero. Thus we have following:

Lemma 5.13. \(E_{8,5}^* \) has only two zeros in each arc \(\mathbb{A}_{5,1}^* \) and \(\mathbb{A}_{5,2}^* \), and we have \(v_{i/\sqrt{\alpha}}(E_{8,5}^*) = v_{p_{5,1}}(E_{8,5}^*) = v_{p_{5,2}}(E_{8,5}^*) = 0 \).

The locating zeros of \(E_{10,5}^* \).
We have \(F_{10,5}(3\pi/5) < 0 \) and \(F_{10,5}(4\pi/5) > 0 \) by Lemma 5.10. Thus \(E_{10,5}^* \) has at least one zero in \(\mathbb{A}_{5,1}^* \).
In addition, by previous subsection, we have \(v_{i/\sqrt{\alpha}}(E_{10,5}^*) \geq 1 \), \(v_{p_{10,1}}(E_{10,5}^*) \geq 1 \), and \(v_{p_{10,2}}(E_{10,5}^*) \geq 1 \). Furthermore, by the valence formula for \(\Gamma_0^*(5) \), \(E_{10,5}^* \) has no other zero. Thus we have following:

Lemma 5.14. \(E_{10,5}^* \) has only one zero in \(\mathbb{A}_{5,1}^* \), and we have \(v_{i/\sqrt{\alpha}}(E_{10,5}^*) = v_{p_{10,1}}(E_{10,5}^*) = v_{p_{10,2}}(E_{10,5}^*) = 1 \), and \(E_{10,5}^* \) has no other zero.

5.8.3. The space of modular forms. Let \(M_{k,5}^* \) be the space of modular forms for \(\Gamma_0^*(5) \) of weight \(k \), and let \(M_{k,5}^0 \) be the space of cusp forms for \(\Gamma_0^*(5) \) of weight \(k \). When we consider the map \(M_{k,5}^* \ni f \mapsto f(\infty) \in \mathbb{C} \), the kernel of the map is \(M_{k,5}^0 \). So \(\dim(M_{k,5}^*/M_{k,5}^0) \leq 1 \), and \(M_{k,5}^* = \mathbb{C}E_{k,5}^* \oplus M_{k,5}^0 \).

Recall that
\[
\Delta_5 = \eta^4(z)\eta^4(5z)
\]
is a cusp form for \(\Gamma_0^*(5) \) of weight 4 (Remark 4.2). We have following theorem:

Theorem 5.3. Let \(k \) be an even integer.
(1) For \(k < 0 \) and \(k = 2 \), \(M_{k,5}^* = 0 \).
(2) For \(k = 0 \) and \(6 \), we have \(M_{k,5}^* = 0 \), and \(\dim(M_{k,5}^*) = 1 \) with a base \(E_{k,5}^* \).
(3) \(M_{k,5}^0 = \Delta_5M_{k-4,5}^* \).

The proof of this theorem is very similar to Theorem 3.1 and 5.1. Furthermore, for an even integer \(k \geq 4 \), \(\dim(M_{k,5}^0) = (k-2)/4 \) if \(k \equiv 2 \pmod{4} \), and \(\dim(M_{k,5}^0) = k/4 + 1 \) if \(k \equiv 0 \pmod{4} \).

Let \(k \) be an even integer \(k \geq 4 \). Write \(n := \dim(M_{k,5}^0) - 1 \), then \(k - 4n = 0 \) or \(6 \). Because \(E_{4,5}^* - E_{k-4n,5}^*(E_{4,5}^*)^n \in M_{k,5}^0 \), we have \(M_{k,5}^0 = \mathbb{C}E_{k-4n,5}^*(E_{4,5}^*)^n \oplus M_{k,5}^0 \). Then
\[
M_{4n}^0 = \mathbb{C}(E_{4,5}^*)^n \oplus \mathbb{C}(E_{4,5}^*)^{n-1}\Delta_5 + \cdots + \mathbb{C}\Delta_5^n
\]
\[
M_{4n+6}^0 = E_{4,5}^*(E_{4,5}^*)^{n-1}\Delta_5 + \cdots + \mathbb{C}\Delta_5^n
\]
Thus, for every \(p \in \mathbb{H} \) and for every \(f \in M_{k,5}^0 \), \(v_p(f) \geq v_p(E_{k-4n,5}^*) \).

In conclusion, the next proposition follows:
Remark 5.5. Every modular form for $\Gamma_0(5)$ is generated by
$E_{4,5}^*$, $E_{6,5}^*$, and Δ_5.

Now, we have following conjecture:

Conjecture 5.1. Let $k \geq 4$ be an even integer. $E_{k,5}^*$ has $k/4$ zeros in $A_{5,1}^*$ and $A_{5,2}^*$ if $k \equiv 0 \pmod{4}$, and $E_{k,5}^*$ has $(k-6)/4$ zeros in $A_{5,1}^*$ and $A_{5,2}^*$ if $k \equiv 2 \pmod{4}$. Furthermore, in Proposition 5.18, the equality holds if f is equal to $E_{k,5}^*$ or its constant multiple.

5.8.4. Observation on Conjecture 5.1. To prove Conjecture 5.1 is much more difficult than the proof of Theorem 1 and 2. The most difficult point is the argument $\text{Arg}(\rho_{5,2})$, which is not a product of rational number and π. When $p = 2$ and 3, for $\Gamma_0(p)$, the arguments of ρ_p are $3\pi/4$ and $5\pi/6$, respectively. Then, in Lemma 5.2 and 5.5, we removed the angle $\pi/2k$ and $\pi/3k$ from the angles of A_5^* and A_5^*, respectively. However, for $\rho_{5,2}$, we can not decide the angle corresponding to $\pi/2k$ and $\pi/3k$. We need more radical expansion to prove this conjecture.

As a prelude to prove Conjecture 5.1, we omit a few zeros. We consider the interval $[\pi/2, \pi/2 + \alpha_5 - \pi/k]$ and $[\pi/2 + \alpha_5 + \pi/k, \pi]$ for $F_{k,5}^*$. Now, we will prove next lemmas in the next subsection:

Lemma 5.15. Let $k \geq 12$. For $\forall \theta \in [\pi/2, \pi/2 + \alpha_5 - x]$ ($x = \pi/k$), $|R_{5,1}^*| < 2$.

Lemma 5.16. Let $k \geq 12$. For $\forall \theta \in [\alpha_5 + x, \pi/2]$ ($x = \pi/k$), $|R_{5,2}^*| < 2$.

By above lemmas, we can easily show that $E_{k,5}^*$ has at least $k/4 - 2$ zeros in $A_{5,1}^*$ and $A_{5,2}^*$ if $k \equiv 0 \pmod{4}$, and $E_{k,5}^*$ has at least $(k-6)/4 - 2$ zeros in $A_{5,1}^*$ and $A_{5,2}^*$ if $k \equiv 2 \pmod{4}$. Thus, we can prove Conjecture 5.1 except for at most 2 zeros.

5.8.5. Expansion of the RSD Method. Before proving the above lemmas, we need the following preliminaries.

Proposition 5.19.

1. If $0 \leq x \leq \pi/2$, then $\sin x \geq 1 - \cos x$.
2. If $0 \leq x \leq \pi/12$, then $1 - \cos x \geq \frac{23}{48}x^2$.

The proofs of Lemma 5.9.4 and 5.9.4 are similar to that of Lemma 5.2. We use the previous proposition for the following proofs:

Proof of Lemma 5.9.4. Let $k \geq 12$ and $x = \pi/k$, then $0 \leq x \leq \pi/12$.

$$|e^{i\theta/2} + \sqrt{5}e^{-i\theta/2}|^{k/2} \geq 9 + 4\sqrt{5}\cos(\pi/2 + \alpha_5 - x) \geq 1 + \frac{23}{4}x^2. \quad (\text{Prop. 5.19})$$

$$|e^{i\theta/2} + \sqrt{5}e^{-i\theta/2}|^{k/2} \geq 1 + \frac{69}{2}x^2 \quad (k \geq 12).$$

$$2v_k(1, 1, \theta) \leq 2 - \frac{6624\pi^2}{23\pi^2 + 96} \frac{1}{k^2}.$$

In inequality(88), replace 2 with the bound $2 - \frac{6624\pi^2}{23\pi^2 + 96}$ $\frac{1}{k^2}$. Then

$$|R_{5,1}^*| \leq 2 - \frac{6624\pi^2}{23\pi^2 + 96} \frac{1}{k^2} + 4 \left(\frac{1}{2} \right)^{k/2} + \cdots + 2 \left(\frac{1}{46} \right)^{k/2} + \frac{1008\sqrt{6}}{5(k-3)} \left(\frac{1}{2} \right)^{k/2}.$$

Furthermore, $(1/2)^{k/2}$ is more rapidly decreasing in k than $1/k^2$, and for $k = 12$, we have

$$|R_{5,1}^*| \leq 1.26593...$$
Proof of Lemma 5.9.4. Let \(k \geq 12 \) and \(x = \pi/k \), then \(0 \leq x \leq \pi/12 \).

\[
\frac{1}{4} |e^{\theta/2} + \sqrt{5} e^{-\theta/2}|^2 \geq \frac{1}{4} (6 + 2 \sqrt{5} \cos(\alpha_5 + x)) \geq 1 + \frac{69}{96} x^2. \quad (\text{Prop.5.19})
\]

\[
\frac{1}{2^k} |e^{\theta/2} + \sqrt{5} e^{-\theta/2}|^k \geq 1 + \frac{69}{16} x^2 (k \geq 12).
\]

\[
2^k \cdot 2v_k(1,1,\theta) \leq 2 - \frac{6624 \pi^2}{23 \pi^2 + 768 \pi} \frac{1}{k^2}.
\]

In inequality (89), replace 2 with the bound \(2 - \frac{6624 \pi^2}{23 \pi^2 + 768 \pi} \frac{1}{k^2} \). Then

\[
|R_{5,2}^*| \leq 2 - \frac{6624 \pi^2}{23 \pi^2 + 768 \pi} \frac{1}{k^2} + 2 \left(\frac{2}{3} \right)^{k/2} + \cdots + 2 \left(\frac{1}{9} \right)^k + \frac{378 \sqrt{6}}{k-3} \left(\frac{1}{3} \right)^{k/2}.
\]

Furthermore, \((2/3)^{k/2}\) is more rapidly decreasing in \(k \) than \(1/k^2 \), and for \(k = 12 \), we have

\[
|R_{5,2}^*| \leq 1.89789...
\]

\(\square \)
5.9. $\Gamma_0^*(7)$.

5.9.1. Preliminaries. Let $\alpha_7 \in [0, \pi/2]$ such that $\tan \alpha_7 = 2$, then we denote

$$A_{7.1}^* := \{ z \mid |z| = 1/\sqrt{7}, \pi/2 < \arg(z) < \pi/2 + \alpha_7 \},$$

$$A_{7.2}^* := \{ z \mid |z + 1/2| = 1/(2\sqrt{7}), \alpha_7 - \pi/6 < \arg(z) < \pi/2 \}.$$

Now we have

$$\rho_{7.2} = -\frac{5}{14} + \frac{\sqrt{3}i}{14} = e^{i(\pi/2 + \alpha_7)} \frac{\sqrt{7}}{\sqrt{4}} = e^{i(\alpha_7 - \pi/6)} \frac{1}{2},$$

and we have

$$F_{k,7.1}^*(\pi/2 + \alpha_7) = e^{ik(\pi/2 + \alpha_7)/2} \mathcal{E}_{k,7}(\rho_{7.2}),$$

$$F_{k,7.2}^*(\alpha_7 - \pi/6) = e^{ik(\alpha_7 - \pi/6)/2} \mathcal{E}_{k,7}(\rho_{7.2}).$$

Now, we define

$$F_{k,7}^*(\theta) = \begin{cases} F_{k,7.1}^*(\theta) & 0 < \theta \leq \pi/2 + \alpha_7 \\ F_{k,7.2}^*(\theta - 2\pi/3) & \pi/2 + \alpha_7 < \theta \leq 7\pi/6. \end{cases}$$

Then $F_{k,7}^*$ is continuous in the interval $[\pi/2, 7\pi/6]$. Note that $F_{k,7.1}^*(\pi/2 + \alpha_7) = e^{i(2\pi/3)k/2} F_{k,7}(\alpha_7 - \pi/6)$.

Let f be a modular form for $\Gamma_0^*(7)$ of weight k, and let $k \equiv 2 \pmod{4}$. Then we have

$$f(i/\sqrt{7}) = f(W_7 i/\sqrt{7}) = i^k f(i/\sqrt{7}),$$

$$f(p_{7.1}) = f((\sqrt{7}/2) W_7 p_{7.1}) = i^k f(p_{7.1}) = -f(p_{7.1}).$$

Thus $f(i/\sqrt{7}) = f(p_{7.1}) = 0$, then we have $v_{i/\sqrt{7}}(f) \geq 1$ and $v_{p_{7.1}}(f) \geq 1$. On the other hand, let $k \not\equiv 0 \pmod{6}$. Then we have

$$f(p_{7.2}) = f((\sqrt{7}/2) W_7 p_{7.1}) = (e^{2\pi/3})^k f(p_{7.2}).$$

Thus $f(p_{7.2}) = 0$, then we have $v_{p_{7.2}}(f) \geq 1$.

Let k be an even integer such that $k \equiv 0 \pmod{4}$. Then we have

$$E_{k,7}(\sqrt{7}i) = \frac{2 \cdot 7^{k/2}}{7^{k/2} + 1} E_k(\sqrt{7}i) \neq 0,$$

$$E_{k,7}(\rho_{7.1}) = \frac{2 \cdot 7^{k/2}}{7^{k/2} + 1} E_k \left(-\frac{1}{2} + \frac{\sqrt{7}i}{2} \right) \neq 0.$$

Thus $v_{i/\sqrt{7}}(E_{k,7}) = v_{p_{7.1}}(E_{k,7}) = 0$. On the other hand, let k be an even integer such that $k \equiv 0 \pmod{6}$. Then we have

$$E_{k,7}(\rho_{7.2}) = \frac{1}{7^{k/2} + 1} \left(\frac{7^{k/2} + (5 + \sqrt{3}i)^k}{2} \right) E_k(\rho) \neq 0.$$

Thus $v_{\rho_{7.2}}(E_{k,7}) = 0$.

5.9.2. $E_{k,7}^*$ of low weights.

$E_{k,7}^*(\pi/2)$. Let $k \geq 4$ be an even integer divisible by 4. We note that $N := c^2 + d^2$.

Firstly, we consider the case $N = 1$. Then we can write;

$$F_{k,7}^*(\pi/2) = F_{k,7.1}^*(\pi/2) = 2 \cos(k\pi/4) + R_{\pi/2}^*,$$

where

$$|R_{\pi/2}^*| \leq \sum_{(c,d) = 1 \atop 7 \mid c \times d} \frac{|ce^{i\pi/4} + \sqrt{7}de^{-i\pi/4}|^{-k}}{N^2}.$$

Let $v_k(c, d, \theta) := |ce^{i\theta/2} + \sqrt{7}de^{-i\theta/2}|^{-k}$, then $v_k(c, d, \pi/2) = 1/(c^2 + 7d^2)^{k/2}$. Now we will consider the next cases, namely $N = 2, 5, 10, 13, 17$, and $N \geq 25$. We have the following:

When $N = 2, v_k(1, 1, \pi/2) \leq (1/8)^{k/2}$.

For an even integer N, we have the following:

Firstly, we consider the case $N = 5$. We want to prove $v_k(1, 2, \pi/2) \leq (1/29)^{k/2}$, and the number of terms with $c^2 + d^2 = N$ is not more than $144/35 N^{1/2}$ for $N \geq 25$. Then

$$|R^*_{N, \pi/2}|_{N>25} \leq \frac{288}{35(k-3)} \left(\frac{1}{24}\right)^{(k-3)/2}.$$

Furthermore,

$$|R^*_{N, \pi/2}| \leq 4 \left(\frac{1}{8}\right)^{k/2} + 4 \left(\frac{1}{11}\right)^{k/2} + \cdots + 4 \left(\frac{1}{113}\right)^{k/2} + \frac{288}{35(k-3)} \left(\frac{1}{24}\right)^{(k-3)/2},$$

$$\leq 1.80820... \quad (k \geq 4)$$

In conclusion, we have following:

Lemma 5.17. For an even integer $k \geq 4$,

$$F^*_k(\pi/2) \begin{cases} > 0 & k \equiv 0 \pmod{8} \\ < 0 & k \equiv 4 \pmod{8} \\ = 0 & k \equiv 2 \pmod{4} \end{cases}$$

$F^*_k(5\pi/6)$. To decide the zeros of F^*_k, we need the value of $F^*_k(5\pi/6)$. We note that $N := c^2 + d^2$.

Firstly, we consider the case $N = 1$. Then we can write;

$$F^*_k(5\pi/6) = 2 \cos(10\pi/3) + R^*_{7, k} = 1 + R^*_{7, k}$$

where

$$R^*_{7, k} \leq \frac{1}{2} \sum_{(c,d)=1 \atop 7d \geq 7d, N>1} (ce^{i5\pi/12} + \sqrt{7}de^{-i5\pi/12})^{-4} + \frac{1}{2} \sum_{(c,d)=1 \atop 7d \geq 7d, N>1} (ce^{-i5\pi/12} + \sqrt{7}de^{i5\pi/12})^{-4}.$$

We want to prove $F^*_k(5\pi/6) > 0$, but it is too difficult to prove that $|R^*_{7, k}| < 1$. However, we have only to prove $R^*_{7, k} > -1$.

Let $u_0(c, d) := (ce^{i5\pi/12} + \sqrt{7}de^{-i5\pi/12})^{-4} + (ce^{-i5\pi/12} + \sqrt{7}de^{i5\pi/12})^{-4}$, and let $u(c, d) := u_0(c, d) + u_0(c, -d) + u_0(d, c) + u_0(d, -c)$. Now we will consider the next cases, namely $N = 2, 5, \cdots, 197$, and $N \geq 202$. We have the following:

When $N = 2$, $v_k(1, 2, \pi/2) \leq (1/29)^{k/2}$, and $v_k(2, 1, \pi/2) \leq (1/11)^{k/2}$.

When $N = 10$, $v_k(1, 3, \pi/2) \leq (1/8)^{k}$, and $v_k(3, 1, \pi/2) \leq (1/4)^{k}$.

When $N = 13$, $v_k(2, 3, \pi/2) \leq (1/69)^{k/2}$, and $v_k(3, 2, \pi/2) \leq (1/37)^{k/2}$.

When $N = 17$, $v_k(1, 4, \pi/2) \leq (1/113)^{k/2}$, and $v_k(4, 1, \pi/2) \leq (1/23)^{k/2}$.

When $N \geq 25$, $c^2 + 7d^2 \geq N$,
When \(N = 101 \), \(u(1, 10) \geq -0.00003 \).
When \(N = 109 \), \(u(3, 10) \geq -0.00014 \).
When \(N = 122 \), \(u(1, 11) \geq 0.00002 \).
When \(N = 130 \), \(u(3, 11) + u(7, 9) \geq -0.00116 \).
When \(N = 137 \), \(u(4, 11) \geq 0.00195 \).
When \(N = 145 \), \(u(1, 12) + u(8, 9) \geq -0.00003 \).
When \(N = 146 \), \(u(5, 11) \geq 0.00025 \).
When \(N = 157 \), \(u(6, 11) \geq -0.00030 \).
When \(N = 170 \), \(u(1, 13) + u(7, 11) \geq -0.00016 \).
When \(N = 173 \), \(u(2, 13) \geq -0.00021 \).
When \(N = 181 \), \(u(9, 10) \geq -0.00004 \).
When \(N = 185 \), \(u(4, 13) + u(8, 11) \geq 0.00003 \).
When \(N = 193 \), \(u(7, 12) \geq -0.00019 \).
When \(N = 197 \), \(u(1, 14) \geq 0.00002 \).

When \(N \geq 202 \), for the case \(cd < 0 \), we put \(X + Yi = (ce^{i5\pi/12} + \sqrt{7}de^{-i5\pi/12})^2 = -(\sqrt{3}/2)(c^2 + 7d^2) + 2\sqrt{7}cd + (1/2)(c^2 - 7d^2)i \). Then \(|Y| = |X| < -\sqrt{3/2}c^2 - \sqrt{7/2}d^2 + 2\sqrt{7}cd < 0 \). Thus \((ce^{i5\pi/12} + \sqrt{7}de^{-i5\pi/12})^4 + (ce^{-i5\pi/12} + \sqrt{7}de^{i5\pi/12})^4 > 0 \).

For the case \(cd > 0 \), we have \(c^2 + 7d^2 - \sqrt{21}|cd| > (2/9)N \), and the number of terms with \(c^2 + d^2 = N \) is not more than \((13/7)N^{1/2} \) for \(N \geq 144 \). However, this bound is too large. We must consider some cases.

For the case \(|c| < |d| \), we have \(c^2 + 7d^2 - \sqrt{21}|cd| > (3/2)N \) and \(|c| < (1/\sqrt{2})N^{1/2} \), \(1/\sqrt{2} > 7/10 \). For the case \(|d| \leq |c| < (6/\sqrt{21})|d| \), we have \(c^2 + 7d^2 - \sqrt{21}|cd| > N \) and \(|c| < (6/\sqrt{57})N^{1/2} \), \(6/\sqrt{57} > 7/9 \). For the case \(|d| < \sqrt{7/3}|d| \), we have \(c^2 + 7d^2 - \sqrt{21}|cd| > (1/2)N \) and \(|c| < \sqrt{7/10}N^{1/2} \), \(\sqrt{7/10} > 5/6 \). For the case \(cd > 0 \) and \(\sqrt{7/3}|d| \leq |c| < (22/3\sqrt{21})|d| \), we have \(c^2 + 7d^2 - \sqrt{21}|cd| > (1/3)N \) and \(|c| < (22/673)N^{1/2} \), \(22/673 > 22/25 \).

In conclusion, we have

\[
R_{r,4}^{+}\bigg|_{N \geq 202, cd > 0} \geq -\frac{13}{7} \left(\frac{7}{10} \right)^{N^{1/2}} \sum_{N \geq 202} \left(\frac{3}{2} N \right)^{-k/2} + \frac{7}{90} \left(\frac{1}{18} \right)^{N^{1/2}} \sum_{N \geq 202} \left(\frac{11}{2} N \right)^{-k/2} \\
+ \frac{7}{150} \left(\frac{1}{25} \right)^{N^{1/2}} \sum_{N \geq 202} \left(\frac{2}{5} N \right)^{-k/2} \\
= -\frac{7579}{630\sqrt{201}}
\]

Furthermore,

\[
R_{r,4}^{+} \geq -0.08152 - 0.19373 + \cdots + 0.00002 - \frac{7579}{630\sqrt{201}} = -0.98316... \quad (k \geq 4)
\]

In conclusion, we have following:

Lemma 5.18.

\[F_{1,7}^{+}(5\pi/6) > 0. \]
Lemma 5.19. For an even integer \(N \), we have

\[
F_{k,\pi/3}^*(\theta) = 2 \cos(k\theta/2) + R_{7,2\pi/3}^* \quad \text{for } \theta \in [\pi/2, 2\pi/3],
\]

where

\[
|R_{7,2\pi/3}^*| \leq \sum_{\substack{(c,d)\neq (7,1) \text{ or } (1,7), \quad \gcd(c,d) = 1 \quad N \geq 1}} |ce^{i\theta/2} + \sqrt{7}de^{-i\theta/2}|^{-k}.
\]

Let \(v_k(c, d, \theta) := |ce^{i\theta/2} + \sqrt{7}de^{-i\theta/2}|^{-k} \), then \(v_k(c, d, \theta) = 1/ (e^2 + 7d^2 + 2\sqrt{7}cd \cos \theta)^{k/2} \). Now we will consider the next cases, namely \(N = 2 \) and \(N \geq 5 \). Considering \(-1/2 \leq \cos \theta \leq 0\), we have the following:

When \(N = 2 \),
\[
v_k(1, 1, \pi/2) \leq (1/(8 - \sqrt{7}))^{k/2}, \quad v_k(1, -1, \pi/2) \leq (1/8)^{k/2}.
\]

When \(N \geq 5 \),
\[
|ce^{i\theta/2} + \sqrt{7}de^{-i\theta/2}|^2 \geq 5N/7,
\]

and the number of terms with \(c^2 + d^2 = N \) is not more than \((36/7)^{N/2}\) for \(N \geq 5 \). Then

\[
|R_{7,2\pi/3}^*|_{N \geq 5} \leq \frac{576}{7(k - 3)} \left(\frac{7}{20} \right)^{(k-3)/2}.
\]

Furthermore,

\[
|R_{7,2\pi/3}^*| \leq 2 \left(\frac{1}{8 - \sqrt{7}} \right)^{k/2} + 2 \left(\frac{1}{8} \right)^{k/2} + \frac{576}{7(k - 3)} \left(\frac{7}{20} \right)^{(k-3)/2},
\]

\[
\leq 1.19293... \quad (k \geq 6)
\]

In conclusion, we have the following:

Lemma 5.19. For an even integer \(k \geq 6 \),

\[
F_{k,\pi/3}^*(\theta) = 2 \cos(k\theta/2) + R_{7,2\pi/3}^* \quad \text{for } \theta \in [\pi/2, 2\pi/3],
\]

where \(|R_{7,2\pi/3}^*| < 2 \).

