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Abstract

Let X1, X2, · · · ,Xn be a sample of size n from a random discrete distribution
P on the real line R. If we consider i and j are equivalent in case of Xi = Xj ,
this equivalence relation give a random partition of Nn = {1, 2, · · · , n}. In the case
where P is given by a mixture of Dirichlet processes, we discuss the convergence in
distribution of the number Kn of distinct components of the random partition of
Nn.

Key Words and Phrases: Mixture of Dirichlet processes, Normal approximation, Poisson dis-

tribution, random partition, smoothing lemma.

1. Introduction

Let G0 be a continuous distribution on the real line R and θ be a positive constant.
Let B be the σ-field which consists of the subsets of R. Let the random distribution P

have the Dirichlet process D(θG0) on (R, B) with parameter θG0 . Let Vj (j = 1, 2, . . .)
be a sequence of independent and identically distributed (i.i.d.) random variables with
the distribution G0, and Wj(j = 1, 2, . . .) be a sequence of i.i.d. random variables with
the beta distribution Be(1, θ). We assume that Vj (j = 1, 2, . . .) and Wj(j = 1, 2, . . .)
are independent. We put p1 = W1 and pj = Wj(1 −W1) · · · (1 −Wj−1) (j = 2, 3, · · · ).
Then, we can write P(B) =

∑∞
j=1 pjδVj (B) for any B ∈ B, where δV (B) = 1 if V ∈ B

and 0 otherwise (Sethuraman (1994)). Thus P (∈ D(θG0)) is discrete almost surely
(a.s.). A sample of size n from P gives the random partition of Nn = {1, 2, · · · , n},
whose distribution does not depend on Vj (j = 1, 2, . . .) given P. Thus the distribution
depends on θ and does not depend on G0. The distribution is well-known as Ewens
sampling formula or Multivariate Ewens distribution. Let Kn be the number of distinct
components of the random partition. The distribution of Kn is given by

P (Kn = k) =
[ n

k

] θk

θ[n]
(k = 1, 2, . . . , n) (1)

where
[ n

k

]
is a Stirling number of the third kind (or an absolute Stirling number of

the first kind) and θ[n] = θ(θ + 1) · · · (θ + n − 1). (See, for example, Antoniak (1974)
and Johnson et al. (1997).)
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Hereafter we consider θ as a positive random variable having a distribution γ. Given
θ, let the random discrete (a.s.) distribution P have the Dirichlet process D(θG0) on (R,
B) with parameter θG0. Then this random discrete (a.s.) distribution P has a mixture
of Dirichlet processes D(θG0) with the mixing distribution γ (Antoniak (1974)). The
number Kn of distinct components of the random partition based on a sample of size
n associated with this mixture of Dirichlet processes, have the distribution (1), given θ.
Thus, for the mixture of Dirichlet processes D(θG0) with the mixing distribution γ, Kn

has the distribution

P (Kn = k) =
[ n

k

]
Vn,k (k = 1, 2, . . . , n) where Vn,k = Eγ

(
θk

θ[n]

)
(2)

where Eγ(·) denotes the expectation with respect to the distribution γ of the random
variable θ. We note that the relation between (1) and (2) corresponds to (ii) of Theo-
rem 12 which is the characterization of the random partition which are consistent and
exchangeable (Gnedin and Pitman (2006)).

The purpose of this paper is to show that Kn/ log n converges in distribution to γ

as n → ∞ and its order is O(log−1/3 n), for the mixture of Dirichlet processes D(θG0)
with the mixing distribution γ.

2. Convergence in distribution of Kn

The total variation distance between the distribution L(X) and L(Y ) of discrete
nonnegative random variables X and Y , ∥ L(X)− L(Y ) ∥, is defined by

∥ L(X)− L(Y ) ∥= sup
B⊂Z+

∣∣P (X ∈ B)− P (Y ∈ B)
∣∣

where Z+ = {0, 1, 2, · · · }. For each n = 1, 2, · · · , we put

Hθn =

n∑
j=1

1

θ + j − 1
.

Let the random variables Pn and P ∗
n have the Poisson distributions Po(θHθn) and

Po(θ log n), respectively, given θ. In order to discuss the convergence in distribution
of Kn/ log n, at first we see the total variation distances ∥ L(Kn) − L(Pn) ∥ and
∥ L(Pn) − L(P ∗

n) ∥. Thus we see the total variation distance ∥ L(Kn) − L(P ∗
n) ∥

and Lemma 2.2. These are shown in the subsection 2.1. Then in the subsection 2.2 we
show that P ∗

n/ log n converges in distribution to γ and have Lemma 2.3. By Lemmas
2.2 and 2.3, we have the following.

