Tyrosinase and 5a-Reductase Inhibitory Components from Artocarpus incisus Tree

清水, 邦義
九州大学大学院農学研究院

Shimizu, Kuniyoshi
Faculty of Agriculture, Kyushu University

https://doi.org/10.15017/14831

出版情報：九州大学農学部演習林報告. 82, pp.21-63, 2001-03-28. 九州大学農学部附属演習林
バージョン：published
権利関係：
Tyrosinase and 5α-Reductase Inhibitory Components from *Artocarpus incisus* Tree*

Kuniyoshi Shimizu**

Abstract

The inhibitory components on tyrosinase and 5α-reductase from Papua New Guinean (PNG) and Thai woody plants were investigated.

First, the inhibitory components of *Artocarpus incisus* heartwood which showed the strongest inhibitory activity in 23 PNG wood species, their structure-activity relationships and inhibitory mechanism were evaluated. Tyrosinase inhibitory activity-guided fractionation led to the isolation of seven active compounds including two new compounds, 3,2′,4′-trihydroxy-6″,6″-dimethyl-pyrano(3″,2″:4,5″) trans-stilbene (artocarbene) and 6-(3″-methyl-1″-butenyl)-5,7,2′,4′-tetrahydroxyflavone (isoartocarpesin). The structure-activity relationships suggested that specific natural or synthesized compounds having 4-substituted resorcinol skeleton had potent tyrosinase inhibitory ability. Kinetic studies have indicated that specific compounds having 4-substituted resorcinol skeleton exhibit competitive inhibition of the oxidation of DL-DOPA by mushroom tyrosinase.

Second, 5α-reductase inhibitory components from PNG and Thai plants were investigated respectively, and their structure-activity relationships were discussed. The methanol extract of heartwood of *A. incisus* showed potent 5α-reductase inhibitory activity. Chlorophorin and artocarpin showed more potent inhibitory effects (IC₅₀=37 μM and 85 μM, respectively) than did α-linolenic acid, which is known as a naturally occurring potent inhibitor. The inhibitory effects of 17 samples prepared from Thai plants on 5α-reductase activity were examined. The acetone extract of *A. incisus* leaves showed potent 5α-reductase inhibitory activity. Fractionation guided by 5α-reductase inhibitory test led to the isolation of 2-geranyl-2′,3,4,4′-tetrahydroxydihydrochalcone (IC₅₀=38 μM) and a novel geranylated chalcone, 3′-geranyl-2′,3,4,4′-tetrahydroxychalcone (IC₅₀=104 μM) from the acetone extract of *A. incisus* leaves. Structure-activity relationship suggested that the presence of an isopren-derived substituent (prenyl and geranyl) would enhance 5α-reductase inhibitory effects.

Key words: *Artocarpus incisus*, Moraceae, heartwood, artocarbene, tyrosinase inhibitor, melanin biosynthesis inhibitor, isoartocarpesin, 4-substituted resorcinols, structure-activity relationship, 5α-reductase inhibitor, leaves, 3′-geranyl-2′,3,4,4′-tetrahydroxychalcone

Artocarpus incisus 樹木からのチロシンアーゼ及び5α-リダクターゼ阻害成分

**Laboratory of Forest Biology and Biochemistry, Division of Forest Bioscience, Department of Forestry and Forest Products Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581 九州大学大学院農学研究院森林資源科学部門森林機能開発学講座森林生物化学研究室
Contents

1. Preface
2. Tyrosinase Inhibitors
2.1. Introduction
2.2. The Inhibitory Components from Artocarpus incisus on Melanin Biosynthesis
2.2.1. Experimental
2.2.1.1. Sample woods
2.2.1.2. Extraction of heartwood meals of 23 PNG species
2.2.1.3. Extraction and separation of extractives of A. incisus
2.2.1.4. Isolated compounds from A. incisus
2.2.1.5. Determination of tyrosinase inhibitory activity
2.2.1.6. Inhibitory effect on melanogenesis using cultured B16 melanoma cells
2.2.1.7. Inhibitory effect on melanogenesis using brown guinea pig
2.2.2. Results and Discussion
2.2.3. Summary
2.3. Inhibition of Tyrosinase by Flavonoids, Stilbenes and Related 4-Substituted Resorcinols: Structure-Activity Relationships
2.3.1. Experimental
2.3.1.1. Materials
2.3.1.2. Enzyme assays
2.3.2. Results and Discussion
2.3.3. Summary
3. 5α-Reductase Inhibitors
3.1. Introduction
3.2. The 5α-Reductase Inhibitory Components from Papua New Guinean Woods
3.2.1. Experimental
3.2.1.1. Materials
3.2.1.2. Sample woods
3.2.1.3. Isolated compounds from A. incisus
3.2.1.4. Preparation of liver microsomes
3.2.1.5. 5α-Reductase assay
3.2.2. Results and Discussion
3.2.3. Summary
3.3. The 5α-Reductase Inhibitory Components from Thailand Plants
3.3.1. Experimental
3.3.1.1. Sample plants
3.3.1.2. 5α-Reductase assay
3.3.1.3. Extraction of samples
3.3.1.4. Extraction and separation of extractives of A. incisus
Tyrosinase and 5 α-Reductase Inhibitory Components from Artocarpus incisus Tree

1. Preface

Woods as found in tree and bushes was of primary importance to ancient humans in their struggle to control their environment. Subsequent evolution through Bronze and Iron Ages up to our present technologically advanced society has hardly diminished the importance of wood. Today, its role as a source of paper products, furniture, building materials, and fuel is still of major significance.

Wood consists of a mixture of polymers, often referred to as lignocellulose. The cellulose microfibrils consist of an immensely strong, linear polymer of glucose. They are associated with smaller, more complex polymers composed of various sugars called hemicelluloses. These polysaccharides are embedded in an amorphous phenylpropane polymer, lignin, creating a remarkably strong composite structure, the lignocellulosic cell wall.

Wood also contains materials that are largely extraneous to this lignocellulosic cell wall. These extracellular substances can range from less than 1 to about 35% of the dry weight of the wood, but the usual range is 2-10%. Among these components are the mineral constituents, salts of calcium, potassium, sodium, and other metals, particularly those present in the soil where the tree is growing. Some of the extraneous components of wood are too insoluble to be extracted by inert solvents and remain to give extractive-free wood its color; very often these are high-molecular-weight polyphenolics. Most of the extraneous components, however, can be removed with neutral, inert organic solvents or water to yield the extractives, a mixture of naturally occurring organic compounds.

Woody tissue is capable of synthesizing a wide range of natural products, some of great complexity, sometimes in considerable quantity, and at times, in relatively pure form. Some of them, such as simple carbohydrates, phytosterols, nonalkaloidal nitrogenous compounds, and simple aliphatic, alicyclic, and aromatic compounds, are lignocellulosic precursors or are otherwise involved in the intermediary metabolism of the living cell. Among the more interesting materials, however, are the wide array of compounds that woody tissue has developed to protect itself from animals, insects, fungi, bacteria, and other decay-causing microorganisms.

The products and chemical intermediates derived from these natural products are from renew-
able resources, for example woody plants etc., with consequent advantages over competitive materials derived from petrochemicals. The significance of these compounds, however, does not stop here, for they also have a considerable effect on the utilization of wood. The odor, color, and decay resistance of wood are a function of the extractives.

It is worth noting that almost half of all prescription drugs contain substances of natural origin. Even aspirin was first derived in part from willow bark. Current ethnobotanical studies, especially in the tropics, are of considerable importance for the identification of pharmaceutically effective, native remedies before the tropical forests are decimated, and native herbal practices are replaced by "modern" medicinal practice.

The investigation of bioactive natural products has, in recent years, assumed a greater sense of urgency in response to the expanding human population and its subsequent demands for food, good health, and increasing areas of land on which to live.

