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Abstract. In this paper, we investigate the deductive inference for the interiors
and exteriors of Horn knowledge bases, where the interiors and exteriors were
introduced by Makino and Ibaraki [11] to study stability properties of knowledge
bases. We present a linear time algorithm for the deduction for the interiors and
show that it is co-NP-complete for the deduction for the exteriors. Under model-
based representation, we show that the deduction problem for interiors is NP-
complete while the one for exteriors is co-NP-complete. As for Horn envelopes
of the exteriors, we show that it is linearly solvable under model-based represen-
tation, while it is co-NP-complete under formula-based representation. We also
discuss the polynomially solvable cases for all the intractable problems.

1 Introduction

Knowledge-based systems are commonly used to store the sentences as our
knowledge for the purpose of having automated reasoning such as deduction
for them (see e.g., [1]). Deductive inference is a fundamental mode of reason-
ing, and usually abstracted as follows: Given the knowledge K&eassumed
to capture our knowledge about the domain in question, and a gqutgt is
assumed to capture the situation at hand, decide whiKtfAénpliesy, denoted
by KB E y, which can be understood as the questiony/ tonsistent with the
current state of knowledge ?”

In this paper, we consider the interiors and exteriors of knowledge base. For-
mally, for a given positive integer, thea-interior of KB, denoted byr_,(KB),
is a knowledge that consists of the models (or assignmestjsfying that the
a-neighbors ofv are all models oK B, and thew-exterior of KB, denoted by
o+(KB), is a knowledge that consists of the modesatisfying that at least one
of thea-neighbors of/is a model oK B [11]. Intuitively, the interior consists of
the modelw thatstronglysatisfyK B, since all neighbors of are models oK B,
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while the exterior consists of the modelthatweaklysatisfyK B, since at least
one of thea-neighbors ofv is a model ofK B. Here we note that might not
satisfyK B, even if we say that it weakly satisfi&B. As mentioned in [11], the
interiors and exteriors of knowledge base merit study in their own right, since
they shed light on the structure of knowledge base. Moreover, let us consider
the situation in which knowledge bake is not perfecin the sense that some
sentences iiKB are wrong angr some are missing iKB (see also [11]).
Suppose that we us€B as a knowledge base for automated reasoning, say,
duductive inferenc&B [k y. SinceK B does not represendal knowledgeK B,
the reasoning result is no longer true. However, if we use the interipfk B)
of KB as a knowledge base and hawe,(KB) £ y, then we can expect that the
result is ture for real knowledg€B*, sinceo_,(KB) consists of models which
strongly satisfyK B. On the other hand, if we use the exterigi(KB) of KB as
a knowledge base and hawg(KB) E y, then we can expect that the result is
ture for real knowledgd& B*, sinceo,(KB) consists of models which weakly
satisfyKB. In this sense, the interiors and exteriors help to lsafereasoning.

Main problems considered In this paper, we study the deductive inference for
the interiors and exteriors of propositional Horn theories, where Horn theories
are ubiquitous in Computer Science, cf. [14], and are of particular relevance in
Artificial Intelligence and Databases. Itis known thatimportant reasoning prob-
lems like deductive inference and satisfiability checking, which are intractable
in general, are solvable in linear time for Horn theories (cf. [3]).

More precisely, we address the following problems:

e Given a Horn theory, a clausec, and an integetr > 0, we consider the
problems of deciding if deductive queries hold for thénterior and exterior of

2, i.e.,04(2) E cando,(2) E c. Itis well-known [3] that a deductive query

for a Horn theory can be answered in linear time. Note that it is intractable to
construct the interior and exterior for a Horn theory [11, 13], and hence a direct
method (i.e., first construct the interior (or exterior) and then check a deductive
query) is not possiblefgciently.

e We contrast traditional formula-based (syntactic) with model-based (seman-
tic) representation of Horn theories. The latter form of representation has been
proposed as an alternative form of representing and accessing a logical knowl-
edge base, cf. [2,4,5,7,8,6,9, 10]. In model-based reasaliiisgepresented

by a subset of its models4, which are commonly calledharacteristic mod-

els As shown in [7], the deductive inference can be solved in polynomial time,
given its characteristic models.

