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Abstract: The problem of constructing classification methods based on both clas-

sified and unclassified data sets is considered for analyzing data with complex struc-

tures. We introduce a semi-supervised logistic discriminant model with Gaussian

basis expansions. Unknown parameters included in the logistic model are estimated

by regularization method along with the technique of EM algorithm. For selec-

tion of adjusted parameters, we derive a model selection criterion from Bayesian

viewpoints. Numerical studies are conducted to investigate the effectiveness of our

proposed modeling procedures.

Key Words and Phrases: Bayesian approach, EM algorithm, Logistic regression,

Regularization, Semi-supervised learning.

1 Introduction

The classification or discrimination method is one of the most useful statistical tools in

various fields of research, including engineering, artificial intelligence and life science (see,

e.g., Bishop, 2006; Hastie et al., 2009). In practical situations such as medical diagno-

sis, classifying data sets may require expensive tests or human efforts, and hence only

small classified data sets may be available, whereas unclassified data sets can be easily

obtained. Also, for the problem of prediction of protein function, we have known func-

tions of some proteins through several biological experiments, while those of the others

are unknown because of the demanding experimental cost and effort. Under these circum-
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stances, a classification method that combines both classified and unclassified samples,

called semi-supervised learning, has received considerable attention in the recent statisti-

cal and machine learning literature (Chapelle et al., 2006).

Various model approaches have been taken to exploit information from the sets of

classified and unclassified data; e.g., a mixture model approach (Miller and Uyer, 1997;

Dean et al., 2006), a logistic discriminant model approach (Amini and Gallinari, 2002;

Vittaut et al., 2002), a graphical model approach (Kai et al., 2004; Zhou et al., 2004), a

support vector machine approach (Bennett and Demiriz, 1998; Vapnik, 1998), a boosting

approach (Bennett et al., 2002; Chen and Wang, 2007) and so on. A logistic discriminant

model approach constructs models by extending linear logistic discriminant models to

cope with additional unclassified data, and unknown parameters in the model are esti-

mated by the maximum likelihood method. This method, however, has some drawbacks.

First, the estimated models cannot capture complex structures with the nonlinear deci-

sion boundaries, since the models produce only the linear decision boundaries. Second,

a large number of predictors leads to unstable or infinite maximum likelihood parameter

estimates and, consequently, may result in incorrect classification results.

In this article, we develop a semi-supervised nonlinear logistic model based on Gaussian

basis expansions. The unknown parameters are estimated by the regularization method

with the help of EM algorithm. The crucial points for model building process are the

choice of the number of basis functions and the values of the regularization parameter

and hyperparameter included in Gaussian basis functions. In order to select the adjusted

parameters, we introduce a Bayesian type criterion for evaluating models estimated by

the method of regularization according to the basic idea of Konishi et al. (2004). The nu-

merical examples are conducted to investigate the effectiveness of our modeling strategies.

We also applied our proposed model to a high-dimensional data set with small sample

size, which is a increasing feature in many areas of contemporary statistics.

The remainder of this article is organized as follows: Section 2 describes a nonlinear

logistic discrimination using Gaussian basis functions. In this section, we also provide an

estimation procedure based on a regularized log-likelihood function, constructed by both

2



classified and unclassified samples, along with the technique of EM algorithm. Section 3

presents a model selection criterion to choose adjusted parameters in the logistic models

from a Bayesian perspective. In Section 4, numerical studies are illustrated to assess

the performances of proposed semi-supervised logistic discriminant models. Concluding

remarks are given in Section 5.

2 Semi-supervised logistic discrimination with basis

expansions

2.1 Nonlinear logistic model using Gaussian basis functions

Suppose we have n1 classified observations {(xα, gα); α = 1, . . . , n1} and (n − n1) un-

classified observations {xα; α = n1 + 1, . . . , n}, where xα are p-dimensional vector of

observations and gα ∈ {1, 2, . . . , L} indicates the class label to which xα belongs. Let

Pr(gα = k|xα) (k = 1, . . . , L) be posterior probabilities that xα belongs to the class k.