For \(\pi \leq \theta \leq 7\pi/6 \), we have the following:

\[
F_{k,\pi/3}^*(\theta) \quad \text{for } \theta \in [\pi/2, 2\pi/3],
\]

where

\[
|R_{7,2\pi/3}^*| \leq \sum_{\substack{(c,d)\neq (7,1) \text{ or } (1,7), \quad \gcd(c,d) = 1 \quad N \geq 1}} |ce^{i\theta/2} + d\sqrt{7}e^{-i\theta/2}|^{-k} + 2^k \sum_{\substack{(c,d)\neq (7,1) \text{ or } (1,7), \quad \gcd(c,d) = 1 \quad N \geq 1}} |ce^{i\theta/2} + d\sqrt{7}e^{-i\theta/2}|^{-k}.
\]

Let \(v_k(c, d, \theta) := |ce^{i\theta/2} + d\sqrt{7}e^{-i\theta/2}|^{-k} \), then \(v_k(c, d, \theta) = 1/ (e^2 + 7d^2 + 2\sqrt{7}cd \cos \theta)^{k/2} \). Now we will consider the next cases, namely \(N = 2, 5, \ldots, 82 \), and \(N \geq 85 \). Considering \(0 \leq \cos \theta \leq 1/2 \), we have the following:

When \(N = 2 \),
\[
2^k \cdot v_k(1, 1, \theta) \leq (1/2)^{k/2}, \quad 2^k \cdot v_k(1, -1, \theta) \leq (4/ (8 - \sqrt{7}))^{k/2}.
\]

When \(N = 5 \),
\[
v_k(1, 2, \theta) \leq (1/29)^{k/2}, \quad v_k(1, -2, \theta) \leq (29 - 2\sqrt{7})^{k/2},
\]
\[
v_k(2, 1, \theta) \leq (1/11)^{k/2}, \quad v_k(2, -1, \theta) \leq (11 - 2\sqrt{7})^{k/2}.
\]

When \(N = 10 \),
\[
2^k \cdot v_k(1, 3, \theta) \leq (1/4)^k, \quad 2^k \cdot v_k(1, -3, \theta) \leq (4/ (64 - 3\sqrt{7}))^{k/2},
\]
\[
2^k \cdot v_k(3, 1, \theta) \leq (1/2)^k, \quad 2^k \cdot v_k(3, -1, \theta) \leq (4/ (16 - 3\sqrt{7}))^{k/2}.
\]

When \(N = 13 \),
\[
v_k(2, 3, \theta) \leq (1/69)^{k/2}, \quad v_k(2, -3, \theta) \leq (1/ (69 - 6\sqrt{7}))^{k/2},
\]
When $N = 17$,
$v_k(3, 2, \theta) \leq (1/37)^{k/2}$,
v$_k(3, -2, \theta) \leq 1/\left(37 - 6\sqrt{7}\right)^{k/2}$.
$v_k(1, 4, \theta) \leq (1/113)^{k/2}$,
v$_k(1, -4, \theta) \leq 1/\left(113 - 4\sqrt{7}\right)^{k/2}$.
$v_k(4, 1, \theta) \leq (1/23)^{k/2}$,
v$_k(4, -1, \theta) \leq 1/\left(23 - 4\sqrt{7}\right)^{k/2}$.

When $N = 25$,
$v_k(3, 4, \theta) \leq (1/11)^{k}$,
v$_k(3, -4, \theta) \leq 1/\left(121 - 12\sqrt{7}\right)^{k/2}$.
v$_k(4, 3, \theta) \leq (1/79)^{k/2}$,
v$_k(4, -3, \theta) \leq 1/\left(79 - 12\sqrt{7}\right)^{k/2}$.

When $N = 26$,
$2^k \cdot v_k(1, 5, \theta) \leq (1/44)^{k/2}$,
$2^k \cdot v_k(1, -5, \theta) \leq \left(4/\left(176 - 5\sqrt{7}\right)\right)^{k/2}$.
$2^k \cdot v_k(5, 1, \theta) \leq (1/8)^{k/2}$,
$2^k \cdot v_k(5, -1, \theta) \leq \left(4/\left(32 - 5\sqrt{7}\right)\right)^{k/2}$.

When $N = 29$,
$v_k(2, 5, \theta) \leq (1/179)^{k/2}$,
v$_k(2, -5, \theta) \leq 1/\left(179 - 10\sqrt{7}\right)^{k/2}$.
v$_k(5, 2, \theta) \leq (1/53)^{k/2}$,
v$_k(5, -2, \theta) \leq 1/\left(53 - 10\sqrt{7}\right)^{k/2}$.

When $N = 34$,
$2^k \cdot v_k(3, 5, \theta) \leq (1/46)^{k/2}$,
$2^k \cdot v_k(3, -5, \theta) \leq \left(4/\left(184 - 15\sqrt{7}\right)\right)^{k/2}$.
$2^k \cdot v_k(5, 3, \theta) \leq (1/22)^{k}$,
$2^k \cdot v_k(5, -3, \theta) \leq \left(4/\left(88 - 15\sqrt{7}\right)\right)^{k/2}$.

When $N = 37$,
$v_k(1, 6, \theta) \leq (1/253)^{k/2}$,
v$_k(1, -6, \theta) \leq 1/\left(253 - 6\sqrt{7}\right)^{k/2}$.
v$_k(6, 1, \theta) \leq (1/43)^{k/2}$,
v$_k(6, -1, \theta) \leq 1/\left(43 - 6\sqrt{7}\right)^{k/2}$.

When $N = 41$,
$v_k(4, 5, \theta) \leq (1/191)^{k/2}$,
v$_k(4, -5, \theta) \leq 1/\left(191 - 20\sqrt{7}\right)^{k/2}$.
v$_k(5, 4, \theta) \leq (1/137)^{k/2}$,
v$_k(5, -4, \theta) \leq 1/\left(137 - 20\sqrt{7}\right)^{k/2}$.

When $N = 50$,
$2^k \cdot v_k(1, 7, \theta) \leq (1/86)^{k/2}$,
$2^k \cdot v_k(1, -7, \theta) \leq \left(4/\left(344 - 7\sqrt{7}\right)\right)^{k/2}$.
$2^k \cdot v_k(7, 1, \theta) \leq (1/14)^{k/2}$,
$2^k \cdot v_k(7, -1, \theta) \leq \left(4/\left(56 - 7\sqrt{7}\right)\right)^{k/2}$.

When $N = 53$,
$v_k(2, 7, \theta) \leq (1/347)^{k/2}$,
v$_k(2, -7, \theta) \leq 1/\left(347 - 14\sqrt{7}\right)^{k/2}$.
v$_k(7, 2, \theta) \leq (1/77)^{k/2}$,
v$_k(7, -2, \theta) \leq 1/\left(77 - 14\sqrt{7}\right)^{k/2}$.

When $N = 58$,
$2^k \cdot v_k(3, 7, \theta) \leq (1/88)^{k/2}$,
$2^k \cdot v_k(3, -7, \theta) \leq \left(4/\left(352 - 21\sqrt{7}\right)\right)^{k/2}$.
$2^k \cdot v_k(7, 3, \theta) \leq (1/28)^{k}$,
$2^k \cdot v_k(7, -3, \theta) \leq \left(4/\left(112 - 21\sqrt{7}\right)\right)^{k/2}$.

When $N = 61$,
$v_k(5, 6, \theta) \leq (1/277)^{k/2}$,
v$_k(5, -6, \theta) \leq 1/\left(277 - 30\sqrt{7}\right)^{k/2}$.
v$_k(6, 5, \theta) \leq (1/211)^{k/2}$,
v$_k(6, -5, \theta) \leq 1/\left(211 - 30\sqrt{7}\right)^{k/2}$.

When $N = 65$,
$v_k(1, 8, \theta) \leq (1/449)^{k/2}$,
v$_k(1, -8, \theta) \leq 1/\left(449 - 8\sqrt{7}\right)^{k/2}$.
v$_k(8, 1, \theta) \leq (1/71)^{k/2}$,
v$_k(8, -1, \theta) \leq 1/\left(71 - 8\sqrt{7}\right)^{k/2}$.
v$_k(4, 7, \theta) \leq (1/359)^{k/2}$,
v$_k(4, -7, \theta) \leq 1/\left(359 - 28\sqrt{7}\right)^{k/2}$.
v$_k(7, 4, \theta) \leq (1/245)^{k/2}$,
v$_k(7, -4, \theta) \leq 1/\left(245 - 28\sqrt{7}\right)^{k/2}$.

ON THE ZEROS OF EISENSTEIN SERIES FOR $\Gamma_0(p)$ AND $\Gamma_0(p)$ OF LOW LEVELS
Furthermore,

\[|R_{k,\pi}^*|_{N \geq 85} \leq \frac{1296 \sqrt{21}}{k - 3} \left(\frac{1}{15} \right)^{(k-3)/2}. \]

and the number of terms with \(c^2 + d^2 = N \) is not more than \((27/7)N^{1/2}\) for \(N \geq 64\). Then

\[|R_{k,\pi}^*| \leq 2 \left(\frac{4}{8 - \sqrt{7}} \right)^{k/2} + \cdots + 2 \left(\frac{1}{457} \right)^{k/2} + \frac{1296 \sqrt{21}}{k - 3} \left(\frac{1}{15} \right)^{(k-3)/2}, \]

\[\leq 1.98849\ldots \quad (k \geq 6) \]

Furthermore,

In conclusion, we have following:

Lemma 5.20. For an even integer \(k \geq 6 \),

\[F_{k,\pi}^*(\theta) = 2 \cos(k\theta/2) + R_{k,\pi}^* \quad \text{for} \quad \theta \in [\pi, 7\pi/6], \]

where \(|R_{k,\pi}^*| < 2 \).

\[F_{k,\pi}^*(\theta) \]

for \(\pi / 2 \leq \theta \leq 5\pi / 6 \). Let \(k \geq 8 \) be an even integer. We note that \(N := c^2 + d^2 \).

Firstly, we consider the case \(N = 1 \). Since \(5\pi / 6 < \pi / 2 + \alpha_{5} \), we can write;

\[F_{k,\pi}^*(\theta) = F_{k,\pi,1}^*(\theta) = 2 \cos(k\theta/2) + R_{k,5\pi/6}^* \quad \text{for} \quad \theta \in [\pi/2, 5\pi/6], \]

where

\[|R_{k,5\pi/6}^*| \leq \sum_{(c,d)=1}^{\sqrt{7}d} |ce^{i\theta/2} + \sqrt{7}de^{-i\theta/2}|^{-k}. \]

Let \(v_k(c,d,\theta) := |ce^{i\theta/2} + \sqrt{7}de^{-i\theta/2}|^{-k} \), then \(v_k(c,d,\theta) = 1/ \left(c^2 + 7d^2 + 2\sqrt{7}cd\cos \theta \right)^{k/2} \). Now we will consider the next cases, namely \(N = 2, 5, 10 \), and \(N \geq 13 \). Considering \(-3^{2/2} \leq \cos \theta \leq 0\), we have the following:

When \(N = 2 \),

\[v_k(1, 1, \theta) \leq 1/ \left(8 - \sqrt{21} \right)^{k/2}, \quad v_k(1, -1, \theta) \leq (1/8)^{k/2}. \]

When \(N = 5 \),

\[v_k(1, 2, \theta) \leq 1/ \left(29 - 2\sqrt{21} \right)^{k/2}, \quad v_k(1, -2, \theta) \leq (1/29)^{k/2}, \]

\[v_k(2, 1, \theta) \leq 1/ \left(11 - 2\sqrt{21} \right)^{k/2}, \quad v_k(2, -1, \theta) \leq (1/11)^{k/2}. \]

When \(N = 10 \),

\[v_k(1, 3, \theta) \leq 1/ \left(64 - 3\sqrt{21} \right)^{k/2}, \quad v_k(1, -3, \theta) \leq (1/8)^k, \]

\[v_k(3, 1, \theta) \leq 1/ \left(16 - 3\sqrt{21} \right)^{k/2}, \quad v_k(3, -1, \theta) \leq (1/4)^k. \]

When \(N \geq 13 \),

\[|ce^{i\theta/2} + \sqrt{7}de^{-i\theta/2}|^2 \geq 2N/9, \]
and the number of terms with $c^2 + d^2 = N$ is not more than $(36/7)N^{1/2}$ for $N \geq 13$. Then
\[|R^*_{7,5\pi/6}|_{N \geq 13} \leq \frac{1728\sqrt{3}}{7(k - 3)} \left(\frac{3}{8} \right)^{(k-3)/2}. \]
Furthermore,
\[
|R^*_{7,\pi/2}| \leq 2 \left(\frac{1}{11 - 2\sqrt{2}} \right)^{k/2} + \cdots + 2 \left(\frac{1}{8} \right)^k + \frac{1728\sqrt{3}}{7(k - 3)} \left(\frac{3}{8} \right)^{(k-3)/2},
\]
\[
\leq 1.96057... \quad (k \geq 8)
\]
In conclusion, we have following:

Lemma 5.21. For an even integer $k \geq 8$,

\[F^*_k(\theta) = 2\cos(k\theta/2) + R^*_7(5\pi/6) \quad \text{for } \theta \in [\pi/2, 5\pi/6], \]
where $|R^*_7(\pi/6)| < 2$.

The locating zeros of E^*_7. We have $F^*_7(\pi/2) < 0$ by Lemma 5.17, and we have $F^*_7(5\pi/6) > 0$ by Lemma 5.18. Thus E^*_7 has at least one zero in $A^*_7,1$. In addition, by the previous subsections, we have $v_{\rho,1}(E^*_7) \geq 1$. Furthermore, by the valence formula for $\Gamma^*_6(7)$ (Proposition 5.13), E^*_7 has no other zero. Thus we have following:

Lemma 5.22. E^*_7 has only one zero in $A^*_7,1$, and we have $v_{\rho,1}(E^*_7) = v_{\rho,2}(E^*_7) = 0$.

The locating zeros of E^*_6. We have $F^*_6(2\pi/3) > 0$ by Lemma 5.19, and we have $F^*_6(\pi) < 0$ by Lemma 5.20. Thus E^*_6 has at least one zero in $A^*_7,1 \cup A^*_7,2$. By previous subsection, we have $v_{\rho,1}(E^*_6) \geq 1$ and $v_{\rho,1}(E^*_6) \geq 1$. Furthermore, by the valence formula for $\Gamma^*_5(7)$, E^*_6 has no other zero. Thus we have following:

Lemma 5.23. E^*_6 has only one zero in $A^*_7,1 \cup A^*_7,2$, and we have $v_{\rho,1}(E^*_6) = v_{\rho,2}(E^*_6) = 1$ and $v_{\rho,2}(E^*_6) = 0$.

The locating zeros of E^*_7. We have $F^*_7(\pi/2) < 0$, $F^*_7(2\pi/3) > 0$, $F^*_7(5\pi/6) < 0$ by Lemma 5.21, and we have $F^*_7(\pi) > 0$, $F^*_7(7\pi/6) < 0$ by Lemma 5.20. Thus E^*_7 has at least four zeros in $A^*_7,1 \cup A^*_7,2$. Furthermore, by the valence formula for $\Gamma^*_5(7)$, E^*_7 has no other zero. Thus we have following:

Lemma 5.24. E^*_7 has just four zeros in $A^*_7,1 \cup A^*_7,2$, and we have $v_{\rho,1}(E^*_7) = v_{\rho,2}(E^*_7) = v_{\rho,2}(E^*_7) = 0$.

5.9.3. **The space of modular forms.** Let $M^*_k,7$ be the space of modular forms for $\Gamma^*_0(7)$ of weight k, and let $M^*_{k,7}$ be the space of cusp forms for $\Gamma^*_0(7)$ of weight k. When we consider the map $M^*_k,7 \ni f \mapsto f(\infty) \in \mathbb{C}$, the kernel of the map is $M^*_{k,7}$. So dim($M^*_k,7/M^*_{k,7}$) ≤ 1, and $M^*_k,7 = \mathbb{C}E^*_k,7 \oplus M^*_k,7$.

Recall that
\[\Delta_7 = q^6(z)q^6(7z) \]
is a cusp form for $\Gamma^*_0(7)$ of weight 6, and $(\Delta_7)^2$ is a cusp form for $\Gamma^*_0(7)$ of weight 12 (Remark 4.2).

We also have
\[E_{2,\tau'}(z) = \frac{1}{6}(7E_2(7z) - E_2(z)), \]
which is a modular form for $\Gamma^*_0(7)$ with $v_{\rho,2}(E_{2,\tau'}) = 2$ and $v_p(E_{2,\tau'}) = 0$ for every $p \neq \rho,2$. Furthermore, because we have $E_{2,\tau'}(W_7z) = -(\sqrt{7}z)^2E_{2,\tau'}(z)$, $(E_{2,\tau'})^2$ is a modular form for $\Gamma^*_0(7)$ of weight 4. (See Section 6)

We have following theorem:

Theorem 5.4. Let k be an even integer, and let $\Delta_7 _ 4 : = (5/16)((E_{2,\tau'})^2 - E^*_7), \Delta^*_{7,10} : = (559/690)((41065/137592)(E^*_7E^*_{6,7} - E^*_{10,7}) - E^*_6,7\Delta^*_7).$
(1) For $k < 0$ and $k = 2$, $M_{k,7}^* = 0$. We have $M_{k,7}^* = \mathbb{C}$.

(2) We have $M_{1,7}^0 = \mathbb{C} \Delta_{7,4}$.

(3) Let $\Delta_{7,6} := \Delta_{7,10}^0 / \Delta_{7,4}$. We have $M_{0,7}^0 = \mathbb{C} \Delta_{7,6}$.

(4) Let $\Delta_{7,8} := (\Delta_{7,4})^2$ and $\Delta_{7,1}^4 := E_{4,7}^* \Delta_{7,4}$. We have $M_{0,7}^0 = \mathbb{C} \Delta_{7,8} \oplus \mathbb{C} \Delta_{7,1}^4$.

(5) Let $\Delta_{7,10}^4 := E_{4,7}^* \Delta_{7,4}$. We have $M_{10,7}^0 = \mathbb{C} \Delta_{7,10}^0 \oplus \mathbb{C} \Delta_{7,12}^4 \oplus \mathbb{C} \Delta_{7,14}^0$.

(6) Let $\Delta_{7,12}^0 := (\Delta_{7,4})^2$, $\Delta_{7,12}^4 := (\Delta_{7,4})^3$, $\Delta_{7,12}^6 := E_{4,7}^2 \Delta_{7,4}^2$, and $\Delta_{7,12} := (E_{4,7}^2)^2 \Delta_{7,4}$. We have $M_{12,7}^0 = \mathbb{C} \Delta_{7,12}^0 \oplus \mathbb{C} \Delta_{7,12}^4 \oplus \mathbb{C} \Delta_{7,12}^6$.

(7) Let $\Delta_{7,14} := \Delta_{7,10}^0 \Delta_{7,10}^0$, $\Delta_{7,14} := E_{4,7}^2 \Delta_{7,4}^2$, and $\Delta_{7,14} := E_{4,7}^2 E_{4,7}^* \Delta_{7,4}$. We have $M_{14,7}^0 = \mathbb{C} \Delta_{7,14}^0 \oplus \mathbb{C} \Delta_{7,14}^1 \oplus \mathbb{C} \Delta_{7,14}^2$.

(8) $M_{k,7}^0 = M_{12,7}^0 M_{k-12,7}^0$.

Let k be an even integer $k \geq 4$. Define $m_7(k) := [\frac{k}{3} - \frac{1}{2}]$, where $t = 0, 2$ is chosen so that $t \equiv k$ (mod 4), and $[n]$ is the largest integer not more than n. Define $f_0(k) := (E_{4,7}^2)^{k/4}$ if $k \equiv 0$ (mod 4), and $f_0(k) := E_{4,7}^2 (E_{4,7}^2)^{(k-6)/4}$ if $k \equiv 2$ (mod 4).

The proof of this theorem is similar to Theorem 5.2. For every $f \in M_{k,7}^0$, it is easy to show that there exist some a_1, a_2, a_3 such that $f + a_1 \Delta_{1,12} + a_2 \Delta_{1,12} + a_3 \Delta_{1,12} = b q^4 + \cdots$. Then $(f + a_1 \Delta_{1,12} + a_2 \Delta_{1,12} + a_3 \Delta_{1,12}) / \Delta_{1,12} \in M_{k-12,7}$.

The table of orders of zeros of basis for $M_{k,7}^*$ is following:

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
k & f & v_\infty & v_{1/7} & v_{\rho_1} & v_{\rho_2} \quad |zeros \ on \ A^*_7| \\
\hline
4 & E_{4,7} & 0 & 0 & 0 & 1 & 1 \\
 & (E_{2,7}^2)^2 & 0 & 0 & 0 & 4 & 0 \\
 & \Delta_{7,4} & 1 & 0 & 0 & 1 & 0 \\
6 & E_{6,7} & 0 & 1 & 1 & 0 & 1 \\
 & \Delta_{7,6} & 1 & 1 & 1 & 0 & 0 \\
8 & (E_{4,7}^2)^2 & 0 & 0 & 0 & 2 & 2 \\
 & \Delta_{8,7}^0 & 2 & 0 & 0 & 2 & 0 \\
 & \Delta_{7,8}^1 & 1 & 0 & 0 & 2 & 1 \\
10 & E_{4,7}^2 E_{6,7}^* & 0 & 1 & 1 & 1 & 2 \\
 & \Delta_{10}^2 & 2 & 1 & 1 & 1 & 0 \\
 & \Delta_{12}^2 & 1 & 1 & 1 & 1 & 0 \\
12 & E_{12,7}^* & 0 & 0 & 0 & 4 & 0 \\
 & \Delta_{12,7}^4 & 4 & 0 & 0 & 0 & 0 \\
 & \Delta_{12,7}^6 & 3 & 0 & 0 & 3 & 0 \\
 & \Delta_{12,7}^8 & 2 & 0 & 0 & 3 & 1 \\
 & \Delta_{12,7}^{10} & 1 & 0 & 0 & 3 & 2 \\
14 & (E_{4,7}^2)^2 E_{6,7}^* & 0 & 1 & 1 & 2 & 3 \\
 & \Delta_{14}^2 & 3 & 1 & 1 & 2 & 0 \\
 & \Delta_{14}^4 & 2 & 1 & 1 & 2 & 1 \\
 & \Delta_{14}^6 & 1 & 1 & 1 & 2 & 2 \\
\end{array}
\]

Then we have $\dim(M_{k,7}^*) = m_7(k)$ and $\dim(M_{k,7}^*) = m_7(k) + 1$.

Write $n = m_7(k)$, then $k - 12n = 0, 4, 6, 8, 10$ or 14. Because $E_{k,7} \equiv E_{k-12n,7} \equiv (E_{4,7}^2)^n \in M_{k,7}^0$, we have $M_{k,7}^* = \mathbb{C} E_{k-4n,7}^3 \oplus M_{k,7}^0$. Then

\[
M_{k,7}^* = E_{k-12n,7}^3 \left\{ \mathbb{C} (E_{4,7}^2)^3 \oplus (E_{4,7}^2)^3 (\mathbb{C} (E_{4,7}^2)^3) \oplus (E_{4,7}^2)^3 (\mathbb{C} (E_{4,7}^2)^3) \oplus (M_{12,7}^0)^3 \oplus \cdots \oplus (M_{12,7}^0)^3 \right\}
\]

Thus, for every $p \in \mathbb{H}$ and for every $f \in M_{k,7}^*$, $v_p(f) \geq v_p(E_{k-12n,7})$.

In conclusion, the next proposition follows:

Proposition 5.20. Let $k \geq 4$ be an even integer. For every $f \in M_{k,7}^*$, we have

\[
\begin{align*}
&v_{1/7}(f) \geq s_k, \\
v_{\rho_1}(f) \geq s_k \\
v_{\rho_2}(f) \geq t_k \\
&v_{s_k}(f) \geq s_k, \quad s_k = 0, 1, 2 \text{ such that } -2t_k \equiv k \pmod{6}.
\end{align*}
\]
In addition, we have $(\Delta_7)^2 = (38/45)((5/114)(E_{4,7}^*(\Delta_7,4)^2 - (\Delta_7,6)^2) - (\Delta_7,4)^3)$. Then

Remark 5.6. Every modular form for $\Gamma_0^\ast(7)$ is generated by $E_{4,7}^*$, $E_{6,7}^*$, $\Delta_{7,4}$, and $\Delta_{7,6}$.

Now, we have following conjecture:

Conjecture 5.2. Let $k \geq 4$ be an even integer. $E_{k,7}^*$ has $m_7(k)$ zeros in $A_{7,1}^*$ and $A_{7,2}^*$. Furthermore, in Proposition 5.20, the equality holds if f is equal to $E_{k,7}^*$ or its constant multiple.

5.9.4. Observation on Conjecture 5.2. Similar to $\Gamma_0^\ast(5)$, to prove Conjecture 5.2 is very difficult. The most difficult point is also the argument $Arg(\rho_{7,2})$. We need more radical expansion to prove this conjecture.

By the Lemma 5.20 and 5.21, $E_{k,7}^*$ has at least $m_7(k) - 2$ zeros in $A_{7,1}^*$ and $A_{7,2}^*$ for $k \leq 24$. Then, similarly to Lemma 5.20 and 5.21, we will prove next lemmas in the next subsection:

Lemma 5.25. Let $k \geq 26$. For $\forall \theta \in [\pi/2, \pi/2 + \alpha_7 - \pi] (x = \pi/k)$, $|R_{7,1}^\ast| < 2$.

Lemma 5.26. Let $k \geq 26$. For $\forall \theta \in [\pi_7 - \pi/6 + x, \pi/2] (x = \pi/k)$, $|R_{7,2}^\ast| < 2$.

By above lemmas, we can easily show that $E_{k,7}^*$ has at least $m_7(k) - 2$ zeros in $A_{7,1}^*$ and $A_{7,2}^*$. Thus, we can prove Conjecture 5.2 except for at most 2 zeros.

5.9.5. Expansion of the RSD Method. The proofs of Lemma 5.25 and 5.26 are similar to that of Lemma 5.5. We need following preliminaries.

Proposition 5.21 (for Lemma 5.25).

1. For $k \geq 26$, $\left(\frac{1}{3}\right)^{2/k} \leq 1 + \left(2 \log \frac{5}{3}\right) \frac{1}{k} + \frac{1}{2} \left(2 \log \frac{5}{3}\right)^2 \left(\frac{5}{3}\right)^{2/k} \frac{1}{k^2}$.
2. For $k \geq 26$, $\left(\frac{1}{3}\right)^{2/k} \leq 1 + \left(2 \log \frac{5}{3}\right) \frac{1}{k} + \frac{1}{2} \left(2 \log \frac{5}{3}\right)^2 \left(\frac{5}{3}\right)^{2/k} \frac{1}{k^2}$.

Proposition 5.22 (for Lemma 5.26).

1. For $k \geq 26$, $\left(\frac{1}{3}\right)^{2/k} \leq 1 + \left(2 \log \frac{5}{3}\right) \frac{1}{k} + \frac{1}{2} \left(2 \log \frac{5}{3}\right)^2 \left(\frac{5}{3}\right)^{2/k} \frac{1}{k^2}$.
2. For $k \geq 26$, $\left(\frac{1}{3}\right)^{2/k} \leq 1 + \left(2 \log \frac{5}{3}\right) \frac{1}{k} + \frac{1}{2} \left(2 \log \frac{5}{3}\right)^2 \left(\frac{5}{3}\right)^{2/k} \frac{1}{k^2}$.

