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Abstract

In this paper, we propose a new semiparametric regression estimator by us-
ing a hybrid technique of a parametric approach and a nonparametric penalized
spline method. The overall shape of the true regression function is captured by the
parametric part, while its residual is consistently estimated by the nonparametric
part. Asymptotic theory for the proposed semiparametric estimator is developed,
showing that its behavior is dependent on the asymptotics for the nonparametric
penalized spline estimator as well as on the discrepancy between the true regres-
sion function and the parametric part. As a naturally associated application of
asymptotics, some criteria for the selection of parametric models are addressed.
Numerical experiments show that the proposed estimator performs better than
the existing kernel-based semiparametric estimator and the fully nonparametric
estimator, and that the proposed criteria work well for choosing a reasonable para-
metric model.

Key Words and Phrases: Asymptotic theory, Bias reduction, B-spline, Parametric model, Pe-

nalized spline, Semiparametric regression

1. Introduction

There have been several nonparametric smoothing techniques used in regression
problems, such as lowess (locally weighted scatter plot smoothing), kernel smoothing,
spline smoothing, wavelet, the series method, and so on. The nonparametric estimators
generally have consistency, which is an advantage of this approach. Hence, if the non-
parametric estimator is used, we can expect that the true regression can be captured
as the sample size increases. However, because the form of a nonparametric estimator
is sometimes complicated, the interpretation of the estimated structure might not be
clear.

On the other hand, in a parametric regression problem with the true regression
function controlled by a finite-dimensional parameter vector, the estimated structure is
easy to understand, however, the estimator does not always have consistency. Therefore,
there are advantages and disadvantages associated with each of these approaches. This
motivates us to consider a hybrid of parametric and nonparametric methods for the
regression problem and we, in fact, introduce a semiparametric regression method so
that the estimator has the advantages of both approaches.

∗ Graduate School of Science and Engineering, Shimane University, Matsue, Japan.
† Graduate School of Science and Engineering, Shimane University, Matsue, Japan.
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The semiparametric method in this paper consists of two steps. In the first step,
we utilize an appropriate parametric estimator. In the second step, we apply a certain
nonparametric smoother to the residual data associated with the parametric estimator
in the first step. The parametric estimator in the first step and the nonparametric
smoother in the second step are combined into the proposed semiparametric estimator.

Similar semiparametric approaches for smoothing have been developed by many
authors. Hjort and Glad (1995) and Naito (2004) discussed similar methods in density
estimation literature. Glad (1998) and Naito (2002) addressed the semiparametric re-
gression method. Martins et al. (2008) introduced general decomposition, including ad-
ditive and multiplicative corrections in regression. Recently, Fan et al. (2009) discussed
the semiparametric approach in the framework of a generalized linear model. Note that
the aforementioned works all used kernel smoothing in the second step estimation.

Our proposal is to utilize the penalized spline method for residual smoothing in the
second step. This is a typical technique used in nonparametric regression problems with
sufficient fitness and appropriate smoothness, which was developed by O’Sullivan (1986)
and Eilers and Marx (1996). Many of its applications are summarized in Ruppert, et
al (2003). Throughout this paper, the fully nonparametric penalized spline estimator
is designated by NPSE, while the semiparametric penalized spline estimator, including
the two-step manipulations mentioned above, is denoted by SPSE. In this paper, the
advantages of using the penalized spline method instead of the kernel method are de-
scribed both theoretically and numerically. In particular, we found that the SPSE has
better behavior than the semiparametric local linear estimator (SLLE) in simulation.

This paper is organized as follows. We elaborate on the proposed SPSE in Section
2. Section 3 discusses the asymptotic properties of the SPSE, which can be obtained
using a combination of the asymptotic results for the parametric estimator and for the
NPSE developed by Claeskens et al. (2009). The asymptotic bias of the SPSE depends
on the initial parametric model utilized in the first step. The form of the asymptotic
bias suggests a method of choosing the parametric model for the first step. A theoretical
comparison of SPSE with SLLE is also given in the context of asymptotic bias, which
reveals that the use of the penalized spline rather than a kernel smoother in the second
step is valid. In Section 4, some criteria for parametric model selection will be clarified. If
a parametric model chosen by the criteria discussed in Section 4 is used as the parametric
part of the SPSE, its asymptotic bias will become smaller than that of the NPSE. The
results of a simulation are reported in Section 5. The simulation studies include checking
the accuracy of the SPSE and comparing it with the NPSE and the SLLE as regression
estimators. The performance of the parametric model selection discussed in Section 4
is also investigated. Related discussion and issues for future research are provided in
Section 6. Proofs for the theoretical results are given in the Appendix.

2. Semiparametric penalized spline estimator

Consider the relationship of the dataset {(xi, yi) : i = 1, · · · , n} as the regression
model

yi = f(xi) + εi, i = 1, · · · , n,

where the explanatory {xi}1≤i≤n are generated from density m(x) with its support on
[0, 1], f(x) = E[Y |X = x] is an unknown regression function, and the errors {εi}1≤i≤n

are assumed to be uncorrelated with E[εi|Xi = xi] = 0 and V [εi|Xi = xi] = σ2(xi) < ∞.
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Let f(x|β),β ∈ B ⊆ RM be a parametric model. We now construct the semiparametric

estimator of f(x). First we obtain an appropriate estimator β̂ of β via a suitable method
of estimation. Then f(x) can be written as

f(x) = f(x|β̂) + f(x|β̂)γrγ(x, β̂), (1)

where rγ(x,β) = {f(x) − f(x|β)}/f(x|β)γ for some γ ∈ {0, 1}. When γ = 0, this

decomposition becomes f(x) = f(x|β̂) + {f(x) − f(x|β̂)}, which is called an addi-
tive correction. When γ = 1, on the other hand, we have a multiplicative correction
f(x) = f(x|β̂){f(x)/f(x|β̂)}. By using the parameter γ, we can treat additive and mul-

tiplicative corrections systematically (see, Fan et al. (2009)). In the second step, rγ(x, β̂)

is estimated by applying a nonparametric technique to {(xi, {yi − f(xi|β̂)}/f(xi|β̂)γ) :
i = 1, · · · , n}. The SPSE is obtained as

f̂(x, γ) = f(x|β̂) + f(x|β̂)γ r̂γ(x, β̂), (2)

where r̂γ(x, β̂) is a nonparametric estimator of rγ(x, β̂).

We adopt the penalized spline to estimate rγ(x, β̂). Let {B[p]
−p+1(x), · · · , B

[p]
Kn

(x)}
be the B-spline basis of degree p with equally spaced knots κk = k/Kn(k = −p +
1, · · · ,Kn + p). Then we consider the B-spline model

s(x) =

Kn∑
k=−p+1

B
[p]
k (x)bk

as an approximation to rγ(x, β̂), where bk’s are unknown parameters. The definition
and fundamental properties of the B-spline basis are detailed in de Boor (2001). Let

Rγ be the n-vector with ith element {yi−f(xi|β̂)}/f(xi|β̂)γ and let Z = (B
[p]
−p+j(xi))ij

and b = (b−p+1 · · · bKn)
′. The penalized spline estimator b̂ = (b̂−p+1 · · · b̂Kn)

′ of b is
defined as the minimizer of

(Rγ − Zb)′(Rγ − Zb) + λnb
′D′

qDqb, (3)

where λn is the smoothing parameter and (Kn + p− q)× (Kn + p)th matrix Dq is the

qth difference matrix. The estimator of rγ(x, β̂) is defined as

r̂γ(x, β̂) =

Kn∑
k=−p+1

B
[p]
k (x)b̂k = B(x)′(Z ′Z + λnD

′
qDq)