Proposition 2.1. Let Kn be the number of distinct observations among a sample
of size n associated with the mixture of Dirichlet processes D(θG0) with the mixing
distribution γ, where γ is a distribution of the positive random variable θ and G0 is a
continuous distribution on R. We suppose that the probability density function (p.d.f.)
of γ is bounded, and that Eγ(θ

−1) and Eγ(θ
2) exist. Then we have

sup
−∞<x<∞

∣∣∣∣∣P
(

Kn

log n
≤ x

)
− γ(x)

∣∣∣∣∣ = O

(
1

3
√
log n

)
. (3)
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2.1. Kn and Poisson distribution

2.1.1. Kn and Pn

Given θ, let random variables ξj (j = 1, 2, · · · ) be independent and take the value
0,1 with the probabilities given by

P (ξj = 0) =
j − 1

θ + j − 1
, P (ξj = 1) =

θ

θ + j − 1
(j = 1, 2, · · · ).

Then, given θ, that is, for Ewens sampling formula, Kn can be written as

Kn = ξ1 + ξ2 + · · ·+ ξn (n = 1, 2, · · · )

(see, for example, Johnson et al. (1997)). Given θ, for the total variation distance
between L(Kn|θ) and L(Pn|θ), we have

∥ L(Kn|θ)− L(Pn|θ) ∥≤ λ−1(1− e−λ)

n∑
j=1

p2j (4)

where L(X|θ) denotes the conditional distribution of X given θ, and

pj =
θ

θ + j − 1
, λ =

n∑
j=1

pj = θHθn.

(With respect to the inequality (4) for the total variation distance between the distri-
bution of sum of Bernoulli random variables and the Poisson distribution, see Barbour
and Hall (1984), Theorem 2.)

Since λ > 0, we have
0 < 1− e−λ < 1.

We also have
n∑

j=1

p2j ≤ 1 + θ2
n−1∑
j=1

1

j2
≤ 1 +

π2

6
θ2.

We note that

Hθn >

∫ n

0

1

θ + x
dx > log n for 0 < θ < 1.

For θ ≥ 1, since θ/(θ + j − 1) ≥ 1/j (j = 1, 2, · · · ), we have θHθn ≥ Hn, where
Hn =

∑n
j=1(1/j) is the harmonic number. Since Hn > log n, we have θHθn > log n for

θ ≥ 1. Thus we have

λ−1 =
1

θHθn
≤

{
1/(θ log n) (0 < θ < 1)
1/ log n (θ ≥ 1)

.

Hence, we have

∥ L(Kn|θ)− L(Pn|θ) ∥≤
c(θ)

log n

where

c(θ) =
1

θ
+

π2

6
θ (0 < θ < 1), = 1 +

π2

6
θ2 (θ ≥ 1).

Thus, if Eγ(θ
−1) and Eγ(θ

2) exist, then we have

∥ L(Kn)− L(Pn) ∥≤ Eγ ∥ L(Kn|θ)− L(Pn|θ) ∥= O

(
1

log n

)
. (5)
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2.1.2. Pn and P ∗
n

We consider the total variation distance between the Poisson distribution Po(θHθn)
and Po(θ log n), given θ. Since, given θ, Pn and P ∗

n have Po(θHθn) and Po(θ logn),
respectively, we have

∥ L(Pn|θ)− L(P ∗
n |θ) ∥≤

√
θ|Hθn − log n|√
Hθn +

√
log n

.

(For the upper bound of the total variation distance between two Poisson distributions,
see Yannaros (1991), Theorem 2.1.) We note that

Hn −Hθn =
1

n
− 1

θ
+

n−1∑
j=1

θ

j(θ + j)
,

n−1∑
j=1

θ

j(θ + j)
≤ π2

6
θ

and

lim
n→∞

(Hn − log n) = C,

where C is Euler’s constant. Therefore, for sufficiently large n, we have

|Hθn − log n| ≤ |Hθn −Hn|+ |Hn − log n| ≤ 1

θ
+

π2

6
θ2 + c0

where c0 ia a positive constant such that c0 > C + 1. Therefore we have

∥ L(Pn|θ)− L(P ∗
n |θ) ∥ ≤ 1√

log n

(
1√
θ
+

π2

6
θ3/2 + c0 θ

1/2

)
.

Thus, if Eγ(θ
−1) and Eγ(θ

2) exist, then Eγ(θ
−1/2), Eγ(θ

1/2), Eγ(θ
3/2) exist and we

have

∥ L(Pn)− L(P ∗
n) ∥= O

( 1√
log n

)
. (6)

Therefore by (5) and (6) we have

sup
B⊂Z+

[P (Kn ∈ B)− P (P ∗
n ∈ B)] =∥ L(Kn)− L(P ∗

n) ∥

≤∥ L(Kn)− L(Pn) ∥ + ∥ L(Pn)− L(P ∗
n) ∥= O

( 1√
log n

)
.

Thus, we have the following.