Proof of Lemma 5.25. Let $k \geq 1$ and $x = \pi/k$, then $0 \leq x \leq \pi/26$.

\[
11 + 4\sqrt{3} \cos \left(\frac{\pi}{2} + \alpha_7 - \frac{\pi}{k}\right) - \left(\frac{5}{3}\right)^{2/k} \left(1 + \frac{12}{5k} x^2\right) \\
\geq \frac{1}{k} \left[2 \sqrt{3} \pi - 2 \log \frac{5}{3} - \frac{2}{3} \left(\frac{5}{3}\right)^{2/k} \left(1 - \frac{12}{5k} \left(\frac{5}{3}\right)^{2/k} \frac{1}{k^2}\right)\right] \\
\geq \frac{1}{k} \times 9.81047... \quad (k \geq 26)
\]

By Proposition 5.21,

\[
|2e^{i\theta/2} + \sqrt{3}e^{-i\theta/2}|^2 \geq \left(\frac{5}{3}\right)^{2/k} \left(1 + \frac{12}{5k} x^2\right) \\
\Rightarrow |2e^{i\theta/2} + \sqrt{3}e^{-i\theta/2}|^k \geq \frac{5}{3} + 2x^2 \\
\Rightarrow v_k(2,1,\theta) \leq \frac{3}{5} - \frac{3}{5} x^2.
\]

Similarly,

\[
16 + 6\sqrt{3} \cos \left(\frac{\pi}{2} + \alpha_7 - \frac{\pi}{k}\right) - \left(\frac{5}{2}\right)^{2/k} \left(1 + \frac{12}{5k} x^2\right) \geq \frac{1}{k} \times 14.39532... \quad (k \geq 26)
\]
\[|3e^{i\theta/2} + \sqrt{7}e^{-i\theta/2}|^2 \geq \left(\frac{5}{2} \right)^{2/k} \left(1 + \frac{12}{5k} x^2 \right) \]
\[\Rightarrow |2e^{i\theta/2} + \sqrt{7}e^{-i\theta/2}|^k \geq \frac{5}{2} + 3x^2 \]
\[\Rightarrow v_k(3, 1, \theta) \leq \frac{2}{5} - \frac{2}{5} x^2. \]

Furthermore,
\[\left(\frac{1}{3} \right)^{k/2} + 4 \left(\frac{1}{7} \right)^{k/2} + \cdots + 2 \left(\frac{1}{179} \right)^{k/2} + \frac{1914\sqrt{33}}{7(k-3)} \left(\frac{1}{3} \right)^{k/2} \leq 25 \left(\frac{1}{3} \right)^{k/2} \]

Thus
\[|R_{7,1}| \leq 2 - \frac{2\pi^2}{k^2} + 25 \left(\frac{1}{3} \right)^{k/2} \]

Now, \((1/3)^{k/2}\) is more rapidly decreasing in \(k\) than \(1/k^2\), and for \(k = 26\), we have
\[|R_{7,1}| \leq 1.97081... \]

Proof of Lemma 5.26. Let \(k \geq 1\) and \(x = \pi/k\), then \(0 \leq x \leq \pi/26\).

\[2 - \frac{\sqrt{7}}{2} \cos \left(\frac{\pi}{6} - \frac{\pi}{k} \right) - \left(\frac{4}{3} \right)^{2/k} \left(1 + \frac{9}{5k} x^2 \right) \geq \frac{1}{k} \times 2.47345... \quad (k \geq 26) \]

By Proposition 5.22,
\[2^{-k} \cdot |e^{i\theta/2} - \sqrt{7}e^{-i\theta/2}|^2 \geq \left(\frac{4}{3} \right)^{2/k} \left(1 + \frac{9}{4k} x^2 \right) \]
\[\Rightarrow 2^{-k} \cdot |e^{i\theta/2} - \sqrt{7}e^{-i\theta/2}|^k \geq \frac{4}{3} + \frac{3}{2} x^2 \]
\[\Rightarrow 2^k \cdot v_k(1, -1, \theta) \leq \frac{3}{4} - \frac{3}{4} x^2. \]

Similarly,
\[4 - \frac{3\sqrt{7}}{2} \cos \left(\frac{\pi}{6} - \frac{\pi}{k} \right) - 4^{2/k} \left(1 + \frac{12}{5k} x^2 \right) \geq \frac{1}{k} \times 14.39532... \quad (k \geq 26) \]
\[2^{-k} \cdot |3e^{i\theta/2} - \sqrt{7}e^{-i\theta/2}|^2 \geq 4^{2/k} \left(1 + \frac{9}{4k} x^2 \right) \]
\[\Rightarrow 2^{-k} \cdot |3e^{i\theta/2} - \sqrt{7}e^{-i\theta/2}|^k \geq 4 + \frac{9}{2} x^2 \]
\[\Rightarrow 2^k \cdot v_k(3, -1, \theta) \leq \frac{1}{4} - \frac{1}{4} x^2. \]

Furthermore,
\[2 \left(\frac{1}{2} \right)^{k/2} + 2 \left(\frac{1}{3} \right)^{k/2} + \cdots + 2 \left(\frac{1}{113} \right)^{k/2} + \frac{2784\sqrt{6}}{7(k-3)} \left(\frac{1}{2} \right)^{k/2} \leq 41 \left(\frac{1}{2} \right)^{k/2} \]

Thus
\[|R_{7,2}^*| \leq 2 - \frac{2\pi^2}{k^2} + 41 \left(\frac{1}{2} \right)^{k/2} \]

Now, \((1/2)^{k/2}\) is more rapidly decreasing in \(k\) than \(1/k^2\), and for \(k = 26\), we have
\[|R_{7,2}^*| \leq 1.97580... \]

5.10. Conclusion of \(\Gamma_0^*(p) \). Let \(k \geq 4 \) be an even integer.
In section 3, we have following result:

<table>
<thead>
<tr>
<th>(k \mod 12)</th>
<th>(v_i(E_k))</th>
<th>(v_p(E_k))</th>
<th>(\text{zeros on } A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(k/12)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>((k - 14)/12)</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>((k - 4)/12)</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>((k - 6)/12)</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>2</td>
<td>((k - 8)/12)</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>((k - 10)/12)</td>
</tr>
</tbody>
</table>

Table for \(E_k : \text{SL}_2(\mathbb{Z}) \)

Also, by the theorem 1, 2, we have following:

<table>
<thead>
<tr>
<th>(k \mod 8)</th>
<th>(v_{i/\sqrt{2}}(E_k^{*}))</th>
<th>(v_p(E_k^{*}))</th>
<th>(\text{zeros on } A^{*})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(k/8)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>((k - 10)/8)</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>((k - 4)/8)</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>((k - 6)/8)</td>
</tr>
</tbody>
</table>

Table for \(E_k^{*} : \Gamma_0^*(2) \)

<table>
<thead>
<tr>
<th>(k \mod 12)</th>
<th>(v_{i/\sqrt{3}}(E_k^{*}))</th>
<th>(v_p(E_k^{*}))</th>
<th>(\text{zeros on } A^{*})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(k/6)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>5</td>
<td>((k - 8)/6)</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>((k - 4)/6)</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>3</td>
<td>((k - 6)/6)</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>2</td>
<td>((k - 2)/6)</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>((k - 4)/6)</td>
</tr>
</tbody>
</table>

Table for \(E_k^{*} : \Gamma_0^*(3) \)

Above results are proved in this section.

For a prime \(p \geq 5 \), let \(A_p^* := \partial \mathbb{F}^*(p) \setminus \{ z; \text{Re}(z) = -1/2 \} \), where \(\mathbb{F}^*(p) \) is the fundamental domain of \(\Gamma_0^*(p) \) represented in Figure 7.

In addition, in Conjecture 5.1, we expect following:

| \(k \mod 4 \) | \(v_{i/\sqrt{5}} \) | \(v_{p_1} \) | \(v_{p_2} \) | \(\text{zeros on } A^*_5 \) |
|-----------------|----------------|----------------|----------------|
| 0 | 0 | 0 | 0 | \(k/4 \) |
| 2 | 1 | 1 | 1 | \((k - 6)/4 \) |

Table for \(E_k^{*} : \Gamma_0^*(5) \)

We proved except for at most 2 zeros.

Also, in Conjecture 5.2, we expect following:

| \(k \mod 12 \) | \(v_{i/\sqrt{7}} \) | \(v_{p_1} \) | \(v_{p_2} \) | \(\text{zeros on } A^*_7 \) |
|-----------------|----------------|----------------|----------------|
| 0 | 0 | 0 | 0 | \(k/3 \) |
| 2 | 1 | 1 | 2 | \((k - 5)/3 \) |
| 4 | 0 | 0 | 1 | \((k - 1)/3 \) |
| 6 | 1 | 1 | 0 | \((k - 3)/3 \) |
| 8 | 0 | 0 | 2 | \((k - 2)/3 \) |
| 10 | 1 | 1 | 1 | \((k - 4)/3 \) |

Table for \(E_k^{*} : \Gamma_0^*(7) \)

We proved except for at most 2 zeros.

Finally, we expect followings:
Conjecture 5.3 ($\Gamma_0^\ast(11)$). Let $k \geq 4$ be an even integer.

\[
\begin{array}{cccccc}
 k \pmod{4} & v_{i/\sqrt{11}} & v_{p_{11,1}} & v_{p_{11,2}} & v_{p_{11,3}} & \text{zeros on } A^\ast_{11} \mid \\
 0 & 0 & 0 & 0 & 0 & k/2 \\
 2 & 1 & 1 & 1 & 1 & (k-4)/2 \\
\end{array}
\]

Table for $E^\ast_{k,11}$

Conjecture 5.4 ($\Gamma_0^\ast(13)$). Let $k \geq 4$ be an even integer.

\[
\begin{array}{cccccc}
 k \pmod{12} & v_{i/\sqrt{13}} & v_{p_{13,1}} & v_{p_{13,2}} & v_{p_{13,3}} & \text{zeros on } A^\ast_{13} \mid \\
 0 & 0 & 0 & 0 & 0 & 7k/12 \\
 2 & 1 & 1 & 1 & 2 & (7k-26)/12 \\
 4 & 0 & 0 & 0 & 1 & (7k-4)/12 \\
 6 & 1 & 1 & 1 & 0 & (7k-18)/12 \\
 8 & 0 & 0 & 0 & 2 & (7k-8)/12 \\
 10 & 1 & 1 & 1 & 1 & (7k-22)/12 \\
\end{array}
\]

Table for $E^\ast_{k,13}$

Conjecture 5.5 ($\Gamma_0^\ast(17)$). Let $k \geq 4$ be an even integer.

\[
\begin{array}{cccccc}
 k \pmod{4} & v_{i/\sqrt{17}} & v_{p_{17,1}} & v_{p_{17,2}} & v_{p_{17,3}} & v_{p_{17,4}} & \text{zeros on } A^\ast_{17} \mid \\
 0 & 0 & 0 & 0 & 0 & 0 & 3k/4 \\
 2 & 1 & 1 & 1 & 1 & 1 & (3k-10)/4 \\
\end{array}
\]

Table for $E^\ast_{k,17}$

Conjecture 5.6 ($\Gamma_0^\ast(19)$). Let $k \geq 4$ be an even integer.

\[
\begin{array}{cccccc}
 k \pmod{12} & v_{i/\sqrt{19}} & v_{p_{19,1}} & v_{p_{19,2}} & v_{p_{19,3}} & v_{p_{19,4}} & \text{zeros on } A^\ast_{19} \mid \\
 0 & 0 & 0 & 0 & 0 & 0 & 5k/6 \\
 2 & 1 & 1 & 2 & 1 & 1 & (5k-16)/6 \\
 4 & 0 & 0 & 1 & 0 & 0 & (5k-2)/6 \\
 6 & 1 & 1 & 0 & 1 & 1 & (5k-12)/6 \\
 8 & 0 & 0 & 2 & 0 & 0 & (5k-4)/6 \\
 10 & 1 & 1 & 1 & 1 & 1 & (5k-14)/6 \\
\end{array}
\]

Table for $E^\ast_{k,19}$

By the application of the RSD Method, we have many zeros on some arcs in A^\ast_p. But we have some arcs in A^\ast_p, in which we do not know whether $E^\ast_{k,p}$ has zeros or not.
ON THE ZEROS OF EISENSTEIN SERIES FOR $\Gamma_0(p)$ AND $\Gamma_0(p)$ OF LOW LEVELS

6. CONGRUENCE SUBGROUP $\Gamma_0(p)$

6.1. $\Gamma_0(2)$.

We have the following transformation:

$$
\begin{pmatrix}
-1 & 0 \\
2 & -1
\end{pmatrix} : \frac{e^{i\theta} + 1}{2} \mapsto \frac{e^{i(\pi - \theta)} - 1}{2}.
$$

6.1.1. Valence formula. In order to decide the locating of all zeros of $E_{k,z}^\infty(z)$ and $E_{k,z}^0(z)$, we need the valence formula for $\Gamma_0(2)$:

Proposition 6.1. Let f be a modular function of weight k for $\Gamma_0(2)$, which is not identically zero. We have

$$
(124) \quad v_\infty(f) + v_0(f) + \frac{1}{2} v_{\rho_2}(f) + \sum_{p \in \Gamma_0(2) \backslash \mathbb{H}} v_p(f) = k, \quad \text{where } \rho_2 := -1/2 + i/2.
$$

(See [KO] and [SE])

![Figure 9](image-url)

Figure 9

Proof. Let f be a nonzero modular function of weight k for $\Gamma_0(2)$, and let \mathcal{C} be a contour of $\mathbb{F}(2)$ which is a fundamental domain of $\Gamma_0(2)$ represented in Figure 9, whose interior contains every zero and pole of f except for ρ_2. By the Residue theorem, we have

$$
\frac{1}{2\pi i} \int_{\mathcal{C}} \frac{df}{f} = \sum_{p \in \mathbb{F}(2) \setminus \{\rho_2\}} v_p(f).
$$

Similar to Proposition 3.1,

(i) For the arc EA, we have

$$
\frac{1}{2\pi i} \int_{A} \frac{df}{f} = -v_\infty(f).
$$

(ii) For the arc CC', without loss of generallity, we can define arc CC' so that it equals the image of EA by the transformation W_2. Define $f_0(z) := (\sqrt{2}z)^{-k}f(W_2z)$, then we can write

$$
f_0(z) = \sum_{n \in \mathbb{N}} a_{0,n} q^n, \quad \text{where } q = e^{2\pi iz}. \quad \text{(See equation (16))}
$$

Furthermore, we have $f_0(W_2^{-1}z) = (\sqrt{2})^k f(z)$ and

$$
\frac{df_0(W_2^{-1}z)}{f_0(W_2^{-1}z)} = \frac{df(z)}{f(z)} + k \frac{dz}{z}.
$$

Thus

$$
\frac{1}{2\pi i} \int_{C} \frac{df(z)}{f(z)} = \frac{1}{2\pi i} \int_{E} \frac{df_0(z)}{f_0(z)} - \frac{1}{2\pi i} \int_{C} \frac{k dz}{z}.
$$
Now, when the arcs CC' tend to 0, we have
\[
\frac{1}{2\pi i} \int_C C' \frac{dz}{z} \to 0.
\]
In addition,
\[
\frac{1}{2\pi i} \int_E A \frac{df_0}{f_0} = -v_\infty(f_0) = -v_0(f).
\]
In conclusion, we have
\[
\frac{1}{2\pi i} \int_C C' \frac{df}{f} \to -v_0(f).
\]
(iii) For the arcs BB' and DD', when the radii of the each arc tends to 0, then we have
\[
\frac{1}{2\pi i} \int_{B'} B' \frac{df}{f} = \frac{1}{2\pi i} \int_{D'} D' \frac{df}{f} \to -\frac{1}{4}v_{\rho_2}(f).
\]
(iv) For the arcs AB and $D'E$, since $f(Tz) = f(z)$ for $T = (\frac{1}{2} \frac{1}{2})$,
\[
\frac{1}{2\pi i} \int_A B \frac{df}{f} + \frac{1}{2\pi i} \int_{D'} D' \frac{df}{f} = 0.
\]
(v) For the arcs $B'C$ and $C'D$, since $f(S_2z) = (2z + 1)^k f(z)$ for $S_2 := (\frac{1}{2} \frac{1}{0})$, we have
\[
\frac{df(S_2z)}{f(S_2z)} = k \frac{dz}{z + 1/2} + \frac{df(z)}{f(z)}.
\]
When the radii of the arcs BB', CC', DD' tend to 0, the angle of the arc $B'C$ tend to $\pi/2$. Thus we have
\[
\frac{1}{2\pi i} \int_{B'} B' \frac{df}{f} + \frac{1}{2\pi i} \int_{C'} C' \frac{df}{f} = \frac{1}{2\pi i} \int_C C' \left(-\frac{k}{k} \frac{dz}{z + 1/2}\right) = -\frac{k}{4}.
\]
\[\square\]

6.1.2. Modular forms of weight 2

We define
\[
E_{2,2'}(z) := 2E_2(2z) - E_2(z).
\]
Note that $E_{2,2'}$ is generated by Eisenstein series for $SL_2(\mathbb{Z})$, but it is not Eisenstein series for $SL_2(\mathbb{Z})$ nor $\Gamma_0(2)$.

It is easy to show that $E_{2,2'}$ satisfies transformation rule (14):
\[
E_{2,2'}((\frac{1}{2} \frac{1}{2}) z) = E_{2,2'}(z + 1) = E_{2,2'}(z).
\]
Since $(\frac{1}{2} \frac{1}{2}) = W_2 (\frac{1}{0} \frac{1}{1})^{-1} W_2^{-1}$, and
\[
E_2 \left(2 \left(-\frac{1}{2z}\right)\right) = z^2 E_2(z) + \frac{12}{2\pi i} \cdot z,
\]
\[
E_2 \left(-\frac{1}{2z}\right) = 4z^2 E_2(2z) + \frac{12}{2\pi i} \cdot 2z,
\]
we have
\[
E_{2,2'}(W_2 z) = E_{2,2'} \left(-\frac{1}{2z}\right) = 2z^2 E_2(z) - 4z^2 E_2(2z) = -(\sqrt{2} z)^2 E_{2,2'}(z),
\]
then
\[
E_{2,2'}((\frac{1}{2} \frac{1}{2}) z) = (2z + 1)^2 E_{2,2'}(z).
\]
Recall that $(\frac{1}{2} \frac{1}{2})$ and $(\frac{1}{2} \frac{1}{0})$ generate $\Gamma_0(2)$ (in Section 4), then we can show that $E_{2,2'}$ satisfies transformation rule for $\Gamma_0(2)$.

Furthermore, by the definition, it is easy to show that $E_{2,2'}$ is holomorphic on \mathbb{H} and at ∞. In addition, by the equation (126), we have
\[
(\sqrt{2}z)^2 E_{2,2'}(W_2 z) = -E_{2,2'}(z).
\]
Thus $E_{2,2'}$ is holomorphic at cusp 0. (See equation (16)) Now, we prove $E_{2,2'}$ is a modular form for $\Gamma_0(2)$ of weight 2.

How about the locating zeros of $E_{2,2'}$? By the valence formula for $\Gamma_0(2)$ (Proposition 6.1), we have $v_{\rho_2}(E_{2,2'}) = 1$, $v_p(E_{2,2'}) = 0$ for every $p \neq \rho_2$.

Incidentally, let \(f \) be a modular form for \(\Gamma_0(2) \) of weight 2. Then, By the valence formula for \(\Gamma_0(2) \), we also have

\[
v_{p_2}(f) = 1, \quad v_{p}(f) = 0 \quad \text{for every } p \neq \rho_2.
\]

Thus \(f/E_{2,2} \) is a modular form of weight 0, then \(f/E_{2,2} \) is in \(\mathbb{C} \). In conclusion, \(f \) is a constant multiple of \(E_{2,2} \).

6.1.4. The space of modular forms. Let \(M_{k,2} \) be the space of modular forms for \(\Gamma_0(2) \) of weight \(k \), and let \(M_{k,2}^0 \) be the space of cusp forms for \(\Gamma_0(2) \) of weight \(k \). When we consider the map \(M_{k,2} \supseteq f \mapsto (f(\infty), f(0)) \in \mathbb{C} \times \mathbb{C} \), the kernel of this map is \(M_{k,2}^0 \). So \(\dim(M_{k,2}/M_{k,2}^0) \leq 2 \), and \(M_{k,2} = \mathbb{C}E_{k,2}^\infty \oplus \mathbb{C}E_{k,2}^0 \oplus M_{k,2}^0 \). Recall that \(\Delta_2 = \eta^8(z)\eta^8(2z) \). We have following theorem:

Theorem 6.1. Let \(k \) be an even integer.

1. For \(k < 0 \), \(M_{k,2} = 0 \).
2. For \(k = 0, 2, 4 \), and 6, we have \(M_{k,2}^0 = 0 \). Furthermore, we have \(M_{0,2} = \mathbb{C}, M_{2,2} = \mathbb{C}E_{2,2}' \), and \(M_{k,2} = \mathbb{C}E_{k,2}^\infty \oplus \mathbb{C}E_{k,2}^0 \) for \(k = 4 \) and 6.
3. \(M_{k,2}^0 = \Delta_2 M_{k-8,2} \).

Proof. Let \(f \) be a nonzero function of \(M_{k,2} \), then \(v_p(f) \geq 0 \) for every \(p \in \mathbb{H} \). By the valence formula for \(\Gamma_0(2) \)(Proposition 6.1), we have \(k \geq 0 \). This proves (1).

In Section 4, we have \(v_\infty(\Delta_2) = v_\infty(\Delta_2) = 1 \) and \(v_p(\Delta_2) = 0 \) for every \(p \in \mathbb{H} \). Then, for every \(f \in M_{k,2}^0 \), we have \(v_p(f/\Delta_2) \geq 0 \) for every \(p \in \mathbb{H} \). Thus \(f/\Delta_2 \in M_{k-8,2} \). This proves (3).

By (3) and \(M_{k,2} = 0 \) for \(k < 0 \), we have \(M_{k,2} = 0 \) for \(k = 0, 2, 4 \), and 6. By previous subsections, we can prove (2). \(\square \)

Furthermore, we have \(\dim(M_{k,2}) = [k/4] + 1 \) for \(k \geq 0 \), and \(\dim(M_{k,2}^0) = [k/4] - 1 \) for \(k \geq 8 \).

Let \(k \) be an even integer such that \(k \geq 4 \) and \(k \equiv 0 \pmod{4} \). For \(f \in M_{k,2} \), by previous subsections, we have \(v_p(f/E_{2,2}^0) \geq 0 \) for every \(p \in \mathbb{H} \). Then \(f/E_{2,2} \in M_{k-2,2} \). Thus \(M_{k,2} = E_{2,2} M_{k-2,2} \), and \(k - 2 \equiv 0 \pmod{4} \).

On the other hand, let \(k \) be an even integer such that \(k \geq 4 \) and \(k \equiv 0 \pmod{4} \). Write \(n := [k/8] \), then \(k - 8n = 0 \) or 4. Now, we have \(v_0(E_{k,2}^\infty) = 1 \) and \(v_\infty(E_{k-8,2} - E_{k-8,2}E_{4,2}^2) \geq 1 \). Thus \(E_{k,2}^\infty - E_{k-8,2}E_{4,2}^2 \in M_{k,2}^0 \). Similarly, we have \(E_{k,2}^0 - E_{k-8,2}E_{4,2}^2 \in M_{k,2}^0 \). In conclusion, we have
Then we have \(M_{k,2} = \mathbb{C} E_{k-8,n_2}(E_{4,2})^{2n} \oplus \mathbb{C} E_{k-8,n_2}(E_{4,2})^{2n} \oplus M_{k,2}^0. \) Then
\[
M_{k,2} = \mathbb{C} E_{k-8,n_2}(E_{4,2})^{2n} \oplus \mathbb{C} E_{k-8,n_2}(E_{4,2})^{2n} \oplus \Delta_2 M_{k-8,2} \quad \cdots \\
= E_{k-8,n_2}(\mathbb{C}(E_{4,2})^{2n} \oplus \mathbb{C}(E_{4,2})^{2(n-1)} \Delta_2 + \cdots \oplus \mathbb{C} \Delta_2^n) \\
\oplus E_{k-8,n_2}(\mathbb{C}(E_{4,2})^{2n} \oplus \mathbb{C}(E_{4,2})^{2(n-1)} \Delta_2 + \cdots \oplus \mathbb{C} \Delta_2^n)
\]
Thus, the next proposition follows:

Proposition 6.2. Let \(k > 4 \) be an even integer. For every \(f \in M_{k,2} \), we have
\[
v_{\rho_3}(f) \geq t_k \quad (t_k = 0, 1 \text{ such that } 2t_k \equiv k \pmod{4}).
\]
In addition, we have \(E_{4,2}^0 = 4((E_{2,2})^2 - E_{4,2}^2) \) and \(\Delta_2 = E_{4,2}^2 \cdot E_{4,2}^2/256. \)

Remark 6.1. Every modular form for \(\Gamma_0(2) \) is generated by

\[E_{2,2}' \quad \text{and} \quad E_{4,2}^0. \]

Finally, define
\[
A_2 := \{ z : |z + 1/2| = 1/2, 0 < \text{Arg}(z) < \pi/2 \},
\]
\[
A_2^0 := \{ z : \text{Re}(z) = -1/2, \text{Im}(z) > 1/2 \}.
\]
Then we have following:

Conjecture 6.1. Let \(k \geq 4 \) be an even integer. \(E_{k,2}^\infty \) has \(|k/4| - 1 \) zeros in \(A_2 \), and \(E_{k,2}^0 \) has \(|k/4| - 1 \) zeros in \(A_2^0 \). Furthermore, in Proposition 6.2, the equality holds if \(f \) is equal to \(E_{k,2}^\infty \) or \(E_{k,2}^0 \).

