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Abstract

The robust lasso-type regularized regression is a useful tool for simultaneous
estimation and variable selection even in the presence of outliers. Crucial issues
in the robust modeling procedure include the selection of regularization parame-
ters and also a tuning constant in outlier detection. Although the performance of
the robust sparse regression strongly depends on the proper choice of these tuning
parameters, little attention was paid for this issue, particularly in the presence of
outliers. We consider the problem of choosing the tuning parameters and propose
an information-theoretic criterion based on the bootstrap. Although the bootstrap
information criterion has several advantages on its flexibility and weak assump-
tions, a bootstrap sample may contain more outliers compared with those included
in the original sample, since the bootstrap sample is drawn randomly. This implies
that the bootstrap information criterion may be obtained from the highly contam-
inated bootstrap sample by outliers, so the resulting criterion may produce biased
results. In order to overcome the drawback, we propose a robust bootstrap infor-
mation criterion via winsorizing technique (Srivastava et al., 2010) in line with the
efficient bootstrap information criterion (Konishi and Kitagawa, 1996) for choos-
ing an optimal set of tuning parameters. Monte Carlo simulations and real data
analysis are conducted to investigate the effectiveness of the proposed method. We
observe that the proposed robust efficient bootstrap information criterion produces
reliable model estimates and performs well in the presence of outliers.

Key Words and Phrases: Efficient bootstrap information criterion, Robust sparse regression

modeling, Tuning parameter selector, Winsorization technique.

1. Introduction

Sparse regression models are constructed by optimizing the penalized least squares
loss function with various L1-type of norms (see, e.g., Hastie et al., 2009; Kawano et al.,
2010). By replacing the least squares loss function with the robust loss function, robust
lasso-type regularization can effectively perform simultaneous parameter estimation and
variable selection even in the presence of outliers. Although the robust sparse regression
modeling heavily depends on an appropriate choice of the regularization parameters and
tuning constant in outlier detection, little attention was paid for this issue. In fact,
existing studies on the M-lasso and M-adaptive lasso (Zhang et al., 2009; Lambert-
Lacroix and Zwald, 2011) selected only the regularization parameters controlling the
∗ Graduate School of Science and Engineering, Chuo University, 1–13–27 Kasuga, Bunkyo-ku, Tokyo
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model complexity without regard for selection of the tuning constant (i.e., under the
fixed tuning constant). The issue, however, should be considered as a selection of an
optimal set of the regularization parameters and tuning constant at once. Also, we
should consider the effect of outliers in the model evaluation, since the outliers may have
considerable effect on the evaluation process, and thus they yield distort model selection
results. Ronchetti et al. (1997) proposed a robust version of the cross-validation using
a robust loss function. Tharmaratnam (2010) also proposed a robust version of the AIC
(Akaike, 1973) using the weighted Kullback-Leibler distance.

We consider the use of the bootstrap information criterion for choosing the tuning
parameters. Although the bootstrap technique is a practical method, it has a demerit in
the presence of outliers that a bootstrap sample may contain more outliers than those
in the original sample, since the bootstrap sample is drawn randomly. This implies
that the bootstrap information criterion may be obtained from the contaminated boot-
strap sample by outliers, and thus the resulting criterion may produce biased results. In
order to overcome the drawback, we propose a robust bootstrap information criterion
via winsorization technique (Srivastava et al., 2010) in line with the efficient bootstrap
information criterion (Konishi and Kitagawa, 1996) for choosing an optimal set of the
regularization parameters and a tuning constant robustly. We observe that the variance
due to the ordinal bootstrap resampling can be reduced significantly, and thus the num-
ber of bootstrap replications may be greatly reduced. Furthermore, we also observe that
the proposed robust bootstrap information criterion produces stable results even in the
presence of outliers by using the winsorization technique. In short, using the proposed
method, we can perform effective and robust sparse regression modeling. Although we
focus on the proposed method as a robust tuning parameter selector, it is a useful tool
for robust evaluation of various modeling techniques.

The rest of this paper is organized as follows. We present the methodology of
the robust sparse regression modeling in Section 2. In Section 3, we propose the robust
efficient bootstrap information criterion via winsorization technique for the robust sparse
regression modeling. We briefly introduce the robust lasso-type regularization methods
in Section 4. Monte Carlo simulations are conducted to investigate the performance of
proposed technique in Section 5. The real world example is shown in Section 6. Some
concluding remarks are given in Section 7.