−1Z ′Rγ , (4)

where B(x) = (B
[p]
−p+1(x) · · · B

[p]
Kn

(x))′.
In Figure 1, an example of the SPSE is drawn. In the left panel, the true function

f(x) = exp[−x2] sin(2πx) and the least square estimator f(x|β̂) of f(x|β) = β0 + β1x+

β2x
2 + β3x

3 are shown. In the middle panel, the residuals of f(x|β̂) and the penalized

spline estimator of r0(x, β̂) are drawn. In the right panel, the true function and the

SPSE as given in (2) are drawn. As the interpretation of f̂(x) for this example, the
parametric part captures the overall shape of f(x) and the nonparametric part explains

details which could not be captured by the f(x|β̂). Similarly, we can construct an SPSE
with multiplicative correction.
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Figure 1: Plots for one random sample of true f(x) (dashed) and the parametric esti-

mator f(x|β̂) (solid) in the left panel, the residuals and the penalized spline estimator

of r̂0(x, β̂) (solid) in the middle panel, and the true f(x) (dashed) and the SPSE f̂(x, 0)
(solid) in the right panel.

3. Asymptotic Result

Asymptotics for the NPSE were developed by Claeskens et al. (2009). By using
their results, we show the asymptotic bias and variance, and asymptotic distribution of
the SPSE. We now give some assumptions regarding the asymptotics of the SPSE.

Assumptions

1. There exists a > 0 such that a < f(x|β) for all x ∈ [0, 1], β ∈ B.

2. supz∈[0,1]{m(z)} < ∞.

3. |∂f(x|β)/∂βi| < ∞, for x ∈ [0, 1], β ∈ B, i = 1, · · · ,m.

4. |∂2f(x|β)/∂βi∂βj | < ∞, for x ∈ [0, 1], β ∈ B, i, j = 1, · · · ,m.

5. |dif(x)/dxi| < ∞, for x ∈ [0, 1], i = 1, · · · , p+ 1.

6. Kn = o(n1/2).

7. λ−1
n is larger than the maximum eigenvalue of (Z ′Z)−1/2D′

qDq(Z
′Z)−1/2.

Define the (Kn + p)× (Kn + p) matrix G = (gij)ij , where

gij =

∫ 1

0

B
[p]
−p+i(u)B

[p]
−p+j(u)m(u)du

and the (Kn + p)× (Kn + p) matrix G(σ, β, γ) = (gσ,ij)ij , where

gσ,ij =

∫ 1

0

B
[p]
−p+i(u)B

[p]
−p+j(u)

σ2(u)m(u)

f(u|β)2γ
du.

In the sequel, we define Γ(λn) = G+ (λn/n)D
′
qDq. Let b

∗(β, γ) be a best L∞ approxi-
mation to (f(x)− f(x|β))/f(x|β)γ . This means that b∗(β, γ) satisfies

sup
x∈(0,1)

∣∣∣∣f(x)− f(x|β)
f(x|β)γ

+ ba1(x|β, γ)−B(x)′b∗(β, γ)

∣∣∣∣ = o(K−(p+1)
n ),
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where

ba1(x|β, γ) = −
(
f(x)− f(x|β)

f(x|β)γ

)(p+1)
K

−(p+1)
n

(p+ 1)!

Kn∑
j=1

I(κj−1 ≤ x < κj)Bp+1

(
x− κj−1

K−1
n

)
,

I(a < x < b) is the indicator function of the interval (a, b) and Bp(x) is the pth Bernoulli
polynomial.

We now discuss a condition of the parametric estimator. Let F be the true distri-
bution of (X,Y ) and let Fn be the corresponding empirical distribution. The estimator

β̂ of β is defined as the functional form β̂ = T (Fn), where T (·) is a real valued func-

tion defined on the set of all distributions. We can then see that limn→∞ β̂ → β0,
where β0 = T (F ) is defined as the optimizer of some distance measure ρ. We assume

that f(x|β0) is the best approximation of f(x). By the definition of β̂, β̂ − β0 can be
expressed as

β̂ − β0 =
1

n

n∑
i=1

I(Xi, Yi) +
d

n
+ δn, (5)

where I(Xi, Yi) is the influence function defined as

I(X,Y ) = lim
ε→0

{
T ((1− ε)F + εδ(X,Y ))− T (F )

ε

}
with E[I(Xi, Yi)] = 0 and finite covariance matrix, the delta function δ(X,Y ) has prob-

ability 1 at a point (X,Y ), and d is the bias of β̂. The remaining term δn has mean
O(n−2) for each component.

We investigate the asymptotic property of f̂(x, γ) by a two-step procedure for

clarity. First we derive the asymptotic expectation and variance of f̂0(x, γ) = f(x|β0)+
f(x|β0)

γ r̂γ(x,β0). Here, r̂γ(x,β0) is the penalized spline smoother of rγ(x,β0). Second,

we show that the difference between f̂(x, γ) and f̂0(x, γ) vanishes asymptotically. Since

β0 is no longer stochastic, the asymptotic property of f̂0(x, γ) is dependent only on the
nonparametric penalized spline estimator of rγ(x,β0). Hence we obtain

E[f̂0(x, γ)|Xn] = f(x|β0) + f(x|β0)
γE[r̂γ(x,β0)|Xn],

V [f̂0(x, γ)|Xn] = f(x|β0)
2γV [r̂γ(x,β0)|Xn].

Here for a random variable Un, E[Un|Xn] and V [Un|Xn] are the conditional expectation
and variance of Un given (X1, · · · , Xn) = (x1, · · · , xn).

To obtain the asymptotic property of r̂γ(x,β0), we can exploit the result developed
by Claeskens et al.(2009), in which the behavior of NPSE obtained via

(y − Zb)′(y − Zb) + µn

∫ 1

0

{s(q)(x)}2dx, (6)

was investigated, where y = (y1 · · · yn)
′ and µn is the smoothing parameter. For this

penalty term, there exists (Kn+p−q)×(Kn+p)th matrix ∆q such that
∫ 1

0
{s(q)(x)}2dx =

b′∆′
qR∆qb, where R is the square matrix having its (i, j)-component∫ 1

0

B
[p−q]
−p+q+i(x)B

[p−q]
−p+q+j(x)dx
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which can be shown to be O(K−1
n ). Especially in case of the equidistant knots, it

holds that ∆q = Kq
nDq. By combining above equalities altogether, the penalty term

λnb
′D′

qDqb in (3) can be seen as a special case of µnb
′∆′

qR∆qb with replacing R to
K−1

n I and λn = µnK
2q−1
n . Further replacement of y toRγ in (6) shows that asymptotics

for r̂γ(x,β0) closely relates to that for the NPSE. Claeskens et al. (2009) developed
asymptotics for the NPSE under two scenarios: (a) Kq, the maximum eigenvalue of
µn(Z

′Z)−1/2∆′
qR∆q(Z

′Z)−1/2, is less than 1, or (b) Kq ≥ 1. Our focus goes to the
case (a) since it involves the regression spline estimator (λn = 0), and hence we need
Assumption 7 which guarantees Kq < 1. Therefore the following Proposition can be
obtained by using Theorem 2 (a) of Claeskens et al. (2009).