Pigmentation is one of the most obvious phenotypical characteristics in the natural world. Of the pigments, melanin is one of the most widely distributed pigments found in bacteria, fungi, plants and animals. Melanins are heterogeneous polyphenol-like biopolymers with a complex structure and color varying from yellow to black (Prota, 1988). Their biosynthesis can be observed by someone who leaves the surface of a cut apple, potato or banana exposed to air (Pawelek et al., 1982). The initial reaction in the pathway of melanin formation from tyrosine through the enzymatic oxidation of a monophenol (l-tyrosine) and/or o-diphenol [l-β-(3,4-dihydroxyphenyl)alanine: l-DOPA] to its corresponding o-quinone is catalyzed by a copper-containing enzyme called tyrosinase (EC 1.14.18.1) (Sanchez-Ferrer et al., 1995), as shown in Fig. 1. Tyrosinase, also known as polyphenol oxidase, is widely distributed in the phylogenetic scale. It is responsible for not only melanization in animals but also browning in plants. The latter case is considered to be deleterious to the color quality of plant-derived foods and beverages. Tyrosinase

Fig. 1 The reaction sequence of the melanin biosynthesis pathway from tyrosine to dopachrome (Garcia-Canovas et al., 1982).
catalyzes the oxidation of phenolic substrates to o-quinones, which are then polymerized to brown, red, or black pigments. This unfavorable darkening from enzymatic oxidation generally results in a loss of nutritional value and has been of great concern (Friedman et al., 1996). In addition, tyrosinase inhibitors have become increasingly important in cosmetic (Maeda et al., 1991) and medicinal products in relation to hyperpigmentation. Hence, tyrosinase inhibitors should have broad applications.

Virilization in mammals is mediated by two steroid hormones, testosterone and dihydrotestosterone. 5α-Reductase catalyzes the NADPH-dependent reduction of a variety of steroids containing 3-keto, Δ^1,3 double bond, testosterone to dihydrotestosterone (Fig. 2). Both hormones bind to a typical steroid hormone receptor, the androgen receptor, and activate genes containing androgen-responsive DNA sequences. However, the conversion of testosterone to dihydrotestosterone amplifies the androgenic signal: since dihydrotestosterone cannot be aromatized to estrogen, its effect remains purely androgenic. In addition, dihydrotestosterone binds to the human androgen receptor with greater affinity than testosterone, and the receptor-dihydrotestosterone complex appears to be more stable in vitro under conditions that promote transformation of receptor-androgen complexes to the DNA-binding state (Grino et al., 1990). The circulating level of dihydrotestosterone in plasma is 1/10 of the testosterone levels; nevertheless, dihydrotestosterone plays a major role in the development of secondary sex characteristics. Benign prostatic hyperplasia, prostate cancer and certain diseases of the skin may be dependent upon dihydrotestosterone. Acne, idiopathic female hirsutism and male pattern baldness have all been linked to increased 5α-reductase activity in the areas of the skin effected (Price, 1975; Darley, 1984; Shweikert et al., 1974; Brooks, 1986; Tenover, 1991), suggesting that 5α-reductase inhibitors may also be useful in the treatment of these common afflictions.

In this work, we discussed the inhibitory components on tyrosinase and 5α-reductase from tropical woody plants and their structure-activity relationships.

In chapter 2, the components having anti-tyrosinase activity and melanin synthesis inhibitory effects in the heartwood extracts of Papua New Guinean (PNG) wood species were examined by both in vivo and in vitro experiments. Additionally, structure-activity relationships were discussed from the viewpoints of the 4-substituted resorcinol skeleton.

In chapter 3, the components having 5α-reductase inhibitory activity in the extracts of PNG and Thai plants were examined and their structure-activity relationships were discussed.

Fig. 2 5α-Reductase catalysed conversion of testosterone to dihydrotestosterone.
2. Tyrosinase Inhibitors

2.1. Introduction

Tropical forest area occupies 40-50% of the all forest area in the world. The Papua New Guinea (PNG) mainland and surrounding islands possess an extraordinarily rich flora and great diversity of vegetation types that parallel the diverse physiography of lands. A high proportion of the land area has a forest cover, most of it evergreen rain forest. The great diversity of tropical woods appears in qualitative and quantitative diversity of extractives of the woods from a chemical point of view of the wood components. Recently, we have reported an anti-fungal component, angolensin in PNG rosewood (Pilotti et al., 1995). Thus, the tropical woods will give us a great chance to find bioactive components.

As discussed in Preface, melanin biosynthesis inhibitory compounds are useful not only for the material used in cosmetics as skin-whitening agents but also as the remedy for disturbances in pigmentation. The color of mammalian skin and hair is determined by a number of factors. The most important factor is the degree and distribution of melanin pigmentation. Tyrosinase (phenol oxidase) is known to be a key enzyme for melanin biosynthesis (Sánchez-Ferrer et al., 1995) in plants, microorganism and mammalian cells. Therefore, many tyrosinase inhibitors have been reported (Koiso, 1990) and tested as cosmetics and pharmaceuticals to prevent overproduction of melanin in epidermal layers. For example, kojic acid (Cabanes et al., 1994) and arbutin (Maeda et al., 1996) have been utilized as cosmetic agents. Also, tyrosinase is one of the most important key enzymes in the insect molting process (Brunet, 1980) and investigating its inhibitors may be important in finding alternative insect control agents. Furthermore, melanin formation is considered to be deleterious to the color quality of plant-derived food. This broadens the possible use of tyrosinase inhibitors as food additives, in addition to insect control agents and whitening agents.

In this chapter, we have focused on the possibility of using tyrosinase inhibitors as whitening agents for cosmetic products. We report here the inhibitory components of Artocarpus incisus, which showed the strongest inhibitory activity in 23 PNG wood species and discusses structure-activity relationships and inhibitory mechanism.

2.2. The Inhibitory Components from Artocarpus incisus on Melanin Biosynthesis

2.2.1. Experimental

2.2.1.1. Sample woods

The meals of 23 PNG wood species (Albizia falcatoria, Alstonia scholaris, Amoora sp., Anthocephalus chinensis, Artocarpus incisus, Buchanania sp., Calophyllum sp., Cananga adora-rata, Canarium indicum, Canarium oleoseum, Dracontomelon dao, Dysosylum pettigrewianum, Eucalyptus deglupta, Garcinia latissima, Hibiscus ellipticifolius, Intsia biýuga, Neouuclea acumin-nate, Octomeles sumatrana, Palaquium galactoxylum, Pterocarpus indicus, Terminalia sp., Toona sureni and Xanthophyllum papuanum) were obtained from PNG Forest Research Institute. A large amount of wood blocks of A. incisus was obtained from Okinawa prefecture.
All voucher specimens are preserved at the herbarium of Department of Forest Products, Kyushu University in Japan.

2.2.1.2. Extraction of heartwood meals of 23 PNG species
The heartwood portion was chipped and milled to pass a # 40 screen. The milled heartwood was Soxhlet-extracted with methanol for 10 h.

2.2.1.3. Extraction and separation of extractives of *A. incisus*
Air-dried milled heartwood of *A. incisus* (37 kg) was extracted for 10 days with Et₂O at room temperature and the extract concentrated to dryness. The dry Et₂O extract (330 g) was crystallized successively from Et₂O / hexane and MeOH. The yellow solid deposited (240 g) was collected and recrystallized from MeOH / H₂O yielding compound 1. The mother liquor (89 g) was separated repeatedly by column chromatography (CC) and medium pressure liquid chromatography (MPLC) on silica gel using ethyl acetate-hexane gradient as eluent. Tyrosinase inhibitory fraction (200mg, TLC, silica gel, ethyl acetate/hexane, 1:1, Rf 0.05-0.4) was obtained.

Compound 2 (22 mg), 3 (10 mg), 4 (22 mg), 5 (12 mg), 6 (12 mg), 7 (6 mg), 8 (30 mg) and 9 (13 mg) were isolated from the inhibitory fraction by preparative HPLC (Inertsil PREP-ODS: 20 mm i.d. × 250 mm) using H₂O-CH₃CN.

2.2.1.4. Isolated compounds from *A. incisus*
All nuclear magnetic resonance (NMR) experiments were performed at 400 MHz. Sample was dissolved in acetone-d₆, CD₃OD or DMSO-d₆ and chemical shifts were referred to internal TMS for ¹H NMR and to deuterated solvents for ¹³C NMR.

Compound 1 (Sato et al., 1996), 3 (Krohn et al., 1986), 5 (Takasugi et al., 1978), 7 (Mabry et al., 1970a) and 8 (Sato et al., 1996): MS and NMR muched well with published data.

Compound 2, (+)-dihydromorin, yellow powder; [α]₂₅D +63.5° (c 0.10, MeOH). CD [θ] 20 (MeOH, nm): +4905 (260), −9437 (294), +4822 (326). FAB-HR-MS m/z: 305.0727 ([M+H]⁺, calcd. for C₁₅H₁₃O₇: 305.0662). NMR muched well with published data (Schultz et al., 1995).

Compound 4, (+)-norartocarpanone, pale yellow; [α]₂₅D +14.5° (c 0.12, MeOH). CD [θ] 20 (MeOH, nm): +1015 (256), −4355 (292), +592 (330). MS and NMR were identical to published data (Deshpande et al., 1975).

