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Abstract Our preceding studies have reported that 2,2'5,5-tetrachlorobiphenyl! (tetraCB)(CB52) is
mainly metabolized to 3-hydroxy (OH)-metabolite by phenobarbital (PB)-inducible cytochrome P450
(P450) isoforms such as CYP2B1 and CYP2B18. In this study, the metabolism of CB52 by liver
microsomes of untreated and PB-treated rabbits was investigated. Rabbit liver microsomes
produced mainly 3-OH- and 4-OH-metabolites (M-1 and M-2) at an equal extent and two other
metabolites (M-3 and M-4) and also that phenobarbital (PB) treatment accelerated the formation of all
these metabolites. M-3 was assumed to OH-tetraCB by GC-MS. Another metabolite, M-4, was
determined to 3,4-diOH-CB52 by GC-MS and 'H-NMR. Addition of antiserum against CYP2B4, a
constitutive and PB-inducible rabbit P450 isoform, to a microsomal incubation system resulted in
almost complete inhibition of the formation of 3-OH-, 4-OH- and 3,4-diOH-metabolites. These
results suggest that CYP2B4 plays an important role in CB52 metabolism in rabbit liver.
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—7J, Gardner 51, CB52 #¥%5-L7- v F
B 3-OH R A, 4-0H kB & O
trans—3,4-dihydro-3,4-dihydroxy /& & #&Hi L C
W5Y . Z oL, PCBABHI B CHIMMG L
L C 3,4-epoxide R DIFAE & /R L 72 ¥ D
Thb. T, TOFFEZ, T IFIMOTEERE)
We %2 PCBRABMHERREHET L L 2Rk
LTwWa, 22T, RWEETIE7HFIF Ms 12 &
% CB52 DR EZiH~5 & & b1z, REBHCEEST
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(1) CB52 B X UM

CB52 3 X 1" 4-OH-CB52 (ZEEH V1D 19 2 fig s,

# L7z, 3-OH-CB52 I3 CB52 (200 mg/kg) #
7 v MEREANIZ LRS- L, fF5N7238 L0 R
LY.

(2) B OIEYILE B X O Ms O

7RO M H ARG Y ¥ (k& 3.0~4.5
kg) #HW/. 209 b 4 L% RUHEEE, 3%
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0.1% (w/v) PB/KEW % 6 HHHEHIZERS W
72. pentobarbital |2 & ZREE T, ¥ &
L, #EICEDIFMs 2B LY. 2B, B
DR L, THAZEKFIZ BT 5 FEBREY
DI2ODIRE] #ETFL, 1572

(3) 74 FH P450 (CYP2B4) #LIiLiE %L

9, PBRAILHE Y HFHF Ms &0, 1HEEHD
P450 (CYP2B4) % BE#™10 12 U TR L 72,
&b bH, PBRILE Y FIF (110 g wE=) »
SHFMs 28 L, ZThia— VT Efb,
w-aminooctyl-Sepharose 4B 7 < A, hydroxy-
apatite, DEAE-Biogel A agarose, CM-Sephadex
C-50 &N T L HWTHEL, 1FE%HO P450
RS CoORBBEEMITIRER 10.3
nmol/mg protein, YNE 1.6% TH o72. S5 IZ
N-K¥i 7 3/ Bg 20 OS2 #7825, BE
#P D CYP2B4 &£ —F L7 LUF, $iii%iEs
72012, KL 72 CYP2B4 % Ribi adjuvant (RIBI
ImmunoChem Research Inc., USA) (2% L,
SILDENEY MEPETISESN Lz, 5B,
EBVEY FOSFHBIR L Y 2RI, 1B
HOCRTFE) \CX Y, Bz 710718,