Using the posterior probabilities and n1 classified observations, we construct a nonlinear

logistic model in the following:

log

{
Pr(gα = k|xα)

Pr(gα = L|xα)

}
= wk0 +

m∑
j=1

wkjφj(xα) = wT
k φ(xα), k = 1, . . . , L − 1, (1)

where wk = (wk0, wk1, . . . , wkm)T is an unknown parameter vector for class k and φ(x) =

(1, φ1(x), . . . , φm(x))T is a vector of basis functions. For basis functions φj(x), we use

Gaussian basis functions with hyperparameter given by

φj(x; µj, h
2
j , ν) = exp

(
−||x − µj||2

2νh2
j

)
, (j = 1, . . . ,m), (2)

where µj is a p-dimensional vector that determines the center of the basis function, h2
j is

the width parameter and ν (> 0) is hyperparameter. The hyperparameter ν plays a key

role in adjusting the smoothness of the decision boundary (for details, Ando and Konishi,

2009).

The centers µj and width parameters h2
j included in Gaussian basis functions in Equa-

tion (2) are generally determined by using the k-means clustering algorithm (Moody and

Darken, 1989). Using this algorithm, we assign a set of observations {x1, . . . , xn} into
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m clusters {C1, . . . , Cm} corresponding to the number of basis functions. The centers µj

and the width parameters h2
j are, respectively, determined by µ̂j =

∑
xα∈Cj

xα/nj and

ĥ2
j =

∑
xα∈Cj

||xα − µ̂j||2/nj, where nj is the number of observations that belongs to the

j-th cluster Cj. Replacing µj with µ̂j and h2
j with ĥ2

j , we obtain a set of m basis functions

given by

φj(x; µ̂j, ĥ
2
j , ν) = exp

−
||x − µ̂j||2

2νĥ2
j

 , j = 1, . . . ,m. (3)

The hyperparameter ν is determined by a model selection criterion given in Section 3.

From Equation (1) the posterior probability can be rewritten as

Pr(gα = k|xα) =
exp{wT

k φ(xα)}

1 +
L−1∑
j=1

exp{wT
j φ(xα)}

, k = 1, . . . , L − 1, (4)

Pr(gα = L|xα) = 1 −
L−1∑
k=1

Pr(gα = k|xα) =
1

1 +
L−1∑
j=1

exp{wT
j φ(xα)}

. (5)

Henceforth, we set Pr(gα = k|xα) as πk(xα; w), since the posterior probabilities depend

on the parameter vector w = (wT
1 , . . . , wT

L−1)
T .

For n1 classified observations {(xα, gα); α = 1, . . . , n1}, we introduce an (L − 1)-

dimensional response variable y = (y1, . . . , yL−1)
T , the components of which are either 0

or 1. The k-th element of yα is set to 1 if the corresponding xα belongs to the k-th class,

i.e.,

yα = (y
(α)
1 , . . . , y

(α)
L−1)

T =


(0, . . . , 0, 1

(k)

, 0, . . . , 0)T if gα = k, (k = 1, . . . , L − 1),

(0, . . . , 0)T if gα = L.

The response vector yα is then distributed as a multinomial distribution with the posterior

probabilities πk(xα; w) given by

f(yα|xα; w) =
L−1∏
k=1

πk(xα; w)y
(α)
k {πL(xα; w)}1−

∑L−1

l=1
y
(α)
l . (6)

For (n−n1) unclassified observations {xα; α = n1+1, . . . , n}, we define a missing indicator

vector as follows:

tα = (t
(α)
1 , . . . , t

(α)
L−1)

T =


(0, . . . , 0, 1

(k)

, 0, . . . , 0)T if xα belongs to k-th class,

(0, . . . , 0)T if xα belongs to L-th class.
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It is assumed that tα is distributed as the same multinomial distribution with the posterior

probabilities πk(xα; w) as in (6). Hence, we have the log-likelihood function based on the

n1 classified and (n − n1) unclassified observations in the form

ℓ(w) =
n1∑

α=1

[
L−1∑
k=1

y
(α)
k logπk(xα; w) +

(
1 −

L−1∑
l=1

y
(α)
l

)
logπL(xα; w)

]

+
n∑

α=n1+1

[
L−1∑
k=1

t
(α)
k logπk(xα; w) +

(
1 −

L−1∑
l=1

t
(α)
l

)
logπL(xα; w)