Compound 6, Artocarbene, yellow powder. ¹H NMR (acetone-d₆): δ 1.39 (6H, s, H–6”), 5.60 (1H, d, J = 9.76 Hz, H–5”), 6.38 (1H, dd, J₅,₆= 5.45 Hz, J₅,₆= 2.44 Hz, H–5”), 6.44 (1H, d, J = 2.44 Hz, H–3”), 6.47 (1H, d, J = 1.46 Hz, H–6), 6.60 (1H, d, J = 1.46 Hz, H–2”), 6.66 (1H, d, J = 9.76 Hz, H–4”), 6.89 (1H, d, J = 16.36 Hz, H–8”), 7.33 (1H, d, J = 16.36 Hz, H–7”), 7.39 (1H, d, J = 8.55 Hz, H–6). ¹³C NMR (400MHz, acetone-d₆): δ 28 (C–6”(-Me)), 77 (C–6”), 104 (C–3”), 106 (C–6), 107 (C–2), 108 (C–5”), 109 (C–4), 117 (C–1”), 118 (C–4”), 125 (C–7”), 126 (C–8”), 128 (C–6”), 129 (C–5”), 141 (C–1), 154 (C–3), 155 (C–
Compound 9, isoartocarpesin, yellow powder: FAB-MS: 355 ([M+H]+).

\[\text{1H NMR (acetone-d\textsubscript{6}): } \delta 1.04 (6H, d, J = 6.83 Hz, 4",5"-H), 2.39 (1H, m, 3"-H), 6.51 (1H, dd, J = 8.55, 2.45 Hz, 5"-H), 6.54 (1H, s, 8-H), 6.56 (1H, d, J = 2.44 Hz, 3'-H), 6.58 (1H, dd, J = 0.78, 16.12 Hz, 1"-H), 6.72 (1H, dd, J = 7.08, 16.12 Hz, 2"-H), 7.03 (1H, s, 3-H), 7.77 (1H, d, J = 8.55 Hz, 6'-H), 14.01 (1H, s, 5-0H). \]

\[\text{13C NMR (acetone-d\textsubscript{6}): } \delta 23.61 (4", 5"-C), 34.38 (3"-C), 94.63 (8-C), 104.78 (3'-C), 105.48 (10-C), 109.60 (5'-C), 109.88 (6-C), 111.17 (1'-C), 117.75 (1"-C), 131.36 (6'-C), 142.40 (2"-C), 157.00 (9-C), 159.72 (2'-C), 161.19 (5-C), 162.65 (7-C), 162.99 (4'-C), 163.09 (2-C), 184.14 (4-C). \]

2.2.1.5. Determination of tyrosinase inhibitory activity

Tyrosinase inhibitory activity was assayed by the dopachrome method (Hearing, 1987) with modification. Zero point one ml of mushroom tyrosinase solution (1250 U/ml, Wako pure chemical industries, Ltd.), 2.0 ml of L-tyrosine (0.1 %), 0.7 ml of McIlvain buffer (pH 6.8) and 0.2 ml of DMSO with or without sample, were mixed, incubated at 37 °C for 20 minutes, and the absorbance at 475 nm was measured before and after incubation. The relative tyrosinase activity (%) added with each sample was calculated as follows: Tyrosinase activity (%) = \(\frac{(B-A)}{(D-C)} \times 100 \). A and B represent the absorbance in the presence of sample before and after incubation, respectively. C and D represent the absorbance without sample before and after incubation, respectively. Kojic acid (Tokyo Kasei Kogyo Co., Ltd.) was used as a positive standard.

2.2.1.6. Inhibitory effect on melanogenesis using cultured B16 melanoma cells

Inhibitory effect on melanogenesis using cultured B16 melanoma cells was examined by the method previously reported (Tomita et al., 1990) with modification. Mouse B16 melanoma cells (2.0 × 104 cells/ml) were subcultured in Eagle’s minimum essential medium. After 2 days incubation (37 °C, 5% CO\textsubscript{2}), the sample dissolved in DMSO with or without sample, were mixed, incubated at 37 °C for 20 minutes, and the absorbance at 475 nm was measured before and after incubation. The relative tyrosinase activity (%) added with each sample was calculated as follows: Tyrosinase activity (%) = \(\frac{(B-A)}{(D-C)} \times 100 \). A and B represent the absorbance in the presence of sample before and after incubation, respectively. C and D represent the absorbance without sample before and after incubation, respectively. Kojic acid (Tokyo Kasei Kogyo Co., Ltd.) was used as a positive standard. After the incubation was continued for 4 days, the cell suspension was centrifuged at 2000 rpm for 5 minutes. Then the color and volume of resulting cells were compared with control. The whitening degree of the cells was observed with naked eyes.

2.2.1.7. Inhibitory effect on melanogenesis using brown guinea pig

Inhibitory effect on melanogenesis in vivo using brown guinea pig was examined by the method previously reported (Imokawa et al., 1986) with modification. Three animals per group were used. The back of brown guinea pig was shaved clean by hair clipper. The back was irradiated with 1 J/cm2 (2 mW/cm2 × 500 sec) from UV-B lamp (Toshiba FL40S・BLB) at six times for two weeks, resulting in pigment formation. Then after a week, the back (1 × 1.5 cm) was applied 12.5 μl of sample dissolved in DMSO (2%) once a day for 3 weeks. These experiments have been performed twice. The color of resulting back skin was compared with control.
Tyrosinase and 5α-Reductase Inhibitory Components from Artocarpus incisus Tree

The blanching effects were evaluated by colorimeter as brightness, estimated as follows: \(\Delta L \% \) (brightness) = \(L(21 \text{ days}) - L(1 \text{ day}) \). The brightness data were analyzed with student's t-test. Differences of \(P < 0.05 \) were regarded as significant.

2.2.2. Results and Discussion

The methanol extract of *A. incisus* showed the strongest tyrosinase inhibitory activity at the concentration of 10 ppm in 23 species (Table 1). In spite of the crudeness, its activity was almost equivalent to kojic acid known as a potent tyrosinase inhibitor (Cabanes et al., 1994). Therefore, *A. incisus* was selected for the further investigation.

Melanin biosynthesis inhibitory effect of the methanol extract of *A. incisus* was examined by using mouse B16 melanoma cells. The methanol extract of *A. incisus* showed potent inhibitory activity and significant color whitening compared to control. Its activity was almost equivalent to kojic acid used as a positive control. The cytotoxicity of the extract to the cells was not observed at a concentration of 100 ppm (Fig. 3).

<table>
<thead>
<tr>
<th>Samples</th>
<th>Relative activity(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albizia falcataria</td>
<td>178</td>
</tr>
<tr>
<td>Alstonia scholaris</td>
<td>102</td>
</tr>
<tr>
<td>Amoora sp.</td>
<td>98</td>
</tr>
<tr>
<td>Anthocephalus chinensis</td>
<td>82</td>
</tr>
<tr>
<td>Artocarpus incisus</td>
<td>20</td>
</tr>
<tr>
<td>Buchanania sp.</td>
<td>118</td>
</tr>
<tr>
<td>Calophyllum sp.</td>
<td>84</td>
</tr>
<tr>
<td>Cananga adorata</td>
<td>87</td>
</tr>
<tr>
<td>Canarium indicum</td>
<td>100</td>
</tr>
<tr>
<td>Canarium oleoseum</td>
<td>72</td>
</tr>
<tr>
<td>Dracontomelon dao</td>
<td>118</td>
</tr>
<tr>
<td>Dysosylum pettigrewianum</td>
<td>68</td>
</tr>
<tr>
<td>Eucalyptus deglupta</td>
<td>122</td>
</tr>
<tr>
<td>Garcinia latissima</td>
<td>114</td>
</tr>
<tr>
<td>Hibiscus ellipticifolius</td>
<td>110</td>
</tr>
<tr>
<td>Intisia bijuga</td>
<td>90</td>
</tr>
<tr>
<td>Neouuclea acuminata</td>
<td>115</td>
</tr>
<tr>
<td>Octomeles smatrina</td>
<td>68</td>
</tr>
<tr>
<td>Palaquium galactoxyllum</td>
<td>113</td>
</tr>
<tr>
<td>Pterocarpus indicus</td>
<td>82</td>
</tr>
<tr>
<td>Terminalia sp.</td>
<td>88</td>
</tr>
<tr>
<td>Toona sureni</td>
<td>103</td>
</tr>
<tr>
<td>Xanthophyllum papuanum</td>
<td>87</td>
</tr>
<tr>
<td>Kojic acid</td>
<td>19</td>
</tr>
<tr>
<td>DMSO (Control)</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 1: The effect of methanol extracts from heartwoods of PNG trees on tyrosinase activity.