2. JHXH Ms (CX 5K

v Ms 12 & 5 CB52 O #HI R 123
CLTiTo72. $7&b5, 40 uM CB52 & % W%
» OH L& % (3-OH & 5% ¥ 4-OH %) %
NADPH 4 g% % (0.33 mM NADP, 5 mM glu-
cose-6-phosphate (G-6-P), G-6-P ik FEEEE 1
unit), 6 mM MgCly, ‘Pl 7 V7 3 >~ (0.8
mg/ml) BIL 7 HFIF Ms (1 mg protein) %,
100 mM HEPES #& i (pH7.4) & & dI12A7FN
ml & LT, 37CT200M A »Fa~— Mk f
# % chloroform-methanol (2:1) 1 ml B X
n-hexane 4 ml T 3 [A 5O L7z, flHIEE
#EEZE L, N, O-bis- (trimethylsilyl) acetamide {2
E2 P XF VTN (TMS) 1bd % it di-
azomethane |2 & % X F VL%, BRI
WA sa< 75 74— (GC-ECD), & 5w
TEESHTEMT GC (GC-MS) 12 L7z, s
DEEIE, M-3 k&, €heh CB52 D
& # % v T GC-ECD 12 & 0 1T » 7=
GC-ECD O &MFIZkDE ) THh 5. i bkes,
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ECD £} HP5890 Series Il # A7 u~< k275 7
(Hewlett-Packard #) ; # 5 4. DB-1 fused sili-
ca¥vy o) =52 (15m x 0.25 mm

200C 5 {EALNEEE, 250C ; Mg, 250C ;
Fx )7 —H A, Ny (1 ml/min).

— 0, K@Y o s =L H&5iha
HP5890 Series II # A 7 1~ b 75 7 (Hew-

lett-Packard #) # W<, EI £— FCilllE L 72,

GC-MS T &3k DEY THLH. H T 4,
DB-1 fused silica ¥ ¥ ¥ 59U —# 524 (30 m X
0.25 mm i.d., 0.33 um &5, J&W Scientific
), F—7 U, 210C ; EALEE, 250T
Mo 2R, 280C i F v ) 7 — A A, He (1
ml/min).

3. 3,4-diOH-CB52 O3 REfEH
500 ml D RE®D UG, $%Db5, 40 uM
3-OH-CB52 ##H & L TH W, Rk X 912,

BIET7 V72~ (0.8 mg/ml), NADPH 4%,

6 mM MgCl,, PB giiL# 7 FHF Ms (500 mg
protein) & & 12 100 mM HEPES #% i (pH
7.4) T, 37C,
Z D, 100 ml ® chloroform-methanol (2 : 1)
& 400 ml @ n-hexane N T2 EFHB L, &5
|2 diazomethane T X F)V{bf%, HPLC 2L D
M4 % s BERE# L 72, HPLC Stk o ) <
HAbH. ST, ODS # 7 A (2 mmid x 250
mm, YMC#) ; 7L #F 4, ODS 7L /17 4 (20
mmi.d. X 50mm, YMC #) ; jit:#, 5ml/min ;
B, methanol-Ho0 (9 @ 1). M-4 ®DAF )L
HEARILPRFERER] 25,9 min (2B S, A
12, WEIZ1.5mg THo7z. M4 DRAFIVikE
HROILEHEEX GC-MS B L O'TH-NMR 12 & D),
3,4-dimethoxy (diMeO)-CB52 T® % & g &
nr:.

MS spectrum ; m/z (relative abundance, %) :
354 (60, M™+4), 352 (100, M"+2), 350 (80,
M"), 335 (45, M*-15), 307 (30, M"-43), 292
(30, M*-58), 272 (36, M"-78).

'H-NMR 6 (ppm): 3.954(3H, s, 3 or 4-MeO) ,

3.983 (3H, s, 4 or 3-MeOQ), 7.255 (1H, s,
6-H), 7.430 (1H, d, J=2.52Hz, 6-H), 7.523
(1H, dd, J=2.52Hz, 8.57Hz, 4-H), 7.593 (1H,

1.d.,
0.33 um JBE, J&W Scientific #) ; +— 7 VL EE,

1A Y F 2= g3 Y &2{To 72

X H T

(94)
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d, J=8.57Hz, 3-H).
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Ms & & %12, 30C T304 A »F 2 ~x— M,
CB52 3 & O NADPH A RGR & I L TG & A
Z—hL, E5237CT25MA »Fa—}
L7z, BUSHIE, FFC& FERICHE RS CHib L,
GC-ECD 2 L 7=,

5. Z0Oft

THEFHMs DF 87 HOERIL, Lowry
SPONFEE M7, =B, By L3y
B LTHMET VT I v EH7z. P40 &=
I¥ Omura & Sato®™ @ FHFEIC & ) lE L 7.
SDS-F Y 727 V)T I F7)VESKE L
Laemmli?? O F I LY, $72, w2 Ay V7
O v kX Guengerich 57 O HHEIC L YT 7-.
7 FHF Ms H CYP2B4 ¥ > 7% 7 O ®EG
Konica immunostaining & v b (L% T13E) %
HwWTiro 72, N-FKi7 3/ BROWEEIX, Mod-
el 473A gas phase sequencer (Applied Biosys-
tems, USA) W T R~ U fEEIC X DAT-
f:18).

