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1. Introduction

Some dynamical systems such as cellular automata (cf. Wolfram (2002)) and bil-
liard systems (cf. Ito (2010) and Ito et al. (2008)) are regarded as parallel rewriting
systems. An essential problem in the rewriting systems is that some of the rewriting (or
local) rules conflict when their scope intersect. A set of abstract collisions is a device
introduced by Ito (2010) and Ito et al. (2008) so that such problem is avioded by Def.
2.1. The set of collisions is a kind of set systems, namely a subset of the power set of a
given set, and its remarkable advantage is to partition any subset of the given set into
a disjoint union of subsets in the set of collisions. Although the articles by Ito (2010)
and Ito et al. (2008) unfortunately included no mathematical overview of the sets of
collisions, it turns out that the set of all connected subsets of a topological space forms
a set of collisions. Then a natural question arises. Do all sets of collisions originate with
the set of all connected subsets of a toplogical space? This note answers negatively the
question to give a counterexample: The set C0 of all singleton sets and all connected
open subsets of the ordinary topological space R of reals forms a set of collisions, but
there exists no topology O on R such that the set of all connected subsets with respect
to O coincides with C0.

2. Sets of abstract collisions

In the section we will recall the definition and the basic properties of sets of (ab-
stract) collisions introduced by Ito (2010) and Ito et al. (2008).

Definition 2.1. Let X be a nonempty set. A subset C of the power set ℘(X) is
called a set of (abstract) collisions on X if it satisfies

(a) {x} ∈ C for all x ∈ X,

(b) If X is a nonempty subset of C such that ∩X ̸= ∅, then ∪X ∈ C. �

The set {{x} | x ∈ X} of all singleton subsets of a set X is the least set of collisions
on X, and the power set ℘(X) is the greatest set of collisions on X.

The following two propositions are the basic results by Ito (2010) and Ito et al. (2008).
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Proposition 2.2. (a) For any family C of sets of collisions the intersection
∩
C∈C

C

is also a set of collisions,

(b) For each subset D of ℘(X) there exists the least set C(D) of collisions on X con-
taining D. �

Let C be a set of collisions on a set X. For all A ∈ ℘(X) and all a ∈ A define

CA(a) = ∪{C ∈ C | (a ∈ C) ∧ (C ⊆ A)}.

Proposition 2.3. Let C be a set of collisions on a set X. Then

(a) a ∈ CA(a) ⊆ A for all a ∈ A, (∪a∈ACA(a) = A)

(b) CA(a) ∈ C for all a ∈ A,

(c) If A ∈ C, then CA(a) = A for all a ∈ A,

(d) If CA(a) ∩ CA(b) ̸= ∅ for a, b ∈ A, then CA(a) = CA(b). �

3. Connected Spaces

We now review some fundamentals on connectivity of topological spaces.

Let X be a topological space with topology O. A subset S of X is connected if
S ⊆ U ∪ V and S ∩ U ∩ V = ∅ implies S ∩ U = ∅ or S ∩ V = ∅ for all pairs of open sets
U, V ∈ O. In other words, a subset S of X is disconnected if there exists a pair of open
sets U, V ∈ O such that S ⊆ U ∪ V , S ∩U ∩ V = ∅, S ∩U ̸= ∅ and S ∩ V ̸= ∅. A subset
of a topological space is often called clopen if it is open and closed. A topological space
X is disconnected if there exists a clopen subset U such that U ̸= ∅ and U ̸= X.

Unless otherwise stated, subsets of a topological space will be identified with sub-
spaces. The following two propositions are well-known properties of connectivity (cf.
Dudundji (1996)).

•1 Every singleton set {x} of a topological space is connected.

•2 If A is a nonempty set of connected subsets of a topological space such that ∩A ̸= ∅,
then ∪A is also connected.

Therefore the set of all connected subsets of a toplogical space forms a set of
collisions. On the other hand we encounter a natural question: Is every set of collisions
isomorphic to the set of all connected subsets of a topological space? The aim of the
paper is to give a counter example of the question. Now we remark another property
about connectivity, which is not imposed on the definition of sets of collisions.

•3 Let E and A be subsets of a topological space. If E is connected and E ⊆ A ⊆ E−,
then A is connected, where E− denotes the closure of E.

To prepare for the later discussion we recall one more simple fact related to a
separation axiom and connectivity.
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Proposition 3.1. A topological space X is a T1-space iff all singleton sets {x} of
X are closed iff all two-element subsets {x, y} of X are disconnected. �

4. A counter example

It is well-known (cf. Dudundji (1996)) that a connected subsets of R (with the
standard topology) is one of a singleton set, an open interval, a closed interval and a
semi-open interval, that is,

∅, {a}, (a, b), (−∞, a), (a,∞), [a, b], (−∞, a], [a,∞), [a, b), (a, b], R

where a and b are reals. Thus a connected open subset of R is an open interval (including
∅ and R) :

∅, (a, b), (−∞, a), (a,∞), R.