(Sample concentration: 10 ppm, substrate: L-tyrosine)
Kuniyoshi Shimizu

Fig. 3 Inhibitory effect of methanol extracts of *A. incisus* and kojic acid on melanin synthesis of B16 melanoma cells at the sample concentration of 100 ppm.

The color of resulting cells was compared with control by naked eyes.

The volume of resulting cells with sample (kojic acid or *A. incisus*) was equivalent to control.

Melanin biosynthesis inhibitory effect of mother liquor which was obtained by crystallization of ether extracts from *A. incisus* was examined by using brown guinea pig. The back of brown guinea pig was shaved, irradiated with UV-B, leading to form the pigment. The time course of skin color change was observed while applying sample solution at the concentration of 2% to the back, compared with that of control. After 21 days, ΔL was $4.5 \pm 1.0\%$ (mean \pm SD) for the control group and $6.9 \pm 1.1\%$ for the mother liquor group. The application of mother liquor to the skin for three weeks caused higher color lightening than control ($P < 0.05$) (Fig. 4). Neither
inflammation nor red spots on the back skin was observed. These results suggest that extracts of *A. incisus* have high color lightning ability.

To isolate tyrosinase inhibitory components, a large scale extraction was performed. Tyrosinase inhibitory activity-guided fractionation led to the isolation of compound 1 ~ 9 (Fig. 5), although compound 1 and 7 showed no tyrosinase inhibitory activity at the concentration of 10 ppm. Compound 1, 3, 5, 7 and 8 were characterized by their FAB-MS, 1H and 13C NMR spectra by comparison with data in literature, and identified as artocarpin (Sato *et al*., 1996),

![Chemical structures of compound 1-9](Fig. 5 The chemical structures of compound 1-9.)
chlorophorin (Krohn et al., 1986), 4-prenyloxyresveratrol (Takasugi et al., 1978), apigenin (Mabry et al., 1970a) and artocarpein (Sato et al., 1996), respectively.

Compound 2 was characterized as (+)-dihydromorin by comparison with data in literature (Schultz et al., 1995). The CD spectrum \(\left[\theta\right]_e^{20}\) (MeOH, nm): +4905 (260), -9437 (294), +4822 (326) was characteristic of 2R, 3R-dihydroflavonol (Kasai et al., 1988). Therefore, compound 2 was identified as (2R, 3R)-5,7,2',4'-tetrahydroxydihydroflavonol.

Compound 4 was characterized as (+)-norartocarpanone by comparison with published data (Deshpande et al., 1975). The CD spectrum \([\theta]_20\) (MeOH, nm): +1015 (256), -4355 (292), +592 (330) suggested the configuration at C-2 to be S (Gaeffield, 1970). Therefore, compound 4 was identified as (2S)-5,7,2',4'-tetrahydroxyflavanone.

Compound 6 was identified as follows. Compound 6 was obtained as a yellow powder. The \(^1^C\) NMR spectrum of 6 revealed 19 carbon atoms (DEPT: 8 X C, 9 X CH and 2 X Me). The FAB mass spectral data ([M+H]" = 311) together with the \(^1^C\) NMR data suggested the molecular formula to be \(C_{19}H_{11}O_4\). The \(^1^H\) NMR spectrum of 6 suggested the presence of a trans disubstituted double bond flanked by quaternary carbons based on the presence of two doublet olefinic proton resonances at \(\delta 7.33\) (J = 16.36 Hz) and \(\delta 6.89\) (J = 16.36 Hz). Two one-proton doublets at \(\delta 6.60\) (J = 1.46 Hz) and \(\delta 6.47\) (J = 1.46 Hz) in the \(^1^H\) NMR spectrum suggested the presence of aromatic proton shifts typical of substitutions at the 2"- and 4"-positions on the B ring. The presence of a dimethylchromene ring \([\delta 5.60, 6.66\) (J = 9.76 Hz) assigned to the cis-olefinic protons and 1.29 (2X Me)] was indicated from the \(^1^H\) NMR spectrum. \(^1^H\)-\(^1^H\) COSY relationships permitted the assignment of aromatic proton chemical shifts and also supported the substitution pattern. HMQC data were used to assign carbon resonances to their attached protons. In the HMBC spectrum, the olefinic carbon at \(\delta 126\) (C-8") was correlated with the aromatic protons at \(\delta 6.60\) (H-2) and \(\delta 6.47\) (H-6). Moreover, the aromatic proton at \(\delta 7.39\) (H-6") caused a cross-peak with the olefinic carbon at \(\delta 125\), identified as C-7". In the NOESY spectrum, NOE enhancement between 6" (Me) protons at \(\delta 1.39\) and the olefinic proton at \(\delta 5.60\) identified the latter as H-5". Full proof of the skeleton of 6 was obtained by a combination of HMBC, DEPT, \(^1^H\)-\(^1^H\) COSY, NOESY and HMQC experiments. Therefore, 6 was elucidated as a novel 3,2",4"-trihydroxy-6",6"-dimethyl-pyranol(3",2":4,5)-trans-stilbene, which the author gives the trivial name "artocar bene".

Stilbene with dimethylchromene ring is rare structure in plant. To the best of our knowledge, this is the first report of the occurrence of a stilbene with dimethylchromene ring in the Moraceae. Similar structural type had been found in the Leguminosae (Garcia et al., 1986). Stilbenes are found in many plant genera, and some are considered to be phytoalexins (Brinker et al., 1991). They exhibit a variety of biological and pharmacological activities including protein tyrosine kinase (PTK) and protein kinase C (PKC) inhibitory effects (Jayatilake et al., 1994).

Compound 9 was identified as follow. The \(^1^C\) NMR spectrum revealed 20 carbon atoms (DEPT: 10 X C, 8 X CH and 2 X Me). The FAB mass spectral data ([M+H]" = 355) together with
the 13C NMR data suggested the molecular formula to be C$_{20}$H$_{18}$O$_{6}$. The 1H NMR spectrum showed one set of 3-methyl-1-butenyl signals at δ 1.04 (6H, d, J = 6.83 Hz, Me×2), 2.39 (1H, m, β<Cβ), 6.58 (1H, dd, J = 0.78, 16.12 Hz, -CH-Ph), and 6.72 (1H, dd, J = 7.08, 16.12 Hz, CH=) together with one chelated phenolic signal at δ 14.01 (1H, s, C-5 OH). The ABC type coupled aromatic proton signals appeared at δ 6.51 (1H, dd, J = 2.45, 8.55 Hz), 6.56 (1H, d, J = 2.44 Hz) and 7.77 (1H, d, J = 8.55) were reasonably assigned to the H-5', H-3', and H-6' of a 2', 4'-dioxygenated flavone, respectively. The other two aromatic singlets at δ 7.03 and 6.54 were assigned as the H-3 and H-6 or H-8 signals of a flavone as in artcarpetin B (Chung et al., 1995). The 13C NMR spectrum provided signals due to a 3-methyl-1-butenyl moiety: δ 23.61 (CH$_3$×2), 34.38 (β<Cβ), 117.75, 142.40 (-CH=CH-) (Hano et al., 1990). COLOC data were analyzed in order to clarify the location of the 3-methyl-1-butenyl group and to assign all NMR signals. H-1" showed correlation with C-5 (δ 161.19) and C-7 (δ 162.65). In addition, δ 6.54 (H-8) was correlated to the carbons of C-7 (δ 162.65), C-9 (δ 157.00) and C-10 (δ 105.48). These spectral data indicated that the 3-methyl-1-butenyl group should be substituted at C-6. 1H-1H COSY relationships permitted the assignment of aromatic proton resonances to their attached protons. Full proof of the skeleton of 9 was obtained by a combination of COLOC, DEPT, 1H-1H COSY and 13C-1H COSY experiments. Therefore, 9 was elucidated as a novel 6-(3'-methyl-1'-butenyl)-5,7,2',4'-tetrahydroxyflavone, which the author gives the trivial name ‘isoartocarpesin’.