"H-NMR A2 hVoifilsEi, 500 MHz JEOL
GSX-500 spectrometer (HAREFH) 12X ) fro
72, 3UBHZ acetone-del 2R L, F 72, NERE#E
W& & | C tetramethylsilane % H v 7z,

B B X

1. XK Ms (C& 3 CB52 DR

Fig. 1121%, wHFHF Ms 2k ) Eshs
CBo2 Lo TMS FEMAKDO T A7 a~x 7 F
LERYT. REWEEDLNL 4HEO Y -
(M-1, M-2, M-3 B XU M-4) 7%, ThENE
Wi 6.75 47, 7.07 4, 7.37 5B L U12.77 5712

ES

Bg SN BanORFERH & OED» S, M-1
BLUOM2IE, ChITIERELTVS

3-OH-CB52 3 & UF 4-OH-CB52 ®» TMS #Hitifk
THhHIEDHSLNE 27219 2B, W OHK
DAMC, Hizic2oof#meE—2s M3BLD
M-4) P EIE S 7z, M-3 ® TMS FER I,
M-2 D3 HRAICHRIBENZDIH L, M4 O
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TMS FHERITPRFFRE A, M3 F LD To L E
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w2, M-1 &£ M2 122 %, FNEFNELO
TMS FHEAROMER D S Em % ik, BERoFE
BREN DGR & L7z, Table 1 1273 &£ 912,
R FHFMs 12X D), M-1 & M-241.1:
1 CIEIZFEMEAR S Nz RLE Y FHF Ms
TORH/ Y — v BIORIHEEOER S 1, N4
Ay —bt I LPTW .

—75, PBEIALEL 7 T/ Ms T, M-1 D4
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Fig. 1 Gas chromatograms of the trimethylsilylated deriva-
tives of CB52 metabolites formed by liver micro-
somes of untreated (A) and PB-treated (B) rabbits.

4-OH-CB52 formed

RCASARALEL 7 R Ms @ 2.4 f512, 72, M-2
DHERRS RUHE T FFO 2. 451287z 2
?D X9 7% PBHIALEIZ X 5 M-1 (3-OH 1K) DA
ETRBEINET Yy b, NARAY—BIWELEY b
DVFNE LB L T2y, M-2 (4-OH 1K) @
BEAMCEI L T, NAZXF—EHEML T,
X512, M-1 & M-2 &R OB %
Nz FORRE, Fig. 20X )2, mREm oL
B ldIEFICLCHBLTEB Y, MR
0.889CTHETH-72. ZOFERDS, 3-OH K
B L O 4-OH 1KIZ[F— D P450 40 T-HEIC & » TH:

30

R2=0.8895

(p<0.001)
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Fig. 2 Correlation of 3-OH- and 4-OH-CB52 formed by liver

microsomes of untreated and PB-treated rabbits.

Tablel Metabolism of CB52 by liver microsomes of untreated and PB-treated rabbits,

rats, hamsters and guinea pigs

Metabolite formed

Animal Treatment No. (pmol/min/mg protein)
3-OH 4-OH
Rabbit None 4 98 + 1.7(100) 85 = 1.7(100)
PB 3 238 +102(243) 205 * 4.4(241)
Rat'? None 4 N.D. N.D.
PB 4 3240 * 154 N.D.
Hamster'” None 4 6.3 = 05(100) 56 = 0.3(100)
PB 4 201 + 02(319) 111 + 0.3(198)
Guinea pig"”’ None 4 84 + 0.9(100) N.D.
PB 4 193 + 22(230) 11 =01

N.D., not detected.

Each value represents the mean = S.D. of three or four animals and those in parentheses are the relative

ratio to the control.

