Optimizing the architecture of SFQ-RDP (Single Flux Quantum- Reconfigurable Datapath)

Mehdipour, Farhad Graduate School of Information Science and Electrical Engineering, Kyushu University

Honda, Hiroaki Institute of Systems, Information Technologies and Nanotechnologies (ISIT)

Kataoka, Hiroshi Graduate School of Information Science and Electrical Engineering, Kyushu University

Inoue, Koji Graduate School of Information Science and Electrical Engineering, Kyushu University

他

https://doi.org/10.15017/14877

出版情報:SLRC プレゼンテーション, pp.1-, 2009-06-15. 九州大学システムLSI研究センター バージョン: 権利関係: Optimizing the Architecture of SFQ-RDP (Single Flux Quantum-Reconfigurable Datapath)

F. Mehdipour*, Hiroaki Honda******, H. Kataoka*, K. Inoue* and K. Murakami*

*Graduate School of Information Science and Electrical Engineering, Kyushu University, Japan

**Institute of Systems, Information Technologies and Nanotechnologies (ISIT), Fukuoka, Japan

E-mail: <u>farhad@c.csce.kyushu-ua.c.jp</u>

CREST-JST (2006~): Low-power, high-performance, reconfigurable processor using single-flux quantum circuits

Agenda

- Introduction
- Large-Scale Reconfigurable Data-Path (LSRDP) General Architecture and Specifications
- Design Procedure and Tool Chain
- Preliminary Results
- Conclusions and Future Work

Introduction

- For performance improvement various accelerators are used with GPPs
 - PowerXcell, GPU, GRAPE-DR, ClearSpeed, etc.
 - Small size and low power consumption comparing to processors with similar performance

NVIDIA Tesla S1070 http://www.nvidia.com

Acceleration Through a Data-Path Processor

- Mechanism
 - Acceleration by using a data-path accelerator
 - Augmenting the accelerator to the base processor
 - Executes hot portions of applications on the accelerate

How a Reconfigurable Processor Works

Motivation

Conventional accelerators:

- A large memory bandwidth is demanded in conventional accelerators for high-performance computation
- On chip memories are often used to hide memory access latency

Large-Scale Reconfigurable Data-Path (LSRDP):

- is introduced as an alternative accelerator
- reduces the no. of memory accesses by utilizing data-path

Outline of Large-Scale Reconfigurable Data-Path (LSRDP) processor

- Reconfigurable data-path includes:
 - A large number of floating point Functional Units (FUs) Arranged as arrays
 - Reconfigurable Operand Routing Network : (ORN)
 - Dynamic reconfiguration facilities
 - Streaming Buffer (SB) for I/O ports

• Features:

- Data Flow Graphs (DFGs) extracted from critical calculation parts are directly mapped
- Pipeline execution
- Burst transfer is used for input /output rearranged data from/to memory

Single-Flux Quantum (SFQ) against CMOS

- CMOS issues: (if LSRDP has 32x32 FUs)
 - high electric power consumption
 - high heat radiation and difficulties in high-density packing

Goals of the Project

- Discovering appropriate scientific applications
- Developing compiler tools
- Developing performance analyzing tools

Designing and Implementing SFQ-LSRDP architecture considering the features and limitations of SFQ circuits

LSRDP General Architecture and Specifications

Parameters Should Be Decided Within the LSRDP Design Procedure

• Core structure: a rectangular matrix of PEs

• PE: combination of a Functional Unit (FU) and a data Transfer Unit (TU)

Width and Height ?

Maximum Connection Length (MCL) between consecutive rows? (impossible to implement full cross bar)

Layout: FU types (ADD/SUB and MUL)?

Reconfiguration mechanism? (PE, ORN, Immediate data)

• On-chip memory configuration?

LSRDP Architecture

- Processing Elements
 - FU
 - implements basic 64-bit double-precision floating point operations including: ADD, SUB and MUL
 - TU (transfer unit) as a routing resource for transferring data from a row to an inconsecutive row

Kyushu Universit Flexible but consume a lot of resources

Layout Types- Type II (Checkered)

SSV 2009

MCL: maximum horizontal distance between two PEs located in two subsequent rows

Kyushu Univer A. Fujimaki, et al., Demonstration of an SFQ-Based Accelerator Prototype for a High-Performance Computer," ASC08, 2008.

Dynamic Reconfiguration Mechanism

Dynamic Reconfiguration Architecture

Three bit-stream lines for dynamic reconfiguration of:

- Immediate registers (64bit) in each PE
- Selector bits for muxes selecting the input data of FUs
- Cross-bar switches in ORNs

Design Procedure and Tool Chain

- DFGs are manually generated from critical parts of applications
- DFG mapping results are used for
 - Analyzing LSRDP architecture statistics
 - Generating LSRDP configuration bit-streams

Benchmark Applications for Design Procedures

- Finite differential method calculation of 2nd order partial differential equations
 - 1dim-Heat equation (Heat)
 - 1dim-Vibration equation
 - 2dim-Poisson equation
- Quantum chemistry application
 - Recursive parts of Electron Repulsion Integral calculation (ERI-Rec)

(Vibration)

(Poisson)

Only ADD/SUB and MUL operations are used in the critical calculations of all above applications

DFG Extraction- Heat Equation

• 1-dim. heat equation for T(x,t)

 Calculation by Finite Difference Method (FDM)

$$T(x_i, t_{j+1}) = D * T(x_i, t_j) + B * [T(x_{i-1}, t_j) + T(x_{i+1}, t_j)]$$

Basic DFG can be extended to horizontal and vertical directions to make a larger DFG