Proposition 3.1. Let f ∈ Cp+1, f(·|β) ∈ Cp+1. Then, under the Assumptions,
for a fixed x ∈ (0, 1),

E[f̂0(x, γ)|Xn] = f(x) + ba(x|β0, γ) + bλ(x|β0, γ) + oP (K
−(p+1)
n ) + oP (λnn

−1K1−q
n ),

V [f̂0(x, γ)|Xn] =
f(x|β0)

2γ

n
B(x)′Γ(λn)

−1G(σ, β0, γ)Γ(λn)
−1B(x) + oP (Knn

−1),

where

ba(x|β0, γ) = −f(x|β0)r
(p+1)
γ (x|β0)

Kp+1
n (p+ 1)!

Kn∑
j=1

I(κj−1 ≤ x < κj)Bp+1

(
x− κj−1

K−1
n

)
,

bλ(x|β0, γ) = −λn

n
f(x|β0)

γB(x)′Γ(λn)
−1D′

qDqb
∗(β0, γ).

We now give the asymptotic result for f̂(x, γ). By using (5), f(x|β̂) and r̂γ(x, β̂)
are expanded about f(x|β0) and r̂γ(x,β0), respectively. From the details of the proof

in the Appendix, we find that the asymptotic expectation and variance of f̂(x, γ) are

dominated by those of f̂0(x, γ) and we obtain the following theorem.

Theorem 3.2. Let f ∈ Cp+1, f(·|β0) ∈ Cp+1. Then under the Assumptions, for a
fixed x ∈ (0, 1),

E[f̂(x, γ)|Xn] = f(x) + ba(x|β0, γ) + bλ(x|β0, γ)

+OP (n
−1) + oP (K

−(p+1)
n ) + oP (λnn

−1K1−q
n ),

V [f̂(x, γ)|Xn] =
f(x|β0)

2γ

n
B(x)′Γ(λn)

−1G(σ, β0, γ)Γ(λn)
−1B(x) + oP (Knn

−1),

where ba(x|β0, γ) and bλ(x|β0, γ) are those given in Proposition 3.1.

Theorem 3.2 and Lyapunov’s theorem yield the asymptotic distribution of the
SPSE.

Theorem 3.3. Suppose that E[|εi|2+δ|Xi = xi] < ∞ for some δ ≥ 2 and the As-
sumptions are satisfied. Then, using Kn = O(n1/(2p+3)) and λn = O(n(p+q+1)/(2p+3)),

f̂(x, γ)− f(x)− ba(x|β0, γ)− bλ(x|β0, γ)√
V [f̂(x, γ)|Xn]

D−→ N(0, 1),

where ba(x|β0, γ) and bλ(x|β0, γ) are those given in Proposition 3.1.
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From Lemma 6.3 of Zhou et al. (1998), we see that λn = O(n(p+q+1)/(2p+3)) can
be achieved by Assumption 7. If λn = 0, we obtain the semiparametric regression spline
estimator from (2). Thus, it is clear that the asymptotic result of the semiparametric
regression spline is contained in Theorems 3.2 and 3.3. These are obtained from one
parametric model. If we choose a polynomial model as f(x|β), we obtain the following
Corollary.

Corollary 3.4. Let fq(x|βq)(q ≤ p) be the qth polynomial model. Then, under
λn = 0 and γ = 0, or λn > 0 and γ = 0, using p = 1, D′

2D2 and equidistant knots, the
SPSE is the same as the NPSE.

Remark 1 From Theorem 3.3, as the advanced analysis, we can construct the asymp-
totic pointwise confidence interval of f(x) by estimating the variance of the error.

Remark 2 Theorems 3.2 and 3.3 can be applied for γ ∈ {0, 1}. When γ = 0, the
results become those for additive correction. When γ = 1, ba(x|β0, 1) and the variance
agrees with those of the estimator for multiplicative correction. In bλ(x|β0, 1), it is
understood that b∗(β0, 1) is a best L∞ approximation of f(x)/f(x|β0)− 1. Therefore,
b∗(β0, 1) can be written as b∗(β0, 1) = b∗ − 1, where b∗ is a best L∞ approximation of
f(x)/f(x|β0) and 1 is a (Kn + p) vector with all components equal to 1. In conclusion,
bλ(x|β0, 1) can be written as

bλ(x|β0, 1) = −λn

n
f(x|β0)

γB(x)′Γ(λn)
−1D′

qDqb
∗

because all components of D′
qDq1 have vanished.

Remark 3 When f(x) = f(x|β0) is assumed, ba(x|β0, γ) = 0 and bλ(x|β0, γ) = 0
are obtained by choosing b∗(γ,β0) = 0 as a best L∞ approximation of 0. For γ = 1,
in particular, ba(x|β0, 1) = 0 and bλ(x|β0, 1) = 0 both hold even in cases where f(x) =
cf(x|β0) with any constant c ̸= 0.

Remark 4 If we use the local pth polynomial technique in the second step estimation,
we obtain the asymptotic bias bℓ(x|β0) as

bℓ(x|β0, γ) =


−f(x|β0)r

(p+1)
γ (x|β0)

h
−(p+1)
n (p+ 1)!

∫
R
zp+1Hp(z)dz, p : odd,

−f(x|β0)

h
−(p+2)
n

{
r
(p+2)
γ (x|β0)

(p+ 2)!
+

r
(p+1)
γ (x|β0)m

′(x)

(p+ 1)!m(x)

}∫
R
zp+2Hp(z)dz, p : even,

where hn is bandwidth and Hp(z) is the pth order kernel function. If K−1
n and hn are

equal and p is odd, the difference between ba(x|β0) and bℓ(x|β0) is only that of

Kn∑
j=1

I(κj−1 ≤ x < κj)Bp+1

(
x− κj−1

K−1
n

)
and

∫
R
zp+1Hp(z)dz. (7)

If we can calculate (7), we would be able to compare the bias of the SPSE with that of the
semiparametric local polynomial kernel estimator. As an example, when p = 1, it is easy
to show that B2(x) = x2 −x+1/6 < 1/5 for x ∈ [0, 1], while we have

∫
R z2HG(z)dz = 1
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for the Gaussian kernel HG(z) and
∫
R z2HE(z)dz = 1/5 for the Epanechnikov kernel

HE(z). Therefore ba(x|β0) is smaller than bℓ(x|β0) in this situation, which reveals that
the semiparametric regression spline estimator (λn = 0) is superior than the SLLE.

4. Parametric model selection

In this section, we describe how to choose a parametric model. From Remark 3, if
the true regression function satisfies f ∈ {f(·|β)|β ∈ B ⊆ RM}, the bias of the SPSE is
reduced. Hence we determine the initial parametric model in a bias reduction context.
Specifically, our purpose is to choose a parametric model such that the asymptotic bias
of the SPSE becomes smaller than that of the NPSE:

|ba(x|β0, γ)| < |ba(x)| and |bλ(x|β0, γ)| < |bλ(x)|, for all x ∈ (0, 1), (8)

where ba(x) and bλ(x) are the asymptotic biases of the NPSE. If f(x|β) is constant,
ba(x|β0, γ) and bλ(x|β0, γ) are equivalent to ba(x) and bλ(x), respectively. When the
same Kn and λn are used in both the SPSE and the NPSE, (8) can be rewritten as
La(x, γ) > 0 and Lλ(x, γ) > 0 for all x ∈ (0, 1), where

La(x, γ) = |f (p+1)(x)| −

∣∣∣∣∣f(x|β0)
γ

(
f(x)− f(x|β0)

f(x|β0)
γ

)(p+1)
∣∣∣∣∣

and

Lλ(x, γ) = |B(x)′Γ(λn)
−1D′

qDqb
∗
f | − |f(x|β0)