¢ Finally, we consider Horn approximations for the exteriors of Horn theories.
Note that the interiors of Horn theories are Horn, while the exteriors might not



be Horn. We deal with the least upper bounds, calledHbm envelope$l6],
for the exteriors of Horn theories.

Main results. We investigate the problems mentioned above from an algorith-
mical viewpoint. For all the problems, we provide either polynomial time algo-
rithms or proofs of the intractability; thus, our work gives a complete picture of
the tractabilityintractability frontier of deduction for interiors and exteriors of

Horn theories. Our main results can be summarized as follows (see Figure 1).

e We present a linear time algorithm for the deduction for the interiors of a
given Horn theory, and show that it is co-NP-complete for the deduction for
the exteriors. Thus, the positive result for ordinary deduction for Horn theories
extends to the interiors, but does not to the exteriors. We also show that the
deduction for the exteriors is possible in polynomial timey ifs bounded by

a constant or ifN(c)| is bounded by a logarithm of the input size, whél)
corresponds to the set of negative literals.in

¢ Under model-based representation, we show that the consistency problem and
the deduction for the interiors of Horn theories are both co-NP-complete. As for
the exteriors, we show that the deduction is co-NP-complete. We also show that
the deduction for the interiors is possible in polynomial time i§ bounded by

a constant, and so is for the exteriorsy ibr |P(c)| is bounded by a constant, or

if IN(c)| is bounded by a logarithm of the input size, wh&e) corresponds to

the set of positive literals in.

e As for Horn envelopes of the exteriors of Horn theories, we show that it is
linearly solvable under model-based representation, while it is co-NP-complete
under formula-based representation. The former contrasts to the negative result
for the exteriors. We also present a polynomial algorithm for formula-based rep-
resentation, itr is bounded by a constant or|M(c)| is bounded by a logarithm

of the input size.

Interiors Exteriors Envelopes of Exteriors
Formula-Based P co-NP-complete co-NP-complete
Model-Based | NP-completé co-NP-complete P

*: Itis polynomially solvable, ifx = O(1) or|N(c)| = O(log || X'|]).
1 It is polynomially solvable, iftxr = O(1).
¥ It is polynomially solvable, itxr = O(1), |P(c)| = O(1), or|N(c)| = O(log nichr(X)|).

Fig. 1. Complexity of the deduction for interiors and exteriors of Horn theories



The rest of the paper is organized as follows. In the next section, we review
the basic concepts and fix notations. Sections 3 and 4 investigate the deductive
inference for the interiors and exteriors of Horn theories. Section 5 considers
the deductive inference for the envelopes of the exteriors of Horn theories. Most
of the proofs are omitted due to space limitation. Interested readers can find the
omitted parts in [12], which is a technical report version of the paper.

2 Preliminaries

Horn Theories. We assume a standard propositional language with afdras
{x1, X2, ..., Xn}, Where eachy; takes either value 1 (true) or O (false).literal
is either an atonx; or its negation, which we denote By. The opposite of a
literal ¢ is denoted by, and the opposite of a set of literdldy L = {¢ | £ € L}.
FurthermoreLit = At U At denotes the set of all literals.

A clauseis a disjunctionc = Vicp(q) Xi V Vien(e) Xi Of literals, whereP(c)
andN(c) are the sets of indices whose corresponding variables occur positively
and negatively inc and P(c) N N(c) = 0. Dually, atermis conjunctiont =
Niep) Xi A Aieng %i Of literals, whereP(t) andN(t) are similarly defined. We
also view clauses and terms as sets of literalso#junctive normal fornfiCNF)
is a conjunction of clauses. A clausés Horn, if |P(c)| < 1. AtheoryX is any
set of formulas; it idHorn, if it is a set of Horn clauses. As usual, we identlfy
with ¢ = Acex €, and writec € ¢ etc. It is known [3] that the deductive query
for a Horn theory, i.e., deciding ¥ E c for a clausec is possible in linear time.