Now, we have the following transformation:
\[
\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} W_2 : \frac{e^{i\theta} - 1}{2} \mapsto \frac{-1}{2} + \frac{i}{2 \tan \theta/2}.
\]
This transform \(A_2 \) to \(A_2^0 \). Moreover,
\[
E_{k,2}^0 \left(\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} W_2 z \right) = (2z)^k E_{k,2}^\infty(z) \quad \text{for every } z \in A_2.
\]
Then

Remark 6.2. If \(E_{k,2}^\infty \) has \(|k/4| - 1 \) zeros in \(A_2 \), then \(E_{k,2}^0 \) has \(|k/4| - 1 \) zeros in \(A_2^0 \).

6.1.5. The function \(F_{k,2} \)

We give the next definition:
\[
F_{k,2}(\theta) := e^{i\theta/2} E_{k,2}^\infty(e^{i\theta}/2 - 1/2).
\]
Again, \(E_{k,2}^\infty \) is denoted by
\[
E_{k,2}^\infty(z) = \frac{1}{2} \sum_{(c,d)=1 \atop 2 \mid c} (cz + d)^{-k}.
\]
Since \(2 \mid c \), we can write \(c = 2c' \) for \(\exists c' \in \mathbb{Z} \), and have \(2 \mid d. \)
\[
F_{k,2}(\theta) = \frac{e^{i\theta/2}}{2} \sum_{(c,d)=1 \atop 2 \mid c} \left(e^{\theta/2} - \frac{1}{2} + d \right)^{-k} = \frac{e^{i\theta/2}}{2} \sum_{(c,d)=1 \atop 2 \mid d} (c'e^{i\theta} + (-c' + d)^{-k}
\]
\[
= \frac{1}{2} \sum_{(c,d)=1 \atop 2 \mid d} (c'e^{i\theta/2} + (-c' + d)e^{-i\theta/2})^{-k}.
\]
Then we have \((c', -c' + d) = 1, 2 \mid (c' - c' + d) \). Thus we can write as following:
\[
F_{k,2}(\theta) = \frac{1}{2} \sum_{(c,d)=1 \atop 2 \mid cd} (ce^{i\theta/2} + de^{-i\theta/2})^{-k}.
\]
Note that for any pair \((c, d)\), \((ce^{i\theta/2} + de^{-i\theta/2})^{-k}\) and \((de^{i\theta/2} + ce^{-i\theta/2})^{-k}\) are conjugates of each other. The next proposition follows.

Proposition 6.3. \(F_{k,2}(\theta)\) is real for every \(\theta \in \mathbb{R}\).

6.1.6. Application of the RSD Method (0)

We note that \(N := c^2 + d^2\).

Firstly, we consider the case \(N = 1\). Then we can write:

\[
F_{k,2}(\theta) = 2\cos(k\theta/2) + R_2,
\]

where

\[
R_2 = \frac{1}{2} \sum_{(c,d)=1 \atop 2|cd \atop N>1} (ce^{i\theta/2} + de^{-i\theta/2})^{-k}.
\]

Now, we have

\[
|R_2| \leq \frac{1}{2} \sum_{(c,d)=1 \atop 2|cd \atop N>1} |ce^{i\theta/2} + de^{-i\theta/2}|^{-k}.
\]

Let \(v_k(c, d, \theta) := |ce^{i\theta/2} + de^{-i\theta/2}|^{-k}\), then \(v_k(c, d, \theta) = 1/(c^2 + d^2 + 2cd\cos \theta)^{k/2}\) and \(v_k(c, d, \theta) = v_k(-c, -d, \theta) = v_k(\pm d, \pm c, \theta)\).

However, for every \(n \in \mathbb{N}\), we have \((2n, -2n - 1) = 1, 2 | 2n(-2n - 1), and\)

\[
v_k(2n, -2n - 1, \theta) \leq 1 \quad \text{for } 0 \leq \theta \leq \pi/2.
\]

Here, the number of the pairs \((2n, -2n - 1)\) is infinite. Thus we have the bound

\[
|R_2| \leq \infty,
\]

which does not make sense.

For \(0 \leq \theta \leq \pi/2\), we have \(0 \leq k\theta/2 \leq k\pi/4\). Here the interval \([0, k/4]\) has \([k/4] + 1\) integers, but we need at most \([k/4]\) integers for \([k/4] - 1\) zeros. Now, \(|R_2|\) tends to \(\infty\) when \(\theta\) tend to \(0\). Thus we expect to remove the integer 0 from the interval \([0, k/4]\). Then we need

\[
|R_2| < 2 \quad \text{for every } \theta \in [2\pi/k, \pi/2].
\]

However, it is still difficult to prove above bound.

For the first step, we will prove following in the next subsections:

\[
|R_2| < 2 \quad \text{for every } \theta \in [\pi/6, \pi/2].
\]

\[
|R_2| < 2 \quad \text{for every } \theta \in [\pi/12, \pi/2].
\]

\[
|R_2| < 2 \quad \text{for every } \theta \in [\pi/20, \pi/2].
\]

6.1.7. Application of the RSD Method (1) : \([\pi/6, \pi/2]\)

In previous subsections, \(E_{k,2}^{c_0}\) and \(E_{k,2}^{0}\) of weight \(k < 8\) has no zeros other than \(\infty\), 0, and \(\rho_2\). Thus we may assume \(k \geq 8\).

Now we will consider the next cases, namely \(N = 5, 13, 17,\) and \(N \geq 25\). Considering \(0 \leq \cos \theta \leq 7/8\) for the interval \([\pi/6, \pi/2]\), we have the following:

When \(N = 5\), \(v_k(1,2,\theta) \leq (1/5)^{k/2}\), \(v_k(1,-2,\theta) \leq (2/3)^{k/2}\).

When \(N = 13\), \(v_k(2,3,\theta) \leq (1/13)^{k/2}\), \(v_k(2,-3,\theta) \leq (2/5)^{k/2}\).

When \(N = 17\), \(v_k(1,4,\theta) \leq (1/17)^{k/2}\), \(v_k(1,-4,\theta) \leq (1/10)^{k/2}\).

When \(N \geq 25\), \(|ce^{i\theta/2} + de^{-i\theta/2}|^2 \geq N/8|\).
and the rest of the question is about the number of terms with $c^2 + d^2 = N$. The number of $|c|$ is not more than $N^{1/2}$, and we consider four terms $(c, d), (c, -d)$ and the number $1/2$ which is the coefficient of the summation. Thus the number of terms is not more than $2N^{1/2}$. Then

$$|R_2|_{N>25} = 4\sqrt{2} \sum_{N=25}^{\infty} \left(\frac{1}{8}N\right)^{(1-k)/2} \leq \frac{252\sqrt{6}}{k-3} \left(\frac{1}{3}\right)^{k/2}.$$

Thus

$$|R_2| \leq 2 \left(\frac{2}{3}\right)^{k/2} + 2 \left(\frac{2}{5}\right)^{k/2} + \cdots + 2 \left(\frac{1}{17}\right)^{k/2} + \frac{252\sqrt{6}}{k-3} \left(\frac{1}{3}\right)^{k/2},$$

$$\leq 1.61099\ldots \quad (k \geq 8)$$

In conclusion,

Remark 6.3. We proved Conjecture 6.1 for $4 \leq k \leq 12$.

6.1.8. Application of the RSD Method (2) : $[\pi/12, \pi/2]$. In this subsection, we prove the bound (135). In previous subsections, we proved for $k \leq 12$. Thus we may assume $k \geq 14$.

Now we will consider the next cases, namely $N = 5, 13, \cdots, 61$, and $N \geq 65$. Considering $0 \leq \cos \theta \leq 29/30$ for the interval $[\pi/12, \pi/2]$, we have the following:

- When $N = 5$, $v_k(1, 2, \theta) \leq (1/5)^{k/2}$, $v_k(1, -2, \theta) \leq (15/17)^{k/2}$.
- When $N = 13$, $v_k(2, 3, \theta) \leq (1/13)^{k/2}$, $v_k(2, -3, \theta) \leq (5/7)^{k/2}$.
- When $N = 17$, $v_k(3, 4, \theta) \leq (1/17)^{k/2}$, $v_k(1, -4, \theta) \leq (15/139)^{k/2}$.
- When $N = 25$, $v_k(3, 4, \theta) \leq (1/5)^{k}$, $v_k(3, -4, \theta) \leq (5/9)^{k/2}$.
- When $N = 29$, $v_k(2, 5, \theta) \leq (1/29)^{k/2}$, $v_k(2, -5, \theta) \leq (3/29)^{k/2}$.
- When $N = 37$, $v_k(1, 6, \theta) \leq (1/37)^{k/2}$, $v_k(1, -6, \theta) \leq (5/127)^{k/2}$.
- When $N = 41$, $v_k(4, 5, \theta) \leq (1/41)^{k/2}$, $v_k(4, -5, \theta) \leq (3/7)^{k/2}$.
- When $N = 53$, $v_k(2, 7, \theta) \leq (1/53)^{k/2}$, $v_k(2, -7, \theta) \leq (15/389)^{k/2}$.
- When $N = 61$, $v_k(5, 6, \theta) \leq (1/61)^{k/2}$, $v_k(5, -6, \theta) \leq (1/3)^{k/2}$.
- When $N \geq 65$, $|ce^{\theta/2} \pm d\theta/2|^2 \geq N/30$, and the number of terms with $c^2 + d^2 = N$ is not more than $2N^{1/2}$. Then

$$|R_2|_{N\geq65} = 2\sqrt{30} \sum_{N=65}^{\infty} \left(\frac{1}{30}N\right)^{(1-k)/2} \leq \frac{2048}{k-3} \left(\frac{15}{32}\right)^{k/2}.$$

Thus

$$|R_2| \leq 2 \left(\frac{5}{7}\right)^{k/2} + 2 \left(\frac{5}{9}\right)^{k/2} + \cdots + 2 \left(\frac{1}{61}\right)^{k/2} + \frac{2048}{k-3} \left(\frac{15}{32}\right)^{k/2},$$

$$\leq 1.98724\ldots \quad (k \geq 14)$$

In conclusion,

Remark 6.4. We proved Conjecture 6.1 for $14 \leq k \leq 24$.

6.1.9. Application of the RSD Method (3) : $[\pi/20, \pi/2]$. In this subsection, we prove the bound (136). In previous subsections, we proved for $k \leq 24$. Thus we may assume $k \geq 26$.

Now we will consider the next cases, namely $N = 5, 13, \cdots, 125$, and $N \geq 137$. Considering $0 \leq \cos \theta \leq 81/82$ for the interval $[\pi/20, \pi/2]$, we have the following:

- When $N = 5$, $v_k(1, 2, \theta) \leq (1/5)^{k/2}$, $v_k(1, -2, \theta) \leq (41/43)^{k/2}$.
- When $N = 13$, $v_k(2, 3, \theta) \leq (1/13)^{k/2}$, $v_k(2, -3, \theta) \leq (41/47)^{k/2}$.
Thus we cannot prove for $k = 100$, we consider $0 \leq \cos \theta \leq 506/507$ for the interval $[\pi/50, \pi/2]$, we have

$$|R_2| \leq 2v_k(1, -2, \theta) + 2v_k(2, -3, \theta) + 2v_k(3, -4, \theta)$$

$$\leq 2 \left(\frac{507}{511} \right)^{k/2} + 2 \left(\frac{169}{173} \right)^{k/2} + 2 \left(\frac{169}{177} \right)^{k/2}$$

$$= 2.16912... \quad (k = 100)$$

Thus we can not prove for $k \geq 100$ with this method. We will need some expansion.
6.2. $\Gamma_0(3)$.

We have the following transformation:

$$\begin{pmatrix} -1 & 0 \\ 3 & -1 \end{pmatrix} : \frac{e^{i\theta} + 1}{3} \mapsto \frac{e^{i(z-\theta)} - 1}{3}.$$

Then we have $V_{\Gamma_0(3)} = \{-1/2 + \sqrt{3}i/6\}$ (cf. Theorem 2.1).

6.2.1. Valence formula. In order to decide the locating of all zeros of $E_{k,3}^\infty(z)$ and $E_{k,3}^0(z)$, we need the valence formula for $\Gamma_0(3)$:

Proposition 6.4. Let f be a modular function of weight k for $\Gamma_0(3)$, which is not identically zero. We have

$$v_\infty(f) + v_0(f) + \frac{1}{3} v_{\rho_3}(f) + \sum_{\substack{p \in \Gamma_0(3) \simeq H \cap \mathbb{Z} \setminus \mathbb{Q} \setminus \mathbb{Z} / p \neq \rho_3}} v_p(f) = \frac{k}{3},$$

where $\rho_3 := -1/2 + \sqrt{3}i/6$.

The proof of this proposition is similar to Proposition 6.1 because the figure of fundamental domain of $\Gamma_0(3)$ is similar to that of $\Gamma_0(2)$ (cf. Figure 4). The angle of the arc around ρ_3 (BB' in Figure 9.) tends to $\pi/6$ when radius of it tends to 0, thus the coefficient of $v_{\rho_3}(f)$ is 1/3. Furthermore, since $f(S_3z) = (-3z - 1)^k f(z)$ for $S_3 := -\left(\begin{smallmatrix} 1 & 1 \\ 3 & 1 \end{smallmatrix}\right)$, the right-hand side is $k/3$.

6.2.2. Modular forms of weight 2. We define

$$E_{2,3}'(z) := \frac{1}{2}(3E_2(3z) - E_2(z)).$$

Note that $E_{2,3}'$ is generated by Eisenstein series for $SL_2(\mathbb{Z})$, but it is not Eisenstein series for $SL_2(\mathbb{Z})$ nor $\Gamma_0(3)$.

Similarly to $E_{2,2}'$, we have

$$E_{2,3}'(\left(\begin{smallmatrix} 1 & 1 \\ 3 & 1 \end{smallmatrix}\right) z) = E_{2,3}'(z),$$

$$E_{2,3}'(-\left(\begin{smallmatrix} 1 & 0 \\ 3 & 1 \end{smallmatrix}\right) z) = (-3z - 1)^2 E_{2,3}'(z).$$

Furthermore, because

$$E_{2,3}'(W_3z) = -\sqrt{3}z E_{2,3}'(z),$$

$E_{2,3}'$ is holomorphic at cusp 0. Now, we prove $E_{2,3}'$ is a modular form for $\Gamma_0(3)$ of weight 2.

By the valence formula for $\Gamma_0(3)$ (Proposition 6.4), we have

$$v_{\rho_3}(E_{2,3}') = 2, \quad v_p(E_{2,3}') = 0 \quad \text{for every } p \neq \rho_3.$$

Incidentally, let f be a modular form for $\Gamma_0(3)$ of weight 2. Then, By the valence formula for $\Gamma_0(3)$, we also have $v_{\rho_3}(f) = 2$ and $v_p(f) = 0$ for every $p \neq \rho_3$. Thus $f/E_{2,3}'$ is a modular form of weight 0, then $f/E_{2,3}' \in \mathbb{C}$. In conclusion, f is a constant multiple of $E_{2,3}'$.
6.2.3. Preliminaries. Let f be a modular form for $\Gamma_0(3)$ of weight k, and let $k \not\equiv 0 \pmod{3}$. Then we have

$$f(\rho_3) = f\left((\frac{-2}{3} \cdots \frac{1}{1}\right) \rho_3) = (e^{i2\pi/3})^k f(\rho_3).$$

Thus $f(\rho_3) = 0$ and $v_{\rho_3}(f) \geq 1$.

Let k be an even integer such that $k \equiv 0 \pmod{3}$. Then we have

$$E_{k,3}^\infty(\rho_3) = \frac{1}{1-3^k} \left(3^{k/2}(e^{i\pi/6})^k - 3^k\right) E_k(\rho) \neq 0,$$

$$E_{k,3}^0(\rho_3) = \frac{1}{1-3^{-k}} \left(3^{k/2}(e^{i\pi/6})^k - 1\right) E_k(\rho) \neq 0.$$

(cf. Proposition 3.3) Thus $v_{\rho_3}(E_{k,3}^\infty) = v_{\rho_3}(E_{k,3}^0) = 0$.

Recall that $v_0(E_{k,3}^\infty) = v_0(E_{k,3}^0) = 1$ and $v_\infty(E_{k,3}^\infty) = v_0(E_{k,3}^0) = 0$. (Section 4)

In particular, we have $v_0(E_{k,3}^\infty) = v_0(E_{k,3}^0) = 1$, and $v_{\rho_3}(E_{k,3}) \geq 1$. By the valence formula, we have $v_{\rho_3}(E_{k,3}) = v_{\rho_3}(E_{k,3}^0) = 1$, and they do not have any other zeros.

Finally, define

$$A_3 := \{z : |z + 1/3| = 1/3, 0 < \text{Arg}(z) < 2\pi/3\},$$

$$A_3^0 := \{z : \text{Re}(z) = -1/2, \text{Im}(z) > \sqrt{3}/6\}.$$

Now, we have the following transformation:

$$\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} W_3 : e^{i\theta} - \frac{1}{3} \mapsto -\frac{1}{2} + i \frac{1}{2 \tan \theta/2}.$$

This transform A_3 to A_3^0. Moreover,

$$E_{k,3}^0 \left(\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} W_3 \right) z = (3z)^k E_{k,3}^\infty(z) \quad \text{for every } z \in A_3.$$

Then

Remark 6.6. The number of zeros of $E_{k,3}^\infty$ in A_3 is equal to that of zeros of $E_{k,3}^0$ in A_3^0.

6.2.4. The function $F_{k,3}$. We give the next definition:

$$F_{k,3}(\theta) := e^{ik\theta/2} E_{k,3}^\infty(e^{i\theta}/3 - 1/3).$$

Again, $E_{k,3}^\infty$ is denoted by

$$E_{k,3}^\infty(z) = \frac{1}{2} \sum_{(c,d)=1 \atop 3|c} (cz + d)^{-k}.$$

Since $3 \mid c$, we can write $c = 3c'$ for $3c' \in \mathbb{Z}$, and have $3 \nmid d$.

$$F_{k,3}(\theta) = \frac{e^{ik\theta/2}}{2} \sum_{(c,d)=1 \atop 3|c} \left(e^{i\theta}/3 + d \right)^{-k}$$

$$= \frac{1}{2} \sum_{(c,d)=1 \atop 3|d} (c'e^{i\theta/2} + (-c' + d)e^{-i\theta/2})^{-k}.$$

Then we have $(c', -c' + d) = 1$. If $3 \nmid c'(-c' + d)$, then $c' \not\equiv 0, c' \not\equiv d \pmod{3}$, and we have $c' \equiv -c' + d \pmod{3}$. Thus we can write as following:

$$F_{k,3}(\theta) = \frac{1}{2} \sum_{(c,d)=1 \atop 3|cd} (ce^{i\theta/2} + de^{-i\theta/2})^{-k} + \frac{1}{2} \sum_{(c,d)=1 \atop 3|cd} (ce^{-i\theta/2} + de^{i\theta/2})^{-k}.$$

Note that for any pair (c, d), $(ce^{i\theta/2} + de^{i\theta/2})^{-k}$ and $(de^{i\theta/2} + ce^{-i\theta/2})^{-k}$ are conjugates of each other.

The next proposition follows.

Proposition 6.5. $F_{k,3}(\theta)$ is real for every $\theta \in \mathbb{R}$.
6.2.5. Application of the RSD Method (0).

We note that \(N := c^2 + d^2 \).

Firstly, we consider the case \(N = 1 \). Then we can write:

\[
F_{k,3}(\theta) = 2 \cos(k\theta/2) + R_3,
\]

where

\[
R_3 = \frac{1}{2} \sum_{(c,d)=1 \atop 3 | cd} \frac{1}{N} \left(e^{i\theta/2} + de^{-i\theta/2} \right)^{-k} + \frac{1}{2} \sum_{(c,d)=1 \atop 3 | cd} \frac{1}{c \equiv d(3)} \left(e^{i\theta/2} + de^{-i\theta/2} \right)^{-k}.
\]

Now, we have

\[
|R_3| \leq \frac{1}{2} \sum_{(c,d)=1 \atop 3 | cd} \frac{1}{N} \left| e^{i\theta/2} + de^{-i\theta/2} \right|^{-k} + \frac{1}{2} \sum_{(c,d)=1 \atop 3 | cd} \frac{1}{c \equiv d(3)} \left| e^{i\theta/2} + de^{-i\theta/2} \right|^{-k}.
\]

Let \(v_k(c,d,\theta) := \left| e^{i\theta/2} + de^{-i\theta/2} \right|^{-k} \), then \(v_k(c,d,\theta) = 1/(c^2 + d^2 + 2cd \cos \theta)^{k/2} \) and \(v_k(c,d,\theta) = v_k(-c,-d,\theta) = v_k(\pm d, \pm c, \theta) \).

However, for every \(n \in \mathbb{N} \), we have \((3n, -3n - 1) = 1, 3 \mid 3n(-3n - 1) \), and \(v_k(3n, -3n - 1, \theta) \leq 1 \) for \(0 \leq \theta \leq 2\pi/3 \).

Here, the number of the pairs \((3n, -3n - 1) \) is infinite. Thus we have the bound

\[
|R_3| \leq \infty,
\]

which does not make sense.

6.2.6. Application of the RSD Method (1) : \([\pi/4, 2\pi/3]\).

In previous subsections, \(E_{k,3}^\infty \) and \(E_{k,3}^0 \) of weight \(k < 6 \) has no zeros other than \(\infty \), \(0 \), and \(\rho_3 \). Thus we may assume \(k \geq 6 \). We consider two cases, namely \([\pi/2, 2\pi/3]\) and \([\pi/4, \pi/2]\).

For the interval \([\pi/2, 2\pi/3]\), we will consider the next cases, namely \(N = 2, 5 \), and \(N \geq 10 \). Considering \(-1/2 \leq \cos \theta \leq 0 \) for the interval \([\pi/2, 2\pi/3]\), we have the following:

When \(N = 2 \), \(v_k(1, 1, \theta) \leq 1 \).

When \(N = 5 \), \(v_k(1, -2, \theta) \leq (1/5)^{k/2} \).

When \(N \geq 10 \), \(|e^{i\theta/2} + de^{-i\theta/2}|^2 \geq N/2 \),

and the number of terms is not more than \(2N^{1/2} \). Then

\[
|R_3|_{N \geq 10} = 2\sqrt{2} \sum_{N=10}^{\infty} \left(\frac{1}{2} N \right)^{(1-k)/2} \leq \frac{108}{k-3} \left(\frac{2}{9} \right)^{k/2}.
\]

Thus

\[
|R_3| \leq 1 + 2 \left(\frac{1}{5} \right)^{k/2} + \frac{108}{k-3} \left(\frac{2}{9} \right)^{k/2} \leq 1.41106... \quad (k \geq 6)
\]

On the other hand, for the interval \([\pi/2, \pi/2]\), we will consider the next cases, namely \(N = 2, 5, 10, 13 \), and \(N \geq 17 \). Considering \(0 \leq \cos \theta \leq 3/4 \) for the interval \([\pi/2, \pi/2]\), we have the following:

When \(N = 2 \), \(v_k(1, 1, \theta) \leq (1/2)^{k/2} \).

When \(N = 5 \), \(v_k(1, 2, \theta) \leq (1/2)^{k/2} \).

When \(N = 10 \), \(v_k(1, 3, \theta) \leq (1/10)^{k/2} \).

When \(N = 13 \), \(v_k(2, 3, \theta) \leq (1/13)^{k/2} \).

When \(N \geq 17 \), \(|e^{i\theta/2} + de^{-i\theta/2}|^2 \geq N/4 \).
and the number of terms is not more than $2N^{1/2}$. Then

$$|R_3|_{N \geq 17} = 4 \sum_{N=17}^{\infty} \left(\frac{1}{4} N \right)^{(1-k)/2} \leq \frac{256}{k-3} \left(\frac{1}{2} \right)^k.$$

Thus

$$|R_3| \leq 3 \left(\frac{1}{2} \right)^{k/2} + 2 \left(\frac{1}{2} \right)^k + \cdots + 2 \left(\frac{1}{13} \right)^{k/2} + \frac{256}{k-3} \left(\frac{1}{2} \right)^k,$$
$$\leq 1.75451... \quad (k \geq 6)$$

By above bounds, $E_{6,3}^\infty$ and $E_{8,3}^\infty$ have at least 1 zeros in A_3. Then by Remark 6.6, $E_{6,3}^0$ and $E_{8,3}^0$ have at least 1 zeros in A_0^0.

Recall that $v_0(E_{6,3}^\infty) = v_{\infty}(E_{6,3}^\infty) = 1$. By the valence formula, $E_{6,3}^\infty$ and $E_{6,3}^0$ have just 1 zero in A_3 and A_0^0, respectively. Furthermore, they have no other zeros.

Recall that $v_0(E_{8,3}^\infty) = v_{\infty}(E_{8,3}^0) = 1$, $v_{3}(E_{8,3}^0) \geq 1$, and $v_{\rho_3}(E_{8,3}^0) \geq 1$. By the valence formula, $E_{8,3}^\infty$ and $E_{8,3}^0$ have just 1 zero in A_3 and A_0^0, respectively. Furthermore, we have $v_{\rho_3}(E_{8,3}^\infty) = v_{\rho_3}(E_{8,3}^0) = 2$, and they have no other zeros.

6.2.7. The space of modular forms. Let $M_{k,3}$ be the space of modular forms for $\Gamma_0(3)$ of weight k, and let $M_{k,3}^0$ be the space of cusp forms for $\Gamma_0(3)$ of weight k. Because $\dim(M_{k,3}/M_{k,3}^0) \leq 2$, we have $M_{k,3} = CE_{k,3} \oplus CE_{k,3}^0 \oplus M_{k,3}^0$. Recall that $\Delta_3 = \eta^3(z)\eta^2(3z)$. We have following theorem:

Theorem 6.2. Let k be an even integer.

1. For $k < 0$, $M_{k,3} = 0$.
2. For $k = 0, 2$, and 4, we have $M_{k,3}^0 = 0$. Furthermore, we have $M_{0,2} = \mathbb{C}$, $M_{2,3} = CE_{2,3}'$, and $M_{4,3} = CE_{4,3} \oplus CE_{2,3}'$.
3. $M_{6,3}^0 = \Delta_3 M_{k-6,3}$.

The proof of this theorem is similar to that of Theorem 6.1. Furthermore, we have $\dim(M_{k,3}) = [k/3] + 1$ for $k \geq 0$, and $\dim(M_{k,3}^0) = [k/3] - 1$ for $k \geq 6$.