The genus Artocarpus consists of 50 or more species of evergreen and deciduous trees belonging to the Moraceae. The heartwood of Artocarpus species is a rich source of flavones with iso-prenoid substituents. In particular, artocarpin was most readily available because it crystallized out of the hexane extract of some timber samples (Harborne et al., 1975). Also, A. incisus is grown for breadfruit. Studies of flavonoids in Artocarpus species have shown the presence of 3-methyl-1-butenyl substituted flavones, for example compound 1 (artocarpin), 4 ((+)-norartocarpin), 8 (artocarpesin) and cycloartocarpin (Venkataraman, 1972). Compared to the prenylated flavones, fewer 3-methyl-1-butenylated flavones such as a novel compound 9 have been reported in the Moraceae.

The concentration of 50 % inhibition (IC$_{50}$) of each sample on tyrosinase activity was compared with kojic acid (Table 2). Compound 1 (artocarpin) and 7 (apigenin) did not show potent tyrosinase inhibitory activity. The others showed potent tyrosinase inhibitory activity. Especially compound 3 (chlorophorin), 4 ((+)-norartocarpanone), 5 (4-prenyloxyresveratrol) and 6 (artocabene) showed much higher tyrosinase inhibitory activity than kojic acid.

This is the first report of melanin synthesis inhibitory effects of A. incisus heartwood extracts. A. incisus extracts apparently inhibited not only tyrosinase activity but also melanin biosynthesis of cultured B-16 melanoma cells without any cytotoxicity. Furthermore, the extracts showed distinct whitening of back of brown guinea pig without skin irritation. Thus, the potentiality of A. incisus extracts both as material of a useful skin whitening agent and as a remedy for the disturbances in pigmentation is evident. The use in cosmetics and drugs is possible, if safety is
guaranteed. In this study, we isolated seven potent tyrosinase inhibitory components including two new compounds. These compounds were (+)-dihydromorin, chlorophorin, (+)-norartocarpanone, 4-prenyloxyresveratrol, artocarbene, artocarpesin and isoartocarpesin. These compounds were likely the cause for melanin biosynthesis inhibitory effects.

2.2.3. Summary

The inhibitory effects of methanol extracts of heartwood of 23 PNG wood species on tyrosinase activity were examined. The extract of A. incisus showed the strongest tyrosinase inhibitory activity which was equivalent to kojic acid. The extract apparently inhibited melanin biosynthesis of cultured B16 melanoma cells without any cytotoxicity and back of brown guinea pig without skin irritation. Thus, the potentiality of the extracts of heartwood of A. incisus both as material of a useful skin whitening agent and as a remedy for the disturbances in pigmentation is evident. Tyrosinase inhibitory activity-guided fractionation led to the isolation of seven active compounds including two new compounds which have been characterized as 3,2',4'-trihydroxy-6",6"-dimethyl-pyran(3",2":4,5)-trans-stilbene, named artocarbene and 6-(3"-methyl-1"-butenyl)-5,7,2',4'-tetrahydroxyflavone, named isoartocarpesin. Other active compounds were (+)-dihydromorin, chlorophorin, (+)-norartocarpanone, 4-prenyloxyresveratrol, artocarbene and artocarpesin. These compounds likely caused melanin biosynthesis inhibitory effects.

2.3. Inhibition of Tyrosinase by Flavonoids, Stilbenes and Related 4-Substituted Resorcinols: Structure-activity relationships

2.3.1. Experimental
2.3.1.1. Materials
The compounds [(-)-pinocembrin (2) (Bick et al., 1972), (+)-aromadendrin (4) (Janes et al., 1960), (±)-fustin (5) (Imamura et al., 1967), (±)-taxifolin (6) (Kondo, 1951), (+)-
Tyrosinase and 5α-Reductase Inhibitory Components from Artocarpus incisus Tree

Dihydromyricetin (2) (Miller et al., 1979), chrysin (11) (Harborne et al., 1982), kaempferol (13) (Schultz et al., 1995), quercetin (14) (Imamura et al., 1967), myricetin (15) (Mabry et al., 1970b), pinosylvin (21) (Schultz et al., 1992), oxyresveratrol (22) (Malan et al., 1988) and bis(2,4-dihydroxyphenyl)methane (34) (Kim et al., 1993) were provided by the Laboratory of Wood Chemistry, Department of Forest Products, Faculty of Agriculture, Kyushu University in Japan, and their purities and identification had been confirmed by comparison with references. The following reagents were purchased: [(+)-flavanone (1), flavone (10), 2,4-dihydroxybenzaldehyde (26), 2,4-dihydroxy-N-(2-hydroxyethyl)benzamide (29), 2,4-dihydroxybenzophenone (30), 4-hexylresorcinol (38) and 4-dodecylresorcinol (39) from Aldrich Chem. Co.], [(+)-naringenin (3) and morin (17) from Sigma Chem. Co.], [2,4-dihydroxyacetophenone (27), 2,4-dihydroxybenzoic acid (28), resorcinol (32), L-tyrosine and DL-β-(3,4-dihydroxyphenyl) alanine (DL-DOPA) from Wako Pure Chemical Industries, Ltd.], [4-(2-pyridylazo)resorcinol (31), 4-(2-thiazolylazo)resorcinol (33) from Dojindo Laboratories] and [4-chlororesorcinol (35), 4-ethylresorcinol (40) from Tokyo Kasei Kogyo Co., Ltd.]. The reagents (+)-dihydroromin (8), (+)-norartocarpanone (9), apigenin (12), artocarpin (16), artocarpesin (18), isoartocarpesin (19), 4-prenyloxyresveratrol (23), chlorophorin (24), artocarbene (25) (Chapter 2) and (-)-angolensin (20) (Pilotti et al., 1995) were isolated previously.

4-Methylresorcinol (36), 4-(phenylmethyl)resorcinol (37) and 4-propylresorcinol (41) were prepared by reduction of 26, 30 and 2', 4'-dihydroxypropiophenone (Aldrich Chem. Co.) with NaBCH3CN (Aldrich Chem. Co.) respectively. EIMS, m/z: 36(M+: 124), 37(M+: 200), 41(M+: 152).

2.3.1.2. Enzyme assays

Mushroom tyrosinase [EC 1.14.18.1] activity was determined by using L-tyrosine or DL-DOPA as the substrate. L-Tyrosine oxidation assay was done as described in chapter 2.2. DL-DOPA oxidation assay of 0.1 ml of mushroom tyrosinase solution (625 U/ml, Wako Pure Chemical Industries, Ltd.), 0.7 ml of DL-DOPA buffer solution (2.0 mM), 0.1 ml of McIlvain buffer (pH 6.8) and 0.1 ml of DMSO with or without sample were mixed and incubated at 25 °C. A control reaction was conducted without the test sample. The absorbance was measured at 475 nm before and after incubation. The percentage of inhibition of tyrosinase was calculated as follows: tyrosinase inhibition (%) = (A-B) / A × 100, where A represents the difference in the absorbance of the control sample between the incubation time of 0.35 and 0.45 min, and B represents the difference in the absorbance of the test sample between the incubation time of 0.35 and 0.45 min. The results were from the three concurrent readings and each S.D. was usually within 2% of the mean. Kojic acid (Tokyo Kasei Kogyo Co., Ltd.) was used as a positive standard.

2.3.2. Results and Discussion

To study structure–activity relationships, several flavonoids and stilbenes were tested for their inhibitory activity on tyrosinase (substrate: L-tyrosine) by measuring the concentration required
Table 3 Inhibitory activity of flavonoids and stilbenes oil tyrosinase (substrate: L-tyrosine).