We recall that Horn theories have a well-known semantic characterization. A
modelis a vectove {0, 1}", whosei-th component is denoted lyy. For a model
v, letON(V) = {i | vi = 1} andOFF(v) = {i | v; = 0}. The value of a formula
¢ on a model, denotedy(v), is inductively defined as usual; satisfactiongof
inv, i.e.,¢(V) = 1, will be denoted by E ¢. The set of models of a formula
(resp., theory), denoted bymod(y) (resp.,mod(2)), and logical consequence
¢ E ¢ (resp..2 E ¢) are defined as usual. For two modelandw, we denote
by v < w the usual componentwise ordering, ixg.< w; foralli =1,2,...,n,
where 0< 1; v < wmeanss # w andv < w. Denote by A w componentwise
AND of modelsv,w € {0, 1}", and byCl, (M) the closure oM C {0, 1}" under
A\ - Then, atheory is Horn representable if and onlyriiod(2) = Cl,(mod(2))
(see [2, 9)]) for proofs).

Example 1.ConsiderM; = {(0101) (1001) (1000} and M; = {(0101), (1001)
(1000) (0001) (0000}. Then, forv = (0101),w = (1000), we havev,v € My,
while v Aw = (0000) ¢ M;j; henceM; is not the set of models of a Horn
theory. On the other han@|, (M) = My, thus M, = mod(2) for some Horn
theoryZ.



As discussed by Kautt al.[7], a Horn theory is semantically represented
by its characteristic models, wheve=s mod(Y) is calledcharacteristic(or ex-
treme[2]), if v ¢ Cl,(mod(2)\{v}). The set of all such models, tbharacteristic
set oY, is denoted bghr(2). Note thathr() is unique. E.g., (0101g chr(2y),
while (0000)¢ chr(22); we havechr(Xz) = M;. Itis known [7] that the deduc-
tive query for a Horn theory from the characteristic sehr(2) can be done in
linear time, i.e.O(n|chr(X)|) time.

Interior and Exterior of Theories For a modelv € {0,1}" and an integer
a > 0, itsa-neighborhoods defined by

Ne(V) = {(we {0, 1)" | w= V< a},

wherel| v || denotes)}! , |vi|. For a theoryz and an integew > 0, thea-interior
and a-exterior of X', denoted byor_,(2) and o, (X) respectively, are theories
defined by

mod(o—q (X)) = {v € {0, }" | Ny (v) € mod(2)} 1)
mod(c4(2)) = {v € {0, 1} | N, (V) N mod(Z)  0). )

By definition, o0o(2) = o, 04(2) E 0(2) for integersa andpg with o < g,
ando,(21) E 04(2>) holds for any integet, if two theories>; and2’ satisfy
21 E 2.

Example 2.Let us consider a Horn theo®y = {X1 V X3,X2 V X3,%X2 V Xq} Of 4
variables, wherenod(2) is given by

mod(2) = {(1111) (1011) (1010) (0111) (0011) (0010) (0001) (0000}

(See Figure 2). Then we hawg () = {0} for o < —2,{X1, X2, X3, X4} fora = -1,
Yfora =0,{X VX VX3V X} fora = 1, and0 for @ > 2. For example,
(0011) is the uniqgue model afod(co_1(2)), since N1(0011) € mod(X) and
N1(v) € mod(2) holds for all the other models For the 1-exterior, we can see
that all modelss with (X1 V X2 V X3 V X4)(V) = 1 satisfyN1(v) N mod(2) # 0,
and no other such model exists. For example, (0101) is a model(®d), since
(0111)e N1(0101)mod(X). On the other hand, (1100) is not a modetat),
sinceN1(1100)n mod(X) = 0. Notice thato_1(X) is Horn, whileo1(X) is not.

Makino and Ibaraki [11] introduced the interiors and exteriors to analyze
stability of Boolean functions, and studied their basic properties and complexity
issues on them (see also [13]). For example, it is known [11] that, for a theory
2 and nonnegative integetsandp, o_,(0_g(2)) = 0_q(2), oa(op(X)) =
oe+5(2), and

To(0-p(2)) E 0ap(2) F op0a(2)). 3



Fig. 2. A Horn theory and its interiors and exteriors

For an integerr > 0 and two theorie&; andX>, we have

T_o(Z1U 22) = 0_o(21) U0 _o(22) 4)
0a(Z1U 22) E 0¢(21) U 0o(22), (%)

whereo, (21 U 2) # 04,(21) U 0,(22) holds in general.