]
. (7)

2.2 Estimation

The maximum likelihood estimator of an unknown parameter w can be obtained by maxi-

mizing the log-likelihood function in (7). However, the maximum likelihood method often

yields unstable estimates of parameters. We thus maximize a regularized or penalized

log-likelihood function as follows:

ℓλ(w) = ℓ(w) − n1λ

2

L−1∑
k=1

wT
k Kwk, (8)

where λ (> 0) is a regularization parameter that reduces the variances of the parameter

estimates, K is an (m + 1) × (m + 1) matrix given by

K =

 0 0T

0 K∗

 . (9)

Here 0 is an m-dimensional 0 vector and K∗ is an m × m positive semi-definite matrix

(for details, Konishi and Kitagawa, 2008). In our numerical examples in Section 4, we

use an identity matrix Im as the positive semi-definite matrix K∗.

Amini and Gallinari (2002) proposed a log-likelihood function based on classified and

unclassified data sets for linear logistic models in the context of binary classification

problem. Vittaut et al. (2002) also provided an extension of the log-likelihood function

for semi-supervised multi-class classification problem. It is noted, however, that these

log-likelihood functions have been proposed in the framework of linear logistic models

and the regularization method has not been applied to the log-likelihood functions.

The maximum penalized likelihood estimator ŵ in Equation (8) is the solution of

∂ℓλ(w)/∂w = 0. It is difficult to maximize the regularized log-likelihood function given

5



in (8), since tα is treated as an unknown missing vector. In order to overcome these

problems, we employ an EM algorithm (Dempster et al., 1977) with Fisher’s scoring

method (Green and Silverman, 1994) given as below:

Step1 Estimate the parameter vector w through the maximization of the penalized log-

likelihood function based on only classified data set {(xα, gα); α = 1, . . . , n1} along

with the technique of Fisher’s scoring method.

Step2 Construct a classification rule P̂r(gα = k|xα) = πk(xα; ŵ).

Step3 Using the classification rule given by Step2, calculate the posterior probabilities

P̂r(gα = k|xα) (k = 1, . . . , L) for unclassified data set xα (α = n1 + 1, . . . , n).

According to the posterior probabilities, estimate tα as follows:

t̂α = (t̂
(α)
1 , . . . , t̂

(α)
L−1)

T = (P̂r(gα = 1|xα), . . . , P̂r(gα = L − 1|xα))T . (10)

Step4 Replace t
(α)
k into t̂

(α)
k in the regularized log-likelihood function (8), and estimate

the parameter vector w by maximizing the function (8) with the help of Fisher’s

scoring method.

Step5 Repeat the Srep2 to the Step4 until the condition

|ℓλ(ŵ
(k+1)) − ℓλ(ŵ

(k))| < ε (11)

is satisfied, where ŵ(k) is the value of w after the k-th EM iteration and ε is an

arbitrary small number (e.g., 10−5).

Given the estimate ŵ, a future observation x is assigned to class k that has the

maximum posterior probability πk(x; ŵ) among L classes, where

πk(x; ŵ) =
exp{ŵT

k φ(x)}

1 +
L−1∑
j=1

exp{ŵT
j φ(x)}

, k = 1, . . . , L − 1, (12)

πL(x; ŵ) =
1

1 +
L−1∑
j=1

exp{ŵT
j φ(x)}

. (13)
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The estimates ŵ depend on the number of basis functions m and the values of the

regularization parameter λ and hyperparameter ν. In order to select the values of these

adjusted parameters, we introduce a model selection criterion for evaluating the statistical

model

f(yα|xα; ŵ) =
L−1∏
k=1

{πk(xα; ŵ)}y
(α)
k {πL(xα; ŵ)}1−

∑L−1

l=1
y
(α)
l , (14)

which is constructed based on the classified and unclassified observations.

3 Model selection criterion

The Bayesian information criterion (BIC) has been proposed by Schwarz (1978) from

a Bayesian viewpoint. The basic idea of the BIC is to select the model maximizing the

posterior probability of candidate models. However, the BIC only covers models estimated

by the maximum likelihood method. Konishi et al. (2004) extended the BIC such that

it could be used for evaluating models estimated by the maximum penalized likelihood

method, thus deriving GBIC.