2. Methodology

Suppose we have n independent observations {(yi,xi); i = 1, ..., n}, where yi are
random response variables and xi are p-dimensional vectors of the predictor variables.

Consider the linear regression model,

yi = β0 + xT
i β + εi, i = 1, ..., n, (1)

where β0 is an intercept, β is an unknown p-dimensional vector of regression coefficients
and εi are the random errors which are assumed to be independently, identically dis-
tributed with mean 0 and variance σ2. We assume that the yi are centered and xij are
standardized by their mean and standard deviation:

∑n
i yi/n = 0,

∑n
i xij/n = 0 and∑n

i x
2
ij/n = 1.

To construct an outlier-resistant regression model for (1), we estimate the regression
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Figure 1: Quantile regression with various quantiles

coefficient vector by

β̂ = arg min
β

[ n∑
i=1

ρ(ri; k) +

p∑
j=1

pλ(|βj |)
]
, (2)

where ρ(ri; k) is a robust loss function (e.g., least absolute deviation, least trimmed
squares loss function, M-function, and etc.) with tuning constant k for outlier detection,
ri = yi − β0 − xT

i β and
∑p

j=1 pλ(|βj |) is a lasso-type penalty (e.g., the penalty of lasso,
adaptive lasso, elastic net, and etc.) with regularization parameter λ (see Section 4). The
robust sparse regression modeling procedure performs variable selection and estimation
simultaneously by an appropriate choice of the regularization parameter λ, and outliers
are controlled by the tuning constant k in ρ(ri; k).

The ordinary lasso-type approaches consist of the least squares loss function with
the L1-type penalty term. Although the lasso-type regularization effectively performs
simultaneous variable selection and estimation by imposing the L1-type penalty, its
performance takes a sudden turn for the worst in the presence of outliers, since it is
based on the least squares loss function. To overcome the problem, numerous studies
have attempted to achieve the robustness of lasso-type regularization by replacing the
least squares loss function with the robust loss function (see Section 4).

It is well known that the choice of the regularization parameter is a vital matter,
since it controls the sparsity of a constructed model. Furthermore, in the robust re-
gression modeling, the tuning constant plays a key role for outlier-resistant modeling
procedure by controlling the outliers. Figure 1 shows the quantile regression for salary
data (Weisberg, 2005), which is one of the robust regression modeling, with various
quantiles. The x-axis is the score of job difficulty for job classes as a predictor variable
and the y-axis is the maximum salary as a response variable. In the quantile regression,
quantile can be seen as a tuning constant for controlling outliers. As shown in Figure 1,
the regression fitting line is significantly changed as increasing the quantile. This implies
that choosing the tuning constant is crucial in the robust regression modeling.

Although not only the regularization parameters, but also the tuning constant
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plays a key role for robust sparse regression modeling, existing studies on the robust
L1-type regularization, such as the M-lasso and M-adaptive lasso, were conducted by
the choice of only the regularization parameters without considering a tuning constant
(i.e., under the fixed tuning constant k = 1.34 (Lambert-Lacroix and Zwald, 2011)).
This issue, however, should be considered as a selection of optimal set of regularization
parameters and tuning constant, since the selection of the regularization parameters is
also influenced by outliers.

3. Novel resampling method for tuning parameter selection

We propose the robust method for choosing an optimal set of regularization param-
eters and tuning constant via the bootstrap information criterion which showed effective
performance for robust sparse regression modeling in Park et al. (2012). Although
the bootstrap information criterion is effective for choosing the tuning parameters, we
should point out the demerit of the bootstrap technique in the presence of outliers that
the bootstrap sample may be more contaminated by outliers than original sample, be-
cause of random drawing procedure of the bootstrap resampling. This implies that the
bootstrap information criterion may be obtained from the highly contaminated boot-
strap sample by outliers, and thus the resulting criterion may produce biased results. In
order to overcome the drawback, we propose a robust bootstrap information criterion
via winsorization technique in line with the efficient bootstrap information criterion for
robust sparse regression modeling.

We first introduce the efficient bootstrap information criterion (Konishi and Kita-
gawa, 1996) in the next section.