As demonstrated in Example 2, it is noffdiult to see that the interiors of
any Horn theory are Horn, which is, for example, proved by (4) and Lemma 1,
while the exteriors might be not Horn.

3 Deductive Inference from Horn Theories

In this section, we investigate the deductive inference for the interiors and exte-
riors of a given Horn theory.

3.1 Interiors

Let us first consider the deduction for thenteriors of a Horn theory: Given a
Horn theoryX, a clausec, and a positive integer, decide ifo_,(2) E ¢ holds.
We show that the problem is solvable in linear time after showing a series of
lemmas.

The following lemma is a basic property of the interiors.

Lemma 1. Let c be a clause. Then for an integer > 0, we haveo_,(c) =

V se (AresO) = A s (Vies 0).

|S|=a+1 S|=|cl-a



This, together with (4), implies that for a CNFFand an integesw > 0, we have

7@ =AY (\0) = AL A (/o)

ce Scc: €S ce Scc:
¢ [Sl=a+1 ¢ |SI=lc-a

where we regard as a set of literals.

Lemma 2. LetX be a Horn theory, and lat be a clause. For an integer > 0,
if there exists a clause € 2 such thatN(d) \ N(c)| < a—1or (IN(d)\ N(¢)| = «
andP(d) c P(c)), then we have_,(X) E c.

Lemma 3. LetX be a Horn theory, and lat be a clause. For an integer > 0,
if (i) IN(d) \ N(c)| > a holds for alld € X and(ii) ® # P(d) € N(c) holds for all
d € X with |N(d) \ N(¢)| = «, then we have_,(X) |~ c. |

By Lemmas 2 and 3, we can easily answer the deductive queriEsat-
isfies certain conditions mentioned in them. In the remaining case, we have the
following lemma.

Lemma 4. For a Horn theoryX' that satisfies none of the conditions in Lemmas
2 and3, letd be a clause irz’ such thaiN(d) \ N(c)| = @, andP(d) = P(d) \
(P(c) UN(c)) = {j}. Theno_,(2) E cV x; holds.

Proof. By Lemma 1, we haver_(d) E Viengnng X V Xj E €V Xj. This
implieso_,(2) ¢V x; by (4). |

From this lemma, we have only to cheok,(X) E cV X;, instead of
o-o(2) E c. Sincelc| < [cV Xj| < n, we can answer the deduction by checking
the conditions in Lemmas 2 and 3 at mosimes.

We can see that a straightforward implementation of the algorithm requires
Oo(n(|lZ]l +|cl)) time, where||X'|| denotes the length of, i.e., [|X]l= Y ges|dl,
though we can implement a linear time algorithm by adopting a proper data
structure.

Theorem 1. Given a Horn theory', a clausec and an integerr > 0, a deduc-
tive queryo_,(2) E ccan be answered in linear time, i.€(||2]| +|c|) time. O

3.2 Exteriors

Let us next consider the deduction for iaexteriors of a Horn theory. In con-
trast to the interior case, we have the following negative result.

Theorem 2. Given a Horn theory, a clausec and a positive integety, it is
co-NP-complete to decide whether a deductive queg{>) E c holds, even if
P(c) = 0. |



Algorithm 1 Deduction-Interior-from-Horn-Theory

Input: A Horn theoryX, a clausec and an integetr > 0.

Output: Yes, ifo_,(2) E c; Otherwise, No.

Step 0. Let N := N(c) andP := P(c).

Step 1. /* Check the condition in Lemma 2/*
If there exists a clauske X such thatN(d) \ N| < @ — 1 or (N(d) \ N| = @ andP(d) c P),
then output Yes and halt.

Step 2. /* Check the condition in Lemma 3/*
If P(d) € N holds for alld € X with [N(d) \ N| = «, then output No and halt.