γB(x)′Γ(λn)
−1D′

qDqb
∗(β0, γ)|,

where b∗f is a best L∞ approximation to f(x). As a pilot estimator of f and its (p+1)th

derivative, we can use the local polynomial estimator f̂ with degree p + 2. Then the
estimator of La(x, γ) and Lλ(x, γ) can be obtained as

L̂a(x, γ) = |f̂ (p+1)(x)| −

∣∣∣∣∣∣f(x|β̂)γ
(
f̂(x)− f(x|β̂)

f(x|β̂)γ

)(p+1)
∣∣∣∣∣∣

and by using empirical form,

L̂λ(x, γ) = |B(x)′Λ−1D′
qDq(Z

′Z)−1Z ′f̂ | − |f(x|β̂)γB(x)′Λ−1D′
qDq(Z

′Z)−1Z ′r̂γ |,

where Λ = Z ′Z + λnD
′
qDq, f̂ = (f̂(x1) · · · f̂(xn))

′ and r̂γ is an n-vector with ith

component {f̂(xi)− f(xi|β̂)}/f(xi|β̂)γ . Here, we use the fact that

λnf(x|β̂)γB(x)′Λ−1D′
qDq(Z

′Z)−1Z ′r̂γ = bλ(x|β0, γ) + oP (λnKnn
−1),

which is detailed in the proof of Theorem 2 (a) of Claeskens et al. (2009). We choose
one parametric model by relative evaluation. Let

Ca∩λ(f(·|β)) = #
{
zj ∈ (0, 1)

∣∣∣L̂a(zj , γ) > 0, L̂λ(zj , γ) > 0, j = 1, · · · , J
}
,

for a given parametric model f(·|β) and some finite grid points {zj}J1 on (0, 1). Here,
#A denotes the cardinality of A. After preparing a class of candidate parametric models
{fk = fk(·|βk); k = 1, · · · ,K}, we choose a parametric model satisfying

f(x|β) = argmax
fk

{Ca∩λ(f(·|βk))} . (9)
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In summary, for each parametric model fk, we calculate L̂a, L̂λ and Ca∩λ(f(·|βk)). By
using the parametric model which satisfies (9), we construct the SPSE. If we can choose

a good parametric model and a good β̂, the SPSE will have better behavior than the
NPSE.

Remark 5 When we construct the semiparametric regression spline estimator (SPSE
with λn = 0), we obtain bλ(x|β0, γ) ≡ 0. Therefore, Ca∩λ depends only on La(x, γ).

Remark 6 We see that the bias term ba(x|β0, γ) appears due to the use of the B-
spline model. On the other hand, bλ(x|β0, γ) arises from the penalty component. If
we use the regression spline, bλ(x|β0, γ) vanishes and the bias of the estimator becomes
less than that of the penalized spline estimator. However, the regression spline often
provides overfitting. Thus, we use the penalized method for obtaining a smooth curve. If
λn > 0, a certain amount of smoothness in the estimator is assured. However, bλ(x|β0, γ)
may grow too large because of the influence of the parametric model. Therefore under
λn > 0, we suggest choosing f(x|β) such that bλ(x|β0, γ) becomes less than bλ(x).
Hence, together with La(x, γ), the parametric model chosen by Ca∩λ appears to bring
fitness and smoothness to the SPSE.

5. Simulation

In this section, we examine the results of a numerical study to confirm the effects
of the SPSE on a finite sample. We choose a parametric model by the criteria discussed
in Section 4. We also compare the performance of the SPSE to those of the NPSE, the
SLLE and the fully nonparametric local linear estimator (NLLE). In all situations, we
utilize the linear (p = 1) and cubic (p = 3) splines and the second difference penalty
(q = 2) for the second step nonparametric estimation. The SPSEs with linear and
cubic splines are designated as SPSE1 and SPSE3, respectively. NPSE1 and NPSE3 are
labeled similarly. The number of knots and the smoothing parameter are determined
by GCV. The design points {xi}n1 are drawn from a uniform density on [0, 1] and the
errors {εi}n1 are generated from the normal with mean 0 and variance σ2(xi). Let

Ca = Ca(f(·|β)) = #
{
zj ∈ (0, 1)

∣∣∣L̂a(zj , γ) > 0, j = 1 · · · , J
}
,

Cλ = Cλ(f(·|β)) = #
{
zj ∈ (0, 1)

∣∣∣L̂λ(zj , γ) > 0, j = 1, · · · , J
}
,

Ca∩λ = Ca∩λ(f(·|β)) = #
{
zj ∈ (0, 1)

∣∣∣L̂a(zj , γ) > 0, L̂λ(zj , γ) > 0, j = 1, · · · , J
}
,

where zj = j/J, J = 100. We prepare a class of candidate parametric models {fk =
fk(·|βk)|k = 1, · · · ,K}. For each fk, we calculate Ca, Cλ and Ca∩λ. We use a number
of repetitions R = 1000. For each iteration, we pick up fk from candidate models which
maximize Ca. The same manipulation is implemented for Cλ and Ca∩λ. Finally we count
the number of times that fk is picked up during the iterations. For comparison, we also
show the model selection by using the AIC and the Takeuchi information criterion (TIC)
detailed in Konishi and Kitagawa (2008).

Let

Bj =
1

R

R∑
r=1

f̂r(zj)− f(zj), Vj =
1

R

R∑
r=1

{
f̂r(zj)−

1

R

R∑
r=1

f̂r(zj)

}2

,
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Table 1: The results of parametric model selection in Example 1.
n = 25 SPSE1 SPSE3 IC

method model Ca Cλ Ca∩λ Ca Cλ Ca∩λ AIC TIC
sin 1000 901 1000 1000 1000 1000 850 938

γ = 0 poly1 0 0 0 0 0 0 0 0
poly3 0 99 0 0 0 0 150 62
sin 997 917 974 997 837 953 850 938

γ = 1 poly1 0 34 3 0 77 4 0 0
poly3 1 33 20 3 86 43 150 62

where f̂r(zj) is the estimator for the rth repetition. Let ISB = 100−1
∑100

j=1 B
2
j , V =

100−1
∑100

j=1 Vj and MISE = ISB + V be the estimates of integrated squared bias, inte-

grated variance and mean integrated squared error of f̂ , respectively. For comparison,
the ISB, V and MISE of the SLLE and the NLLE were also calculated. In the SLLE
and the NLLE, we used the Gaussian kernel and its bandwidth hn was obtained by the
direct plug-in approach (Ruppert et al. (1995)).

Example 1 The true function is f(x) = 2+sin(2πx). We use three different specified
parametric models:

f(x|β) =

 β0 + β1 sin(2πx), f1 = sin,
β0 + β1x, f2 = poly1 ,
β0 + β1x+ β2

2 + β3x
3, f3 = poly3 .

The true curve can be approximated by sin. The curve poly1 is a rough model and poly3
is close to the true f . The variance of the error is σ2(x) = (0.5)2 and the sample size
is n = 25. The coefficients of the covariate are estimated by the maximum likelihood
method for each model. This set-up is similar to that used by Glad (1998).

Table 1 includes the number of times that each parametric model fk was chosen
based on each criterion. In Ca, Cλ and Ca∩λ, sin was selected in almost all iterations.
This result is desirable because sin coincides with the true function f . We also observe
that the AIC and the TIC often choose sin. When the number of times sin is chosen is
taken into consideration, it seems that Ca∩λ is a better selector than the AIC and the
TIC.