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>R3</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R2'</th>
<th>R3'</th>
<th>R4'</th>
<th>R5'</th>
<th>(C2, C3)</th>
<th>IC₅₀ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(±)-flavanone</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>2S, 2R</td>
<td>>200</td>
</tr>
<tr>
<td>2</td>
<td>(−)-pinocembrin</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>2S</td>
<td>>200</td>
</tr>
<tr>
<td>3</td>
<td>(±)-naringenin</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>2S, 2R</td>
<td>>200</td>
</tr>
<tr>
<td>4</td>
<td>(+)-aromadendrin</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>(2R, 3R)</td>
<td>lag time decrease</td>
</tr>
<tr>
<td>5</td>
<td>(±)-fustin</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>(2R, 3R), (2S, 3S)</td>
<td>lag time decrease</td>
</tr>
<tr>
<td>6</td>
<td>(+)-taxifolin</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>(2R, 3R)</td>
<td>lag time decrease</td>
</tr>
<tr>
<td>7</td>
<td>(+)-dihydromyricetin</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>(2R, 3R)</td>
<td>lag time decrease</td>
</tr>
<tr>
<td>8</td>
<td>(+)-dihydrorin</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>(2R, 3R)</td>
<td>25°</td>
</tr>
<tr>
<td>9</td>
<td>(+/-)-norartocarpane</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>2S</td>
<td>1.76°</td>
</tr>
<tr>
<td>10</td>
<td>flavone</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td>>200</td>
</tr>
<tr>
<td>11</td>
<td>chrysine</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td>>200</td>
</tr>
<tr>
<td>12</td>
<td>apigenin</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td></td>
<td>>189°</td>
</tr>
<tr>
<td>13</td>
<td>kaempferol</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td>103°</td>
</tr>
<tr>
<td>14</td>
<td>quercetin</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td>lag time decrease</td>
</tr>
<tr>
<td>15</td>
<td>myricetin</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td></td>
<td>lag time decrease</td>
</tr>
<tr>
<td>16</td>
<td>artocarpin</td>
<td>Pr</td>
<td>OH</td>
<td>CHCH(CH₃)₂</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td></td>
<td>>228°</td>
</tr>
<tr>
<td>17</td>
<td>morin</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td></td>
<td>>330°</td>
</tr>
<tr>
<td>18</td>
<td>artocarpesin</td>
<td>H</td>
<td>OH</td>
<td>Pr</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td></td>
<td>13.5°</td>
</tr>
<tr>
<td>19</td>
<td>norartocarpesin</td>
<td>H</td>
<td>OH</td>
<td>CHCH(CH₃)₂</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td></td>
<td>21.1°</td>
</tr>
<tr>
<td>20</td>
<td>(-/-)-angolensin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>200</td>
</tr>
</tbody>
</table>

* Means promotion effect which could act as cofactor like diphenol (Sánchez-Ferrer et al., 1995).
* Obtained from Table 2. See Fig. 8. * Pr: prenyl. * Ger: geranyl.

Fig. 6 The chemical structures and IC₅₀ of active components from A. incisus.

The boxed part: 4-substituted resorcinol skeleton.
Pr: prenyl.
Ger: geranyl.
Fig. 7 The chemical structure of 16.
The boxed part: 4-substituted resorcinol skeleton.

Tyrosinase and 5α-Reductase Inhibitory Components from Artocarpus incisus Tree

The nine compounds (8, 9, 12, 16, 18, 19, 23, 24 and 25) isolated from A. incisus were examined for their inhibitory activity to mushroom tyrosinase in chapter 2.2. Among these compounds, without 12 and 16, exhibited potent tyrosinase inhibitory activity [Table 3, Kojic acid (positive standard, substrate: L-tyrosine): IC$_{50}$=8.66 µM]. Interestingly, the tyrosinase inhibitory compounds from A. incisus had 4-substituted resorcinol as a common skeleton (Fig. 6). This brief structure-activity relationship could mean that the 4-substituted resorcinol skeleton is important for revealing the tyrosinase inhibitory activity. In addition, it should be noted that artocarpin (16) did not show inhibitory activity, in spite of having 4-substituted resorcinol skeleton at ring B (Fig. 7). Therefore, to clarify which substructure is important to reveal the tyrosinase inhibitory effect, further structure-activity relationships were examined in detail. The test compounds were flavonoids and stilbenes isolated from various plants, synthesized or commercially available. The results were summarized in Table 3 and Fig. 8.

Among five stilbenes (21-25), four (22-25) having 4-substituted resorcinol skeleton showed potent tyrosinase inhibitory activities, but one (21) did not. These results can be explained by the fact that hydroxylation of 21, resulting in 22, increases its inhibitory activity dramatically. Also, the addition of isoprenyl chain (prenyl or geranyl) to the stilbenes having 4-substituted resorcinol skeleton slightly increased their inhibitory activities (22: IC$_{50}$ = 0.98 µM → 23: IC$_{50}$ = 0.66 µM → 24: IC$_{50}$ = 0.26 µM). Resveratrol (3,4',5-trihydroxystilbene), 3,5-dihydroxy-4'-methoxystilbene, 3,4'-dimethoxy-5-hydroxystilbene, trimethylresveratrol and piceid (4-α-β-D-glucosyl resveratrol) showed much less inhibitory effect than oxyresveratrol (22) on dopa oxidase activity of mushroom tyrosinase (Shin et al., 1998). Therefore, in the case of stilbenes, the 4-substituted resorcinol skeleton must be the most important feature for revealing potent tyrosinase inhibition.

Among 20 flavonoids, only four flavonoids (8, 9, 18 and 19), which have 4-substituted resorcinol skeleton at ring B, showed potent tyrosinase inhibitory activity. Glabridin (one of the isoflavans) (Yokota et al., 1998), kurarinone (flavanone), kushenol N (dihydroflavonol), kosamol A (dihydroflavonol) (Lee et al., 1997) and 5-(3-(2,4-dihydroxyphenyl)propyl)-3,4-bis(3-
methyl-2-butenyl)-1,2-benzenediol (1,3-diphenylpropane derivative) (Jang et al., 1997) were reported as potent tyrosinase inhibitors that have a common 4-substituted resorcinol skeleton. In contrast, 16, 17 and 20 did not show tyrosinase inhibitory activity, in spite of having 4-substituted resorcinol skeleton at ring B. These results indicate that for flavonoids not only a 4-substituted resorcinol skeleton but also additional structural factors are necessary to reveal tyrosinase inhibitory activity.

In the case of flavonoids having a 4-substituted resorcinol skeleton, except for 20 (which belongs to α-methyldeoxybenzoin), the flavanone type compounds (flavanones and their C-3 substituted derivatives) were more potent inhibitors than were the flavone type compounds (flavones and their C-3 substituted derivatives), e.g. 8 showed a stronger inhibitory effect than did the corresponding flavone 17. Introduction of a C-3 substituent to the flavanone (9 → 8) and flavone type (18 and 19 → 16 and 17) dramatically decreased their activity. Thus, even in flavonoids having 4-substituted resorcinol skeleton, introduction of a C-3 substituent decreased inhibitory activity, probably because of its steric hindrance (Fig. 9).

Compound 20 did not show tyrosinase inhibitory activity, in spite of having a 4-substituted resorcinol skeleton. To clarify which substructure causes inactivity of 20, the author examined the effects of different C-4 substituents on the tyrosinase inhibitory activity of 4-substituted resorcinols (Table 4). Table 4 demonstrates the powerful influence of the C-4 substituent on the potency of these compounds. Surprisingly, introduction of a carbonyl substituent (26-30)
Fig. 9 The effect of the introduction of C3 substituent of flavonoids which have 4-substituted resorcinol skeleton on tyrosinase (substrate: L-tyrosine).
Pt: prenyl.

Table 4 Inhibitory activity of 4-substituted resorcinols on tyrosinase (substrate: L-tyrosine)

<table>
<thead>
<tr>
<th>No</th>
<th>substituent (R)</th>
<th>IC50 (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>CHO</td>
<td>>200</td>
</tr>
<tr>
<td>27</td>
<td>COCH₃</td>
<td>>200</td>
</tr>
<tr>
<td>28</td>
<td>COOH</td>
<td>>200</td>
</tr>
<tr>
<td>29</td>
<td>CONHCH₂CH₂OH</td>
<td>>200</td>
</tr>
<tr>
<td>30</td>
<td>COC₆H₅</td>
<td>>200</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>436</td>
</tr>
<tr>
<td>32</td>
<td>H</td>
<td>227</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>185</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>58.0</td>
</tr>
<tr>
<td>35</td>
<td>Cl</td>
<td>13.0</td>
</tr>
<tr>
<td>36</td>
<td>CH₃</td>
<td>12.0</td>
</tr>
<tr>
<td>37</td>
<td>CH₃C₆H₅</td>
<td>2.80</td>
</tr>
<tr>
<td>38</td>
<td>CH₃(CH₂)₄CH₃</td>
<td>1.98</td>
</tr>
<tr>
<td>39</td>
<td>CH₃(CH₂)₄CH₃</td>
<td>1.63</td>
</tr>
<tr>
<td>40</td>
<td>CH₃CH₃</td>
<td>1.10</td>
</tr>
<tr>
<td>41</td>
<td>CH₃CH₂CH₃</td>
<td>0.91</td>
</tr>
</tbody>
</table>
decreased inhibitory activity dramatically. Also, compounds having an azo substituent (31, 33) showed much less inhibitory activity than did 22-25, in spite of having similar shape to stilbenes concerning the double bond. Both the carbonyl groups at benzyl position and azo substituents are possible to form an intramolecular hydrogen bond with their ortho-hydroxyl group. This intramolecular hydrogen bonding may inhibit the hydroxyl group to bind the enzyme, and therefore, appears to cause inactivation of compounds having 4-substituted resorcinol skeleton. Introductions of chlorine (35), alkyl (36-41) or phenyl methyl (34) substituents at C-4 showed potent inhibitory activities. The non-substituted resorcinol 32 did not show potent inhibitory activity.