Step 3. /* UpdateN by Lemma 4. #

For a claused in 2 such thatiN(d) \ N| = @ andP(d) = P(d) \ (P U N) = {j}, update
N := N U {j} and return to Step 1. O

We remark that this result can also be derived from the ones in [11].
However, by using the next lemma, a deductive query can be answered in
polynomial time, ifa or N(c) is small.

Lemma 5. LetX; and2> be theories. For an integer > 0, Theno,(21) E 22
if and only if21 E o_,(25). |

From Lemma 5, the deductive query for théanterior of a theory, i.e.,
0+(2) E cfor a given clause is equivalent to the condition that = o_,(c).
Since we haver_,(c) = /\I sce (\/¢es €) by Lemma 1, the deductive query for

S|=|c|-a
thea-interior can be done by checkh(n@) deductions fo&'. More precisely, we
have the following lemma.

Lemma 6. LetX be a Horn theory, let be a clause, and > 0 be an integer.
Theno,(2) E ¢ holds if and only if, for each subs8tof N(c) such thatS| >
IN(C)| - , at least(a — [N(c)| + S| + 1) j's in P(c) satisfyX = \/ics % V Xj. O

This lemma implies that the deductive query can be answered by checking
the number ofj’s in P(c) that satisfyX' = \/ics % V Xx; for eachS. Since we
can check this condition in linear time and there gfg, (') suchs's, we
have the following result, which complements Theorem 2 that the problem is
intractable, even iP(c) = 0.

Theorem 3. Let 2 be a Horn theory, let be a clause, and lat > 0 be an
integer. Then a deductive quary,(2) k ¢ can be answered i(%7_, ('lef)') I

2| +|P(c)|) time. In particular, it is polynomially solvable, i# = O(1) or
IN(c)l = O(log [|.2'])).



4 Deductive Inference from Characteristic Sets

In this section, we consider the case when Horn knowledge bases are repre-
sented by characteristic sets flerent from formula-based representation, the
deductions for interiors and exteriors are both intractable, unlesS&P

4.1 Interiors

We first present an algorithm to solve the deduction problem for the interiors
of Horn theories. The algorithm requires exponential time in general, but it is
polynomial wheny is small.

Let 2 be a Horn theory given by its characteristic get(2), and letc be a
clause. Then for a nonnegative integemwe have

o_o(X) Ecifandonly ifo_,(X) AT=0. (6)

Let v* be a unique minimal model such theft*) = O (i.e.,c(v*) = 1). By the
definition of interiorsy* is a model obr-_, () if and only if all v's in N, (v*) are
models ofX. Therefore, for each modglin N, (v*), we check ifv € mod(X),
which is equivalent to

/\ W= V. (7)

wechr(2)
wzv

If (7) holds for all modelss in N,(v*), then we can immediately conclude by
(6) thato_,(2) I~ c. On the other hand, if there exists a modah N, (v*) such
that (7) does not hold, let = ON(\ weerrxy W) \ ON(V). By definition, we have
J # 0, and we can see that h

W@k \/ Xvx foraljed (8)
icON(v)

If 3N N(c) # 0, by Lemma 1 and (8), we have_,(2) E ViconwnNe Xis
since|ON(v) \ N(c)| < a — 1. This implieso_,(2) E c. On ther other hand, if

JN N(c) = 0, then by Lemma 1 and (8), we hawve,(X) E Viene Xi V Xj for

all j € J. Thus, ifJ contains an index iR(c), we can conclude that_,(X) E c;
Otherwise, we check the condition,(2) £ ¢V \/je; Xj, instead obr_,(2) k c.

Since a new clause = c v \/jc; X is longer tharc, after at mosn iterations,

we can answer the deductive query. Formally, our algorithm can be described as
Algorithm 2.

Theorem 4. Given the characteristic modehnX) of a Horn theory>, a clause
c and a nonnegative integer, a deductive query-_,(2) E ¢ can be answered
in O(n®*?|chr(X)|) time. In particular, it is polynomially solvable, if = O(1).