Results for ISB, V and MISE of the SPSE and the NPSE are given in Table 2.
The SPSE with sin succeeds in regards to bias reduction even with a small sample
size, and variance and MISE of the SPSE are also smaller than those of the NPSE. In
additive correction, the result of SPSE1 with poly1 is exactly the same as that of the
NPSE (see Corollary 1). If we use poly3, MISE of the SPSE is smaller than that of the
NPSE, although the squared bias is somewhat larger in multiplicative correction. In
both ISB, V and MISE, the values of the SPSE are smaller than those of the SLLE. We
implemented the same method of analysis for the case n = 200. The ISB, V and MISE
of the SPSE and those of the NPSE were almost the same, although these are not shown
in this paper.
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Table 2: Results of integrated squared bias, variance and mean integrated squared bias
of Example 1. All entries for ISB,V and MISE are 103 times their actual values.

n = 25 SPSE1 SPSE3 SLLE
method model ISB V MISE ISB V MISE ISB V MISE

sin 0.009 8.308 8.318 0.009 7.907 7.917 0.029 9.032 9.061
γ = 0 poly1 1.450 12.111 13.562 1.110 10.056 11.166 2.370 14.105 16.476

poly3 1.250 10.949 12.199 0.873 9.636 10.510 2.071 15.825 17.898
sin 0.011 8.394 8.405 0.010 8.292 8.302 0.026 10.708 10.734

γ = 1 poly1 1.571 12.322 13.893 1.565 12.212 13.777 2.357 13.860 16.217
poly3 2.016 11.198 13.215 1.016 10.198 11.215 2.942 12.472 15.415

n = 25 NPSE1 NPSE3 NLLE
Fully nonparametric ISB V MISE ISB V MISE ISB V MISE

method 1.450 12.111 13.562 1.108 11.030 12.138 2.370 14.105 16.476

Table 3: The results of parametric model selection in Example 2.
n = 25 SPSE1 SPSE3 IC

method model Ca Cλ Ca∩λ Ca Cλ Ca∩λ AIC TIC
poly1 0 0 0 0 0 0 0 0
poly2 0 49 30 0 8 0 0 0

γ = 0 poly3 956 472 511 0 939 0 415 693
poly4 6 43 6 5 2 15 116 8
poly5 6 356 312 967 37 982 306 298
poly6 0 3 85 20 1 3 163 1
poly1 2 43 37 2 35 49 0 0
poly2 13 4 6 173 44 46 0 0

γ = 1 poly3 755 376 410 756 606 514 415 693
poly4 0 15 71 0 0 1 116 8
poly5 169 366 246 10 166 213 306 298
poly6 3 119 135 1 35 49 163 1

Example 2 The same true function f used in Example 1 is adopted and the sample
size is n = 25. A class of initial parametric models is chosen, consisting of qth degree
polynomials ranging from q = 1 to 6 and designated as poly1, ..., poly6, respectively, and
σ2 = 1. This parametric model clearly does not contain the true f and the estimator
becomes unstable because the variance of error is relatively large.

In Table 3, we tabulate the number of times out of a 1000 repetitions that each
polynomial model is selected based on bias reduction and information criteria. In mul-
tiplicative correction, poly3 was selected by Ca, Cλ and Ca∩λ most often. In additive
correction of SPSE1, poly3 was selected by Ca most often. On the other hand, in SPSE3,
Ca and Ca∩λ selected poly5. Finally, AIC and TIC most often selected poly3 and poly5.
It appears that our criteria and the information criteria tend to choose the same model.

The ISB, V and MISE of the estimators are shown in Table 4. In additive correction,
poly5 has the smallest ISB. We note that Ca∩λ chooses poly5 in SPSE3. In both
corrections, poly3 has the smallest V and MISE in all models. On the whole, the SPSE
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Table 4: Results of integrated squared bias, variance and mean integrated squared error
for Example 2. All entries for ISB,V and MISE are 103 times their actual values.

n = 25 SPSE1 SPSE3 SLLE
method model ISB V MISE ISB V MISE ISB V MISE

poly1 1.213 232.429 233.643 1.417 256.275 257.692 1.991 246.245 248.236
poly2 0.846 226.256 227.103 0.695 239.949 240.645 2.836 236.124 238.960

γ = 0 poly3 0.776 225.508 226.285 0.729 210.204 210.933 1.157 243.466 244.623
poly4 1.322 251.572 252.894 1.476 236.314 237.791 2.626 229.014 231.640
poly5 0.161 251.777 251.938 0.122 238.596 238.717 0.128 277.704 277.832
poly6 0.162 236.066 236.227 0.134 233.793 233.927 0.119 235.824 235.943
poly1 1.665 230.226 231.891 1.746 253.074 254.820 2.109 254.547 256.657
poly2 0.534 268.503 269.037 0.321 225.818 226.138 2.871 256.551 259.421

γ = 1 poly3 0.323 213.758 214.081 0.519 214.566 215.086 1.545 237.094 238.638
poly4 0.924 233.528 234.452 0.735 245.211 245.956 2.858 259.805 262.662
poly5 0.390 218.850 219.240 0.624 221.162 221.786 0.733 243.170 243.903
poly6 0.356 241.451 241.807 0.678 241.242 241.920 0.895 240.767 241.662

n = 25 NPSE1 NPSE3 NLLE
Fully nonparametric ISB V MISE ISB V MISE ISB V MISE

method 1.213 232.429 233.643 1.629 249.219 250.848 1.991 246.245 248.236

displays better behavior than the SLLE although there are some exceptions.

Example 3 The set-up of the true function and parametric models are the same as in
Example 2, but the sample size is set to n = 75. We utilize the error variance defined as
σ2(x) = (x−0.5)2+0.1. However the parametric estimator is composed by the ordinary
least squares method.

In Table 5, the results of the parametric model selection are shown. In additive
correction of SPSE1, Ca∩λ indicates that the best model is poly5 although Ca selects
poly3 every time. In multiplicative correction, poly3 is selected by Ca many times while
Cλ and Ca∩λ select poly5. From the definition of Ca∩λ, it is understood that poly5 is
selected in a fitness and smoothness context. On the other hand, AIC and TIC choose
poly3 and poly5, respectively. We note that the use of AIC might not be appropriate in
this situation since the prepared model does not include the true f and, hence, we place
more confidence in TIC. On the other hand, when we select the parametric model only
by the maximum of the log-likelihood, poly5 was chosen 1000 times. Therefore, it seems
that the bias correction in AIC is too strong in this situation.

In Table 6, the ISB, V and MISE of the SPSE are tabulated. In both corrections,
the SPSE with poly5 and poly6 have overwhelmingly small ISBs compared with those of
poly1-poly4. As Ca and Cλ focus on bias reduction, it appears that Ca∩λ chooses poly5
because it often has a small bias. On the other hand, poly3 has good V and MISE, while
poly5 does not. For ISB, V and MISE, the values of the SPSE is smaller than those of
the SLLE, respectively.