Lemma 2.2. We suppose that Eγ(θ
−1) and Eγ(θ

2) exist. For Kn and P ∗
n , we have

sup
−∞<x<∞

∣∣∣∣P(
Kn

log n
≤ x

)
− P

(
P ∗
n

logn
≤ x

)∣∣∣∣ = O

(
1√
log n

)
. (7)
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2.2. Poisson distribution, Normal approximation and mixture

Given θ, since P ∗
n has the Poisson distribution Po(θ log n), (P ∗

n − θ log n)/
√
θ log n

converges to the standard normal distribution N(0, 1). Its order is given by

sup
−∞<x<∞

∣∣∣∣P(
P ∗
n − θ log n√

θ log n
≤ x

∣∣∣ θ)− Φ(x)

∣∣∣∣ ≤ 0.8√
θ log n

.

(For the upper bound of Normal approximation to Poisson distribution, see Michel
(1993), Theorem 1.) Thus, given θ, we have

sup
−∞<x<∞

∣∣∣∣P(
P ∗
n

log n
≤ x

∣∣∣θ)− Φ

(
x− θ√
θ/ log n

)∣∣∣∣ ≤ 0.8√
θ log n

.

Therefore, if Eγθ
−1/2 < ∞, then we have

sup
−∞<x<∞

∣∣∣∣P(
P ∗
n

log n
≤ x

)
− EγΦ

(
x− θ√
θ/ log n

)∣∣∣∣
≤ Eγ

{
sup

−∞<x<∞

∣∣∣∣P(
P ∗
n

log n
≤ x

∣∣∣θ)− Φ

(
x− θ√
θ/ log n

)∣∣∣∣} = O

(
1√
log n

)
. (8)

We note that

EγΦ

(
x− θ√
θ/ log n

)
(9)

is the mixture distribution of the normal distribution N(θ, θ/ log n) by θ having the
distribution γ. Let φ0 and φγ be the characteristic functions of the distribution (9) and
the distribution γ, respectively. Then we have

|φ0(t)− φγ(t)| =
∣∣Eγe

iθt− θ
2 log n t2 − Eγe

iθt
∣∣ = |Eγe

iθt(e−
θ

2 log n t2 − 1)|

≤ Eγ(1− e−
θ

2 log n t2) ≤ Eγ(θ)
t2

2 log n

We see the difference between the distribution (9) and the distribution γ, by the smooth-
ing lemma. (For the smoothing lemma, for example, see Feller (1966), p.538.) If the
p.d.f. of the distribution γ is bounded by L(> 0), then for any ε > 0 we have

sup
x

∣∣∣∣EγΦ

(
x− θ√
θ/ log n

)
− γ(x)

∣∣∣∣ ≤ 1

π

∫ logε n

− logε n

∣∣∣∣φ0(t)− φγ(t)

t

∣∣∣∣dt+ 24L

π logε n

≤ Eγ(θ)

2
· 1

log1−2ε n
+

24L

π logε n
.

For the two terms on the right-hand side, the orders of logn coincide if and only if
ε = 1/3, in which case the order of logn is −1/3. Therefore, we have

sup
x

∣∣∣∣EγΦ

(
x− θ√
θ/ logn

)
− γ(x)

∣∣∣∣ = O

(
1

3
√
log n

)
. (10)

Thus by (8) and (10) we have the following.



46 H. Yamato

Lemma 2.3. We suppose that p.d.f. of γ is bounded, and that Eγ(θ
−1/2) and Eγ(θ)

exist. Then, for P ∗
n having the Poisson distribution Po(θ log n) given θ, we have

sup
−∞<x<∞

∣∣∣∣P(
P ∗
n

log n
≤ x

)
− γ(x)

∣∣∣∣ = O

(
1

3
√
log n

)
. (11)

Since

sup
−∞<x<∞

∣∣∣∣P(
Kn

log n
≤ x

)
− γ(x)

∣∣∣∣
≤ sup

−∞<x<∞

∣∣∣∣P(
Kn

log n
≤ x

)
−P

(
P ∗
n

logn
≤ x

)∣∣∣∣+ sup
−∞<x<∞

∣∣∣∣P(
P ∗
n

log n
≤ x

)
−γ(x)

∣∣∣∣
by (7) and (11), we get Proposition 2.1.

At last, we note about the assumption of Propsition 2.1 that p.d.f. of γ is bounded,
and that Eγ(θ

−1) and Eγ(θ
2) exist. (I) For the Rayleigh distribution whose p.d.f. is

given by g(x) = (x/b2) exp(−x2/2b2) (x > 0; b > 0) , the assumption is satisfied.
(II) For the gamma distribution whose p.d.f. is given by g(x) = (x/b)c−1e−x/b/bΓ(c)
(x > 0; b, c > 0) , the assumption is satisfied in case of c > 1. (III) For the triangular
distribution whose p.d.f. is given by g(x) = 2x/bc (0 < x ≤ c) and 2(b−x)/[b(b−c)] (c <
x < b) for 0 < c < b , the assumption is satisfied.

The rate of convergence given by (3) depends on (10), which is derived by using
the smoothing lemma. For the better rate, the evaluation of the left-hand side of (10)
must be improved. Further work is necessary on the evaluation of the left-hand side of
(10) and the convergence of Kn/ log n (n → ∞).
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