3.1. Efficient bootstrap information criterion

Consider the case in which a model is given in the form of a probability distribution
{f(y|θ);θ ∈ Θ ⊂ Rp} having p-dimensional parameters. We assume that the data
yn = {y1, ..., yn} are generated from the true distribution function G(y). Our task is to

evaluate the performance of the estimated model f(z|θ̂) when it is used to predict the
independent future data Z = z generated from the unknown true distribution G(z).

The general form of an information criterion is constructed as follows;

IC(yn; Ĝ) = −2
n∑

i=1

logf(yi|θ̂) + 2{estimator for b(G)}, (3)

where b(G) is a bias of the log-likelihood as an estimator of the expected log-likelihood
depending on the unknown probability distribution G. That is, the bias b(G) is given
by

b(G) = EG(yn)

[
logf(yn|θ̂(yn))− nEG(z)

[
logf(Z|θ̂(yn))

]]
, (4)

where logf(yn|θ̂(yn)) =
∑n

i=1 logf(yi|θ̂(yn)) and the expectation EG(yn)
is taken with

respect to the joint distribution,
∏n

i=1 G(yi) = G(yn) of the sample yn (Konishi and

Kitagawa, 2008). Note that θ̂ = θ̂(yn) depends on the sample yn.

In order to improve the model evaluation accuracy, numerous studies on estimation
of the bias in (4) have been conducted. Konishi and Kitagawa (1996) showed that the
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difference between the log-likelihood of the model and n times the expected log-likelihood

D(yn;G) = logf(yn|θ̂)− n

∫
logf(z|θ̂)dG(z), (5)

can be decomposed into three terms

D(yn;G) = D1(yn;G) +D2(yn;G) +D3(yn;G), (6)

where

D1(yn;G) = logf(yn|θ̂)− logf(yn|θ), (7)

D2(yn;G) = logf(yn|θ)− n

∫
logf(z|θ)dG(z),

D3(yn;G) = n

∫
logf(z|θ)dG(z)− n

∫
logf(z|θ̂)dG(z).

By taking the expectation term by term on (6), the second term is

EG[D2(yn;G)] = EG

[
logf(yn|θ)− n

∫
logf(z|θ)dG(z)

]
(8)

=
n∑

i=1

EG [logf(yi|θ)− nEG[logf(Z|θ)]

= 0.

Thus, the expectation of (5) can be expressed without D2(yn;G) term as follows;

EG[D(yn;G)] = EG[D1(yn;G) +D3(yn;G)]. (9)

In the bootstrap information criteria, the true distribution G(y) is replaced with
an empirical distribution function Ĝ(y). With this replacement, the random variable
and estimator in (4) are substituted as follows;

G(y) −→ Ĝ(y),

yi ∼ G(y) −→ y∗i ∼ Ĝ(y),

Z ∼ G(z) −→ Z∗ ∼ Ĝ(z),

EG(y), EG(z) −→ EĜ(y∗), EĜ(z∗),

θ̂ = θ̂(y) −→ θ̂∗ = θ̂(y∗).

Therefore, the bootstrap bias estimate of (4) is given by

b∗(Ĝ) = EĜ(y∗)

[
n∑

i=1

logf(y∗i |θ̂(y∗
n))− nEĜ(z∗)

[
logf(Z∗|θ̂(y∗

n))
]]

. (10)

Let us draw B sets of bootstrap samples of size n from the observed data and write
the bth bootstrap sample as y∗

n(b) = {y∗1(b), ..., y∗n(b)}. In the bootstrap estimate, (9) is
replaced by

EĜ[D(y∗
n; Ĝ)] = EĜ[D1(y

∗
n; Ĝ) +D3(y

∗
n; Ĝ)]. (11)
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Therefore, we can use

bB(Ĝ) =
1

B

B∑
b=1

{D1(y
∗
n(b); Ĝ) +D3(y

∗
n(b); Ĝ)} (12)

as a bootstrap bias estimate.
Conditional on the observed data, Konishi and Kitagawa (1996) showed that the

orders of asymptotic conditional variances of two bootstrap estimates are

Var

[
1

B

B∑
b=1

{D(y∗
n; Ĝ)}

]
=

1

B
O(n), (13)

Var

[
1

B

B∑
b=1

{D1(y
∗
n; Ĝ) +D3(y

∗
n; Ĝ)}

]
=

1

B
O(1).

This implies that the variance due to the bootstrap resampling can be reduced signifi-
cantly, and thus we can expect it to produce an efficient modeling.

