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This paper presents an advanced desalination cycle called "MEDAD" desalination which is a hybrid of the 
traditional multi-effect distillation (MED) and the adsorption cycle (AD). The combined cycles break the operating 
regime of conventional MED system and allow some stages to operate below ambient temperature, as low as 5°C in 
contrast to the conventional MED: The MEDAD cycle results in a quantum increase of distillate production at the 
same top-brine condition. Being lower than the ambient temperature for the bottom stages of hybrid, ambient energy 
can now be scavenged by the MED processes whilst the AD cycle is powered by low temperature waste heat from 
exhaust or renewable sources. In this paper, we present the experiments of a 3-stage MED and MEDAD plants that 
were fabricated and installed in the air-conditioning laboratory of the National University of Singapore. These plants 
have been tested at assorted heat source temperatures ranging from 15°C to 70°C. All system states are monitored 
including the stages temperature and distillate production. It is observed that the synergetic matching of MEDAD 
cycle led to a quantum increase in distillate production, up to 2.5 to 3 folds vis-a-vis to a conventional MED of the 
same rating. 

Keywords: Thermal Desalination, Adsorption desalination (AD), Multi-effect distillation (MED), hybrid cycles, 
MEDAD cycle. 

1. Introduction 

The supply of fresh water is an emerging critical 
issue faced by many nations of the World1>, as it is 
limited whilst its demand continues to increase rapidly 
because of (i) urbanization, (ii) economic development, 
and (iii) improved living standards2

'
3>. In the last two 

decades, water withdrawal increased up to eight percent 
annually in developing countries due to higher 
population growth as well as per capita requirements4>. 
Lack of fresh water in developing countries due to (a) 
economy growth and (b) limited water sources likely to 
be the major factor limiting the development of these 
countries in next decades as World Bank has wamedS). 

The natural hydrological cycle extracts 505,000 
km3 of renewable water from sea to land annually via 
rain or snow and only about 44,000 km3 is considered 
accessible for normal use6). The availability of fresh 
water per capita per year in most of the part of the World 
fallen from 17,000 cubic meters per person in 1950 to 
7,044 cubic meters in 2000 ?J. The countries with water 

supply less than 1000 cubic meter per capita per year 
(cm/ca/y) are deemed as ''water-scare" countries, whilst 
those below 500 cm/ca/y is considered as acute poverty 
level. 

Table 1 shows the fresh water by renewable sources, 
its withdrawals and per capita availability in different 
regions of the World. It can be seen that other than North 
America, all nations are living under water scarcity and 
most of the countries are under acute poverty level8>. 

Table 1. Fresh water sources and per capita 
cu ...... ,v•u•:r in the World . .._._. 

capita 
resoun:es (m') 

2,404 18.1 644 
217 5.6 265 
418 6.4 574 

525 8.4 1,664 

265 2 507 

8.8 626 



Recent literature on water needs of the worldl>-tS) has 
predicted an annual growth rate of 2% for potable water 
demand, typically from a present water demand of 4500 
million m3 per day (mcm/d) to 6900 mcm/d in 2030. By 
2050, the World population is expected to be 9 billion. of 
which 8 billion live in developing countries. This rate of 
population increase alone will push most of the 
developing countries below acute water poverty level 
(UN Population Division, 2001). The available fresh 
water soun:es cam~Dt be stretched to accommodate the 
high growth rate of population and economic 
development which ID.Ilhs a water crisis nearly 
inevitable. To prevent this projection to be happen in 
reality, desalination technologies need to be developed to 
convert seawater into fresh water to fulfill the World 
water demand. 

Over the past three decades, the advent of 
desalination for supplying fresh water has led to a rapid 
development of commercially-reliable desalination 
methods, both thermally and work-driven or 
membrane-based processes of varying energetic 
efficiencies. In the past decade, the world's production 
capacity of RO has exceeded that of the thermal 
desalination processes, namely the multi-stage flashing 
(MSF) and the multi-effect distillation (MED)16.17). The 
key reasons for rapid increase in deployment of RO 
plants are (i) the high energetic efficiency of desalting at 
3.5 to 5 kWhe/ml of water production1a.20>, (ii) the 
portability of the RO plants and (iii) more importantly, a 
rapid advancement in the membrane technology via 
R&D eff01'f821>. Although superior energetically, the RO 
method has some limitations that may be location 
related; For example, the membrane performances are 
susceptible to high saline feed (salinity> 43,000 ppm) in 
the Gulf and Red sea regions, and the surface pores of 
membranes are equally passable to toxins (such as neuro-, 
paralytic-, diarrbetic-toxins) of HAB that are carried by 
the water molecules when the feed are conhlminated by 
algae blooms. 

For the mentioned reasons, the dominant method of 
desalination in GCC countries, hitherto, is the 
thermally-driven methods: About 800/o of the total daily 
36 million m3 of production remains thermally-driven, 
either by the MSF or the MED processes. Other reasons 
for adopting thermal desalination, but mainly peculiar to 
the GCC countries, are (i) the desalination plants are well 
integrated to thermal power plants where the low 
enthalpy steam (lower woik. potential) is bled-o:ff from 
work producing turbines, easing the foot-print of 
expanding steam and, (ii) most of the thermal power 
plants in GCC countries are powered by heavy crude/fuel 
oil; - A distillation reject from refineries which is dc:cmed 
to have low commercial value other than for it to be 
burned in co-generation plants22-24>. 