Example 4 The true model is f(x) = 4 + e−x{sin(7πx) + 2 cos(3πx)} and the error
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Table 5: The results of parametric model selection in Example 3.
n = 75 SPSE1 SPSE3 IC

method model Ca Cλ Ca∩λ Ca Cλ Ca∩λ AIC TIC
poly1 0 0 0 0 0 0 0 0
poly2 0 5 0 0 65 0 0 0

γ = 0 poly3 1000 47 8 0 142 0 457 0
poly4 0 2 172 0 12 21 94 2
poly5 0 604 630 945 624 872 296 950
poly6 0 277 113 17 66 68 153 48
poly1 8 2 8 8 51 62 0 0
poly2 64 222 168 62 150 118 0 0

γ = 1 poly3 894 17 86 890 101 104 457 0
poly4 0 72 104 0 20 31 94 2
poly5 0 363 398 5 295 333 296 950
poly6 0 182 85 3 253 214 153 48

Table 6: Results of integrated squared bias, variance and mean integrated squared bias
of Example 3. All entries for ISB, V and MISE are 103 times their actual values.

n = 75 SPSE1 SPSE3 SLLE
method model ISB V MISE ISB V MISE ISB V MISE

poly1 0.061 1.330 1.390 0.065 1.237 1.302 0.645 6.529 7.175
poly2 0.017 1.326 1.343 0.007 1.231 1.238 0.734 6.298 7.032

γ = 0 poly3 0.017 1.325 1.343 0.007 1.230 1.237 0.249 6.292 6.541
poly4 0.062 1.343 1.405 0.066 1.251 1.317 0.608 6.732 7.340
poly5 0.003 1.377 1.380 0.002 1.285 1.287 0.017 4.863 4.880
poly6 0.004 1.435 1.440 0.002 1.350 1.354 0.019 5.552 5.571
poly1 0.062 1.337 1.399 0.068 1.246 1.314 1.084 6.167 7.251
poly2 0.024 1.328 1.352 0.021 1.235 1.256 0.997 6.186 7.183

γ = 1 poly3 0.030 1.325 1.342 0.014 1.233 1.248 0.314 6.279 6.593
poly4 0.072 1.348 1.419 0.078 1.258 1.336 0.420 6.476 6.896
poly5 0.003 1.380 1.383 0.002 1.290 1.292 0.023 4.925 4.949
poly6 0.003 1.438 1.441 0.002 1.353 1.355 0.025 5.528 5.553

n = 75 NPSE1 NPSE3 NLLE
Fully nonparametric ISB V MISE ISB V MISE ISB V MISE

method 0.061 1.330 1.390 0.065 1.237 1.302 0.645 6.529 7.175
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Table 7: The results of parametric model selection in Example 4.
n = 50 SPSE1 SPSE3 IC

method model Ca Cλ Ca∩λ Ca Cλ Ca∩λ AIC TIC
sin 997 998 992 987 996 972 1 0

γ = 0 cos 3 2 0 7 4 17 602 11
poly1 0 0 0 1 0 0 0 0
poly4 0 0 2 0 0 0 397 902
poly8 0 0 3 0 0 0 0 87
sin 887 823 686 887 821 791 1 0

γ = 1 cos 77 17 1 77 114 43 602 11
poly1 0 11 37 0 0 0 0 0
poly4 0 56 109 0 23 93 397 902
poly8 0 47 88 0 14 28 0 87

variance is σ2(x) = 0.5. The parametric model is

f(x|β) =



β0 + e−x{β1 + β2 sin(7πx) + β3 cos(3πx)}, f1 = sincos,
β0 + e−x{β1 + β2 sin(7πx)}, f2 = sin,
β0 + e−x{β1 + β2 cos(3πx)}, f3 = cos,
β0 + e−x{β1 + β2x}, f4 = poly1 ,
β0 + e−x{β1 + β2x+ · · ·+ β5x

4}, f5 = poly4 ,
β0 + e−x{β1 + β2x+ · · ·+ β9x

8}, f6 = poly8

The function sincos corresponds to the true function.

In Table 7, the results of the parametric model selection are tabulated. The sincos,
corresponding to the true f , was not included in the model selection since it should be
chosen frequently. In both corrections, γ = 0, 1, sin was chosen by Ca, Cλ and Ca∩λ

most often. On the other hand, TIC selected poly4, and AIC selected cos and poly4
quite often.

In Table 8, the ISB, V and MISE of the estimators are shown. In both corrections,
γ = 0, 1, the behavior of the SPSE with sin is superior than that of the SPSE with
any other model except sincos. We observe that the SPSE with the initial parametric
model selected by Ca∩λ shows better behavior than that with the model selected by
information criteria.

Furthermore it can be seen that ISB, V and MISE of the SLLE with sincos are
significantly smaller than those of the SPSE with any parametric model. On the other
hand, if we use incorrect models (other than sincos) in the SLLE, then the ISB, V and
MISE of the SLLE are larger than those of the SPSE.

Remark 7 In all examples, we also compared the behavior of the SPSE and the SLLE
under the conditions that Kn is equal to the ceiling of h−1

n and that λn = np/n2p+3.
From these results, we have confirmed that the ISB of the SPSE is smaller than that
of the SLLE for each parametric model. In contrast, the V and MISE of the SPSE are
larger than those of the SLLE. Thus, it seems that the SPSE produces overfitting.
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Table 8: Results of integrated squared bias, variance and mean integrated squared error
for Example 4. All entries for ISB,V and MISE are 103 times their actual values.

n = 50 SPSE1 SPSE3 SLLE
method model ISB V MISE ISB V MISE ISB V MISE

sincos 0.051 87.361 87.412 0.041 81.564 81.605 0.025 64.752 64.777
sin 2.689 86.891 89.580 3.270 81.053 84.323 15.416 85.149 100.566

γ = 0 cos 17.206 87.095 104.302 13.195 86.217 99.411 21.039 92.615 113.654
poly1 19.095 89.314 108.409 13.950 88.674 102.624 25.920 104.183 130.103
poly4 15.990 91.930 107.920 11.733 90.234 101.967 25.716 106.923 132.639
poly8 16.492 94.013 110.505 11.896 92.078 103.975 22.992 108.436 131.428
sincos 0.051 88.492 88.543 0.040 82.978 83.018 0.025 63.735 63.761
sin 4.968 87.858 92.825 6.245 82.485 88.730 18.049 83.225 101.274

γ = 1 cos 17.269 89.904 107.174 12.525 89.165 101.690 20.751 92.491 113.242
poly1 18.981 90.991 109.972 13.360 90.053 103.413 28.430 94.194 122.624
poly4 15.451 94.073 109.524 11.155 92.079 103.233 24.959 106.714 131.673
poly8 15.534 95.991 111.525 10.936 93.630 104.566 26.838 106.554 133.392

n = 50 NPSE1 NPSE3 NLLE
Fully nonparametric ISB V MISE ISB V MISE ISB V MISE

method 18.884 88.770 107.653 13.878 88.201 102.079 26.859 93.344 120.204

6. Discussion

We have discussed the SPSE using a parametric model. We see that the SPSE
has better behavior than the NPSE, provided we can choose a good f(x|β) in the first
parametric step. A similar conclusion can be drawn for the semiparametric regression
spline estimator by letting λn = 0. Though the asymptotic results in this paper have
been developed under the scenario Kq < 1 in Claeskens et al.(2009), it would be also
possible to investigate asymptotic properties of the SPSE under the scenario Kq ≥ 1.

In the field of kernel smoothing, Fan et al. (2009) noted that the semiparametric
local polynomial estimator can also be constructed in the additive model (Hastie and
Tibshirani (1990)). The reason for this is the asymptotic result of nonparametric kernel
regression in the additive model, which has previously been developed by Ruppert and
Opsomer (1997) and Opsomer (2000). On the other hand, it appears that the asymptotic
results for the penalized spline estimator have still not been sufficiently investigated
in comparison to kernel smoothing. While it is beyond the scope of this paper, this
semiparametric approach with a penalized spline can be also extended to the generalized
linear model. In this sense, there are still many topics that should be examined in
theoretical studies of the penalized spline method.