Consequently, the efficient bootstrap information criterion based on variance re-
duction method is defined as follows;

EICeff = −2
n∑

i=1

logf(yi|θ̂) + 2{bB(Ĝ)} (14)

. = −2

n∑
i=1

logf(yi|θ̂) + 2

[
1

B

B∑
b=1

{D1(y
∗
n(b); Ĝ) +D3(y

∗
n(b); Ĝ)}

]
.

For details on the theoretical justification for bootstrap variance reduction technique,
see Konishi and Kitagawa (1996; 2008).

3.2. Novel resampling method for tuning parameter selection

The bootstrap information criterion is a useful tool for evaluating models con-
structed by the robust lasso-type regularization with L1-type penalty, since it is a flexible
technique and can be applied to complex problems employing very weak assumptions.
Although the bootstrap information criterion has several advantages, it has a consid-
erable demerit that the bootstrap sample may include more outliers than those in the
original sample, since the bootstrap sample is drawn randomly.

Table 1 shows the seriousness of the problem that bootstrap sample contains more
outliers than those in the original sample over 100,000 simulated datasets. As shown in
Table 1, overall, more than 35% of bootstrap samples contain more outliers than those
in the original samples. This implies that the resulting criterion from the bootstrap
sample may produce biased results in the presence of outliers, and hence the bootstrap
information criterion does not perform well as a tuning parameter selector. To overcome
the demerit, we use a winsorization technique to the efficient bootstrap information
criterion.

A winsorization is a statistical technique that aims to reduce the effect of outliers
in the sample (Yale and Forsythe, 1976). First, we introduce a winsorization bootstrap
method (Singh, 1998; Srivastava et al., 2010). Suppose that the order statistics of the
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Table 1: Percentage that bootstrap sample is more contaminated than original sample

Proportion (%) of outliers in the original sample

n 1% 5% 10% 15%

100 0.26 0.39 0.42 0.43

500 0.38 0.45 0.46 0.47

1000 0.42 0.46 0.48 0.48

original data be denoted by y[1], y[2], ..., y[n]. For some δ between 0 and 1/2, δ-winsorized
sample for {yi} is given by

y∗i = y[l+1], if yi ≤ y[l], (15)

= y[n−l], if yi ≥ y[n−l+1],

= yi, otherwise,

where δ = l/n, 0 ≤ δ ≤ 1/2 represents the winsorizing proportion. The winsorized
bootstrap sample {y∗∗i } are randomly drawn from the δ-winsorized sample {y∗i }. This
implies that the winsorized bootstrap sample may not be affected by outliers which are
greater than y[l] or smaller than y[n−l+1]. Thus, we can reduce the effect of outliers in
the bootstrap technique.

For outlier-resistant model evaluation, we propose a robust efficient bootstrap in-
formation criterion via winsorized bootstrap sample. By using the winsorized bootstrap
sample, the bootstrap bias estimate of (4) is given by

b∗∗(Ĝ) = EĜ(y∗∗)

[
n∑

i=1

logf(y∗∗i |θ̂(y∗∗
n ))− nEĜ(z∗∗)

[
logf(Z∗∗|θ̂(y∗∗

n ))
]]

. (16)

Let us draw B sets of winsorized bootstrap samples of size n and write the bth

winsorized bootstrap sample as y∗∗
n (b) = {y∗∗1 (b), ..., y∗∗n (b)}. In the winsorized bootstrap

estimate, (9) and (11) are replaced by

EĜ[D(y∗∗
n ; Ĝ)] = EĜ[D1(y

∗∗
n ; Ĝ) +D3(y

∗∗
n ; Ĝ)]. (17)

Therefore, the bootstrap bias estimate of (4) is substituted by

bwB(Ĝ) =
1

B

B∑
b=1

{D1(y
∗∗
n (b); Ĝ) +D3(y

∗∗
n (b); Ĝ)}. (18)

Consequently, the proposed robust efficient bootstrap information criterion is given by

R.EICeff = −2
n∑

i=1

logf(yi|θ̂) + 2{bwB(Ĝ)} (19)

= −2
n∑

i=1

logf(yi|θ̂) +
2

B

B∑
i=1

{D1(y
∗∗
n (b); Ĝ) +D3(y

∗∗
n (b); Ĝ)}.