Let k be an even integer such that $k \geq 4$ and $k \equiv 2 \pmod{6}$, then we have $M_{k,3} = E_{2,3}' M_{k-2,3}$, and $k - 2 \equiv 0 \pmod{6}$.

On the other hand, let k be an even integer such that $k \geq 4$ and $k \equiv 0, 4 \pmod{6}$. Write $n := [k/6]$, then $k - 6n = 0$ or 4. Now, we have $E_{k,3}^\infty - E_{k-6n,3}^\infty (E_{6,3}^\infty)^n \in M_{k,3}$ and $E_{k,3}^0 - E_{k-6n,3}^0 (E_{6,3}^0)^n \in M_{k,3}^0$.

Thus we have $M_{k,3} = CE_{k-6n,3}^\infty (E_{6,3}^\infty)^n \oplus CE_{k-6n,3}^0 (E_{6,3}^0)^n \oplus M_{k,3}^0$. Then

$$M_{k,3} = E_{k-6n,3}^\infty (CE_{6,3}^\infty)^n \oplus CE_{6,3}^0 (E_{6,3}^0)^n - \Delta_3 \oplus \cdots \oplus \Delta_3^n$$
$$\oplus E_{k-6n,3}^0 (CE_{6,3}^0)^n \oplus CE_{6,3}^\infty (E_{6,3}^\infty)^n - \Delta_3 \oplus \cdots \oplus \Delta_3^n$$

Thus, the next proposition follows:

Proposition 6.6. Let $k \geq 4$ be an even integer. For every $f \in M_{k,3}$, we have

$$v_{\rho_3}(f) \geq t_k \quad (t_k = 0, 1, 2 \text{ such that } -2t_k \equiv k \pmod{6}).$$

In addition, we have $E_{2,3}^0 = 9((E_{2,3}')^2 - E_{6,3}^\infty), E_{6,3}^\infty = E_{2,3}' E_{4,3}^\infty - (108/13) \Delta_3$, and $E_{0,3}^0 = (49/729) E_{2,3}' E_{4,3}^0 - (50/3) \Delta_3$. Then

Remark 6.7. Every modular form for $\Gamma_0(3)$ is generated by $E_{2,3}'$, $E_{4,3}^\infty$, and Δ_3.

Then we have following:

Conjecture 6.2. Let $k \geq 4$ be an even integer. $E_{k,3}^\infty$ has $[k/3] - 1$ zeros in A_3, and $E_{k,3}^0$ has $[k/3] - 1$ zeros in A_0^0. Furthermore, in Proposition 6.6, the equality hold if f is equal to $E_{6,3}^\infty$ or $E_{k,3}^0$.

Then we improve Remark 6.6 as following:

Remark 6.8. If $E_{k,3}^\infty$ has $[k/3] - 1$ zeros in A_3, then $E_{k,3}^0$ has $[k/3] - 1$ zeros in A_0^0.
For $0 \leq \theta \leq 2\pi/3$, we have $0 \leq k\theta/2 \leq k\pi/3$. Here we need at most \lfloor k/3 \rfloor integers for \lfloor k/3 \rfloor - 1 zeros. We may remove the integer 0 from the interval $[0, k/3]$. We have already proved the bound $|R_3| < 2$ for the interval $[\pi/2, 2\pi/3]$ in the previous section. Thus we need

$$
|R_3| < 2 \quad \text{for every } \theta \in [2\pi/k, \pi/2].
$$

For the first step, we will prove following in the next subsubsection:

$$
|R_3| < 2 \quad \text{for every } \theta \in [\pi/8, \pi/2].
$$

$$
|R_3| < 2 \quad \text{for every } \theta \in [\pi/15, \pi/2].
$$

$$
|R_3| < 2 \quad \text{for every } \theta \in [\pi/20, \pi/2].
$$

6.2.8. *Application of the RSD Method (2) : $[\pi/8, \pi/2]$.* In this subsection, we prove the bound (152). In previous subsections, we proved for $k \leq 8$. Thus we may assume $k \geq 10$. Now we will consider the next cases, namely $N = 2, 5, \cdots, 34$, and $N \geq 37$. Considering $0 \leq \cos \theta \leq 13/14$ for the interval $[\pi/8, \pi/2]$, we have the following:

When $N = 2$, \quad $v_k(1, 1, \theta) \leq (1/2)^{k/2}$.

When $N = 5$, \quad $v_k(1, -2, \theta) \leq (7/9)^{k/2}$.

When $N = 10$, \quad $v_k(1, 3, \theta) \leq (1/10)^{k/2}$, \quad $v_k(1, -3, \theta) \leq (7/31)^{k/2}$.

When $N = 13$, \quad $v_k(2, 3, \theta) \leq (1/13)^{k/2}$, \quad $v_k(2, -3, \theta) \leq (7/13)^{k/2}$.

When $N = 17$, \quad $v_k(1, 4, \theta) \leq (1/17)^{k/2}$.

When $N = 25$, \quad $v_k(3, 4, \theta) \leq (1/5)^k$.

When $N = 29$, \quad $v_k(2, 5, \theta) \leq (1/29)^{k/2}$.

When $N = 34$, \quad $v_k(3, 5, \theta) \leq (1/34)^{k/2}$, \quad $v_k(3, -5, \theta) \leq (7/43)^{k/2}$.

When $N \geq 37$, \quad $|ce^{i\theta/2} \pm de^{-i\theta/2}^2 | \geq N/30$.

and the number of terms with $c^2 + d^2 = N$ is not more than $2N^{1/2}$. Then

$$
|R_3|_{N \geq 37} = 2\sqrt{14} \sum_{N=37}^{\infty} \left(\frac{1}{14} N \right)^{(1-k)/2} \leq \frac{864}{k - 3} \left(\frac{7}{18} \right)^{k/2}.
$$

Thus

$$
|R_3| \leq 2 \left(\frac{7}{13} \right)^{k/2} + \left(\frac{1}{2} \right)^{k/2} + \cdots + 2 \left(\frac{1}{34} \right)^{k/2} + \frac{864}{k - 3} \left(\frac{7}{18} \right)^{k/2},
$$

$$
\leq 1.80389... \quad (k \geq 10)
$$

In conclusion,

Remark 6.9. We proved Conjecture 6.2 for $4 \leq k \leq 16$.

6.2.9. *Application of the RSD Method (3) : $[\pi/15, \pi/2]$.* In this subsection, we prove the bound (153). In previous subsections, we proved for $k \leq 16$. Thus we may assume $k \geq 18$. Now we will consider the next cases, namely $N = 2, 5, \cdots, 85$, and $N \geq 89$. Considering $0 \leq \cos \theta \leq 45/46$ for the interval $[\pi/15, \pi/2]$, we have the following:

When $N = 2$, \quad $v_k(1, 1, \theta) \leq (1/2)^{k/2}$.

When $N = 5$, \quad $v_k(1, -2, \theta) \leq (23/25)^{k/2}$.

When $N = 10$, \quad $v_k(1, 3, \theta) \leq (1/10)^{k/2}$, \quad $v_k(1, -3, \theta) \leq (23/95)^{k/2}$.

When $N = 13$, \quad $v_k(2, 3, \theta) \leq (1/13)^{k/2}$, \quad $v_k(2, -3, \theta) \leq (23/29)^{k/2}$.

When $N = 17$, \quad $v_k(1, 4, \theta) \leq (1/17)^{k/2}$.
Remark 6.10. We proved Conjecture 6.2 for $18 \leq k \leq 30$.

6.2.10. Application of the RSD Method (4) : $[\pi/20, \pi/2]$. In this subsection, we prove the bound (154). In previous subsections, we proved for $k \leq 30$. Thus we may assume $k \geq 32$.

Now we will consider the next cases, namely $N = 2, 5, \ldots, 113$, and $N \geq 125$. Considering $0 \leq \cos \theta \leq 81/82$ for the interval $[\pi/20, \pi/2]$, we have the following:

When $N = 25$, $v_k(3, 4, \theta) \leq (1/5)^k$, $v_k(3, -4, \theta) \leq (23/35)^{k/2}$.
When $N = 26$, $v_k(1, -5, \theta) \leq (23/373)^{k/2}$.
When $N = 29$, $v_k(2, 5, \theta) \leq (1/20)^{k/2}$.
When $N = 34$, $v_k(3, 5, \theta) \leq (1/34)^{k/2}$, $v_k(3, -5, \theta) \leq (23/107)^{k/2}$.
When $N = 37$, $v_k(1, 6, \theta) \leq (1/37)^{k/2}$, $v_k(1, -6, \theta) \leq (23/581)^{k/2}$.
When $N = 41$, $v_k(4, -5, \theta) \leq (23/43)^{k/2}$.
When $N = 37$, $v_k(1, 7, \theta) \leq (1/50)^{k/2}$.
When $N = 53$, $v_k(2, -7, \theta) \leq (23/589)^{k/2}$.
When $N = 58$, $v_k(3, 7, \theta) \leq (1/58)^{k/2}$, $v_k(3, -7, \theta) \leq (23/389)^{k/2}$.
When $N = 61$, $v_k(5, 6, \theta) \leq (1/61)^{k/2}$, $v_k(5, -6, \theta) \leq (23/53)^{k/2}$.
When $N = 65$, $v_k(1, -8, \theta) \leq (23/1135)^{k/2}$, $v_k(4, 7, \theta) \leq (1/65)^{k/2}$.
When $N = 73$, $v_k(3, 8, \theta) \leq (1/73)^{k/2}$, $v_k(3, -8, \theta) \leq (23/599)^{k/2}$.
When $N = 74$, $v_k(5, -7, \theta) \leq (23/126)^{k/2}$.
When $N = 82$, $v_k(1, 9, \theta) \leq (1/82)^{k/2}$, $v_k(1, -9, \theta) \leq (23/1481)^{k/2}$.
When $N = 85$, $v_k(6, 7, \theta) \leq (1/85)^{k/2}$, $v_k(6, 7, \theta) \leq (1/85)^{k/2}$, $v_k(6, -7, \theta) \leq (23/65)^{k/2}$.
When $N \geq 89$, $|ce^{\theta/2} \pm de^{-\theta/2}|^2 \geq N/46$, and the number of terms with $c^2 + d^2 = N$ is not more than $2N^{1/2}$. Then

$$|R_3|_{N \geq 89} = 2\sqrt{46} \sum_{N=89}^{\infty} \left(\frac{1}{46} N \right)^{(1-k/2)^2} \leq \frac{704\sqrt{22}}{k-3} \left(\frac{23}{44} \right)^{k/2}.$$

Thus

$$|R_3| \leq 2 \left(\frac{23}{25} \right)^{k/2} + 2 \left(\frac{23}{29} \right)^{k/2} + \cdots + 4 \left(\frac{1}{85} \right)^{k/2} + \frac{704\sqrt{22}}{k-3} \left(\frac{23}{44} \right)^{k/2},$$

$$\leq 1.89019... \quad (k \geq 18)$$

In conclusion,
We prove only about 92

When $N = 37$, $v_k(1, 6, \theta) \leq (1/37)^{k/2}$, $v_k(1, -6, \theta) \leq (41/1031)^{k/2}$.

When $N = 41$, $v_k(4, -5, \theta) \leq (41/61)^{k/2}$.

When $N = 50$, $v_k(1, 7, \theta) \leq (1/50)^{k/2}$.

When $N = 53$, $v_k(2, -7, \theta) \leq (41/1039)^{k/2}$.

When $N = 58$, $v_k(3, 7, \theta) \leq (1/58)^{k/2}$, $v_k(3, -7, \theta) \leq (41/677)^{k/2}$.

When $N = 61$, $v_k(5, 6, \theta) \leq (1/61)^{k/2}$, $v_k(5, -6, \theta) \leq (41/71)^{k/2}$.

When $N = 65$, $v_k(1, -8, \theta) \leq (41/2017)^{k/2}$, $v_k(4, 7, \theta) \leq (1/65)^{k/2}$.

When $N = 73$, $v_k(3, 8, \theta) \leq (1/73)^{k/2}$, $v_k(3, -8, \theta) \leq (41/1049)^{k/2}$.

When $N = 74$, $v_k(5, -7, \theta) \leq (41/199)^{k/2}$.

When $N = 82$, $v_k(3, 8, \theta) \leq (1/82)^{k/2}$, $v_k(3, -8, \theta) \leq (41/2633)^{k/2}$.

When $N = 85$, $v_k(2, 9, \theta) \leq (1/85)^{k/2}$, $v_k(2, -9, \theta) \leq (41/2027)^{k/2}$, $v_k(6, 7, \theta) \leq (1/85)^{k/2}$, $v_k(6, -7, \theta) \leq (41/83)^{k/2}$.

When $N = 89$, $v_k(5, 8, \theta) \leq (1/89)^{k/2}$.

When $N = 97$, $v_k(4, 9, \theta) \leq (1/97)^{k/2}$, $v_k(4, -9, \theta) \leq (41/1061)^{k/2}$.

When $N = 101$, $v_k(1, 10, \theta) \leq (1/101)^{k/2}$.

When $N = 106$, $v_k(5, 9, \theta) \leq (1/106)^{k/2}$, $v_k(5, -9, \theta) \leq (41/701)^{k/2}$.

When $N = 109$, $v_k(3, 10, \theta) \leq (1/109)^{k/2}$, $v_k(3, -10, \theta) \leq (41/2039)^{k/2}$.

When $N \geq 125$, $|ce^{\theta/2} + de^{-\theta/2}|^2 \geq N/82$.

and the number of terms with $c^2 + d^2 = N$ is not more than $2N^{1/2}$. Then

$$|R_3|_{N \geq 125} = 2\sqrt{82} \sum_{N=125}^\infty \frac{1}{82N} (1-k)^{k/2} \leq \frac{992 \sqrt{31}}{k-3} \left(\frac{41}{62} \right)^{k/2}.$$

Thus

$$(157) \quad |R_3| \leq 2 \left(\frac{41}{43} \right)^{k/2} + 2 \left(\frac{41}{47} \right)^{k/2} + \cdots + 2 \left(\frac{1}{109} \right)^{k/2} + \frac{992 \sqrt{31}}{k-3} \left(\frac{41}{62} \right)^{k/2}.$$

In conclusion,

Remark 6.11. We proved Conjecture 6.2 for $32 \leq k \leq 40$.

Now, by Remark 6.9, 6.10, and 6.11, we prove Conjecture 6.2 for $4 \leq k \leq 40$. However, for greater k, we prove only about 92.5% of Conjecture 6.2 by the sense of the interval $[\pi/20, \pi/2]$.

However, for greater k, it seems that we can not prove for all zeros with the same method.
6.3. $\Gamma_0(5)$.

We have the following transformation:

$$
\begin{pmatrix}
-1 & 0 \\
5 & -1
\end{pmatrix} \quad : \quad \frac{e^{i\theta} + 1}{5} \quad \mapsto \quad \frac{e^{i(\pi - \theta)} - 1}{5},
$$

$$
\begin{pmatrix}
2 & -1 \\
5 & -2
\end{pmatrix} \quad : \quad \frac{e^{i\theta} - 2}{5} \quad \mapsto \quad \frac{e^{i(\pi - \theta)} - 2}{5},
$$

$$
\begin{pmatrix}
-2 & -1 \\
5 & 2
\end{pmatrix} \quad : \quad \frac{e^{i\theta} + 2}{5} \quad \mapsto \quad \frac{e^{i(\pi - \theta)} + 2}{5}.
$$

Then we have $V_{\Gamma_0(5)} = \{-3/10 + \sqrt{3}i/10\}$ (cf. Theorem 2.1).

6.3.1. Valence formula.

Proposition 6.7. Let f be a modular function of weight k for $\Gamma_0(5)$, which is not identically zero. We have

$$(158) \quad v_\infty (f) + v_0 (f) + \frac{1}{2} v_{\rho_{5,2}} (f) + \frac{1}{2} v_{\rho_{5,3}} (f) + \sum_{p \in \Gamma_0(5) \backslash \mathbb{H}} v_p (f) = \frac{k}{2},$$

where $\rho_{5,2} = -2/5 + i/5$ and $\rho_{5,3} := 2/5 + i/5$.

Proof. Let f be a nonzero modular function of weight k for $\Gamma_0(5)$, and let \mathcal{C} be a contour of its fundamental domain $\mathbb{F}(5)$ (Figure 4), whose interior contains every zero and pole of f except for $\rho_{5,2}$, $\rho_{5,3}$, and $\rho_{5,4} := -3/10 + \sqrt{3}i/10$ (cf. Figure 9). By the Residue theorem, we have

$$\frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{df}{f} = \sum_{p \in \Gamma_0(5) \backslash \mathbb{H}} v_p (f).$$

(i) For the arc around ∞, we have $-v_\infty (f)$.

(ii) For the arc around 0, we have $-v_0 (f)$.

(iii) For the arcs around $\rho_{5,2}$, $\rho_{5,3}$, $\rho_{5,4}$, when the radii of each arc tends to 0, then we have

$$-\frac{1}{2} v_{\rho_{5,2}} (f), \quad -\frac{1}{2} v_{\rho_{5,3}} (f), \quad \text{and} \quad -v_{\rho_{5,4}} (f).$$

(iv) For the arcs on $\{z \mid Re(z) = -1/2\}$ and $\{z \mid Re(z) = 1/2\}$, since $f(Tz) = f(z)$ for $T = (\frac{1}{5} 0 \ 0 \frac{1}{5})$, we have 0.

(v) For the arcs on $\{z \mid |z \pm 1/5| = 1/5\}$, since $f(S_5 z) = (5z + 5)^k f(z)$ for $S_5 := (\frac{1}{5} 0 \ 0 \frac{1}{5})$, we have $k/3$.

Furthermore, for the arcs on $\{z \mid |z + 2/5| = 1/5\}$, since $f\left((\frac{2}{5} - \frac{1}{2}) z\right) = (5z + 2)^k f(z)$, we have

$$\frac{df\left((\frac{2}{5} - \frac{1}{2}) z\right)}{f\left((\frac{2}{5} - \frac{1}{2}) z\right)} = k \frac{dz}{z + 2/5} + \frac{df(z)}{f(z)}, \quad \text{and} \quad \frac{k}{12}.$$

Similarly, for the arcs on $\{z \mid |z - 2/5| = 1/5\}$, since $f\left((\frac{2}{5} - \frac{1}{2}) z\right) = (5z - 2)^k f(z)$, we have $k/12$.

Thus $k/3 + 2 \cdot k/12 = k/2$.

□
6.3.2. Modular forms of weight 2. We define

\[E_{2,5}'(z) := \frac{1}{4}(5E_2(5z) - E_2(z)). \]

Note that \(E_{2,5}' \) is generated by Eisenstein series for \(SL_2(\mathbb{Z}) \), but it is not Eisenstein series for \(SL_2(\mathbb{Z}) \) nor \(\Gamma_0(5) \).

Similarly to \(E_{2,2}' \) and \(E_{2,3}' \), we have

\[E_{2,5}' \left(\left(\frac{1}{5} \right) \right) = E_{2,5}'(z), \]
\[E_{2,5}' \left(\left(\frac{1}{5} \right) \right) = (5z + 1)^2 E_{2,5}'(z). \]

In addition, we have \(TST^2ST^{-2}S^{-1} \) for \(T := \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix} \right) \) and \(S := \left(\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix} \right) \). (See [RD]) Similarly, we have \(5 \cdot \left(\begin{smallmatrix} 3 & 1 \\ 2 & 1 \end{smallmatrix} \right) z = \left(\begin{smallmatrix} 3 & 5 \\ 2 & 1 \end{smallmatrix} \right) 5z \) and \(\left(\begin{smallmatrix} 3 & 5 \\ 2 & 2 \end{smallmatrix} \right) = T^2S^{-1}T^{-1}ST \). Recall that we have following: (Section 3)

\[E_2(Tz) = E_2(z), \quad E_2(Sz) = z^2E_2(z) + \frac{12}{2\pi i}z. \]

Then we have

\[
E_2(TST^2ST^{-2}S^{-1}z) = E_2(ST^2ST^{-2}S^{-1}z) \\
= \left(\frac{5z+2}{2z+1} \right)^2 E_2(TST^{-2}S^{-1}z) + \frac{12}{2\pi i} \frac{5z+2}{2z+1} \\
= \left(\frac{5z+2}{2z+1} \right)^2 E_2(ST^{-2}S^{-1}z) + \frac{12}{2\pi i} \frac{5z+2}{2z+1} \\
= \left(\frac{5z+2}{2z+1} \right)^2 \left(\frac{2z+1}{z} \right)^2 E_2(T^{-2}S^{-1}z) - \frac{12}{2\pi i} \frac{5z+2}{2z+1} \\
= \frac{(5z+2)^2}{z^2} E_2(S^{-1}z) - \frac{12}{2\pi i} \frac{2(5z+2)}{z} \\
= \frac{(5z+2)^2}{z^2} \left(z^2E_2(z) + \frac{12}{2\pi i}z \right) - \frac{12}{2\pi i} \frac{2(5z+2)}{z} \\
= (5z+2)^2 E_2(z) + \frac{12}{2\pi i} (5z+2).
\]

Similarly,

\[
E_2(T^2S^{-1}T^{-1}ST 5z) = \left(\frac{5z+2}{2z+1} \right)^2 E_2(ST 5z) - \frac{12}{2\pi i} \frac{5z+2}{5z+1} \\
= (5z+2)^2 E_2(5z) + \frac{12}{2\pi i} (5z+2).
\]

Thus

\[E_{2,5}' \left(\left(\frac{3}{5} \right) \right) = (5z+2)^2 E_{2,5}'(z). \]

Recall that \(\left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix} \right), \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix} \right), \) and \(\left(\begin{smallmatrix} 3 & 1 \\ 2 & 1 \end{smallmatrix} \right) \) generate \(\Gamma_0(5) \) (in Section 4), then we can show that \(E_{2,5}' \) satisfies transformation rule for \(\Gamma_0(5) \).

Furthermore, because

\[E_{2,5}'(W_5z) = -(\sqrt{5}z)^2 E_{2,5}'(z), \]

\(E_{2,5}' \) is holomorphic at cusp 0. Now, we prove \(E_{2,5}' \) is a modular form for \(\Gamma_0(5) \) of weight 2.

6.3.3. Preliminaries. Let \(f \) be a modular form for \(\Gamma_0(5) \) of weight \(k \), and let \(k \equiv 2 \pmod{4} \). Then we have

\[
f(\rho_{5z}) = f\left(\left(\begin{smallmatrix} -2^{-1} \\ 5 \end{smallmatrix} \right) \right) \rho_{5z} = i^k f(\rho_{5z}) = -f(\rho_{5z}). \\
f(\rho_{5z}) = f\left(\left(\begin{smallmatrix} 2^{-1} \\ 5 \end{smallmatrix} \right) \right) \rho_{5z} = i^k f(\rho_{5z}) = -f(\rho_{5z}).
\]

Thus \(f(\rho_{5z}) = f(\rho_{5z}) = 0, v_{\rho_{5z}}(f) \geq 1 \), and \(v_{\rho_{5z}}(f) \geq 1 \).
Let \(k \) be an even integer such that \(k \equiv 0 \pmod{4} \). Then we have
\[
E_{k,5}^\infty(p_{5,2}) = \frac{1}{1 - 5^k}((2 + i)^k - 5^k)E_k(i) \neq 0, \\
E_{k,5}^0(p_{5,2}) = \frac{1}{1 - 5^{-k}}((2 + i)^k - 1)E_k(i) \neq 0, \\
E_{k,5}^\infty(p_{5,3}) = \frac{1}{1 - 5^k}((-2 + i)^k - 5^k)E_k(i) \neq 0, \\
E_{k,5}^0(p_{5,3}) = \frac{1}{1 - 5^{-k}}((-2 + i)^k - 1)E_k(i) \neq 0.
\]
Thus \(v_{p_{5,2}}(E_{k,5}^\infty) = v_{p_{5,2}}(E_{k,5}^0) = 0 \), \(v_{p_{5,2}}(E_{k,5}^\infty) = v_{p_{5,3}}(E_{k,5}^0) \neq 0 \).
Recall that \(\Delta_5 = \eta^4(z)\eta^4(5z) \). We have following theorem:

Theorem 6.3. Let \(k \) be an even integer.

1. For \(k < 0 \), \(M_{k,5} = 0 \).
2. For \(k = 0 \) and \(2 \), we have \(M_{k,5}^0 = 0 \). Furthermore, we have \(M_{0,5} = \mathbb{C} \), \(M_{2,5} = \mathbb{C}E_{2,5}' \).
3. \(M_{k,5} = \Delta_5M_{k-4,5} \).

The proof of this theorem is similar to that of Theorem 6.3. Furthermore, we have \(\dim(M_{k,5}) = 2[k/4] + 1 \) for \(k \geq 0 \), and \(\dim(M_{k,5}^0) = 2[k/4] - 1 \) for \(k \geq 4 \).

Let \(k \) be an even integer such that \(k \geq 4 \) and \(k \equiv 2 \pmod{4} \). For \(f \in M_{k,5} \), by previous subsections, we have \(v_p(f/E_{2,5}') \geq 1 \) for every \(p \in \mathbb{H} \cup \{\infty, 0\} \). Then \(f/E_{2,5}' \in M_{k-2,5} \). Thus \(M_{k,5} = E_{2,5}'M_{k-2,5} \), and \(k - 2 \equiv 0 \pmod{4} \).

On the other hand, let \(k \) be an even integer such that \(k \geq 4 \) and \(k \equiv 0 \pmod{4} \). Write \(n := k/4 \). Now, we have \(E_{k,5}^\infty - (E_{4,5}^\infty)^n \in M_{k,5}^0 \) and \(E_{k,5}^0 - (E_{4,5}^0)^n \in M_{k,5}^0 \). In conclusion, we have \(M_{k,5} = \mathbb{C}(E_{4,5}^\infty)^n \oplus \mathbb{C}(E_{4,5}^0)^n \oplus M_{k,5}^0 \).