Using the result given in Konishi et al. (2004), we obtain a criterion for evaluating

the statistical model in (14) as follows:

GBIC = −2
n1∑

α=1

logf(yα|xα; ŵ) + n1λ
L−1∑
k=1

ŵT
k Kŵk + log|R|

− (L − 1)log|K|+ − (L − 1)(m + 1 − d)logλ − (L − 1)d log

(
2π

n1

)
, (15)

where |K|+ is the product of the positive eigenvalues of K with rank d and R are an

(L − 1)(m + 1) × (L − 1)(m + 1) matrix given by

R = − 1

n1

(G ⊙ E)T (G ⊙ E) +
1

n1

H + λI (16)

with E = (Φ, . . . , Φ), G = (π(1)1
T
m+1, . . . , π(L−1)1

T
m+1), H = diag{ΦT diag{π(1)}Φ, . . . ,

ΦT diag{π(L−1)}Φ}, I = diag{K, . . . ,K}, y(k) = (y
(1)
k , . . . ,y

(n1)
k )T , Φ = (φ(x1), . . . , φ(xn1))

T

and π(k) = (πk(x1; ŵ), . . . , πk(xn1 ; ŵ))T . Here the operator ⊙ indicates the Hadamard

product, which means the elementwise product of matrices.
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Figure 1: Performances of SSLDA (solid line) and SLDA (dashed line) for different per-

centages of classified data in the training sets. The left panel shows the result for iono-

sphere data, while the right panel shows that for waveform data.

We select the adjusted parameters including the number of basis functions and the

values of the regularization parameter and the hyperparameter by minimizing the GBIC

in Equation (15).

4 Numerical studies

In this section, our proposed semi-supervised logistic discrimination is applied to sev-

eral data sets including high-dimensional and low-sample size data. These data sets are

available from the UCI machine learning repository: http://archive.ics.uci.edu/ml.

4.1 Benchmark data sets

We investigate the performance of our proposed modeling procedure by analyzing iono-

sphere data (Sigillito et al., 1989) and waveform data (Hastie et al., 2009). The ionosphere

data set consists of two classes with 33 predictors, and we prepared 150 sets of training

data for each class and 201 sets of test data.

The waveform data consist of three classes with 21-dimensional predictors, and were
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Table 1: Comparisons of prediction error rates with different percentages of classified

data in the training sets for ionosphere data. Figures in parentheses indicate the values

of tuning parameters.

Method ＼ % 10 20 30 40 50 60

SSLDA 28.4 14.3 9.20 9.15 7.56 5.92

LLGC (0.5) 26.8 17.5 20.6 18.1 17.3 16.5

LLGC (0.3) 26.8 17.2 18.0 17.0 14.8 15.4

LLGC (0.1) 26.8 17.4 17.1 16.1 13.7 14.2

ILLGC (1) 33.7 24.0 21.9 16.6 15.9 12.1

ILLGC (0.1) 25.1 16.1 11.5 8.15 8.60 6.86

ILLGC (0.01) 21.9 17.0 12.0 8.30 8.40 6.81

generated from the following functions:

xk =


uH1(k) + (1 − u)H2(k) + εk if g = 1

uH1(k) + (1 − u)H3(k) + εk if g = 2 k = 1, . . . , 21,

uH2(k) + (1 − u)H3(k) + εk if g = 3

(17)

where u is uniform on [0,1], εk are the standard normal variates and Hi are the shifted

triangular waveforms, H1(k) = max{6−|k−11|, 0}, H2(k) = H1(k−4), H3(k) = H1(k+4).

We generated 300 sets of training data with equal prior probability for each class and 500

sets of test data. In order to implement a semi-supervised learning, the training data set

was randomly divided into two halves with classified data sets and unclassified data sets,

where classified data sets were assigned as training data sets of 10%, 20%, 30%, 40%,

50%, 60%, respectively.