56 H. Park

By using the R.EICeff, the variance of the bootstrap estimates caused by simulation
can be reduced extensively and then the number of bootstrap replications may be greatly
reduced. Furthermore, we can perform accurate and stable model evaluation even in the
presence of outliers.

Using the R.EICeff, we choose an optimal set of the regularization parameters and
a tuning constant in the robust lasso-type regularization based on the grid search. Under
the assumption that εi in (1) are the random errors from N(0, σ2), the linear regression
model is expressed as

f(yi|β) =
1√
2πσ2

exp

[
−{yi − β0 − xT

i β}2

2σ2

]
. (20)

To calculate the R.EICeff for the robust sparse regression model, the winsorized
bootstrap samples denoted as y∗∗

n = {y∗∗1 , ..., y∗∗n } are generated using a x-fixing method.
In the x-fixing method, predictor variables xn are considered as not random variables
and y∗∗

n = β̂0 + xT
n β̂ + e∗∗n , where e∗∗n are randomly drawn from winsorized sample e∗n

of en(= yn − β̂0 − xT
n β̂),

e∗i = e[l+1], if ei ≤ e[l], (21)

= e[n−l], if ei ≥ e[n−l+1],

= ei, otherwise.

Afterwards, we calculate the R.EICeff based on β̂ estimated by the robust lasso-type
approaches at each set of the regularization parameters and a tuning constant. Finally,
we perform model selection and estimation by choosing an optimal set of these tuning
parameters that minimizes R.EICeff.

4. Examples: Robust lasso-type regularization methods

Several robust lasso-type regularization methods were proposed by replacing the
least squares loss function with the robust loss function for robust sparse regression
modeling.

• Least trimmed squares lasso (Mateos and Giannakis, 2012):

β̂LTS-lasso = arg min
β

[ s∑
i=1

r2[i] + λ

p∑
j=1

|βj |
]
, (22)

where s is a tuning constant, r2[i] is the i-th order statistic of squared residuals.

• M-lasso (Zhang et al., 2009):

β̂M-lasso = arg min
β

[ n∑
i=1

ρ(ri) + λ

p∑
j=1

|βj |
]
, (23)

where ρ(·) is the M-estimation function,
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-Huber function:

ρ(r) =

{
r2/2, if |r| < k,
k(|r| − k/2), if |r| ≥ k.

-Tukey function:

ρ(r) =

{
(k2/6)(1− [1− (r/k)2]3), if |r| < k,
k2/6, if |r| ≥ k,

where k is a tuning constant.

To improve the performance of robust sparse regression modeling, we also consider
the combination of Huber M-function and smoothly clipped absolute deviation (SCAD)
penalty having good properties: unbiasedness, sparsity and continuity (Fan and Li,
2001),

β̂M-SCAD = arg min
β

[ n∑
i=1

ρ(ri) +

p∑
j=1

pλ(|βj |)
]
, (24)

where

pλ(|βj |) =


λ|βj |, if |βj | ≤ λ,

−(
|βj |2−2aλ|βj |+λ2

2(a−1) ), if λ < |βj | ≤ aλ,
(a+1)λ2

2 , if |βj | > aλ.

Figure 2 (a) and (b) show the estimator of the lasso and SCAD, respectively. The x-axis
is the least square estimator, and the y-axis of Figure 2 (a) and (b) is the estimator of
lasso and SCAD, respectively. As shown in Figure 2, the SCAD produces unbiased esti-
mation results in large |β| unlike to the lasso, and thus we can expect better performance
for modeling by using the M-SCAD than by using the M-lasso.
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Figure 2: Thresholding function with λ = 2 for (a) the lasso and (b) the SCAD (a=3.7)
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5. Simulation studies

We examine, through Monte Carlo experiments, the effectiveness of the proposed
modeling strategy as a robust tuning parameter selector by comparing with the ordinary
bootstrap information criterion and cross-validation. In the winsorization technique,
choosing the winsorizing proportion δ is crucial in practice. The simplest way to choose
the δ is to specify them in advance (Chen et al., 2001). The δ was determined adap-
tively from the data in literatures (Welsh, 1987; Dodge and Jurecková, 1997). Chen et
al. (2001) mentioned that this issue is largely a philosophical question as to which ap-
proaches individual users prefer. Srivastara et al. (2010) showed that the winsorization
technique with δ ≈ “proportion of outliers in the original sample” outperforms in the
bootstrap regression. Therefore, we use the winsorizing proportion δ = “proportion of
outliers in the original sample” in simulation studies.