Thus, the next proposition follows:

Proposition 6.8. Let \(k \geq 4 \) be an even integer. For every \(f \in M_{k,5} \), we have
\[
(162) \quad v_{p_{5,2}}(f) \geq t_k, \quad v_{p_{5,3}}(f) \geq t_k \quad (t_k = 0, 1 \text{ such that } 2t_k \equiv k \pmod{4}).
\]

In addition, we have \(E_{4,5}^0 = 25(\langle E_{2,5}' \rangle^2 - E_{4,5}^\infty) - (900/13)\Delta_5 \). Then

Remark 6.12. Every modular form for \(\Gamma_0(5) \) is generated by
\[
E_{2,5}', \quad E_{4,5}, \quad \text{and} \quad \Delta_5.
\]
Finally, define
\begin{align}
(163) \quad & A_{5,1} := \{z : |z + 1/5| = 1/5, 0 < \text{Arg}(z) \leq 2\pi/3\}, \\
(164) \quad & A_{5,1}^0 := \{z : \text{Re}(z) = -1/2, \text{Im}(z) \leq \sqrt{3}/6\}, \\
(165) \quad & A_{5,2} := \{z : |z + 2/5| = 1/5, \pi/3 \leq \text{Arg}(z) < \pi/2\}, \\
(166) \quad & A_{5,2}^0 := \{z : |z + 2/3| = 1/3, \alpha < \text{Arg}(z) < \pi/3\}, \\
(167) \quad & A_{5,2}^+ := \{z : |z - 2/5| = 1/5, \pi/2 < \text{Arg}(z) \leq 2\pi/3\}, \\
(168) \quad & A_{5,2}^{+0} := \{z : |z - 2/3| = 1/3, 2\pi/3 \leq \text{Arg}(z) < \pi - \alpha\},
\end{align}
where \(\alpha \in [0, \pi/2]\) such that \(\tan \alpha = 3/4\). Furthermore, we define \(A_5 := A_{5,1} \cup A_{5,2} \cup A_{5,2}^+\) and \(A_5^0 := A_{5,1}^0 \cup A_{5,2}^0 \cup A_{5,2}^{+0}\). Then we have following:

Conjecture 6.3. Let \(k \geq 4\) be an even integer. \(E_k^{\infty}(z)\) has \(2[k/4] - 1\) zeros in \(A_5\), and \(E_k^0(z)\) has \(2[k/4] - 1\) zeros in \(A_5^0\). Furthermore, in Proposition 6.8, the equality hold if \(f\) is equal to \(E_k^{\infty}\) or \(E_k^0\).

Now, we have the following transformations:
\begin{align}
(169) \quad & \left(\begin{array}{cc} 1 & -1 \\ 0 & 1 \end{array}\right) W_5 : A_{5,1} \ni e^{i\theta} - 1/5 \mapsto -\frac{1}{2} + \frac{i}{2 \tan \theta/2} \in A_{5,1}^0, \\
(170) \quad & W_5 : A_{5,2} \ni e^{i\theta} - 2/5 \mapsto -2 - \cos \theta + i \sin \theta \in A_{5,2}^0, \\
(171) \quad & W_5 : A_{5,2}^+ \ni e^{i\theta} + 2/5 \mapsto -2 - \cos \theta + i \sin \theta \in A_{5,2}^{+0}.
\end{align}
Furthermore,
\begin{align}
E_k^0 \left(\left(\begin{array}{cc} 1 & -1 \\ 0 & 1 \end{array}\right) W_5 \right)(z) = (5z)^k E_k^{\infty}(z) \quad & \text{for every } z \in A_{5,1}, \\
E_k^0(W_5 z) = (5z)^k E_k^{\infty}(z) \quad & \text{for every } z \in A_{5,2}, A_{5,2}^+.
\end{align}
Then

Remark 6.13. If \(E_k^{\infty}(z)\) has \(2[k/4] - 1\) zeros in \(A_5\), then \(E_k^0(z)\) has \(2[k/4] - 1\) zeros in \(A_5^0\).

6.3.5. The function \(F_k,1(\theta), F_k,2(\theta), \text{ and } F_k,2^+(\theta)\). We give the next definition:
\begin{align}
(172) \quad & F_k,1(\theta) := e^{ik\theta/2} E_k^{\infty}(e^{i\theta}/5 - 1/5), \\
(173) \quad & F_k,2(\theta) := e^{ik\theta/2} E_k^{\infty}(e^{i\theta}/5 - 2/5), \\
(174) \quad & F_k,2^+(\theta) := e^{ik\theta/2} E_k^{\infty}(e^{i\theta}/5 + 2/5).
\end{align}
Again, \(E_k^{\infty}\) is denoted by
\begin{align}
E_k^{\infty}(z) = \frac{1}{2} \sum_{(e,d) \in 5^{\nabla}} (ez + d)^{-k} \\
= B_k(5^n z). \quad (\text{See Section 2})
\end{align}
Then
\begin{align}
E_k^{\infty} \left(\frac{e^{i\theta} - 1}{5} \right) = \sum_{n \in \mathbb{N}} D_{k,5}(5^n - 1) \\
= D_{k,5}(e^{i\theta} - 1) + \sum_{n \in \mathbb{N}} D_{k,5}(5^n e^{i\theta} - 5^n) \\
= \sum_{n=1}^4 D_{k,5}^n(e^{i\theta} - 1) + \sum_{n \in \mathbb{N}} D_{k,5}(5^n e^{i\theta}) \\
= B_k(e^{i\theta}) + C_k(e^{i\theta}) + \sum_{n=1}^3 D_{k,5}^n(e^{i\theta}).
\end{align}
Thus
\[
F_{k,5,1}(\theta) = \frac{1}{2} \sum_{(c,d)=1 \atop 5|c} (ce^{i\theta/2} + de^{-i\theta/2})^{-k} + \frac{1}{2} \sum_{(c,d)=1 \atop 5|c} (ce^{-i\theta/2} + de^{i\theta/2})^{-k} + \frac{1}{2} \sum_{(c,d)=1 \atop 5|c \equiv d \pmod{5}} (ce^{i\theta/2} + de^{-i\theta/2})^{-k} + \frac{1}{2} \sum_{(c,d)=1 \atop 5|c \equiv -d \pmod{5}} (ce^{-i\theta/2} + de^{i\theta/2})^{-k}.
\]

Similarly,
\[
E_{k,3}^\infty \left(\frac{e^{i\theta} - 2}{5} \right) = B_{k,5}(e^{i\theta}) + C_{k,5}(e^{i\theta}) + \sum_{n=1,2,4} D_n^k(e^{i\theta}),
\]
\[
E_{k,3}^\infty \left(\frac{e^{i\theta} + 2}{5} \right) = B_{k,5}(e^{i\theta}) + C_{k,5}(e^{i\theta}) + \sum_{n=1,3,4} D_n^k(e^{i\theta}).
\]

Thus
\[
F_{k,5,2}(\theta) = \frac{1}{2} \sum_{(c,d)=1 \atop 5|c} (ce^{i\theta/2} + de^{-i\theta/2})^{-k} + \frac{1}{2} \sum_{(c,d)=1 \atop 5|c} (ce^{-i\theta/2} + de^{i\theta/2})^{-k} + \frac{1}{2} \sum_{(c,d)=1 \atop 5|c \equiv d \pmod{5}} (ce^{i\theta/2} + de^{-i\theta/2})^{-k} + \frac{1}{2} \sum_{(c,d)=1 \atop 5|c \equiv -d \pmod{5}} (ce^{-i\theta/2} + de^{i\theta/2})^{-k}.
\]

\[
F_{k,5,2}^+(\theta) = \frac{1}{2} \sum_{(c,d)=1 \atop 5|c} (ce^{i\theta/2} + de^{-i\theta/2})^{-k} + \frac{1}{2} \sum_{(c,d)=1 \atop 5|c} (ce^{-i\theta/2} + de^{i\theta/2})^{-k} + \frac{1}{2} \sum_{(c,d)=1 \atop 5|c \equiv d \pmod{5}} (ce^{i\theta/2} + de^{-i\theta/2})^{-k} + \frac{1}{2} \sum_{(c,d)=1 \atop 5|c \equiv -d \pmod{5}} (ce^{-i\theta/2} + de^{i\theta/2})^{-k}.
\]

Note that \((ce^{i\theta/2} + de^{-i\theta/2})^{-k}\) and \((ce^{-i\theta/2} + de^{i\theta/2})^{-k}\) are conjugates of each other for any pair \((c,d)\) such that \(c \equiv \pm d \pmod{5}\), and \((ce^{i\theta/2} + de^{i\theta/2})^{-k}\) and \((ce^{-i\theta/2} + de^{i\theta/2})^{-k}\) are conjugates of each other for any pair \((c,d)\) such that \(c \not\equiv \pm d \pmod{5}\).

The next proposition follows.

Proposition 6.9. \(F_{k,5,1}(\theta)\) is real for every \(\theta \in \mathbb{R}\). On the other hand, \(F_{k,5,2}(\theta)\) and \(F_{k,5,2}^+(\theta)\) are conjugates of each other for every \(\theta \in \mathbb{R}\).

6.3.6. Application of the RSD Method. We note that \(N := c^2 + d^2\). Let \(v_0(c,d,\theta) := |ce^{i\theta/2} + de^{-i\theta/2}|^{-k}\), then \(v_0(c,d,\theta) = 1/(c^2 + d^2 + 2cd\cos\theta)^{k/2}\) and \(v_0(c,d,\theta) = v_0(-c,-d,\theta) = v_0(c,d,\theta)\).
In this subsubsection, we consider an application of the RSD Method to $F_{k, 5.1}(\theta)$. Firstly, we consider the case $N = 1$. Then we can write:

\begin{equation}
F_{k, 5.1}(\theta) = 2\cos(k\theta/2) + R_{5.1},
\end{equation}

where

\[|R_{5.1}| = \sum_{(c,d) \neq 1} v_k(c, d, \theta) + \frac{1}{2} \sum_{(c,d) \neq 1} v_k(c, d, \theta) + \sum_{(c,d) \neq 1} v_k(c, d, \theta). \]

We consider two cases, namely $[\pi/2, 2\pi/3]$ and $[\pi/4, \pi/2]$.

For the interval $[\pi/2, 2\pi/3]$, we will consider the next cases, namely $N = 2, 5, N \geq 10$. Considering $-1/2 \leq \cos \theta \leq 0$ for the interval $[\pi/2, 2\pi/3]$, we have the following:

When $N = 2$, \(v_k(1, 1, \theta) \leq 1 \).

When $N = 5$, \(v_k(1, 2, \theta) \leq (1/5)^{k/2} \), \(v_k(2, -1, \theta) \leq (1/5)^{k/2} \).

When $N \geq 10$, \(|\text{ce}^{\theta/2} \pm d\text{e}^{-\theta/2}|^2 \geq N/2 \), and the number of terms is not more than $2N^{1/2}$. Then

\[|R_{5.1}|_{N \geq 10} = 2\sqrt{2} \sum_{N=10}^{\infty} \left(\frac{1}{2} N \right)^{(1-k)/2} \leq \frac{108}{k-3} \left(\frac{2}{9} \right)^{k/2}. \]

Thus

\begin{equation}
|R_{5.1}| \leq 1 + 2 \left(\frac{1}{3} \right)^{k/2} + 2 \left(\frac{1}{5} \right)^{k/2} + \frac{108}{k-3} \left(\frac{2}{9} \right)^{k/2} \leq 1.41106... \ (k \geq 6)
\end{equation}

On the other hand, for the interval $[\pi/6, \pi/2]$, we will consider the next cases, namely $N = 2, 5, 10, 13, 17$, and $N \geq 25$. Considering $0 \leq \cos \theta \leq 7/8$ for the interval $[\pi/6, \pi/2]$, we have the following:

When $N = 2$, \(v_k(1, 1, \theta) \leq (1/2)^{k/2} \).

When $N = 5$, \(v_k(1, 2, \theta) \leq (1/5)^{k/2} \), \(v_k(2, -1, \theta) \leq (2/5)^{k/2} \).

When $N = 10$, \(v_k(3, 1, \theta) \leq (1/10)^{k/2} \), \(v_k(1, -3, \theta) \leq (4/19)^{k/2} \).

When $N = 13$, \(v_k(2, -3, \theta) \leq (2/5)^{k} \).

When $N = 17$, \(v_k(1, -4, \theta) \leq (1/10)^{k} \).

When $N \geq 25$, \(|\text{ce}^{\theta/2} \pm d\text{e}^{-\theta/2}|^2 \geq N/8 \), and the number of terms is not more than $2N^{1/2}$. Then

\[|R_{5.1}|_{N \geq 25} = 4\sqrt{2} \sum_{N=25}^{\infty} \left(\frac{1}{8} N \right)^{(1-k)/2} \leq \frac{192\sqrt{6}}{k-3} \left(\frac{1}{3} \right)^{k/2}. \]

Thus

\begin{equation}
|R_{5.1}| \leq 2 \left(\frac{2}{3} \right)^{k/2} + \left(\frac{1}{2} \right)^{k/2} + \cdots + 2 \left(\frac{1}{10} \right)^{k/2} + \frac{192\sqrt{6}}{k-3} \left(\frac{1}{3} \right)^{k/2} \leq 1.67753... \ (k \geq 8)
\end{equation}

By the above bounds, we know that E_{RSD}^{∞} has many zeros in $A_{5.1}$. However, for the arcs $A_{5.2}$ and $A_{5.2}^+$, it is not clear.
6.4. $\Gamma_0(7)$.

We have the following transformation:
\[
\begin{bmatrix} -1 & 0 \\ 7 & -1 \end{bmatrix} : \quad \frac{e^{i\theta} + 1}{7} \mapsto \frac{e^{i(\pi - \theta)} - 1}{7},
\]
\[
\begin{bmatrix} -3 & -1 \\ 7 & 2 \end{bmatrix} : \quad \frac{e^{i\theta} - 2}{7} \mapsto \frac{e^{i(\pi - \theta)} - 3}{7},
\]
\[
\begin{bmatrix} 2 & -1 \\ 7 & -3 \end{bmatrix} : \quad \frac{e^{i\theta} + 3}{7} \mapsto \frac{e^{i(\pi - \theta)} + 2}{7}.
\]

Then we have $V_{\Gamma_0(7)} = \{-3/14 + \sqrt{3}i/10, -5/14 + \sqrt{3}i/10\}$.

6.4.1. Valence formula.

Proposition 6.10. Let f be a modular function of weight k for $\Gamma_0(7)$, which is not identically zero. We have
\[
(178) \quad v_\infty(f) + v_0(f) + \frac{1}{3} v_{p_7,3}(f) + \frac{1}{3} v_{p_7,3}(f) + \sum_{p \in \Gamma_0(7) \setminus \mathcal{H}} \varepsilon_p(f) = \frac{k}{2},
\]
where $\rho_{7,2} = -5/14 + \sqrt{3}i/14$ and $\rho_{7,3} := 5/14 + \sqrt{3}i/14$.

Proof. Let f be a nonzero modular function of weight k for $\Gamma_0(7)$, and let \mathcal{C} be a contour of its fundamental domain $\mathcal{F}(7)$ (Figure 4), whose interior contains every zero and pole of f except for $\rho_{7,2}$, $\rho_{7,3}$, and $\rho_{7,4} := -3/14 + \sqrt{3}i/14$ (cf. Figure 9). By the Residue theorem, we have
\[
\frac{1}{2\pi i} \int_{\mathcal{C}} \frac{df}{f} = \sum_{p \in \Gamma_0(7) \setminus \mathcal{H}, \rho_{7,2}, \rho_{7,3}, \rho_{7,4}} v_p(f).
\]

(i) For the arc around ∞, we have $-v_\infty(f)$.
(ii) For the arc around 0, we have $-v_0(f)$.
(iii) For the arcs around $\rho_{7,2}$, $\rho_{7,3}$, $\rho_{7,4}$, when the radii of each arc tends to 0, then we have
\[
-\frac{1}{3} v_{p_7,2}(f), \quad -\frac{1}{3} v_{p_7,3}(f), \quad \text{and} \quad -v_{p_7,4}(f).
\]
(iv) For the arcs on $\{z; \text{Re}(z) = -1/2\}$ and $\{z; \text{Re}(z) = 1/2\}$, since $f(Tz) = f(z)$ for $T = (1 0 \ 0 1)$, we have 0.
(v) For the arcs on $\{z; |z + 1/7| = 1/7\}$, since $f(S_7z) = (7z + 1)^k f(z)$ for $S_7 := (1 7 \ 0 1)$, we have $k/3$.

Furthermore, for the arcs on $\{z; |z + 2/7| = 1/7\}$ and $\{z; |z + 3/7| = 1/7\}$, since $f \left(\left(\frac{7}{2} - \frac{1}{3} \right) z \right) = (7z + 3)^k f(z)$, we have $k/6$. Similarly, for the arcs on $\{z; |z - 2/7| = 1/7\}$ and $\{z; |z - 3/7| = 1/7\}$, since $f \left(\left(\frac{7}{2} - \frac{1}{3} \right) z \right) = (7z - 2)^k f(z)$, we have $k/6$.

Thus $k/3 + 2 \cdot k/6 = 2k/3$.

6.4.2. Modular forms of weight 2. We define
\[
(179) \quad E_2,7'(z) := \frac{1}{6}(7E_2(7z) - E_2(z)).
\]
Note that $E_2,7'$ is generated by Eisenstein series for $\text{SL}_2(\mathbb{Z})$, but it is not Eisenstein series for $\text{SL}_2(\mathbb{Z})$ nor $\Gamma_0(7)$.
Similarly to $E_{2,2}'$ and $E_{2,3}'$, we have

$$E_{2,2}'((\frac{1}{2}, \frac{1}{2})z) = E_{2,2}'(z), \quad E_{2,3}'((\frac{1}{2}, \frac{1}{2})z) = (-7z - 1)^2 E_{2,3}'(z).$$

In addition, we have $(\frac{1}{2}, \frac{1}{2}) = TST^2ST^{-3}S^{-1}$ for $T = (\frac{1}{2}, \frac{1}{2})$ and $S = (0, -1)$. (See [RD]) Similarly, we have $7 \cdot (\frac{1}{2}, \frac{1}{2})z = (\frac{1}{2}, \frac{1}{2})z$ and $(\frac{1}{2}, \frac{1}{2}) = T^3S^{-1}T^{-1}ST$. Recall that $E_2(Tz) = E_2(z)$, $E_2(Sz) = z^2E_2(z) + (12/2\pi i)z$. Similarly to $E_{2,5}'$

$$E_2(TST^2ST^{-3}S^{-1}z) = \left(\frac{7z + 2}{3z + 1}\right)^2 E_2(ST^{-3}S^{-1}z) + \frac{12}{2\pi i} \frac{7z + 2}{3z + 1},$$

$$= \frac{(7z + 2)^2}{z^2} E_2(S^{-1}z) - \frac{12}{2\pi i} \frac{2(7z + 2)}{z}$$

$$= (7z + 2)^2 E_2(z) + \frac{12}{2\pi i} (7z + 2).$$

Thus

$$E_{2,7}'((\frac{1}{2}, \frac{1}{2})z) = (7z + 2)^2 E_{2,7}'(z).$$

Recall that $(\frac{1}{2}, \frac{1}{2}) = (\frac{1}{2}, \frac{1}{2})$, and $(\frac{1}{2}, \frac{1}{2})$ generate $\Gamma_0(7)$ (in Section 4), then we can show that $E_{2,7}'$ satisfies transformation rule for $\Gamma_0(7)$.

Furthermore, because

$$(180) \quad E_{2,7}'(W_7z) = -\sqrt{7} E_{2,7}'(z),$$

$E_{2,7}'$ is holomorphic at cusp 0. Now, we prove $E_{2,7}'$ is a modular form for $\Gamma_0(7)$ of weight 2.

6.4.3. Preliminaries. Let f be a modular form for $\Gamma_0(7)$ of weight k, and let $k \not\equiv 0 \pmod{6}$. Then we have

$$f(\rho_{7,2}) = f((-\frac{3}{7}, -\frac{1}{2}) \cdot \rho_{7,2}) = (e^{2\pi i/3})^k f(\rho_{7,2}).$$

$$f(\rho_{7,3}) = f((\frac{2}{7}, -\frac{1}{2}) \cdot \rho_{7,3}) = (e^{2\pi i/3})^k f(\rho_{7,3}).$$

Thus $f(\rho_{7,2}) = f(\rho_{7,3}) = 0$, $\nu_{\rho_{7,2}}(f) \geq 1$, and $\nu_{\rho_{7,3}}(f) \geq 1$.

Let k be an even integer such that $k \equiv 0 \pmod{6}$. Then we have

$$E_{\infty,7}^k(\rho_{7,2}) = \frac{1}{1 - 7^k} \left(\left(\frac{5 + \sqrt{3}i}{2}\right)^k - 7^k \right) E_k(\rho) \neq 0,$$

$$E_{\infty,7}^k(\rho_{7,2}) = \frac{1}{1 - 7^k} \left(\left(\frac{5 + \sqrt{3}i}{2}\right)^k - 1 \right) E_k(\rho) \neq 0,$$

$$E_{\infty,7}^k(\rho_{7,3}) = \frac{1}{1 - 7^k} \left(\left(\frac{5 - \sqrt{3}i}{2}\right)^k - 7^k \right) E_k(\rho) \neq 0,$$

$$E_{\infty,7}^k(\rho_{7,3}) = \frac{1}{1 - 7^k} \left(\left(\frac{5 - \sqrt{3}i}{2}\right)^k - 1 \right) E_k(\rho) \neq 0.$$

Thus $\nu_{\rho_{7,2}}(E_{\infty,7}^k) = \nu_{\rho_{7,3}}(E_{\infty,7}^k) = 0$, $\nu_{\rho_{7,2}}(E_{\infty,7}^k) = \nu_{\rho_{7,3}}(E_{\infty,7}^k) = 0$.

Recall that $\nu_0(E_{\infty,7}^k) = \nu_{\infty}(E_{\infty,7}^k) = 1$ and $\nu_{\infty}(E_{\infty,7}^k) = \nu_0(E_{\infty,7}^k) = 0$. (Section 4)

Finally, for $E_{2,7}'$, we have $\nu_{\rho_{7,2}}(E_{2,7}') \geq 1$ and $\nu_{\rho_{7,3}}(E_{2,7}') \geq 1$. By the valence formula for $\Gamma_0(7)$ (Proposition 6.10) and Corollary 2.1.2, we have

$$\nu_{\rho_{7,2}}(E_{2,7}') = \nu_{\rho_{7,3}}(E_{2,7}') = 2, \quad \nu_\infty(E_{2,7}') = 0 \quad \text{for every } p \neq \rho_{7,2}, \rho_{7,3}.$$
Thus $f/E_{2,7'}$ is a modular form of weight 0, then $f/E_{2,7'} \in \mathbb{C}$. In conclusion, f is a constant multiple of $E_{2,7'}$.

6.4.4. The space of modular forms. Let $M_{k,7}$ be the space of modular forms for $\Gamma_0(7)$ of weight k, and let $M_{k,7}^0$ be the space of cusp forms for $\Gamma_0(7)$ of weight k. Since $\dim(M_{k,7}/M_{k,7}^0) \leq 2$, we have $M_{k,7} = \mathbb{C}E_{k,7}^0 \oplus \mathbb{C}E_{k,7}^0 \oplus M_{k,7}^0$. Recall that $\Delta_7 = n^6(7z)$, and $\Delta_7, \Delta_{7,6}$ are the cusp forms for $\Gamma_0^*(7)$ of weight 4, 6, respectively. We have following theorem:

Theorem 6.4. Let k be an even integer.

1. For $k < 0$, $M_{k,7} = 0$.
2. For $k = 0$ and 2, we have $M_{0,7}^0 = 0$. Furthermore, we have $M_{0,7} = \mathbb{C}, M_{2,7} = \mathbb{C}E_{2,7'}$.
3. $M_{k,7}^0 = \mathbb{C}\Delta_{7,4}$.
4. Let $\Delta_{7,6} := (1/13)(E_{2,7'}\Delta_{7,4} - \Delta_{7,6})$ and $\Delta_{7,6}^+ := -(1/13)(E_{2,7'}\Delta_{7,4} + \Delta_{7,6})$. $M_{0,7} = \mathbb{C}\Delta_7 \oplus \mathbb{C}\Delta_{7,6} \oplus \mathbb{C}\Delta_{7,6}$.
5. $M_{k,7}^0 = M_{0,7}^0 M_{k-6,7}$.

Let k be an even integer $k \geq 4$. Define $f_0(k) := (E_{1,7})^{k/4}$ if $k \equiv 0 \pmod{4}$, and $f_0(k) := E_{k,7}^0((E_{2,7'}(k-6)/4$ if $k \equiv 0 \pmod{4}$. Then we have $(\sqrt{7}z)^k f_0(k)_{z=W_{7z}} = f_0(k)$ because $f_0(k)$ is a modular form for $\Gamma_0^*(7)$.

The proof of this theorem is similar to that of Theorem 5.2. We have $\Delta_{7,6} = (\sqrt{7}z)^k \Delta_{7,6}^+$ and $\Delta_{7,6}^+ = (\sqrt{7}z)^k \Delta_{7,6}$. Because $\Delta_{7,6} = q^2 + \cdots$ and $\Delta_{7,6}^+ = -(2/13)q^{2^n}$, we have $v_\infty(\Delta_{7,6}) = v_0(\Delta_{7,6}^+) = 2$ and $v_\infty(\Delta_{7,6}) = v_0(\Delta_{7,6}^+) = 1$.

For every $f \in M_{k,7}^0$, we can write $f(z) = a_kq + \cdots$ and $(\sqrt{7}z)^k f(W_{7z}) = b_kq + \cdots$. Now, put $g := f - (a_1 \Delta_{7,6} - (1/2)(b_1 - a_1) \Delta_{7,6})f_0(k - 6)$, then it is easy to show that $v_\infty(g) \geq 2$ and $v_0(g) \geq 2$. Thus $g/\Delta_7 \in M_{k-6,7}$. This proves (5).

The table of orders of zeros of basis for $M_{k,7}$ is following:

<table>
<thead>
<tr>
<th>k</th>
<th>f</th>
<th>v_∞</th>
<th>v_0</th>
<th>$v_{7,2}$</th>
<th>$v_{7,4}$</th>
<th>[other zeros]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$E_{2,7'}$</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>$E_{4,7}^0$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>$E_{4,7}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>$\Delta_{7,4}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>$E_{6,7}^0$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>$E_{6,7}$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>$\Delta_{7,6}$</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$\Delta_{7,6}^+$</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>$\Delta_{7,6}^-$</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>$\Delta_{7,6}^+$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Furthermore, we have $\dim(M_{k,7}) = [2k/3] + 1$ for $k \geq 0$, and $\dim(M_{k,7}^0) = [2k/3] - 1$ for $k \geq 4$.