Basic DFG corresponding to minimum FDM calculation

Example of extracted DFGs- Heat

SSV 2009

DFG Classification

Class	# of FUg	# of	# of	# of
Class	# OI FUS	Inputs	Outputs	DFGs
RDP-S	128	19	12	Heat (3) Poi (1) Vib (2) Eri (4)
RDP-M	512	19	12	Heat (1) Poi (1) Vib (1) Eri (4)
RDP-L	1024	38	24	Heat (2) Poi (1) Vib (2) Eri (5)
RDP- XL	> 1024	64	52	Heat (1) Poi (1) Vib (2) Eri (5)

Totally, 24 DFGs are prepared for benchmark Apps.

Due to broad range of DFG sizes

DFGs are classified as S, M, L, XL with respect to their size and the number of Input/Output nodes

=> LSRDP designing processes for S, M, L, XL, respectively

Preliminary Results

LSRDP Specifications: Width & Height

	# of Input ports	# of Output ports	Width	Height
LSRDP-S	19	12	16	16
LSRDP-M	19	12	32	16
LSRDP-L	38	24	64	32

LSRDP Dimensions and the number of input/output ports

SSV 2009

	LSRDP	MCL (avg/max)	ORN Size- No of Inps (avg/max), Outs
	LSRDP-S	4/ 8	18/34, 3
	LSRDP-M	5/9	22/38, 3
-	LSRDP-L	5/9	22/34, 3
	Kyushu University Fur	ation needed	

Analyzing Various LSRDP Layouts

	Layout	Size
	Ι	8x3
Heat	II	8x3
	III	8x4
	I	10x8
Viration	II	10x8
	III	10x11
	Ι	10x10
Poisson	II	10x12
	III	15x18
ERI1	Ι	6x2
	II	9x3
	III	6x2
	I	10x10
ERI2	II	10x10
	III	15x8

Layout I \simeq Layout II

(Except ERI1 DFG which gives better size for Layout III)

Layout II can be used instead of Layout I to obtain a smaller LSRDP

LSRDP at One Glance (1/2)

Functional units		ADD/SUB, MUL			
Layout		Type II (checker pattern)			
Operations		64-bit floating point			
Processing structure		Pipelined			
PE structure		FU, T, FU+T, T+T			
LSRDP Size		Small	Medium	Large	
No. of inp/out ports		19/12	19/12	38/24	
Width/Height		16/16	32/16	64/32	
Conf. bit-stream size	Imm. Regs	16*16*64	32*16*64	64*32*64	
	ORNs	16*BSS(ORN)	32* BSS(ORN)	64*BSS(ORN)	
	PEs	16*16* 2	32*16*2	64*32* 2	
ORN	inputs, outputs	22,3	26,3	26,3	
	Structure	Cross-bar switch			
	Conn. Type	One-directional			

LSRDP at One Glance (2/2)

Internal memory	Туре	Immediate registers	
	Size and count	64-bit registers, One reg. for each PE	
	Communication mechanism	Serial	
External memory	No. of memory modules	16	
	Date trans. rate	1800Mbps/pin	
	Overall data trans. rate	24 GB/s	
	Mem. to LSRDP bus width	64 bit	
	Channels per module	Тwo	
Reconf. mechanism	Bit serial configuration through a serial chain		

Preliminary Performance Evaluation

Base processor configuration				
Processor type	0	ut-of-order		
GPP operating frequency	3.2GHz			
Inst. issue width	4	4 instruction/cc		
Inst. decode width	4	4 instruction/cc		
Cache configuration	Ľ	L1 data 64KB(128B Entry, 2way, 2cc))
	Ľ	1 instruction	64KB(64B Entry, 1way, 1cc)	
	Ľ	2 unified	4MB(128B Entry, 4way, 16cc	;)
Latency of main memory	30	300cc		
L2 to main memory	В	us width	64 Bytes	
	Fi	req	800 MHz	
GPP+LSRDP configuration				
LSRDP operating frequency	80	GHz		
Reconfiguration Latency	1c	1cc		
Latency SPM ←→LSRDP latency	1cc			
Latency Main Memory ←→SPM	7500cc			
Bandwidth SPM←→LSRDP	Max. 64 * 8 Bytes/cc			
Bandwidth Main Memory ← → SPM	10	2.4GB/sec		

GPP: Exec. time measurement by means of a processor simulator LSRDP: Estimation by performance modeling

Data reusing is employed to avoid the need for data rearrangement as well as frequently data retrieval from the scratchpad memory.

Preliminary Performance Evaluation (Poisson)

A small fraction is related to processing time on LSRDP and the main fraction concerns to various overhead times as well as the execution time on GPP

Conclusions & Future Work

- A high-performance computer comprising an accelerator (LSRDP) implemented by superconducting circuits was introduced.
- 24 benchmark Data Flow Graphs (DFGs) were manually generated.
- LSRDP micro-architecture is designed based on characteristics of scientific applications via a quantitative approach.
- LSRDP is promising for resolving issues originated from CMOS technology as well as achieving considerable performances.

Future Work:

- •To achieve higher performance it is required to reduce various overhead costs mainly related to data management part.
- •To reduce the implementation cost of LSRDP, we will focus on reducing maximum connection length and ORN size.

Acknowledgement

This research was supported in part by Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation (JST).

SSV 2009