O



Algorithm 2 Deduction-Interior-from-Charset
Input: The characteristic sehr(2) of a Horn theory>, a clausec and a nonnegative integer
Output: Yes, ifo_,(2) E c; Otherwise, No.
Step 0. LetN := N(c),d := candq := 1.
Step 1. Letv* be the unique minimal model such thd{t*) = 0.
Step2. Foreachvin N,(v*) do
If (7) does not hold,
thenlet Vi@ := v, J := ON(A wectr(z) w) \ ON(v) and
q:=0q+1

If 3N (NUP(c)) # 0, then output yes and halt.

LetN:=NuJandd := Vien% V Viepg Xi-

Go to Step 1.

end{for}

Step 3. Output No and halt. O

However, in general, the problem is intractable, which contrasts to the formula-
model representation.

Theorem 5. Given the characteristic sehe¢(2) of a Horn theory> and a posi-
tive integera, it is co-NP-complete to decide whether () is consistent, i.e.,
mod(o—_,(2)) # 0. O

This result immediately implies the following corollary.

Corollary 1. Given the characteristic sehe(X) of a Horn theory2, a clausec
and a positive integet, it is NP-complete to decide whether a deductive query
0_¢(2) E cholds, even it = 0. |

Note that, diferent from the other hardness results, the hardness is not sensitive
to the size ot.
4.2 Exteriors

Let us consider the exteriors. Similarly to the formula-based representation, we
have the following negative result.

Theorem 6. Given the characteristic sehe(X) of a Horn theoryX, a clause
¢ and a positive integett, it is co-NP-complete to decide if a deductive query
o+(2) E cholds. |



By using Lemma 6, we can see that the problem can be solved in polynomial
time, if & or IN(c)| is small. Namely, for each subsstof N(c) such thatS| >
IN(c)|-a, letv® denotes the model such ti@N(v®) = S. Thenw® = N wectriey: W

is the unique minimal model of such thaON(w°) 2 S, and hence it follows
from Lemma 6 that it is enough to check@N(w®°) N P(c)| > o —|N(c)|+|S|+ 1.
Clearly, this can be done in @ (%4_, (N?)nichr(£)]) time.

Moreover, if|P(c)| is small, then the problem also becomes tractable, which
contrasts with Theorem 2.

Lemma 7. Let2 be a Horn theory, let be a clause, and be a nonnegative
integer. Thervr,(2) E ¢ holds if and only if eacts < P(c) such that|S| >
|P(C)| — « satisfies

|OFF(w) N N(c)| > @ — |[P(c)| + S| + 1 (9)
for all modelsw of X' such that &F(w) N P(c) = S.

Note that (9) is monotone in the sense that, if a medsdtisfies (9), then all
modelsv with v < w also satisfy it. Thus it is dficient to check if (9) holds for
all maximalmodelsw of 2 such thalOF F(w) n P(c) = S. Since such maximal
modelsw can be obtained from) (i € S) withi € OFFW") n P(c) ¢ S
by their intersectiow = A;.sW", we can answer the deduction problem in

O(nzP . (P)ichr(Z)P) time.

Theorem 7. Given the characteristic sethe(2) of a Horn theory, a clause
¢, and an integerr > 0O, a deductive query,(2) & c can be answered in
O(nmin(x%_, ('ngc)')lchr(Z)l,Z';(ﬁ):'(c)l_a (Phichr(2)IPy) time. In particular, it
is polynomially solvable, itr = O(1), |P(c)] = O(1), or [IN(c)] = O(logn -
Ichr(2))).

5 Deductive Inference for Envelopes of the Exteriors of Horn
Theories

We have considered the deduction for the interiors and exteriors of Horn theo-
ries. As mentioned before, the interiors of Horn theories are also Horn, while
this does not hold for the exteriors. This means that the exteriors of Horn theo-
ries might lose beneficial properties of Horn theories. One of the ways to over-
come such a hurdle Horn Approximationthat is, approximating a theory by a
Horn theory [16]. There are several methods for approximation, but one of the
most natural ones is to approximate a theory byditsn envelopeFor a theory

2, its Horn envelopas the Horn theory, such thaimod(Ze) = Cl,(mod(X)).



Since Horn theories are closed under intersection, Horn envelope is the least
Horn upper bound foZ, i.e., chr(Ze) 2 chr(2) and there exists no Horn the-

ory 2* such thatchr(Ze) 2 chr(2*) 2 chr(X). In this section, we consider the
deduction for Horn envelopes of interiors of Horn theorieg(2)e = C.