We compared the performances of our proposed methodology (SSLDA: Semi-Supervised

Logistic Discriminant Analysis) with those of several procedures. As for other semi-

supervised learning, semi-supervised methods using graphical model approaches proposed

by Kai et al. (2004) (ILLGC: Inductive Learning with Local and Global Consistency) and

Zhou et al. (2004) (LLGC: Learning with Local and Global Consistency) were used. We

also employed a nonlinear logistic discrimination (SLDA: Supervised Logistic Discrimi-
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Table 2: Comparisons of prediction error rates with different percentages of classified

data in the training sets for waveform data. Figures in parentheses indicate the values of

tuning parameters.

Method ＼ % 10 20 30 40 50 60

SSLDA 20.8 18.1 16.9 16.8 16.1 15.7

LLGC (0.5) 33.7 34.3 28.1 28.1 29.7 26.3

LLGC (0.3) 31.8 31.8 26.1 26.4 27.7 25.0

LLGC (0.1) 29.5 29.8 25.0 24.6 26.3 23.6

ILLGC (1) 40.5 28.7 22.2 20.7 19.1 19.0

ILLGC (0.1) 28.0 20.5 19.4 18.6 17.2 17.9

ILLGC (0.01) 31.2 20.9 19.9 18.4 17.2 18.0

nant Analysis), which is introduced by Ando and Konishi (2009). It is noted that the

SLDA method is estimated by using only classified data sets. Since the LLGC and ILLGC

have a tuning parameter, we set the values of the parameter into 0.5, 0.3, 0.1 for LLGC

and 1, 0.1, 0.01 for ILLGC, respectively. Results were averaged over 10 repetitions for

random splits of classified data sets.

Figure 1 represents the prediction errors of SSLDA and SLDA for different ratio of

classified-unclassified data in the training sets. Compared to the supervised learning

(SLDA), our semi-supervised methods (SSLDA) improve the predictive accuracy in clas-

sification. Table 1 shows a summary of the prediction error rates for ionosphere data

set, while Table 2 shows that for waveform data set. From these tables, our proposed

models using the GBIC give lower prediction errors than other semi-supervised methods

in almost situations.

4.2 High-dimensional data set with small sample size

We applied our proposed modeling procedure to the Gisette data set (LeCun et al., 1998).

This data set consists of two classes with 5000 dimensional explanatory variables, and

we obtain 500 training sets and 1000 test sets. Such a situation where the dimension of

10



Table 3: Comparison of prediction error rates for Gisette data set. Figures in parentheses

indicate the values of tuning parameters.

Method Prediction error rate (%)

SSLDA 11.6

ILLGC (1) 23.5

ILLGC (0.1) 10.6

ILLGC (0.01) 11.9

SLDA 19.3

predictors is larger than the sample size has often arisen in recent statistical settings: e.g.,

microarray data analysis or image processing. To perform the semi-supervised learning, we

randomly assigned 500 training data sets into 50 classified data sets and 450 unclassified

data sets.

Our semi-supervised logistic model was applied to the data set with the help of reg-

ularization. Some adjusted parameters were selected by the model evaluation criterion

GBIC given in Section 3. We compared the performance of our procedure with that of

other methods described in Section 4.1 except for the LLGC method.

Summaries of the results are given in Table 3. We observe that the ILLGC method

is superior to other methods when the value of the tuning parameter is 0.1, while the

nonlinear semi-supervised logistic model based on Gaussian bases provides second higher

predictive accuracy. However, in general, the values of tuning parameters for the ILLGC

method should be objectively determined. In this point, our proposed semi-supervised

discrimination seems to perform well in practical situations, since the values of tuning

parameters in our models are automatically selected by the model selection criterion

GBIC and the proposed models give a relatively lower prediction error rate.

5 Concluding remarks

In this article, we presented a nonlinear semi-supervised logistic model based on Gaussian
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basis functions in the framework of multi-class classification problem. In order to select

the values of adjusted parameters, we introduced a model selection criterion from Bayesian

approaches. An advantage of the use of Gaussian bases is that models based on the basis

functions are easily applied to analyze complex or high-dimensional data. Some numer-

ical examples including the high-dimension data analysis illustrated that our modeling

strategies yield lower prediction error rates than previously developed models. We believe

that our semi-supervised logistic discrimination has the potential to be useful in variety

fields of research: e.g., bioinformatics, text classification and webpage classification.
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