Kinetic studies were carried out with the five active compounds (8, 9, 23-25) from A. incisus, as well as the related compounds (22, 32 and 40). The Lineweaver-Burk plot of 23 for DL-DOPA as a substrate is shown in Fig. 10. The mode of inhibition of tyrosinase by 23 was competitive. In addition, similar results were given by 9, 22, 24, 25 and 40 (Table 5). Compounds 8 and 32 did not show typical inhibitory patterns. Interestingly, these compounds (8 and 32) exhibited some stimulatory activity to the enzyme at low concentration, similar to a previous report (Kubo et al., 1994). The results obtained so far suggest that (a) 8 and corresponding flavanone 9 not possessing a C-3 hydroxyl group affect mushroom tyrosinase in different ways, and that (b) 32 and corresponding 4-substituted resorcinols (9, 22-25 and 40) affect mushroom tyrosinase in different ways. However, further work is needed to clarify the inhibitory mechanism of 8 and 32.

Thus, C-4-substituent of resorcinol derivatives and C-3-substituent of flavonoids that have 2',4'-dihydroxyphenyl skeleton seem to significantly affect tyrosinase activity.

![Fig. 10 Lineweaver-Burk plots of mushroom tyrosinase and DL-DOPA in the absence or presence of 4'-prenyloxyresveratrol (23).](image-url)
Table 5 The tyrosinase inhibitory effects of representative 4-substituted resorcinols tested in reaction using DL-DOPA as a substrate

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC₅₀ (µM)</th>
<th>Ki (µM)</th>
<th>Type of inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>90.4</td>
<td>47.8</td>
<td>Competitive</td>
</tr>
<tr>
<td>22</td>
<td>20.8</td>
<td>9.24</td>
<td>Competitive</td>
</tr>
<tr>
<td>23</td>
<td>17.6</td>
<td>8.70</td>
<td>Competitive</td>
</tr>
<tr>
<td>24</td>
<td>19.2</td>
<td>13.4</td>
<td>Competitive</td>
</tr>
<tr>
<td>25</td>
<td>6.35</td>
<td>8.49</td>
<td>Competitive</td>
</tr>
<tr>
<td>40</td>
<td>3.80</td>
<td>5.39</td>
<td>Competitive</td>
</tr>
<tr>
<td>Kojic acid</td>
<td>17.2</td>
<td>11.8</td>
<td>Mix</td>
</tr>
</tbody>
</table>

The tyrosinase inhibitory effects (IC₅₀, Ki and inhibition type) of representative 4-substituted resorcinols using DL-DOPA as a substrate are shown in Table 5. Compound 40 showed stronger inhibitory activity than that of kojic acid, using both L-tyrosine and DL-DOPA as a substrate but the inhibitory effect of 9 and 22-24 were weaker than that of kojic acid using DL-DOPA as a substrate, in spite of showing much stronger inhibitory activity using L-tyrosine as a substrate. Thus, the order of inhibitory effects of these compounds having 4-substituted resorcinol skeleton were different depending on whether L-tyrosine or DL-DOPA was used as a substrate, in comparison with kojic acid. However, it should be noted that these results had been obtained by a simple colorimetric assay method, not by a polarographic assay.

Oxyresveratrol (22) showed competitive inhibitory type in this study, although it (22) was recently reported as a noncompetitive inhibitor on mushroom tyrosinase with L-DOPA as a substrate (Shin et al., 1998). The difference may be explained as follows. It was reported recently that 4-substituted resorcinols such as 4-ethylresorcinol, 4-hexylresorcinol and 4-dodecylresorcinol could be classified as slow-binding competitive inhibitors of mushroom tyrosinase (Jiménez et al., 1997). Therefore, the difference in the inhibitory type of oxyresveratrol against tyrosinase between us and Shin et al., seems to be due to estimated tyrosinase inhibitory activity by different limited reaction times. To characterize the behavior of these inhibitors completely, a further kinetic study must be needed in order to determine the kinetic parameters (Kᵢ, Kᵢ' and kᵢ) according to Jiménez et al. However, in this study, the results of IC₅₀ by using assays with limited reaction time are worthy and valid parameter for understanding the structure-activity relationships.

Some compounds from the moraceous plants have exhibited interesting biological activity (Nomura et al., 1998). It has been reported that some flavonoids isolated from Artocarpus species possess inhibitory effects on K⁺-dependent amino acid transport (Parenti et al., 1998), arachidonate 5-lipoxygenase and mouse TNF-α release, cytotoxicity, antiplatelet activity and antibacterial activity against cariogenic bacteria (Nomura et al., 1998). Thus the Artocarpus plants are important medicinal resources. In this study, we found a new facet of the biological activity of the Artocarpus plant, tyrosinase inhibitory activity.
Some 4-position substituted resorcinols have been reported as inhibitors of enzymatic (polyphenol oxidase) browning in food and beverages (McEvily et al., 1992). However, their structure-activity relationships have been poorly understood. Therefore, our identification of specific compounds having 4-position substituted resorcinol skeleton as potent inhibitors, as outlined above, and the notion that hydrophobic and less bulky substituents were important for controlling the tyrosinase inhibitory effect, may lead to the design and discovery of new tyrosinase inhibitors (Fig. 11). The natural products and synthesized chemicals having 4-substituted resorcinol skeleton should be reinvestigated with regard to their roles as tyrosinase inhibitors. Furthermore, from the chemotaxonomic point of view, specific extracts of plants known as having flavonoids, stilbenes or other types with 4-substituted resorcinol skeleton, for example Moraceae (Jang et al., 1997) or Leguminosae (Yokota et al., 1998; Lee et al., 1997), are candidates for tyrosinase inhibitory materials. Finally it should be noted that these compounds not only inhibit the tyrosinase but also have other properties, such as antioxidant, antimutagen and cancer chemopreventive activities exhibited by resveratrol derivatives (Jang et al., 1997).

2.3.3. Summary

Several flavonoids, stilbenes and related 4-substituted resorcinols, obtained from A. incisus and other plants or synthesized, were tested for their inhibitory activity against tyrosinase. The structure-activity relationships suggested that specific natural or synthesized compounds having 4-substituted resorcinol skeleton have potent tyrosinase inhibitory ability. Kinetic studies have

![Diagram](image_url)

Fig. 11 Summarized structure-activity relationships of compounds having 4-substituted resorcinol skeleton.
indicated that such specific compounds exhibit competitive inhibition of the oxidation of DL-DOPA by mushroom tyrosinase. These findings could lead to the design and discovery of new tyrosinase inhibitors.

3. 5α-Reductase Inhibitors

3.1. Introduction

Δ⁴⁻3-Oxo-steroid 5α-oxidoreductase (EC 1.3.99.5: 5α-reductase) is present in many androgen-sensitive tissues such as the prostate and seminal vesicles: it converts testosterone to a more potent androgen, 5α-dihydrotestosterone (Anderson et al., 1968; Bruchovsky et al., 1968), which then binds to androgen receptor to exert its biological function (Liao et al., 1989). Inhibition of 5α-reductase would limit the availability of 5α-dihydrotestosterone, therefore, 5α-reductase inhibitors would be useful in selective treatment of androgen-dependent abnormalities, such as benign prostate hyperplasia, prostate cancer, hirsutism, male pattern alopecia and acne, without affecting testosterone-dependent testicular function, sexual behavior, and muscle growth (Russell et al., 1994). Most 5α-reductase inhibitors are steroid derivatives or compounds with steroid-like structures. Of these, the 4-aza steroids such as 17β-(N,N-diethyl)carbamoyl-4-methyl-4-aza-5α-androstan-3-one (4-MA) and finasteride have been the most extensively studied (Brooks et al., 1981, Liang et al., 1985). The steroidal inhibitors have the possibility of an affinity for the androgen receptor and are expected to produce undesirable anti-androgen effects such as impotence, impairment of muscle growth, and gynecomastia. Also, several nonsteroidal inhibitors have been synthesized, such as ONO-3805 (Russell et al., 1994) and LY191704 (Jones et al., 1993). On the other hand, fewer naturally occurring inhibitors have been reported, for example unsaturated fatty acids (Liang et al., 1992) and (-)-epigallocatechin-3-gallate (Liao et al., 1995). Therefore, the author searched for naturally occurring new type 5α-reductase inhibitors, especially from tropical plants.