Data in rats, hamsters and guinea pigs were cited from the reference (19).
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M-1BEOM2EEBIZERKSINZ M3 L
M4 DRI TH L0 L) DERIED D2, 1
VX aN—Y 3 Y E 60 M TIEILL T,
NS OREBW ORERER 2 8 % <72, Fig. 3
WWRT LI, A vFa~x—3 3 VR 10 5%
FTIEM-1, M2BXUOM-31F, »wFhdiiiF
EARAIIZBEIN L 7228, M-1 122w\ Cid 30 40
5, by bridonsz, —7F, M-41%10
SOENTHEINLIGD, Z0#%6075Hb3T T
DOTHLNEML7. NSO RE2S, M-3 &
M4 iZwdid CB2 L TH % 2 & ARIE
S,

3. M-3 & M-4 DfbiddE

M-3BLOM-4 DyFEZHNLTD, I
5 % diazomethane T X F ULk, GC-MS |2
J72. ZORE M-3 DX FIVFHEKITS T =
320 C, H{F 4L S LEMMAEY -7 PBE S
722 &5, methoxy (MeO)-tetraCB TH 54 =
EVHL: (F=2 R, —7, M4 DA
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Fig.3 Time course of CB52 metabolism by liver microsomes
of PB-treated rabbits.
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FVEEEMRIE, 5 F= 350 THh D, kR4
Hx&ORMVAY -7 PBlgEINZLnb,
diMeO-tetraCB Tdh 5 Z L BSHHL N IZ 2 - 72
(EERF:3. ).

K2, M4 O'H-NMR % #ll % 3 5 72 0,
3-OH-CB52 % /8 & L T 500 ml & St & v
TA v Fax—arzfrofz. M4 % ARG
BECTHit R, HPLC THOBERRLZ. ZoXF)L
FHERIZO ETH-NMR % 58 L 728558, EEh
H3ATRT L 912, 3-MeO B &L UM 4-MeO %12
H*%$ 5 2AKD singlet & 670 b HED
singlet 2%, €411 3.95ppm, 3.98ppm B L U
7.26 ppm (MR E Nz, F 7o, 2,5-iEFREMR
ENTZFHFBRO3OO7 0 N VICHKRT 52 7
VS, 7.43ppm (doublet), 7.52ppm (doublet)
BIO7.59ppm (singlet) (2 &7z, LLEoD
RN D, mHEIZ, M43 3,4-diOH-CB52 T
HbHIENPENERoT

4. 7YX CYP2B4 DFEHR

PB HiALEL 7 FHF Ms £ 0, P450 4 THE D ¥
e A7 wEIZ, e = 1003 nmol/mg
protein T, 27 D4T& 50,000 @ P450 431

Fig. 4 Immunoblot of rabbit liver microsomes with anti-
serum against CYP2B4. Lanes S contain purified
rabbit CYP2B4 (1 ug protein). Lanes 1-4 and 5-7
contain liver microsomes (10 ug protein each) from
four untreated and three PB-treated rabbits, respec-
tively.

Table 2 N-Terminal amino acid sequence of a rabbit P450 purified in this

study
Amino acid residue
P450 Animal 1 5 10 15 20
This study (rabbity MEFS LLLLL AFLAG LLLLL F
CYP2B4? (rabbity MEFS LLLLL AFLAG LLLLL F
CYP2B1* (raty ~ MEPS ILLLL ALLVG FLLLL v
P450HPB-1'® (hamster) MEPS TLLLL TLLLS FLVLL \%
CYP2B18*  (guineapig) MELS LLLFL ALLLG LLLLL F

The abbreviations used are as follows : M, methionine ; E, glutamic acid ; F, phenylalanine ;
P, proline ; S, serine ; L, leucine ; I, isoleucine ; A, alanine ; G, glycine ; T, threonine ; V, valine

(96)
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Fig. 5 Effect of antiserum against CYP2B4 on the formation of 3-OH- and
4-OH-metabolites from CB52 with liver microsomes of PB-treated
rabbits. Open and closed circles indicated control serum and
antiserum raised against CYP2B4, respectively. Each point represents

the mean of duplicate determinations.
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Ms H D CYP2B4 Ol a7z, 74 FHF Ms
#SDS-FRV 727 NT I FESKEBIOY
Ay rT7uay Mg, ORERELIETH, Fig. 4
WRT L9112, RUHE Y FI2BWT, CYP2B4
YRy ERTFENE T HY NN RN
R &z, £72, PBRILEE Y ¥ CTIldHE T
RTINS EFE LML W, Zhbso
FHEDISL, NI TOWMEDLHIZ, CYP2B4 »°
WHERITH Y, O PBFEMTH L Z & DR
Eh7z. 5612, PBHILHEIZ L S CYP2B4 ¥ ~
737 OBEANAS, Table1 1277 L7z M-1 (3-OH 14)
BIUM-2 (4-OH 1K) oSG RME & <
ML TWwDZEns, WMAHYOERKIC
CYP2B4A 25 5- L T\ A Z EATRIBE N7,