The tri-tactor nexus of water, energy and 
environment has prompted scientists and engineers to 
innovate for better desalination proc:esses that are both 
energetic efficient and environment friendly. In this paper, 

the authors present an emerging and yet energy efficient 
hybrid MED+AD desalination cycle. A 3-stage MED 
system is designed, fabricated and installed in NUS. 
Experiments are perfonned at assorted heat soun:e 
temperature to investigate conventional MED system and 
hybrid MEDAD cycle performance. The detail of 
experimental facility is provided in following sections. 
The detail of AD cycle can be found in lite~>. 

z. MED system design 
A MED system, comprising 3-stage of evaporators, 

is fed with parallel feed for the seawater through an an:ay 
of nozzle sprays. Spray of feed brine is introduced to the 
horizontally-finned tubing are known to have a better 
evaporation rates. A special magnetically-driven pump 
for vacuum application is installed to feed brine at 
relatively high pressures onto tube surfaces via nozzles. 
The first stage is called the steam generator (SG) which 
feeds vapor to the subsequent stage by exploiting the 
latent heat of condensation that OCCUI'S within the tube 
surfaces. Figure-1 & 2 shows the detail design of SG and 
MED effects. Falling film heat transfer coefficient is 
developed to design heat exchangers41>. 

Ffg.t. Detail design ofMED steam generator. 

Fig. 2. Detail design ofMED stage/effect 

The steam genc::.rator (SG) consists of 8-passes specially 
fabricated .. end-crossed" tubes. The heat soun:e 
circulated internally through the tubes whilst the vapor is 
generated from the external surface of tubes. The vapor 
is then condensed inside the tubes of the successive 
MEDstages. 



3. MED IIJifem operadoD 
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diJ1illa1e flow a:ocJ 4) brine tlow. Tho &ebomn& 4iaeram 
of MED operation ia shown in F"J,g~R 3 and installed 
setup rig ia shown iD. F~ 4. 
:u. Feed flow 

MED CYllp0!1I!CmJ are par11ilel fued horizan1BIIIIbca 
~- Spray no.u:1o he6dot is iD.stallod in cadi. 
evaporldOr to 8PI1IY dl.o teecJ on the OUIIIIt nr&cell of the 
tubes. The p:rdxealing of the feed is achieved ll8i:Ds 1he 
pnbe6tel: (U·tubo buDdlo typf;) iDim«aod in tbo briD.o 
pool of eadl effect. Tb:us -ible hoat of tbo brine is 
m:ovcmi to pn:bcat the feed. The feed supply to 1he 
system is attaiDed usiag a vacuum-sealed feed P1111JP Chat 
lllilized ~lin&-
:u. V11p0r1Jow 

Tho iD.ili.al 'Y8pOl'll ~ prodlx.od iD. ateem gea«ator. 
Heat I!CMIRO ie ~ tflro:u&h tho tubo& of Siloam 
gencrato!: &lid at tt.: aame lime 1he brine it llf.llliYed 
outside tho tubo through I!.Oa:los. 

r r;l ~ •• t'Odfr 
Vooo.,.. ftow i 

l 
V;"',.. t.;_ 

" ) L-( 

1*1 J 

I 

The vapol8 pxodw:ed due to bat traDifcr mnn bot­
to b:riDo ere dncted towed to Cho tubes aido of liiO:ll1 
SIIICO (2nd llla&O}. ~ V1IPOill aro c:onde:n.tod in.llido tho 
mbea dme to heat lmDafa-to the brine tpr1l,)'ed o1118:ide the 
tu.bos. The he6t of C<J~DdOI!Jation ovapomtes tho oolllido 
brin.o a:ocJ ihe&o VllPO!' ~ towiiXd the 3rd Slllp a:oc1 
condemed inJide 1he lllhca. The vapo%8 ptQdlll:ed. in laat 
~ere C<J~Ddeued in a coad0111« ~ c:oolillg Wiler 
is supplied from c:ooq tower. Low p!alllfO jet pump 
m: ~ to pull the nt~~~~le from ee.c:h 
napo:ratoi'S. 
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Fig. 4. MEDAD system installed in NUS. 

1.• 

4. Results and discussion 

Experiments are conducted in two steps. In first part, 
system is operated as a conventional MED at assorted 
heat source temperature ranges from 38°C to 70°C. In 
second part, experiments are conducted as a hybrid 
MEDAD system at assorted heat source temperature 
ranges from l5°C to 700C and results are compared with 
conventional MED system. 

~ !000 ~- '()Of &* 10600 Hllti UUOf 1'«100 
Tlm•CI) 

Fig. 5. MED components temperature profiles at 
38°C heat source temperature. 

MED components temperature profiles at heat 
source temperature 38°C are shown in Figure 5. 
Experiments were conducted for 4 to 5 hours for steady 
state results. It can be seen that inter stage temperature is 
varies 0.8-1 °C. Similar trend is observed for all heat 
source temperatures. 

MEDAD components temperature profiles at heat 
source temperature 38°C are shown in Figure 6. It can be 
seen clearly that inter stage temperature is varies 3-4°C 
as compared to 1 °C in case of conventional MED. This 

higher inter stage temperature difference increase the 
evaporation rate and hence water production. 
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Fig. 6. MEDAD components temperature profiles at 
3 8°C heat source temperature. 
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Fig. 7. Conventional MED and hybrid MEDAD cycle 
water production profiles at 38°C heat source 
temperature. 

Figure 7 shows the transient water production 
profiles of conventional MED and MEDAD systems. 
The average productions are estimated and it is seen that 
there is quantum increase in the water production as a 
consequence of hybridization. This synergetic incn:ase in 
water production is attributed to the higher temperature 
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dilr- (1( Cho ME!D Slap ib& pi'O'YicJe a larger 
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