Appendix

For a matrix An = (aij,n)ij , if max
i,j

{nα|aij,n|} = OP (1)(oP (1)), then it is written as

an = OP (n
−α11′)(oP (n

−α11′)). When An is vector, define An = OP (n
−α1)(oP (n

−α1))
like a matrix case. This notation will be used for matrices with fixed sizes and sizes
depending on n. For the proofs of Proposition 1, Theorems 1-2 and Corollary 1, we
define Λn = n−1Λ. We need additional lemmas as follows.
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Lemma 1 Let A = (aij)ij be (Kn + p) matrix. Assume that Kn → ∞ as n → ∞,
A = OP (K

α
n11

′). Then AΛ−1
n = O(K1+α

n 11′)

Lemma 2 Let g : R → R be any function with sup
x∈R

{g(x)} < ∞. Then,
∫ 1

0
Bi(u)g(u)du =

O(K−1
n ) and

∫ 1

0
Bi(u)Bj(u)g(u)du = O(K−1

n ).

Lemmas 1 and 2 are shown by fundamental properties of B-spline(see, Claeskens
et al. (2009) and Zhou et al. (1998)).

Proof of Proposition 3.1. First we calculate the asymptotic expectation of
r̂γ(x,β0):

E[r̂γ(x,β0)|Xn] = f(x|β0)
γB(x)′Λ−1Z ′E[rγ |Xn],

where

E[rγ |Xn] =

(
f(x1)− f(x1|β0)

f(x1|β0)
γ

· · · f(xn)− f(xn|β0)

f(xn|β0)
γ

)′

By using Theorem 2 (a) of Claeskens et al. (2009), if {f(x) − f(x|β0)}/f(x|β0)
γ is

regarded as regression function, we have

E[r̂γ(x,β0)|Xn] =
f(x)− f(x|β0)

f(x|β0)
γ

+ ba1(x|β0, γ) + bλ1(x|β0, γ)

+oP (K
−(p+1)
n ) + oP (λnn

−1K1−q
n ),

where bλ1(x|β0, γ) = −(λn/n)B(x)′Γ(λn)
−1D′

qDqb
∗(β0, γ). Therefore, the expectation

of f̂0(x, γ) can be written as

E[f̂0(x, γ)|Xn] = f(x|β0) + f(x|β0)
γE[r̂γ(x,β0)|Xn]

= f(x) + f(x|β0)
γ{ba1(x|β0, γ) + bλ1(x|β0, γ)}

+oP (K
−(p+1)
n ) + oP (λnn

−1K1−q
n )

= f(x) + ba(x|β, γ) + bλ(x|β, γ) + oP (K
−(p+1)
n ) + oP (λnn

−1K1−q
n ).

Next we show the asymptotic variance of f̂0(x, γ). It is easy to see that

V [f̂0(x, γ)|Xn]

= f(x|β)2γB(x)′Λ−1Z ′V [rγ |Xn]ZΛ−1B(x)

=
f(x|β)2γ

n2
B(x)′Λ−1

n Z ′
(
diag

[
σ2(x1)

f(x1|β)2γ
, · · · , σ2(xn)

f(xn|β)2γ

])
ZΛ−1

n B(x).

The (i, j)-component of n−1Z ′V [rγ |Xn]Z can be calculated as(
1

n
Z ′
(
diag

[
σ2(x1)

f(x1|β)2
, · · · , σ2(xn)

f(xn|β)2

])
Z

)
ij

=
1

n

n∑
k=1

B
[p]
−p+i(xk)B

[p]
−p+j(xk)

σ2(xk)

f(xk|β)2

=

∫ 1

0

B
[p]
−p+i(u)B

[p]
−p+j(u)

σ2(u)m(u)

f(u|β)2
du(1 + oP (1)).
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Hence, we obtain

V [f̂0(x, γ)|Xn] =
f(x|β)2γ

n
B(x)′Γ(λn)

−1G(σ, β, γ)Γ(λn)
−1B(x) + oP (Knn

−1).

Before proof of Theorem 3.2, we define some symbols. For any function g(·|β)
which is smooth for β,

g(1)(·|β0) =
∂g(·|β)
∂β

∣∣∣
β=β0

, g(2)(·|β0) =
∂2g(·|β)
∂β∂β′

∣∣∣
β=β0

.

We use Taylor expansion of g(·|β̂) around β0, giving

g(·|β̂) = g(·|β0) + g(1)(·|β0)
′(β̂ − β0) +

1

2
(β̂ − β0)

′g(2)(·|β0)(β̂ − β0) + oP (n
−1). (10)

Proof of Theorem 3.2. We first note from (2) that the SPSE is expressed as

f̂(x, γ) = f(x|β̂) +B(x)′Λ−1Z ′rγ(β̂),

where

rγ(β̂) = (rγ(y1|β̂) · · · rγ(yn|β̂))′

and rγ(yi|β̂) = f(x|β̂)γ{yi − f(xi|β̂)}/f(xi|β̂)γ .
Taylor expansion yields that

f̂(x, γ) = f̂0(x, γ) + f̂ (1)(x, γ)′(β̂ − β0) +
1

2
(β̂ − β0)

′f̂ (2)(x, γ)(β̂ − β0) + oP (n
−1), (11)

where

f̂ (1)(x, γ) = f (1)(x|β0) +
n∑

j=1

{
B(xj)

′Λ−1B(x)
}
r(1)γ (yj |β0)

and

f̂ (2)(x, γ) = f (2)(x|β0) +

n∑
j=1

{
B(xj)

′Λ−1B(x)
}
r(2)γ (yj |β0).

First we derive the asymptotic expectation of f̂(x, γ). The term E[f̂0(x, γ)|Xn] has
been already derived in Proposition 1. Direct calculations with repeated use of (5) and
Lemmas 1 and 2 yield that

1

n

n∑
α=1

E

[
f (1)(x|β0)

′
{
I(xα, Yα) +

d

n
+ δn

}∣∣∣∣Xn

]
=

1

n
E[f (1)(x|β0)

′d|Xn] +O(n−2)

= O(n−1)

and

1

n

n∑
α=1

n∑
j=1

{
B(xj)

′Λ−1B(x)
}
E

[
r(1)γ (Yj |β0)

′
{
I(xα, Yα) +

d

n
+ δn

}∣∣∣∣Xn

]

=
1

n

n∑
j=1

{
B(xj)

′Λ−1B(x)
}
E

[
r(1)γ (Yj |β0)

′
{
I(xj , Yj) +

d

n

}∣∣∣∣Xn

]
+OP (n

−2)

= OP (n
−1).
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Hence we obtain

E[f̂ (1)(x, γ)′(β̂ − β0)|Xn] = OP (n
−1). (12)

Analogously,

E[(β̂ − β0)
′f̂ (2)(x, γ)(β̂ − β0)|Xn] = OP (n

−1) (13)

can be also shown. (12) and (13) are smaller order than the bias terms of f̂0(x, γ).

Therefore the bias of f̂(x, γ) is essentially dominated by the bias of f̂0(x, γ).

Next we turn to the variance of f̂(x, γ). It follows from direct evaluation using (5)
that

V [f̂ (1)(x, γ)′(β̂ − β0)|Xn] = OP (n
−1).

And simple but tedious calculations finally yield

V [(β̂ − β0)
′f̂ (2)(x, γ)(β̂ − β0)|Xn] = OP (n

−2).

All terms of relating to covariance appeared from the right hand side of (11) can be shown

to be negligible order by Cauchy-Schwarz inequality. Hence the variance of f̂(x, γ) is

dominated by that of f̂0(x, γ).