First, we show the stability of the proposed technique. Figure 3 shows bar plots of
the standard deviation of bootstrap estimatesD, D1+D3, D1, D2 andD3, for the sample
size n = 100. From the Figure 3, it can be clearly seen that the bootstrap estimates D,
D1+D3, D1, D2, and D3 in the proposed robust bootstrap information criterion (black
bar plots) show smaller standard deviation compared with those in the existing one
(white bar plots). It implies that the proposed robust bootstrap information criterion is
more effective and stable against outliers than the existing one, and thus we can expect
efficient and robust sparse regression modeling by using the proposed method.

We evaluate the proposed method as a tuning parameter selector for robust sparse
regression modeling. We simulated 50 datasets consisting of n observations from the
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Figure 3: Standard deviation of bootstrap estimate of the D, D1 +D3, D1, D2 and D3
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model

yi = β0 + xT
i β + εi, i = 1, ..., n, (25)

where εi are standard normal. In the numerical study, we assume that β0 = 0. The
correlation between xl and xm is ρ|l−m| with ρ=0.5. Simulations are conducted in the
presence of 5%, 10%, and 15% outliers for εi ∼ N(30, 3). To evaluate the proposed
method, we choose the regularization parameters and tuning constant by the robust ef-
ficient bootstrap information criterion and the ordinary bootstrap information criterion.
We also compare results by the 10-fold cross validation. For model estimation by robust
L1-type regularization, we used an iterative reweighted least square (IRLS) algorithm
(Zhang et al., 2009).

Two Monte Carlo simulations are conducted for the robust sparse regression mod-
eling by the LTS-lasso, M-lasso and M-SCAD based on the Huber function,

Simulation 1: β = (3, 1.5, 0, 0, 2, 0, 0, 0)T and n = 80.

Simulation 2: β = (3, 1.5, 0, 0, 2, 0, 0, 0, 3, 1.5, 0, 0, 2, 0, 0, 0, 3, 1.5, 0, 0)T and n = 50.

Table 2, Table 3 and Table 4 compare the simulation results for variable selection
and forecasting accuracy of robust sparse regression modeling by the LTS-lasso, M-
lasso and M-SCAD, respectively, where the bold numbers indicate the best performance
among the three criteria. The values of “T.N” indicate the average proportion of five
and twelve true zero coefficients that were correctly set to zero, called true negative,
and the values of “F.N” indicate average proportion of the three and eight truly non-
zero coefficients that incorrectly set to zero, called false negative. The forecasting root
mean square errors (RMSE) over 50 simulated datasets are summarized in last column

• LTS-lasso

Table 2: Simulation results: LTS-lasso

Outlier Method
Simulation 1 Simulation 2

T.N F.N RMSE T.N F.N RMSE

5%

CV 0.036 0.000 1.82 0.117 0.005 2.01

Eff.Boot.IC 0.036 0.000 1.99 0.345 0.017 2.61

Robust.Eff.Boot.IC 0.068 0.000 1.67 0.488 0.025 2.21

10%

CV 0.016 0.000 3.17 0.033 0.007 4.70

Eff.Boot.IC 0.020 0.000 3.33 0.242 0.037 4.56

Robust.Eff.Boot.IC 0.016 0.000 2.83 0.273 0.015 3.74

15%

CV 0.004 0.000 4.56 0.042 0.010 6.53

Eff.Boot.IC 0.008 0.000 5.00 0.225 0.066 5.92

Robust.Eff.Boot.IC 0.020 0.000 4.07 0.303 0.037 5.00
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• M-lasso