Let $k \geq 8$. Write $n := [k/6]$. If $k \equiv 0, 4 \pmod{6}$, then we have $E_{k,7}^0 - E_{k-6n,7}(E_{6,7}^0)^n \in M_{k,7}^0$ and $E_{k,7}^0 - E_{k-6n,7}(E_{6,7}^0)^n \in M_{k,7}$. In conclusion, we have $M_{k,7} = \mathbb{C}E_{k-6n,7}(E_{6,7}^0)^n \oplus \mathbb{C}E_{k-6n,7}(E_{6,7}^0)^n \oplus M_{k,7}^0$. Similarly, if $k \equiv 2 \pmod{6}$, then we have $M_{k,7} = \mathbb{C}E_{2,7'}(E_{6,7}^0)^n \oplus \mathbb{C}E_{2,7'}(E_{6,7})^n \oplus M_{k,7}^0$. Thus we have following:

If $k \equiv 0, 4 \pmod{6}$,

$$M_{k,7} = E_{k-6n,7}(E_{6,7}^0)^n \oplus (E_{6,7}^0)^{n-1}M_{6,7}^0 \oplus \cdots \oplus (E_{6,7}^0)^n \oplus M_{k,7}$$

$$\oplus (E_{k-6n,7}^0)^n \oplus (E_{6,7}^0)^{n-1}M_{6,7}^0 \oplus \cdots \oplus (E_{6,7}^0)^n \oplus M_{k,7}^0.$$

If $k \equiv 0 \pmod{6}$,

$$M_{k,7} = E_{2,7'}((E_{6,7}^0)^n \oplus (E_{6,7}^0)^{n-1}M_{6,7}^0 \oplus \cdots \oplus (E_{6,7}^0)^n)$$

$$\oplus (E_{6,7}^0)^n \oplus (E_{6,7}^0)^{n-1}M_{6,7}^0 \oplus \cdots \oplus (E_{6,7}^0)^n).$$

Now, the next proposition follows:
Proposition 6.11. Let $k \geq 4$ be an even integer. For every $f \in M_{k,7}$, we have

\begin{equation}
\nu_{p,2}(f) \geq t_k, \quad \nu_{p,3}(f) \geq t_k \quad (t_k = 0, 1, 2 \text{ such that } -2t_k \equiv k \pmod{6}).
\end{equation}

In addition, we have

\begin{align*}
E_{0,4,7} &= 49((E_{2,7}')^2 - E_{4,7}') - (784/5)\Delta_{7,4},
E_{0,7} &= E_{2,7}'(E_{4,7}' - (348/95)\Delta_{7,4}) - (36/19)\Delta_7 - (10/43)\Delta_{7,6},
E_{0,7} &= E_{2,7}'(343(E_{4,7}' - (E_{2,7}')^2) + (223636/95)\Delta_{7,4}) + (12348/19)\Delta_7 - (3430/43)\Delta_{7,6}.
\end{align*}

Remark 6.14. Every modular form for $\Gamma_0(7)$ is generated by

$E_{2,7}'$, $E_{4,7}'$, $\Delta_{7,4}$, $\Delta_{7,6}$, and Δ_7.

APPENDIX.

On the zeros of Eisenstein Series for \(\Gamma_0(4) \) and \(\Gamma_0^*(4) \)

In this paper, we consider Eisenstein Series for \(\Gamma_0^*(p) \) and \(\Gamma_0(p) \) for primes \(p \). In general, \(\Gamma_0^*(N) \) and \(\Gamma_0(N) \) for a nonprime integer \(N \) have more cusps than \(\Gamma_0^*(p) \) and \(\Gamma_0(p) \) for a prime \(p \). Then, it gets much more difficult to decide the locating of zeros.

In this appendix, we consider about \(\Gamma_0^*(4) \) and \(\Gamma_0(4) \). Note that \(\Gamma_0(4) \) is a subgroup of \(\Gamma_0(2) \). Interestingly, if we can decide all the zeros of Eisenstein Series for \(\Gamma_0(2) \), then we can decide all the zeros of Eisenstein Series for \(\Gamma_0^*(4) \) and \(\Gamma_0(4) \). Thus, by the results of this paper, we decide all the zeros of Eisenstein Series of low weights \(0 \leq k \leq 40 \) for \(\Gamma_0^*(4) \) and \(\Gamma_0(4) \). We may say it is natural, though it is not clear for me.

Again,
\[
\Gamma_0(4) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \text{SL}_2(\mathbb{Z}) ; c \equiv 0 \pmod{4} \right\},
\]
\[
\Gamma_0^*(4) = \Gamma_0(4) \cup \Gamma_0(4) W_4, \quad W_4 = \left(\begin{array}{cc} 0 & -1/2 \\ 2 & 0 \end{array} \right).
\]

APPENDIX A. Preliminaries

A.1. Fundamental Domains. For \(\Gamma_0(4) \), similarly to \(\Gamma_0(p) \) for prime \(p \), we consider the following condition:

\((C_0)\)
\[|z \pm 1/4| > 1/4, -1/2 < \text{Re}(z) < 1/2.\]

Then, by corollary 2.1.1, we have

\[(182) \quad \Gamma_0(4) = \langle -I, (\frac{1}{4} \frac{1}{2}), (\frac{1}{4} \frac{1}{4}) \rangle.\]

On the other hand, for \(\Gamma_0(4) W_4 \), we need to consider the following condition for every positive number \(m \):

\((C_{4,m})\)
\[|z - n/m| > 1/2m \sqrt{p}, -1/2 < \text{Re}(z) < 1/2 \quad \text{for } \forall n \in \mathbb{N} \text{ such that } (m, n) = 1.
\]

For every \(z \in \mathbb{H} \) such that \(|z - n/m| = 1/2m \), we have \((2n - 1)/2m < \text{Re}(z) < (2n + 1)/2m \). If \((2n - 1)/2m < 1/2 \), then we have \((2n - 1) < m, (2n + 1)/2m \leq 1/2 \). Also, if \((2n + 1)/2m < 1/2 \), then we have \((2n + 1)/2m > -1/2 \). In addition, By \(W_4 \), we have the condition \(|z| > 1/2 \). Note that we have the condition \(-1/2 < \text{Re}(z) < 1/2 \), then we have following sufficient condition:

\((C_4)\)
\[|z| > 1/2, -1/2 < \text{Re}(z) < 1/2.\]

Moreover, \((C_4) \) is a sufficient condition for \((C_0) \).

Furthermore, we have the following transformations:

For \(\Gamma_0(4) \),
\[\left(\begin{array}{cc} 1 & 0 \\ 4 & 1 \end{array} \right) : \frac{e^{i\theta} - 1}{4} \to \frac{e^{(i\pi - \theta)} + 1}{4}.
\]

For \(\Gamma_0^*(4) \),
\[W_4 : \frac{e^{i\theta}}{2} \to \frac{e^{(i\pi - \theta)}}{2}.
\]

\text{Figure 10. } \Gamma_0(4) \text{ and } \Gamma_0^*(4)
A.2. \(E_k(z+1/2) \). Let \(k \geq 2 \) be an even integer. In this subsection, we consider about \(E_k(z+1/2) \). We will denote \(E_k(z+1/2) \) by \(E_k(z) \), \(E_k(2z) \), and \(E_k(4z) \).

Firstly, we have
\[
E_k(z+1/2) = \frac{1}{2} \sum_{(c,d)=1 \atop 4 \nmid c} (cz + d)^{-k}.
\]
If \(c \) is odd, then \((cz+1/2+d)^{-k} = 2^k (2cz + (c+2d))^{-k} \), and \((2c,c+2d) = 1 \). If \(c \) is divisible by \(4 \), then we can write \(c = 4c' \) for some integer \(c' \), and we have \((cz+1/2+d)^{-k} = (4c'z + (2c'+d))^{-k} \). And if \(c \) is even and not divisible by \(4 \), then we can write \(c = 2c'' \) for some integer \(c'' \), and we have \((cz+1/2+d)^{-k} = \frac{1}{2} (2c''z + (c''+d))^{-k} \), \((c'',(c''+d)/2) = 1 \). Here, we have
\[
E_k(z+1/2) = \frac{1}{2} \sum_{(c,d)=1 \atop 4 \nmid c} (cz + d)^{-k} + \frac{1}{2} \sum_{(c,d)=1 \atop c \text{ even}, 4 \mid c} (cz + d)^{-k}.
\]
Now, let us denote \(A, B, C \) as follows:
\[
A := \frac{1}{2} \sum_{(c,d)=1 \atop 4 \nmid c} (cz + d)^{-k}, \quad B := \frac{1}{2} \sum_{(c,d)=1 \atop c \text{ even}, 4 \mid c} (cz + d)^{-k}, \quad C := \frac{1}{2} \sum_{(c,d)=1 \atop c \text{ odd}} (cz + d)^{-k}.
\]
Then
\[
E_k(z+1/2) = A + 2^k \cdot B + \frac{1}{2^k} \cdot C.
\]
Similarly,
\[
E_k(z) = A + B + C.
\]
\[
E_k(2z) = A + B + \frac{1}{2^k} \cdot C.
\]
\[
E_k(4z) = A + \frac{1}{2^k} \cdot B + \frac{1}{4^k} \cdot C.
\]
In conclusion,
\[
E_k(z+1/2) = -E_k(z) + (2^k + 1)E_k(2z) - 2^k E_k(4z).
\]

A.3. Eisenstein Series. Let \(k \geq 4 \) be an even integer. Recall Section 2, and we have
\[
\Gamma_\kappa := \{ \gamma \in \Gamma_0(4) \ ; \ \gamma \kappa = \kappa \}, \quad \Gamma_\kappa^* := \{ \gamma \in \Gamma_0^*(4) \ ; \ \gamma \kappa = \kappa \}
\]
for a cusp \(\kappa \). Furthermore, \(\gamma_\kappa, \gamma_\kappa^* \in \text{SL}_2(\mathbb{R}) \) satisfy \(\gamma_\kappa \infty = \gamma_\kappa^* \infty = \kappa \) and
\[
\Gamma_\kappa = \gamma_\kappa \Gamma_\infty \gamma_\kappa^{-1}, \quad \Gamma_\kappa^* = \gamma_\kappa^* \Gamma_\infty^* (\gamma_\kappa^*)^{-1}.
\]
In addition, we denote the Eisenstein series associated with \(\Gamma_0(4) \) and \(\Gamma_0^*(4) \) for a cusp \(\kappa \) by \(E_{k,4}^\infty \) and \(E_{k,4}^* \), respectively.

Now, \(\Gamma_0(4) \) has three cusps \(\infty, 0, \) and \(-1/2\). On the other hand, \(\Gamma_0^*(4) \) has two cusps \(\infty \) and \(-1/2\).

A.3.1. For the cusp \(\infty \). We have \(\Gamma_\infty = \Gamma_\infty^* = \{ \pm\left(\begin{smallmatrix}1 & n \\ 0 & 1 \end{smallmatrix}\right) \ ; \ n \in \mathbb{Z} \} \). Thus, similarly to \(E_k \), \(E_{k,4}^* \), and \(E_{k,4}^\infty \),
\[
E_{k,4}^\infty(z) = e \sum_{\gamma \in \Gamma_\infty \setminus \Gamma_0(4)} j(\gamma, z)^{-k} = \frac{1}{2} \sum_{(c,d)=1 \atop 4 \nmid c} (cz + d)^{-k},
\]
\[
E_{k,4}^*(z) = e \sum_{\gamma \in \Gamma_\infty^* \setminus \Gamma_0^*(4)} j(\gamma, z)^{-k} = e \sum_{\gamma \in \Gamma_\infty^* \setminus \Gamma_0^*(4) \setminus W_4} j(\gamma, z)^{-k}
\]
\[
= \frac{1}{2} \sum_{(c,d)=1 \atop 4 \nmid c} (cz + d)^{-k} + \frac{2^{-k}}{2} \sum_{(c,d)=1 \atop c \text{ odd}} (cz + d)^{-k}.
\]
Also, we have
\begin{equation}
E_{k,4}^\infty(z) = B_{k,2}(2z) = \frac{1}{1 - 2^k} \left(E_k(2z) - 2^k E_k(4z) \right),
\end{equation}
\begin{equation}
E_{k,4}^\bullet(z) = B_{k,2}(2z) + 2^{-k}(E_k(z) - B_{k,2}(z))
= \frac{1}{1 - 2^k} \left(-E_k(z) + 2E_k(2z) - 2^k E_k(4z) \right).
\end{equation}

A.3.2. For the cusp 0 (only for $\Gamma_0(4)$). Similarly to $E_{k,p}^0$, we have $\Gamma_0 = \{ \pm (\frac{1}{4n} \frac{0}{1}) \mid n \in \mathbb{Z} \}$ and $\gamma_0 = W_4$. Thus
\begin{equation}
E_{k,4}^0(z) = e \sum_{\gamma \in \Gamma_0 \setminus \Gamma_0(4)} j(\gamma^{-1}, z)^{-k} = \frac{1}{2} \sum_{(c,d) = 1 \atop c \text{ odd}} (cz + d)^{-k}.
\end{equation}

Also,
\begin{equation}
E_{k,4}^0(z) = E_k(z) - B_{k,2}(z) = \frac{1}{1 - 2^{-k}} (E_k(z) - E_k(2z)).
\end{equation}

In addition, we have following:

Remark A.1. Let $k \geq 4$ be an even integer. We have
\begin{equation}
E_{k,4}^0(z) = E_{k,2}^0(z) \quad \text{for every } z \in \mathbb{H}.
\end{equation}

A.3.3. For the cusp $-1/2$. Firstly, we decide $\Gamma_{-1/2}$ and $\Gamma_{-1/2}^*$.

For a $\gamma = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \Gamma_0(4)$, if $\gamma(-1/2) = -1/2$, then we have $c = 2a + 4b + 2d$ By $ad - bc = 1$, we have $a = 2b \pm 1, d = 2b \pm 1$, and $c = -4b$. Thus we have
\[\Gamma_{-1/2} = \left\{ \pm \left(\frac{2n+1}{-4n} \frac{n}{-2n+1} \right) \mid n \in \mathbb{Z} \right\}. \]

Furthermore, if $\gamma W_4(-1/2) = -1/2$, then we have $c = -2a - 4b - 2d$. Similarly, we have $\Gamma_{-1/2}^* \supset \left\{ \pm \left(\frac{2n}{-4n+1} \frac{n-1/2}{-2n+1/2} \right) \mid n \in \mathbb{Z} \right\}$. Thus we have
\[\Gamma_{-1/2}^* = \left\{ \pm \left(\frac{n+1}{-2n} \frac{n/2}{-n+1} \right) \mid n \in \mathbb{Z} \right\}. \]

Secondly, we decide $\gamma_{-1/2}$ and $\gamma_{-1/2}^*$.

For a $\gamma = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \Gamma_0(4)$, if $\gamma \infty = -1/2$, then we have $c = -2a$ and $d = 1/a - 2b$. Then we have
\[\gamma \Gamma_\infty \gamma^{-1} = \left\{ \pm \left(\frac{2n a^2 + 1}{-4a^2} \frac{n a^2}{-2n a^2 + 1} \right) \mid n \in \mathbb{Z} \right\}. \]

For $\Gamma_0(4)$, we need $a^2 = 1$, thus we can define as following:
\[\gamma_{-1/2} := \left(\begin{smallmatrix} 1 & 0 \\ -2 & 1 \end{smallmatrix} \right). \]

On the other hand, for $\Gamma_0^*(4)$, we need $a^2 = 1/2$, thus we can define
\[\gamma_{-1/2}^* := \left(\begin{smallmatrix} \sqrt{\frac{3}{2}} & \frac{1}{2} \\ -\sqrt{\frac{3}{2}} & \frac{1}{2} \end{smallmatrix} \right). \]

Finally, we decide $E_{k,4}^{-1/2}$ and $E_{k,4}^{-1/2}$. For a $\gamma = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \Gamma_0(4)$, we have $j((\gamma_{-1/2})^{-1} \gamma, z) = ((2a + c)z + (2b + d))$, and $\Gamma_{-1/2}$ stabilize the pair $(2a + c, 2b + d)$. Thus we have
\begin{equation}
E_{k,4}^{-1/2}(z) = \frac{1}{2} \sum_{(c,d) = 1 \atop c \text{ even}, 4|c} (cz + d)^{-k}.
\end{equation}
Similarly, we have \(j((\gamma_{-1/2})^{-1}T_3, z) = (1/\sqrt{2})(4b + 2d)z + (a + c/2) \), and \(\Gamma_{-1/2} \) stabilize the pair \((2a + c, 2b + d) \) and \((4b + 2d, a + c/2) \). Thus we have
\[
E_{k,4}^{-1/2}(z) = e \sum_{c=\text{even}, 4|c} (cz + d)^{-k} + 2k^2 e \sum_{c=\text{even}, 4|c} (cz + d)^{-k}
\]
(192)
\[
= \frac{1}{2} \sum_{c=\text{even}, 4|c} (cz + d)^{-k}.
\]

Then

Remark A.2. Let \(k \geq 4 \) be an even integer. We have
\[
E_{k,4}^{-1/2}(z) = E_{k,4}^{-1/2}(z) \quad \text{for every } z \in \mathbb{H}.
\]
(193)

Also,
\[
E_{k,4}^{-1/2}(z) = E_{k,4}^{-1/2}(z) = B_{k,2}(z) - B_{k,2}(2z)
\]
(194)
\[
= \frac{1}{1 - 2z} \left(E_k(z) - (2^k + 1)E_k(2z) + 2^k E_k(4z) \right).
\]

A.3.4. The orders at cusps. For \(\Gamma_0(4) \), we have followings:
\[
E_{k,4}^{\infty}(\gamma_0 z) = \frac{1}{1 - 2z} \left(E_k\left(\frac{1}{2z}\right) - 2^k E_k\left(-\frac{1}{z}\right)\right)
\]
\[
= z^k \frac{1}{1 - 2z} (E_k(z) - E_k(2z)) = z^k E_{k,4}^{\infty}(z),
\]
then
\[
E_{k,4}^{\infty}(\gamma_{-1/2} z) = 4z^{-k} E_{k,4}^{\infty}(z).
\]
\[
E_{k,4}^{\infty}(\gamma_{-1/2} z) = \frac{1}{1 - 2z} \left(E_k\left(\frac{2z}{-2z + 1}\right) - 2^k E_k\left(-\frac{4z}{-2z + 1}\right)\right)
\]
\[
= \frac{1}{1 - 2z} \left(E_k\left(\frac{1}{-1/2 - 1/4z}\right) - 2^k E_k\left(-\frac{1}{1/2 - 1/4z}\right)\right)
\]
\[
= (-2z + 1)^k \frac{1}{1 - 2z} \left(E_k(z) - (2^k + 1)E_k(2z) + 2^k E_k(4z) \right)
\]
\[
= (-2z + 1)^k E_{k,4}^{1/2}(z).
\]

Similarly,
\[
E_{k,4}^{-1/2}(\gamma_{-1/2} z) = (-2z + 1)^k E_{k,4}^{\infty}(z).
\]

By \(E_{k,4}^{\infty} = E_{k,4}^0 \) and \(\gamma_{-1/2} \in \Gamma_0(2) \),
\[
E_{k,4}^{\infty}(\gamma_0 z) = (-2z + 1)^k E_{k,4}^{\infty}(z).
\]
\[
E_{k,4}^{-1/2}(\gamma_0 z) = \frac{1}{1 - 2z} \left(E_k\left(-\frac{1}{4z}\right) - (2^k + 1)E_k\left(-\frac{1}{2z}\right) + 2^k E_k\left(-\frac{1}{z}\right)\right)
\]
\[
= (2z)^k \frac{1}{1 - 2z} \left(E_k(z) - (2^k + 1)E_k(2z) + 2^k E_k(4z) \right)
\]
\[
= (2z)^k E_{k,4}^{-1/2}(z).
\]

Thus the orders at cusps are folloing:

<table>
<thead>
<tr>
<th>(E_{k,4}^{\infty})</th>
<th>(v_\infty)</th>
<th>(v_0)</th>
<th>(v_{-1/2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_{k,4}^{\infty})</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(E_{k,4}^{0})</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(E_{k,4}^{-1/2})</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table for the orders at cusps
ON THE ZEROS OF EISENSTEIN SERIES FOR $\Gamma_0^*(p)$ AND $\Gamma_0(p)$ OF LOW LEVELS

107

For $\Gamma_0^*(4)$, since

$$E^*_{\infty, k}(z) = \frac{1}{1 - 2^k} \left(E_k(z \pm 1/2) - 2^k E_k(2z) \right),$$

we have

$$E^*_{\infty, k}(\gamma_{-1/2} z) = E^*_{\infty, k} \left(\frac{2z + 1}{-4z + 2} \right)$$

$$= \frac{1}{1 - 2^k} \left(E_k\left(\frac{1}{-2z - 1} - \frac{1}{z - 1/2}\right) \right)$$

$$= (-2z + 1)^k \frac{1}{1 - 2^k} \left(E_k(z) - (2^k + 1)E_k(2z) + 2^k E_k(4z) \right)$$

$$= (-2z + 1)^k E^*_{\infty, -1/2}(z).$$

Similarly,

$$E^*_{\infty, k}(\gamma_{-1/2} z) = \frac{(-2z + 1)^k}{2k} E^*_{\infty, k}(z).$$

Thus we have

$$v_{\infty}(E^*_{\infty, k}) = v_{-1/2}(E^*_{\infty, -1/2}) = 0,$$

$$v_{-1/2}(E^*_{\infty, k}) = v_{\infty}(E^*_{\infty, -1/2}) = 1.$$

Appendix B. Modular forms for $\Gamma_0(4)$ and $\Gamma_0^*(4)$

B.1. Valence formula for $\Gamma_0(4)$. In order to decide the locating of zeros of Eisenstein series, we need the valence formula for $\Gamma_0(4)$:

Proposition B.1. Let f be a modular function of weight k for $\Gamma_0(4)$, which is not identically zero. We have

$$(195) \quad v_{\infty}(f) + v_0(f) + v_{-1/2}(f) + \sum_{p \in \Gamma_0(4) \setminus \mathbb{H}} v_p(f) = \frac{k}{2},$$

Figure 11

Proof. Let f be a nonzero modular function of weight k for $\Gamma_0(4)$, and let C be a contour of $\mathbb{F}(4)$ which is a fundamental domain of $\Gamma_0(4)$ represented in Figure 11, whose interior contains every zero and pole of f. By the Residue theorem, we have

$$\frac{1}{2\pi i} \int_C \frac{df}{f} = \sum_{p \in \mathbb{F}(4)} v_p(f).$$

Similar to Proposition 6.1,
(i) For the arc \(EA\), we have
\[
\frac{1}{2\pi i} \int_E \frac{df}{f} = -v_\infty(f).
\]

(ii) For the arc \(CC'\), define \(f_0(z) := (\sqrt{4z})^{-k}f(\gamma_0z)\), then we have \(f_0(\gamma_0^{-1}z) = (\sqrt{4z})^k f(z)\) and
\[
df_0(\gamma_0^{-1}z) = \frac{df(z)}{f(z)} + k \frac{dz}{z}.
\]

Thus
\[
\frac{1}{2\pi i} \int_{C'} \frac{df(z)}{f(z)} = \frac{1}{2\pi i} \int_E \frac{df_0(z)}{f_0(z)} - \frac{1}{2\pi i} \int_C \frac{dz}{z}.
\]

Now, when the arc \(CC'\) tend to 0, we have
\[
\frac{1}{2\pi i} \int_{C'} \frac{df}{f} \to -v_0(f).
\]

(iii) For the arcs \(BB'\) and \(DD'\), without loss of generality, we can define arcs \(BB'\) and \(DD'\) so that it equals the image of \(EF\) and \(FA\) by the transformation \(\gamma_{-1/2}\) and \(T\gamma_{-1/2}T\), respectively. Define \(f_{-1/2}(z) := (-2z + 1)^{-k}f(\gamma_{-1/2}z)\), then we have \(f_{-1/2}(\gamma_{-1/2}^{-1}z) = (2z + 1)^k f(z)\) and
\[
df_{-1/2}(\gamma_{-1/2}^{-1}z) = \frac{df(z)}{f(z)} + k \frac{dz}{z - 1/2}.
\]

Here, \(f_{-1/2}\) is holomorphic at \(\infty\). On the Fourier expansion, we have \(q|z|^2 = e^{2\pi i(z+1)} = e^{2\pi i z} = q\).
Thus we have \(f_{-1/2}(Tz) = f_{-1/2}(z)\) for \(T = \left(\frac{1}{2} \frac{1}{2}\right)\).