Proof of Theorem 3.3. Let r̂(x, γ) = B(x)′Λ−1Z ′rγ(β̂). Then the semipara-

metric estimator can be written as f̂(x, γ) = f(x|β̂) + r̂(x, γ). We now prove

f̂(x, γ)− E[f̂(x, γ)|Xn]√
V [f̂(x, γ)|Xn]

D−→ N(0, 1) (14)

by using Lyapunov theorem. First, from
√
n(f(x|β̂) − E[f(x|β̂)|Xn]) = OP (1) and

V [f̂(x, γ)|Xn] = O(Knn
−1), we have

f(x|β̂)− E[f(x|β̂)|Xn]√
V [f̂(x, γ)|Xn]

P−→ 0.

Therefore, (14) can be obtained, provided that

r̂(x, γ)− E[r̂(x, γ)|Xn]√
V [r̂(x, γ)|Xn]

D−→ N(0, 1) (15)

because V [f̂(x, γ)|Xn]/V [r̂(x, γ)|Xn] → 1(n → ∞). Furthermore, from the proof of
Theorem 3.2, we obtain

r̂(x, γ)− r̂0(x, γ)√
V [r̂(x, γ)|Xn]

P−→ 0, as n → ∞

and V [r̂(x, γ)|Xn]/V [r̂0(x, γ)|Xn] → 1(n → ∞), where

r̂0(x, γ) = B(x)′Λ−1Z ′rγ(β0) = f(x|β0)
γ

n∑
i=1

{B(xi)
′Λ−1B(x)}{yi − f(xi|β0)}

f(xi|β0)
γ

.
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From now on, we try to show

r̂0(x, γ)− E[r̂0(x, γ)|Xn]√
V [r̂0(x, γ)|Xn]

D−→ N(0, 1) (16)

by applying the Lyapunov theorem. First we see that

r̂0(x, γ)− E[r̂0(x, γ)|Xn] = f(x|β0)
γ

n∑
i=1

{B(xi)
′Λ−1B(x)} εi

f(xi|β0)
γ
.

And it is easily confirmed that

f(x|β0)
γB(x)′Λ−1B(xi) = OP (Knn

−1).

By above evaluations and the moment condition for εi, we have

E

[∣∣∣∣f(x|β0)
γ{B(xi)

′Λ−1B(x)} εi
f(xi|β0)

γ

∣∣∣∣2+δ ∣∣∣Xn

]

=
E[|f(x|β0)

γB(x)′Λ−1B(xi)εi|2+δ|Xn]

|f(xi|β0)|γ(2+δ)

= OP

(
K2+δ

n

n2+δ

)
.

On the other hand, since B2
n = V [r̂0(x, γ)|Xn] = OP (Knn

−1), we have

B2+δ
n = OP

((
Kn

n

)(2+δ)/2
)
.

Then it follows that

1

B2+δ
n

n∑
i=1

E

[∣∣∣∣f(x|β0)
γ{B(xi)

′Λ−1B(x)} εi
f(xi|β0)

γ

∣∣∣∣2+δ ∣∣∣Xi

]

= OP

(
n

(
Kn

n

)2+δ
)
OP

((
Kn

n

)−(2+δ)/2
)

= OP

(
n

(
Kn

n

) 2+δ
2

)
,

which tends to 0 in probability by Kn = o(n1/2) and δ ≥ 2. This assures the Lya-

punov condition, so that (16) holds. Note that ba(x|β0, γ) = O(K
−(p+1)
n ), bλ(x|β0, γ) =

O(λnKnn
−1) and V [f̂(x, γ)|Xn] = O(Knn

−1). It results from these evaluations and the
assumptions for the order of Kn and λn that

E[f̂(x, γ)|Xn]− f(x)− ba(x|β0, γ)− bλ(x|β0, γ)√
V [f̂(x, γ)|Xn]

→ 0,

which completes the proof.
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Proof of Corollary 3.4. First, fq(x|βq) can be expressed as the linear combi-
nation of the pth B-spline basis. From the fundamental property of B-spline basis (see,
p.95 of de Boor (2001)), actually, each xj can be written as

xp−j =

Kn∑
k=−p+1

(−1)j(p− j)!

p!
ϕ
(j)
k,p(0)B

[p]
k (x), j = p− q, · · · , p,

where ϕk,p(z) = (κk − z) · · · (κk+p−1 − z) and we have

fq(x|βq) = β0 + β1x+ · · ·+ βqx
q

=

p∑
j=p−q

βp−jx
p−j

=

Kn∑
k=−p+1


p∑

j=p−q

βp−j
(−1)j(p− j)!

p!
ϕ
(j)
k,p(0)

B
[p]
k (x). (17)

Note that (17) consist for any β ∈ B ⊆ Rq+1. The semiparametric penalized spline

estimator is obtained by f̂(x, 0) = fq(x|β̂q)+ r̂0(x, β̂q). Let ĉ = (ĉ−p+1 · · · ĉKn)
′ be the

(Kn + p) vector defined as

ĉk =

p∑
j=p−q

β̂p−j
(−1)j(p− j)!

p!
ϕ
(j)
k,p(0), k = −p+ 1, · · · ,Kn.

Then, we have fq(x|β̂q) = B(x)′ĉ and

r̂0(x, β̂q) = B(x)′b̂ = B(x)′(Z ′Z + λnD
′
qDq)

−1Z ′(y − Zĉ).

Therefore, we have

f̂(x, 0) = fq(x|β̂q) + r̂0(x, β̂q) = B(x)′ĉ+B(x)′(Z ′Z + λnD
′
qDq)

−1Z ′(y − Zĉ). (18)

When λn = 0, meaning that r̂0(x, β̂q) is regression spline, (18) can be written as

f̂(x, 0) = B(x)′ĉ+B(x)′(Z ′Z)−1Z ′(y − Zĉ) = B(x)′(Z ′Z)−1Z ′y

for all p ≥ 1. So the semiparametric estimator and nonparametric estimator have the
same form. If λn > 0, on the other hand,

f̂(x, 0) = B(x)′ĉ−B(x)′(Z ′Z + λnD
′
mDm)−1Z ′Zĉ

= λnB(x)′(Z ′Z + λnD
′
mDm)−1D′

qDqĉ

does not become 0 unless D′
mDmĉ = 0. However as far as we use (p,m) = (1, 2) and

equidistant knots, we obtain D′
2D2ĉ = 0. The (Kn + p− 2)× (Kn + p) matrix D2 has

the form

D2 = (dij)ij =


1 −2 1 0 · · · 0

0 1 −2 1
. . .

...
...

. . .
. . .

. . .
. . .

...
0 · · · 0 1 −2 1

 .
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We way only prove D2ĉ = 0. Because the kth component of ĉ is

p∑
j=0

β̂p−j
(−1)j(p− j)!

p!
ϕ
(j)
k,p(0),

we show that for j = 0, 1 and p = 1,

Kn∑
k=−p+1

dikϕ
(j)
k,1(0) = 0, i = 1, · · · ,Kn + p.

By the definition of dik and ϕ
(j)
k,1(z) = (κk − z)(j), we have for j = 0,

Kn∑
k=−p+1

dikϕ
(0)
k,1(0) = di,iκi + di,i+1κi+1 + di,i+2κi+2 = 0.

For j = 1, we obtain
∑Kn

k=−p+1 dikϕ
(1)
k,1(0) = 0. Therefore, D2ĉ = 0 has been proven.
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