Table 3: Simulation results: M-lasso

Outlier Method
Simulation 1 Simulation 2

T.N F.N RMSE T.N F.N RMSE

5%

CV 0.072 0.000 1.75 0.148 0.005 1.94

Eff.Boot.IC 0.072 0.000 1.75 0.353 0.000 2.05

Robust.Eff.Boot.IC 0.136 0.000 1.75 0.290 0.010 1.76

10%

CV 0.020 0.000 3.54 0.098 0.030 4.53

Eff.Boot.IC 0.032 0.000 3.53 0.088 0.020 4.87

Robust.Eff.Boot.IC 0.056 0.013 3.48 0.110 0.012 4.71

15%

CV 0.012 0.000 5.36 0.092 0.040 6.50

Eff.Boot.IC 0.056 0.020 5.08 0.093 0.050 6.68

Robust.Eff.Boot.IC 0.068 0.007 5.02 0.130 0.037 6.10

• M-SCAD

Table 4: Simulation results: M-SCAD

Outlier Method
Simulation 1 Simulation 2

T.N F.N RMSE T.N F.N RMSE

5%

CV 0.076 0.000 1.75 0.075 0.005 1.92

Eff.Boot.IC 0.084 0.000 1.73 0.202 0.000 1.88

Robust.Eff.Boot.IC 0.152 0.000 1.72 0.245 0.000 1.83

10%

CV 0.036 0.000 3.45 0.160 0.000 4.58

Eff.Boot.IC 0.036 0.000 3.58 0.072 0.007 4.81

Robust.Eff.Boot.IC 0.064 0.020 3.58 0.090 0.007 4.60

15%

CV 0.008 0.070 5.39 0.082 0.037 6.86

Eff.Boot.IC 0.052 0.040 5.29 0.095 0.035 6.71

Robust.Eff.Boot.IC 0.084 0.070 5.27 0.097 0.025 6.47

in each Table. From the columns “T.N” in all Tables, it can be seen that the proposed
robust efficient bootstrap information criterion is a useful tool for choosing the tuning
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parameters in the presence of outliers in the viewpoint of the “sparsity” (i.e., some
coefficients in the estimated model are exactly zero (Tibshirani et al., 2005)), which is a
crucial property of the lasso-type approaches. It can be also seen that proposed method
is superior to the existing ones for the forecasting accuracy in overall (see columns
“RMSE”). In short, the proposed technique is an efficient tool for roust sparse regression
modeling via LTS-lasso, M-lasso and M-SCAD in the viewpoint of the “sparsity” and
forecasting accuracy.

6. Real-world example

We illustrate the proposed procedure through the analysis of a crime dataset
(Agresti and Finlay, 1997) to evaluate the practicality. The dataset consists of p=9
variables for n = 51 observations as follows,

• crime: violent crimes per 100,000 people

• sid: state id

• state: state name

• murder: murders per 1,000,000 people

• pctmetro: the percent of the population living in metropolitan areas

• pctwhite: the percent of the population that is white

• pcths: percent of population with a high school education or above

• poverty: percent of population living under poverty line

• single: percent of population that are single parents

The variable “crime” is considered as a response variable and the variables “murder, pct-
metro, pctwhite, pcths, poverty” and “single” are considered as predictor variables (i.e.,
p=6). The robust sparse regression modeling is conducted via the LTS-lasso, M-lasso
and M-SCAD based on the Huber function. We also compare results of the ordinary
lasso. The regularization parameters and tuning constant are selected by the proposed
robust efficient bootstrap information criterion. The regression model is estimated using
observations 1 to 40, and then we calculate forecasting RMSE based on observations 41

Table 5: Robust sparse regression modeling for Crime data

Cross validation Eff.Boot.IC Robust.eff.Boot.IC

lasso 130.56 130.56 130.55

LTS-lasso 128.01 128.03 127.99

M-lasso 130.73 129.02 127.45

M-SCAD 130.77 130.20 127.89
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to 51 in Table 5, where the bold numbers indicate the best performance among the
three criteria. It can be first seen from Table 5 that the robust lasso-type approaches
outperform the ordinary lasso in the presence of outliers. We can also see that the
proposed robust efficient bootstrap information criterion is outstanding for the forecast-
ing accuracy with all examples of the L1-type regularization, lasso, LTS-lasso, M-lasso
and M-SCAD. This implies that the proposed technique is also useful for analysis of
contaminated real world data.

7. Concluding remarks

We have proposed the robust bootstrap information criterion via winsorizing tech-
nique in line with the efficient bootstrap information criterion for the robust sparse
regression modeling. In order to robustly select the tuning parameters, we use the win-
sorization bootstrap technique. We observed through Monte Carlo experiments that
the proposed robust efficient bootstrap information criterion is more stable against out-
liers than existing one. In addition, our simulation studies also showed the efficiency of
the proposed technique for choosing an optimal set of regularization parameters and a
tuning constant in the viewpoint of the sparsity and forecasting accuracy. The results
of the real-world example also showed the superiority of the proposed method. Future
work remains to be done towards considering various robust bootstrap techniques (e.g.,
trimming method).
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