5.1 Model-Based Representations

Let us first consider the case in which knowledge bases are represented by char-
acteristic sets.

Proposition 1. LetX be a Horn theory, and let be a nonnegative integer. Then
we have

mod(ea(E)e) = Cla( ] NaW). (10)

vechr(2)
O

For a clause, let v* be the unique minimal model such ti&v*) = 0. We
recall that, for a Horn theorgp,

@ cifandonlyif o A\ v) =1 (11)

vechr(®)
v>vE

Therefore, Proposition 1 immediately implies an algorithm for the deduction
for o (2)e from chr(Z), since we havehr(o,(2)e) S Uvechr(z) Na(V). How-
ever, for a generak, Uyecnr(x) Neo(V) is exponentially larger thaohr(2), and
hence this direct method is ndtieient. The following lemma helps developing

a polynomial time algorithm.

Lemma 8. Let2 be a Horn theory, let be a clause, and let be a nonnegative
integer. Thenr,(X)e E ¢ holds if and only if the following two conditions are
satisfied.

(i) IOFF(v) N N(c)| = a holds for allv € chr(X).
(i) If S ={vechr2)]||OFF() N N(c) = a} # 0, P(c) is not covered with
OFF(v) for modelsvin S, i.e.,P(c) ¢ U‘ vy OFF(V).

OF F(V)NN(c)|=a

O

The lemma immediately implies the following theorem.

Theorem 8. Given the characteristic sehe(2) of a Horn theoryX, a clausec,
and an integerr > 0, a deductive query,(2)e E ¢ can be answered in linear
time.

We remark that this contrasts with Corollary 1. Namely, if we are given
the characteristic sehr(2) of a Horn theory, o,(2)e E cis polynomially
solvable, while it is co-NP-complete to deciderif(X) E c.



5.2 Formula-Based Representation

Recall that anegativetheory (i.e., a theory consisting of clauses with no posi-
tive literal) is Horn and the exteriors of negative theory are also negative, and
hence Horn. This means that, for a negative thégmnwe haver,(X)e = 0(2).
Therefore, we can again make use of the reduction in the proof of Theorem 2,
since the reduction uses negative theories.

Theorem 9. Given a Horn theory, a clausec, and an integerr > O, it is

co-NP-complete to decide whethet,(X)e | € holds, even iP(c) = 0. m|

However, ifa or N(c) is small, the problem becomes tractable by Algorithm
3.

Algorithm 3 Deduction-Envelope-Exterior-from-Horn-Theory
Input: A Horn theoryX, a clausec and an integet > O.
Output: Yes, ifo,(2)e E c; Otherwise, No.

Step 1. /* Check if there exists a modelof X' such thatOFF(v) N N(c)| < . */
For eachN < N(c) with [N| = IN(c)| — @ + 1 do
Check if the theory obtained fro&i by assigningg = 1 fori € N is satisfiable.

If so,then output No and halt.
end{for}
Step 2. /* Check if there exists a s = {v € mod(2) | |OFF(v) N N(c)] = a} such that
Uves OFF(v) 2 P(c). */
LetJ:=0.
For eachN < N(c) with [N| = [N(c)| — @ do

Compute a uniqgue minimal satisfiable modefor the theory obtained from' by
assigningg = 1 fori € N is satisfiable.

UpdateJ := JU {j € P(c) | v; = O}.
end{for}
If J = P(c), then output NO and halt.
Step 3. Output Yes and halt. O

The algorithm is based on a necessary arficsent condition foto, (X)e E
¢, which is obtained from Lemma 8 by replacing etir(2)’s with mod(2)’s. It
is not dificult to see that such a condition holds from the proof of Lemma 8.

Theorem 10. Given a Horn theory2, a clausec, and an integete > 0, a
deductive query,(X)e E ¢can be answered i@(((”;'_cl)')+(“\‘((f)')) 1zl +|P(c)|)



time. In particular, it is polynomially solvable, if = O(1) or [N(c)| = O(log ||

). O
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