Now, when the arcs \(BB'\) and \(DD'\) tend to 0, we have
\[
\frac{1}{2\pi i} \int_B \frac{df'}{f(z)} = \frac{1}{2\pi i} \int_E \frac{df_{-1/2}(z)}{f_{-1/2}(z)} - \frac{1}{2\pi i} \int_B k \frac{dz}{z + 1/2} \to -\frac{1}{2} v_{-1/2}(f).
\]

\[
\frac{1}{2\pi i} \int_D \frac{df'}{f(z)} = \frac{1}{2\pi i} \int_{T^{-1}D} \frac{df(z)}{f(z)} = \frac{1}{2\pi i} \int_{TF} \frac{df_{-1/2}(z)}{f_{-1/2}(z)} - \frac{1}{2\pi i} \int_{T^{-1}D} k \frac{dz}{z + 1/2}
\]
\[
\to -\frac{1}{2\pi i} \int_F \frac{df_{-1/2}(z)}{f_{-1/2}(z)} = -\frac{1}{2} v_{-1/2}(f).
\]

Thus
\[
-\frac{1}{2} v_{-1/2}(f) - \frac{1}{2} v_{-1/2}(f) = -v_{-1/2}(f).
\]

(iv) For the arcs \(AB\) and \(D'E\), since \(f(Tz) = f(z)\),
\[
\frac{1}{2\pi i} \int_A \frac{df}{f} + \frac{1}{2\pi i} \int_{D'} \frac{df}{f} = 0.
\]

(v) For the arcs \(B'C\) and \(C'D\), since \(f(S_4z) = (4z + 1)^k f(z)\) for \(S_4 := \left(\frac{1}{2} \frac{1}{2}\right)\), we have
\[
df(S_4z) = k \frac{dz}{z + 1/4} + \frac{df(z)}{f(z)} and \frac{k}{2},
\]
\[
\sum_{p \in \Gamma_0(4) \setminus H} v_p(f) = \frac{k}{4}.
\]

\[\Box\]

B.2. Valence formula for \(\Gamma_0(4)\). In order to decide the locating of zeros of Eisenstein series, we need the *valence formula* for \(\Gamma_0(4)\):

Proposition B.2. Let \(f\) be a modular function of weight \(k\) for \(\Gamma_0(4)\), which is not identically zero. We have

\[
v_\infty(f) + v_{-1/2}(f) + \frac{1}{2} v_{1/2}(f) + \sum_{p \in \Gamma_0(4) \setminus H} v_p(f) = \frac{k}{4},
\]
Proof. Let f be a nonzero modular function of weight k for $\Gamma_0^\ast(4)$, and let \mathcal{C} be a contour of $\mathbb{F}^\ast(4)$ which is a fundamental domain of $\Gamma_0^\ast(4)$ represented in Figure 12, whose interior contains every zero and pole of f except for $i/2$. By the Residue theorem, we have

$$\frac{1}{2\pi i} \int_{\mathcal{C}} \frac{df}{f} = \sum_{p \in \mathbb{F}^\ast(4) \setminus \{i/2\}} v_p(f).$$

Similar to Proposition B.1,

(i) For the arc EA, we have

$$\frac{1}{2\pi i} \int_{E} \frac{df}{f} = -v_{\infty}(f).$$

(ii) For the arcs BB' and DD', define $f_{-1/2}(z) := (-\sqrt{2}z + \sqrt{2})^{-k}f(\gamma_{-1/2}z)$, then we have $f_{-1/2}(\gamma_0^{-1}z) = (\sqrt{2}z + 1/\sqrt{2})^k f(z)$ and

$$\frac{df_{-1/2}((\gamma_{-1/2})^{-1}z)}{f_{-1/2}((\gamma_{-1/2})^{-1}z)} = \frac{df(z)}{f(z)} + k\frac{dz}{z+1/2}.$$

Now, when the arcs BB' and DD' tend to 0, we have

$$\frac{1}{2\pi i} \int_{B} \frac{df(z)}{f(z)} = \frac{1}{2\pi i} \int_{F} \frac{df_{-1/2}(z)}{f_{-1/2}(z)} = \frac{1}{2\pi i} \int_{B} k\frac{dz}{z+1/2} = -\frac{1}{2} v_{-1/2}(f).$$

$$\frac{1}{2\pi i} \int_{D} \frac{df(z)}{f(z)} = \frac{1}{2\pi i} \int_{T^{-1}D} \frac{df(z)}{f(z)} = \frac{1}{2\pi i} \int_{T^{-1}D} \frac{f_{-1/2}(z)}{df_{-1/2}(z)} = \frac{1}{2\pi i} \int_{T^{-1}D} k\frac{dz}{z+1/2}$$

$$-\frac{1}{2} v_{-1/2}(f),$$

Thus

$$-\frac{1}{2} v_{-1/2}(f) - \frac{1}{2} v_{-1/2}(f) = -v_{-1/2}(f).$$

(iii) For the arc CC', when the radius of the arc tends to 0, then we have

$$\frac{1}{2\pi i} \int_{C} \frac{df}{f} \to -\frac{1}{2} v_{i/2}(f).$$

(iv) For the arcs AB and $D'E$, since $f(Tz) = f(z)$ for $T = (0 1 1 0)$,

$$\frac{1}{2\pi i} \int_{A} \frac{df}{f} + \frac{1}{2\pi i} \int_{D'} \frac{df}{f} = 0.$$

(v) For the arcs $B'C$ and $C'D$, since $f(W_4z) = (\sqrt{2}z)^k f(z)$, we have

$$\frac{df(W_4z)}{f(W_4z)} = k\frac{dz}{z} + \frac{df(z)}{f(z)}$$

and

$$\frac{k}{4}.$$
Let \(f \) be a modular form for \(\Gamma_0(4) \) of weight \(k \), and let \(k \equiv 2 \pmod{4} \). Then we have
\[
f(i/2) = f(W_4 i/2) = i^k f(i/2) = -f(i/2).
\]
Thus \(f(i/2) = 0 \) and \(v_{i/2}(f) \geq 1 \).
Let \(k \) be an even integer such that \(k \equiv 0 \pmod{4} \). Then we have
\[
E_{k,4}^*(i/2) = \frac{1}{1 - 2i/2} (E_k(i/2 - 1/2) - 2^k E_k(2(i/2 - 1/2))) = E_{k,4}^*(-1/2 + i/2) \neq 0,
\]
\[
E_{k,4}^{*-1/2}(i/2) = \frac{1}{1 - 2i/2} (E_k(2(i/2 - 1/2)) - E_k(i/2 - 1/2)) = 2^{-k} E_{k,4}^0(-1/2 + i/2) \neq 0.
\]
Thus \(v_{i/2}(E_{k,4}^*) = v_{i/2}(E_{k,4}^{*-1/2}) = 0 \).

B.3. Modular forms of weight 2
As a preliminaries, we have following:
\[
E_2(\gamma_0 z) = 16z^2 E_2(4z) + (12/(2\pi i)) \cdot 4z,
\]
\[
E_2(2 \cdot \gamma_0 z) = 4z^2 E_2(2z) + (12/(2\pi i)) \cdot 2z,
\]
\[
E_2(4 \cdot \gamma_0 z) = z^2 E_2(z) + (12/(2\pi i)) \cdot z,
\]
\[
E_2(\gamma_{-1/2} z) = E_2 \left(\frac{1}{2 - 1/z} \right) = (-2z + 1)^2 E_2(z) + \frac{12}{2\pi i} \cdot 2(-2z + 1),
\]
\[
E_2(2 \cdot \gamma_{-1/2} z) = E_2 \left(\frac{1}{1 - 1/2z} \right) = (-2z + 1)^2 E_2(2z) + \frac{12}{2\pi i} \cdot (-2z + 1),
\]
\[
E_2(4 \cdot \gamma_{-1/2} z) = E_2 \left(\frac{1}{1/2 - 1/4z} \right)
\]
\[
= \frac{(-2z + 1)^2}{4} (-E_2(z) + 6E_2(2z) - 4E_2(4z)) + \frac{12}{2\pi i} \cdot \frac{-2z + 1}{2}.
\]
Recall that
\[
(197) \quad E_{2,2}'(z) = 2E_2(2z) - E_2(z)
\]
be a modular form for \(\Gamma_0(2) \). Since \(\Gamma_0(4) \subset \Gamma_0(2) \), \(E_{2,2}' \) satisfies transformation rule for \(\Gamma_0(4) \) and is holomorphic in \(\mathbb{H} \) and at \(\infty \). In addition, we have
\[
E_{2,2}'(\gamma_0 z) = -2(2z)^2 E_{2,2}'(2z),
\]
\[
E_{2,2}'(\gamma_{-1/2} z) = (-2z + 1)^2 E_{2,2}'(z).
\]
Thus \(E_{2,2}' \) is a modular form for \(\Gamma_0(4) \), and we have
\[
v_{-1/2+i/2}(E_{2,2}') = 1, \quad v_p(E_{2,2}') = 0 \quad \text{for every } p \neq -1/2 + i/2.
\]
Similarly, we define
\[
(198) \quad E_{2,4}'(z) := (4E_2(4z) - E_2(z))/4,
\]
then we have
\[
E_{2,4}'(\gamma_0 z) = (-2z)^2 E_{2,4}'(2z),
\]
\[
E_{2,4}'(\gamma_{-1/2} z) = (-2z + 1)^2 E_{2,4}'(z) - E_{2,4}'(z).
\]
Thus \(E_{2,4}' \) is a modular form for \(\Gamma_0(4) \), and we have
\[
v_{-1/2}(E_{2,4}') = 1, \quad v_p(E_{2,4}') = 0 \quad \text{for every } p \neq -1/2.
\]
For every \(\alpha, \beta \in \mathbb{C}, \alpha E_{2,4}' + \beta E_{2,2}' \) is a modular form for \(\Gamma_0(4) \). For example:
\[
v_\infty(-(E_{2,4}' - E_{2,2}')/16) = 1, \quad v_p(-(E_{2,4}' - E_{2,2}')/16) = 0 \quad \text{for every } p \neq \infty,
\]
\[
v_0(2(E_{2,4}' - E_{2,2}')) = 1, \quad v_p(2(E_{2,4}' - E_{2,2}')) = 0 \quad \text{for every } p \neq 0,
\]
\[
v_{-1/4+i/4}(3(E_{2,4}' - E_{2,2}')/2) = 1, \quad v_p((3E_{2,4}' - E_{2,2}')/2) = 0 \quad \text{for every } p \neq -1/4 + i/4.
\]
Furthermore, let f be a modular form for $\Gamma_0(4)$ of weight 2. If $v_\infty(f) = 1$, then f is a constant multiple of $-(E_{2,4} - E_{2,2})/16$. Also, if $v_{-1/2}(f) = 1$, then f is a constant multiple of $E_{2,4}$. Otherwise, $v_\infty(f - f(\infty)E_{2,4}) = 1$, and $f - f(\infty)E_{2,4}$ is a constant multiple of $-(E_{2,4} - E_{2,2})/16$. Thus every modular form for $\Gamma_0(4)$ of weight 2 is written as a linear combination of $E_{2,4}$ and $E_{2,2}$.

For $\Gamma_0^*(4)$, since

$$aE_{2,4}(W_2z) + \beta E_{2,2}(W_2z) = (2z)^2\{(-\alpha - 3\beta)E_{2,4}(z) + \beta E_{2,2}(z)\},$$

we need $2\alpha = -3\beta$. Now, we define

$$E_{2,4''}(z) := 3E_{2,4}(z) - 2E_{2,2}(z).$$

We also have

$$E_{2,4''}(z) = E_2(z) - 4E_2(2z) + 4E_2(4z) = 2E_2(2z) - E_2(z + 1/2).$$

Then

$$E_{2,4''}((\gamma - 1/2)z) = 2E_2\left(\frac{2z + 1}{-2z + 1}\right) - E_2\left(\frac{1}{-2z + 1}\right) = 2E_2\left(-1 - \frac{1}{z - 1/2}\right) - E_2\left(-\frac{1}{2z - 1}\right) = -(\sqrt{2z} + 1/\sqrt{2})^2E_{2,4''}(z).$$

Thus $E_{2,4''}$ is a modular form for $\Gamma_0^*(4)$, and we have

$$v_{1/2}(E_{2,4''}) = 1, \quad v_p(E_{2,4''}) = 0 \quad \text{for every } p \neq i/2.$$

Furthermore, let f be a modular form for $\Gamma_0^*(4)$ of weight 2. By the valence formula for $\Gamma_0^*(4)$, we have

$$v_{1/2}(f) = 1, \quad v_p(f) = 0 \quad \text{for every } p \neq i/2.$$

Thus f is a constant multiple of $E_{2,4''}$.

B.4. The space of modular forms for $\Gamma_0(4)$

Let $M_{k,4}$ be the space of modular forms for $\Gamma_0(4)$ of weight k, and let $M_{k,4}^0$ be the space of cusp forms for $\Gamma_0(4)$ of weight k. When we consider the map $M_{k,4} \ni f \mapsto (f, f(0), f(-1/2)) \in \mathbb{C} \times \mathbb{C} \times \mathbb{C}$, the kernel of the map is $M_{k,4}^0$. So $\dim(M_{k,4}/M_{k,4}^0) \leq 3$, and $M_{k,4} = CE_{k,4} \oplus CE_{k,4}^0 \oplus CE_{k,4}^{-1/2} \oplus M_{k,4}^0$. Define

$$\Delta_4 := -\frac{1}{16}E_{2,4}'(E_{2,4} - E_{2,2})(2E_{2,4} - E_{2,2}).$$

We have following theorem:

Theorem B.1. Let k be an even integer.

1. For $k < 0$, $M_{k,4} = 0$.
2. For $k = 0, 2, 4$, we have $M_{k,4}^0 = 0$. Furthermore, we have $M_{0,2} = \mathbb{C}$, $M_{2,2} = CE_{2,2} \oplus CE_{2,4}'$, and $M_{4,2} = CE_{4,2} \oplus CE_{4,4}' \oplus CE_{4,4}^{-1/2}$.
3. $M_{k,4}^0 = \Delta_4 M_{k-6,2}$.

The proof of this theorem is similar to that of Theorem 6.1. The table of orders of zeros of basis for $M_{k,4}$ is following:
Let $\Delta := \Delta_k \hat{M}_{k-2,4}$. Furthermore, we have $\dim(M_{k,3}) = k/2 + 1$ for $k \geq 0$, and $\dim(M_{k,3}^0) = k/2 - 2$ for $k \geq 6$. Similarly to $M_{k,2}$ and $M_{k,3}$, if $k \equiv 2 \pmod{6}$, we have $M_{k,4} = M_{k,4}^0 M_{k-2,4}$. On the other hand, if $k \equiv 0, 4 \pmod{6}$, then let $n := [k/6]$, and we have

$$M_{k,4} = E_{k,6n,4}(C(E_{6,4}^\infty)^n \oplus C(E_{6,4}^0)^{n-1} \oplus \cdots \oplus C \Delta_4^n) \oplus E_{k,6n,4}(C(E_{6,4}^0)^n \oplus C(E_{6,4}^0)^{n-1} \oplus \cdots \oplus C \Delta_4^n) \oplus E_{k,6n,4}(C(E_{6,4}^{1/2})^n \oplus C(E_{6,4}^{1/2})^{n-1} \oplus \cdots \oplus C \Delta_4^n).$$

In addition we have followings:

$$E_{4,4}^\infty = E_{2,4}'(2E_{2,4}' - E_{2,2}')$$,
$$E_{4,4}^0 = (-1/16)E_{2,4}'(E_{2,4}' - E_{2,2}')$$,
$$E_{4,4}^{1/2} = (E_{2,4}' - E_{2,2}')(2E_{2,4}' - E_{2,2}')$$,
$$E_{4,6}^\infty = (1/2)E_{2,4}'(2E_{2,4}' - E_{2,2}')(3E_{2,4}' - 3E_{2,2}')$$,
$$E_{4,6}^0 = 32E_{2,4}'E_{2,2}''(2E_{2,4}' - E_{2,2}')$$,
$$E_{4,6}^{1/2} = (-1/2)(E_{2,4}' - E_{2,2}')(2E_{2,4}' - E_{2,2}')(3E_{2,4}' - 2E_{2,2}').$$

Then

Remark B.1. Every modular form for $\Gamma_0(4)$ is generated by $E_{2,2}'$ and $E_{2,4}'$.

B.5. The space of modular forms for $\Gamma_0^*(4)$. Let $M_{k,4}^*$ be the space of modular forms for $\Gamma_0^*(4)$ of weight k, and let $M_{k,4}^{40}$ be the space of cusp forms for $\Gamma_0^*(4)$ of weight k. When we consider the map $M_{k,4}^* \ni f \mapsto (f(\infty), f(-1/2)) \in \mathbb{C} \times \mathbb{C}$, the kernel of the map is $M_{k,4}^{40}$. So $\dim(M_{k,4}^*/M_{k,4}^{40}) \leq 2$, and $M_{k,4}^* = \mathbb{C}E_{k,4}^\infty \oplus \mathbb{C}E_{k,4}^{1/2} \oplus M_{k,4}^{40}$. Define

$$\Delta_4^* := -\frac{1}{16}E_{4,4}^\infty E_{4,4}^{-1/2}.$$
(202)

We have following theorem:

Theorem B.2. Let k be an even integer.

1. For $k < 0$, $M_{k,4}^* = 0$.
2. For $k = 0, 2, 4, 6$, we have $M_{k,4}^{40} = 0$. Furthermore, we have $M_{0,2} = \mathbb{C}$, $M_{2,2} = \mathbb{C}E_{2,4}*^*$, and $M_{k,4}^* = \mathbb{C}E_{k,4}^\infty \oplus \mathbb{C}E_{k,4}^{1/2}$ for $k = 4$ and 6.
3. $M_{k,4}^* = \Delta_4^* \hat{M}_{k-8,2}$.

The proof of this theorem is similar to that of Theorem B.1. The table of orders of zeros of basis for $M_{k,4}^*$ is following:

<table>
<thead>
<tr>
<th>k</th>
<th>f</th>
<th>v_{∞}</th>
<th>v_0</th>
<th>$v_{-1/2}$</th>
<th>other zeros</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$E_{2,2}$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>$E_{2,4}'$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$E_{2,4}' - E_{2,2}'$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$2E_{2,4}' - E_{2,2}'$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>$E_{4,4}^\infty$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$E_{4,4}^0$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$E_{4,4}^{-1/2}$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>$E_{6,4}^\infty$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$E_{6,4}^0$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$E_{6,4}^{-1/2}$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Δ_4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ_2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
The number of the zeros of

Then

Proposition B.3. Let \(k \geq 4 \) be an even integer. For every \(f \in M_{k,4}^* \), we have

\[
v_{t_k/2}(f) \geq t_k \quad (t_k = 0, 1 \text{ such that } 2t_k \equiv k \pmod{4}).
\]

In addition we have \(E_{4,4}^{*-1/2} = (1/4)((E_{2,4}^{**})^2 - E_{4,4}^\infty) \), \(E_{4,6}^\infty = E_{2,4}^{**}E_{4,4}^\infty \), \(E_{4,6}^{*-1/2} = (-1/2)E_{2,4}^{**}E_{4,4}^{*-1/2} \).

Then

Remark B.2. Every modular form for \(\Gamma_0(4) \) is generated by

\[E_{2,4}^{**} \text{ and } E_{4,4}^\infty. \]

Appendix C. Locating the Zeros of Eisenstein Series

C.1. On \(\Gamma_0(4) \). Define

\[
A_4 := \{ z ; \ |z + 1/4| = 1/4, \ 0 < \text{Arg}(z) < \pi \},
\]

\[
A_4^0 := \{ z ; \ \text{Re}(z) = -1/2, \ \text{Im}(z) > 0 \},
\]

\[
A_4^{-1/2} := \{ z ; \ \text{Re}(z) = 0, \ \text{Im}(z) > 0 \}.
\]

Then we have following:

Conjecture C.1. Let \(k \geq 4 \) be an even integer. \(E_{k,4}^\infty \) has \(k/2 - 1 \) zeros in \(A_4 \), \(E_{k,4}^0 \) has \(k/2 - 1 \) zeros in \(A_4^0 \), and \(E_{k,4}^{*-1/2} \) has \(k/2 - 1 \) zeros in \(A_4^{-1/2} \).

Now, we have the following transformations:

\[
\left(\begin{array}{cc} 1 & -1 \\ 0 & 1 \end{array} \right)(\gamma_0)^{-1} : e^{i\theta} - \frac{1}{4} \mapsto -\frac{1}{2} + \frac{\tan(\theta/2)}{2}i,
\]

\[
\left(\begin{array}{cc} 1 & -1 \\ 0 & 1 \end{array} \right)(\gamma_{-1/2})^{-1} : e^{i\theta} - \frac{1}{4} \mapsto \frac{\tan(\theta/2)}{2}i.
\]

This transform \(A_4 \) to \(A_4^0 \) and \(A_4^{-1/2} \), respectively. Moreover, for every \(z \in A_4 \),

\[
E_{k,4}^\infty(\gamma_0(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array})(z)) = (z + 1)^k E_{k,4}^0(z),
\]

\[
E_{k,4}^\infty(\gamma_{-1/2}(z)) = (-2z + 1)^k E_{k,4}^{*-1/2}(z).
\]

Then

Remark C.1. The number of the zeros of \(E_{k,4}^\infty \) in \(A_4 \) equals to that of \(E_{k,4}^0 \) in \(A_4^0 \) and that of \(E_{k,4}^{*-1/2} \) in \(A_4^{-1/2} \).
Now, recall that Remark A.1, where we have $E_{k,4}^0 = E_{k,2}^0$. Moreover, we have $A_2^0 = \{ z : \Re(z) = -1/2, \Im(z) > 1/2\}$ and write $A_2^0 := A_4^0 \setminus A_4^0 \cup \{-1/2 + i/2\}$. Then we have the following transformation:

$$\begin{pmatrix} -1 & 1 \\ 2 & 1 \end{pmatrix} : -\frac{1}{2} + \frac{y}{2}i \mapsto \frac{1}{2} + \frac{1}{2y}i.$$

This transform A_2^0 to A_2^0. Moreover,

$$E_{k,4}^0 \left(\begin{pmatrix} -1 & -1 \\ 2 & 1 \end{pmatrix} W_2 \right) z = (2z + 1)^k E_{k,4}^0(z) \quad \text{for every } z \in A_2^0.$$

Then

Remark C.2. If $E_{k,2}^0 = E_{k,4}^0$ has $[k/4] - 1$ zeros in A_2^0, then $E_{k,4}^0$ has $[k/4] - 1$ zeros in A_2^0.

In addition, recall that $v_{-1/2+i/2}(E_{k,2}^0) \geq 1$ for $k \equiv 2 \pmod{4}$.

In conclusion, we have following:

Remark C.3. If Conjecture 6.1 is proved, then we can prove Conjecture C.1.

C.2. On $\Gamma_0^*(4)$. Define

$$A_4^* := \{ z : |z| = 1/2, \pi/2 < \Im(z) < \pi \},$$

$$A_4^{-1/2} := \{ z : \Re(z) = 0, \Im(z) > 1/2 \}.$$

Then we have following:

Conjecture C.2. Let $k \geq 4$ be an even integer. $E_{k,4}^* \infty$ has $[k/4] - 1$ zeros in A_4^*, and $E_{k,4}^{* -1/2}$ has $[k/4] - 1$ zeros in $A_4^{* -1/2}$. Furthermore, in Proposition B.3, the equality hold if f is equal to $E_{k,4}^* \infty$ or $E_{k,4}^{* -1/2}$.

Now, we have the following transformation:

$$\frac{(\gamma^{* -1/2})^{-1}}{2} : \frac{e^{i\theta}}{2} \mapsto \frac{\tan(\theta/2)}{2},$$

This transform A_4^* to $A_4^{* -1/2}$. Moreover,

$$E_{k,4}^* \infty (\gamma^{* -1/2} z) = (-2z + 1)^k E_{k,4}^{* -1/2}(z) \quad \text{for every } z \in A_4^{* -1/2}.$$

Then

Remark C.4. $E_{k,4}^* \infty$ has $[k/4] - 1$ zeros in A_4^*, if and only if $E_{k,4}^{* -1/2}$ has $[k/4] - 1$ zeros in $A_4^{* -1/2}$.

Now, recall that Remark A.2, where we have $E_{k,4}^{* -1/2} = E_{k,4}^{* -1/2}$. Moreover, we write $A_4^{* -1/2} := A_4^{* -1/2} \setminus A_4^{* -1/2} \cup \{ i/2 \}$. Then we have the following transformation:

$$W_4 : \frac{y}{2} \mapsto \frac{1}{2y}i.$$

This transform $A_4^{* -1/2}$ to $A_4^{* -1/2}$. Moreover,

$$E_{k,4}^{1/2}(W_4 z) = (2z)^k E_{k,4}^{1/2}(z) \quad \text{for every } z \in A_4^{* -1/2}.$$

Then

Remark C.5. If $E_{k,4}^{* -1/2} = E_{k,4}^{* -1/2}$ has $[k/4] - 1$ zeros in $A_4^{* -1/2}$, then $E_{k,4}^{* -1/2}$ has also $[k/4] - 1$ zeros in $A_4^{* -1/2}$.

In addition, note that $v_{i/2}(E_{k,4}^{* -1/2}) \geq 1$ for $k \equiv 2 \pmod{4}$. Furthermore, recall Remark C.3.

In conclusion, we have following:

Remark C.6. If Conjecture 6.1 is proved, then we can prove Conjecture C.2.

Remark C.7. Note that $E_{k,4}^* \infty (z \pm 1/2) = E_{k,4}^* (z)$ and $E_{k,4}^{* -1/2} (z \pm 1/2) = E_{k,4}^0 (z)$. The Remark C.6 is natural result.
Appendix D. Another Consideration: Isomorphism

Let M^pr_2 be the space of modular forms for $\Gamma(2)$, and M_4 be that for $\Gamma_0(4)$. By corollary 2.1.1, we have

$$ \Gamma(2) = \langle -I, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \rangle, \quad \Gamma_0(4) = \langle -I, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix} \rangle. $$

Define $V_2 := \begin{pmatrix} 1 \sqrt{2}/2 \\ 0 \\ 0 \\ \sqrt{2}/2 \end{pmatrix}$. Then

$$ V_2 \Gamma_0(4) V_2^{-1} = \Gamma(2). $$

In addition, by the map $\varphi : M^\text{pr}_2 \ni f(z) \mapsto f(2z) \in M_4$, we have following:

Theorem D.1. M^pr_2 is isomorphic to M_4.

Proof. For every $f \in M_4$ and every $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(2)$, we put $\gamma' := V_2 \gamma V_2^{-1} = \begin{pmatrix} a & 2b \\ c/2 & d \end{pmatrix}$, then

$$ f(2 \cdot \gamma z) = f(2(V_2^{-1} \gamma' V_2 z)) = f(\gamma'(2z)) = (cz + d)^k f(2z). $$

\[\square \]

Similarly, let M_2 be the space of modular forms for $\Gamma_0(2)$, and M^*_4 be that for $\Gamma^*_0(4)$. By corollary 2.1.1, we have

$$ \Gamma_0(2) = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \rangle, \quad \Gamma^*_0(4) = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1/2 \\ 2 & 0 \end{pmatrix} \rangle. $$

Thus

$$ \begin{pmatrix} 1 & -1/2 \\ 0 & 1 \end{pmatrix} \Gamma^*_0(4) \begin{pmatrix} 1 & 1/2 \\ 0 & 1 \end{pmatrix} = \Gamma_0(2). $$

In addition, by the map $\varphi : M_2 \ni f(z) \mapsto f(z + 1/2) \in M^*_4$, we have following:

Theorem D.2. M_2 is isomorphic to M^*_4.

Acknowledgement.

We thank Professor Eiichi Bannai for suggesting these problems as a master course project for us.

References