5. #1 CYP2B4 Hilll7&EAINICE 5 CB52 A E
CB52 #2381 %5 CYP2B4 OG- DR % B
ST A 720, L CYP2B4 Hulfitii & v T

HE ARz, ZORR, Fig. 5I1ITRT L)1,

PB HiALFE Ms 12 & 5 M-1 (3-OH ) B L

M-2 (4-OH &) DA RIZPLIMLEE 150 ul DT,
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Fig. 6 Effect of antiserum against

CYPZ2B4 on the formation of 3,
4-diOH-CB52 from 3-OH-CB52
with liver microsomes of PB-tre-
ated rabbits. Open and closed
circles indicated control serum
and antiserum raised against
CYP2B4, respectively. Each
point represents the mean of
duplicate determinations.

WEN LK 0% BHESI N 72, M-3 &
M-4 OER L, ZEENTIEZWL OO, RKPLLE
OFIZ L DR HES N (77— KIER).
KIZ, 3-OH-CB52 #* 5 3,4-diOH-CB52 ~® 2
UACH I KT § T CYP2B4 HLIMLTE D uInsh 4 %
7z FEE LC3-OH K% MV, PB HijLEE
Ms IZ & 2@ = X7z, ZoRE, Fig. 6 1R
9 & 912, Prim 100 ul oz £ v, 3,4-diOH
ROERITZEEICHES N ZOER2H,
CYP2B4 7% 3-OH &7 5 3,4-diOH E~D AL
JBIZh, KELHEGLTWAZ EAVRIESI N

Z =

AR Ms 12 X 5 CB52 Ot 2 Fi~7z e =
5, oY FIIE, OB L 7% Y B LA
F—VERTHIENHLNE ST Thabb,
R & L C 3O OH k& 3,4-diOH A4
W& 7S, EABE O 3-0OH 1K & 4-OH tho 4
BHIEWONOETLIFIF]L 1 1 THo7e. Ih
¥ T2, PCB OKERALEEME & L CTIRD 2 DD#EE
MEZLNTWS, 1D2EFXNVEUERD C-H i
BICEERETEA SN L RE (E#EKEEL) <,
Preston 51, T v MZBIT5 CB52 & 3-/KiE1l
Ft73, PB #5EME P450 |2 & 5 kBRI THEAT
LTWwa I Exm L0 45 1203, b



206

Cl
CB52

; ﬂ A

cl
4,5-oxide

/

Fig. 7 Postulated metabolic pathways of CB52 in rabbit liver.

A 3,4-3 5\ % 4,5-epoxide (A ZFEH L, &
HIZIRFE I F O NIH Be47 % 1 > THAT T 5 K%
T, MC &8N P450 25 E IS5 LCTwb, a7
3 —PCB ® 3,3',4,4'tetraCB (CB77)* % 3,
3'.4,4' 5-pentachlorobiphenyl (CB126)' 7 & ®
A-IKBAL PGS Z OFEEETHAT L T b Evibil
TWw2. —7J, Forgue 5% 1% CB52 @ 3,4-epo-

x1deﬁ<0)$%’ﬁ I, SHICINDFHRET S L,

3-OH fhdB L U 4-OH fh 2§ 2 2 & %k

L7z, RO FOg4E, OB TH 50l
T\ AS, 3-OH & & 4-OH 4R AN T I T [FFLRE

A E N HFEEP L, LB THAE LTS3,

4-epoxide AEZHEH L TWwbEEZ LN, T/,

CB52 L 722 5-TIREBBRAN YU 2 HT
% PCB R 2R~ 5% &, 1 ZFLEW GRS TH
T 3-MeSOofEk & 4-MeSOAK D A3 HE £ T
VBRI sz khn, THEFICBEITS
CB52 1R ix, ik & LT 3,4-epoxide K % #%
HLTWw3 EEbNDL, Fig. T2y FHICH
\F % CB52 OHEEAMRRE A R

4, 3-OH fh3B L 0N 4-OH DMz, 39 1
2Rlo OH K (M-3) A Sz, BEOL 2

DT EUIVIARTH 5%, GC D fHE R
233-OH AL 4-OHE L WV EWVWZ &5, 50
WRE T2 4 M 28sfr L 72 b Lt v,
Z5THnE, M-3135-0H-2,2,4,5tetraCB

X H T
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ThbHEEZZOLNDD, ZOHEITESHDBETH 5.

CYP2B4 Pl # v 72 HEEERIZ X D,
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