In what follows let C0 denote the set of all singleton sets and all connected open
subsets of R (with respect to the ordinary topology). Then it is easy to see the following.

Proposition 4.1. C0 forms a set of collisions on R. �

The next proposition is our main claim of the paper.

Proposition 4.2. There exists no topology O on R such that the set of all con-
nected subsets with respect to O coincides with C0.

Proof. Assume that the set of all connected subsets in a topological space ⟨R,O ⟩
coincides with C0. By 3.1 O is a T1-topology, because two-element sets are disconnected.
Consider the complement {a}c of {a} for an arbitrary a ∈ R. Then {a}c is disconnected
since {a}c /∈ C0, and so there exist U, V ∈ O such that

{a}c ⊆ U ∪ V, {a}c ∩ U ∩ V = ∅, {a}c ∩ U ̸= ∅ and {a}c ∩ V ̸= ∅.

It follows from {a}c = (−∞, a) ∪ (a,∞) that

{a}c ∩ U ̸= ∅ ↔ (−∞, a) ∩ U ̸= ∅ or (a,∞) ∩ U ̸= ∅

and

{a}c ∩ V ̸= ∅ ↔ (−∞, a) ∩ V ̸= ∅ or (a,∞) ∩ V ̸= ∅.

Thus we inspect the following four cases.
(1) In the case of (−∞, a) ∩ U ̸= ∅ and (−∞, a) ∩ V ̸= ∅:
(−∞, a) is disconnected because (−∞, a) ⊆ U ∪ V and (−∞, a) ∩ U ∩ V = ∅. This
contradicts (−∞, a) ∈ C0.
(2) In the case of (a,∞) ∩ U ̸= ∅ and (a,∞) ∩ V ̸= ∅:
(a,∞) is disconnected because (a,∞) ⊆ U ∪V and (a,∞)∩U ∩V = ∅. This contradicts
(a,∞) ∈ C0.
(3) In the case of (−∞, a) ∩ U ̸= ∅ and (a,∞) ∩ V ̸= ∅:
The case of (−∞, a) ∩ V ̸= ∅ has been already discussed in (1). So we may assume
(−∞, a) ∩ V = ∅, which is equivalent to V ⊆ (−∞, a)c = [a,∞). Similarly, the case of
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(a,∞)∩U ̸= ∅ has been already discussed in (2). Again we may assume (a,∞)∩U = ∅
and so U ⊆ (a,∞)c = (−∞, a]. On the other hand it holds that

(−∞, a) = (−∞, a) ∩ (U ∪ V ) { {a}c ⊆ U ∪ V }
⊆ U, { (−∞, a) ∩ V = ∅ }

and
(a,∞) = (a,∞) ∩ (U ∪ V ) { {a}c ⊆ U ∪ V }

⊆ V, { (a,∞) ∩ U = ∅ }

which shows (−∞, a) ⊆ U ⊆ (−∞, a] and (a,∞) ⊆ V ⊆ [a,∞). Consequently we have

U = (−∞, a] or U = (−∞, a)

and

V = [a,∞) or V = (a,∞).

Again we consider the following four cases.
(3-1) In the case of U = (−∞, a] and V = [a,∞): we have {a} = U ∩ V ∈ O and so {a}
is clopen (for O is a T1-topology), which implies R /∈ C0, the absurdity.
(3-2) In the case of U = (−∞, a] and V = (a,∞): it is trivial that U ∪ V = R and
U ∩ V = ∅. Therefore we have R /∈ C0, the absurdity.

(3-3) In the case of U = (−∞, a) and V = [a,∞): it is symmetric to (3-2).

(3-4) In the case of U = (−∞, a) and V = (a,∞):
If U is closed with respect to O, then it is clopen and hence R /∈ C0, the absurdity.
Otherwise V c = (−∞, a] = U ∪ {a} is the smallest closed subset containing U , namely
the closure of U , and hence (−∞, a] ∈ C0 by •3 (for U ∈ C0), the absurdity.
(4) In the case of (a,∞) ∩ U ̸= ∅ and (−∞, a) ∩ V ̸= ∅: it is symmetric to (3).
This completes the proof. �

5. Conclusion

The paper pointed out that the set of all connected subsets of a topological space
forms a set of collisions, and gave a counter example of sets of collisions which doesn’t
originate with the set of all connected subsets of any topological space.
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