We report here the 5α-reductase inhibitory components from PNG and Thai plants, respectively, and their structure-activity relationships.

3.2. The 5α-Reductase Inhibitory Components from Papua New Guinean Woods

3.2.1. Experimental

3.2.1.1. Materials

NADPH was obtained from Sigma (Missouri, USA). The Coomassie brilliant blue dye reagent for protein determination was purchased from Bio-Rad Laboratories (California, USA).

3.2.1.2. Sample woods

The heartwoods of the following 22 PNG wood species were obtained from PNG Forest Research Institute: Albizia falcataria, Alstonia scholaris, Amoora sp., Anthocephalus chinensis, Artocarpus incisus L. f., Buchanania sp., Cananga adorata, Canarium indicum, Canarium oleosum, Dracontomelon dao, Dysosylum pettigrewianum, Eucalyptus deglupta, Garcinia latassi-
ma, Hibiscus ellipticifolius, Intsia bijuga, Neonuclea acuminata, Octomeles sumatrana, Palaquium galactoxylum, Pterocarpus indicus, Terminalia sp., Toona surenii and Xanthophyllum papuanum. All voucher specimens are preserved at the herbarium of the Department of Forest Products, Kyushu University, in Japan. A large amount of wood (45 kg) of A. incisus was obtained from Okinawa prefecture, Japan.

3.2.1.3. Isolated compounds from A. incisus

Artocarpin (1), artocarpesin (3), isoartocarpesin (4), (+)-norartocarpanone (5), (+)-dihydromorin (6), chlorophorin (7), 4-prenyloxyresveratrol (8), and artocarbene (9) were isolated from diethyl ether extracts of heartwood of A. incisus. Their isolation, purification, and identification were described in chapter 2.

Cycloartocarpin (2): Air-dried milled heartwood of A. incisus (37 kg) was extracted for 10 days with Et₂O at room temperature, and the extract was concentrated to dryness. The dry Et₂O extract (330 g) was crystallized successively from Et₂O / hexane and MeOH. The yellow solid deposited (240 g) was collected and recrystallized from MeOH / H₂O, yielding compound 1. The parts of the mother liquor (23.4 g) were separated by open column chromatography (CC) on silica gel (2 kg, 10 X 150 cm, ethyl acetate/hexane 1/2). A crude fraction containing compound 2 [3.5 g, tₗ between 2.0 and 4.0 1, TLC (silica gel, ethyl acetate/hexane 1/1, Rf 0.6–0.8, UV detection)] was obtained. Compound 2 (20 mg) was isolated from a part of the crude fraction mentioned above (100 mg) by preparative HPLC (Inertsil PREP-ODS: 20 mm i.d. X 250 mm) using H₂O / CH₃CN (20 / 80, 12 ml/min) (detection at 280 nm, Rt: 30 min). MS and NMR matched well to published data (Nair et al., 1964).

3.2.1.4. Preparation of liver microsomes

The liver microsomes from female rats were prepared by the method previously reported (Liang et al., 1992) with modification. Two mature Sprague-Dawley female rats (300 g) were killed. The livers were removed and minced in a beaker with a pair of scissors. The minced tissue was then homogenized in 3-tissue volume medium A (0.32 M sucrose, 1 mM dithiothreitol, and 20 mM sodium phosphate, pH 6.5). The homogenate was then centrifuged at 10,000 ×g for 10 min. The resulting pellet was washed with 2-pellet volume medium A. The combined supernatant from the two centrifugations was further centrifuged at 105,000 ×g for 1 h. The washed microsomes were suspended in 4 ml medium A, and the dispersion of microsomes was achieved using a syringe with 18G, 23G, and 25G needles in succession. The microsome suspension was divided into small aliquots and stored at -80°C. The microsomes were diluted with medium A just before use. Protein content in the suspension was determined by the Coomassie brilliant blue dye reagent.

3.2.1.5. 5α-Reductase assay

The standard reaction mixture, in a final volume of 3.0 ml, contained microsomes (1 mg of protein), 150 μM testosterone in 100 μl of ethanol, 167 μM NADPH, and medium A, with or
without the indicated amount of a sample in 100 \(\mu l \) of DMSO. The reaction was started by the addition of microsomes to the pre-heated reaction solution in a tube. After 10 min the incubation was terminated by adding 100 \(\mu l \) of 3M NaOH, and then 100 \(\mu l \) of 1.0 mM cholesterol acetate in \(\alpha \)-hexane was added as the internal standard for GC-MS. Forty ml of diethyl ether was added to extract metabolites, and the tubes were capped and shaken. The water phase was frozen in a-20\(^\circ\)C freezer, and the organic phase was decanted and evaporated under a reduced pressure. Residue was dissolved in 100 \(\mu l \) ethyl acetate for GC-MS. GC-MS analyses were conducted on a Shimazu (Kyoto, Japan) GC-17A gas chromatograph equipped with a Neutra Bond-5 (30 m by 0.25 mm; film thickness, 0.4 \(\mu M \); GL Sciences Inc., Tokyo, Japan) and coupled to a QP-5000 quadruple mass spectrometer injector. The mass spectrometer was operated in the electron impact mode at 70 eV. Helium was used as the carrier gas with a flow rate of 0.8 ml/min. The first oven temperature was 240\(^\circ\)C, and the temperature was then increased to 300\(^\circ\)C at a rate of 10\(^\circ\)/min. The sample (1 \(\mu l \)) was injected into the GC at an injector temperature of 310\(^\circ\)C. The 5 \(\alpha \) -reductase activity was measured by analyzing the extent of the conversion of testosterone to 5 \(\alpha \) -dihydrotestosterone. The 5 \(\alpha \) -reductase inhibitory activity of each sample was calculated as follows:5 \(\alpha \) -reductase inhibitory activity (\%)=\((A_o-A_s)/A_o \times 100\). \(A_o \) and \(A_s \) represent the peak areas of dihydrotestosterone in the absence and presence of the sample, respectively. Here, the peak areas of dihydrotestosterone were normalized to those of the internal standard, cholesterol acetate. The peak areas of other products represented less than 5\% of the peak area of dihydrotestosterone formation, within the experimental error. Each experiment was carried out in duplicate or triplicate, and replicate values were usually within 5\% of each other. \(\alpha \) -Linolenic acid (Sigma, Missouri, USA) was used as a positive standard.

\[\text{Fig. 12 The effect of methanol extracts from heartwoods of PNG woods on 5 \(\alpha \) -reductase activity.} \]

(Sample concentration: 100 \(\mu g/ml \))
3.2.2. Results and Discussion

In the preliminary screening, the author tested the methanol extracts of the meal of heartwood of 22 PNG wood species for their 5 α-reductase inhibitory activities at the concentration of 100 μg/ml (Fig. 12). *D. dao*, *Terminalia sp.*, *T. surenii*, *I. bijuga*, *Amoora sp.*, *C. indicum*, *E. deglupta*, *A. incisus*, and *D. pettigrewianum* showed potent 5 α-reductase inhibitory activity above 85%. These species were further investigated to determine their 5 α-reductase inhibitory activity at the concentration of 50 μg/ml. As can be seen from Fig. 13, *A. incisus* showed the

![Fig.13 The effect of methanol extracts from heartwoods of PNG woods on 5 α-reductase activity.](Sample concentration: 50 μg/ml)

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC50 (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophorin (7)</td>
<td>37</td>
</tr>
<tr>
<td>Artocarpin (1)</td>
<td>85</td>
</tr>
<tr>
<td>4'-prenyloxyresveratrol (8)</td>
<td>128</td>
</tr>
<tr>
<td>Artocarpesin (3)</td>
<td>216</td>
</tr>
<tr>
<td>Artocarbone (9)</td>
<td>242</td>
</tr>
<tr>
<td>Cycloartocarpin (2)</td>
<td>No inhibition at 230 μM</td>
</tr>
<tr>
<td>Isoartocarpesin (4)</td>
<td>No inhibition at 282 μM</td>
</tr>
<tr>
<td>(+)-Norartocarpanone (5)</td>
<td>No inhibition at 347 μM</td>
</tr>
<tr>
<td>(+)-Dihydromorin (6)</td>
<td>No inhibition at 657 μM</td>
</tr>
<tr>
<td>α-Linolenic acid (positive control)</td>
<td>116</td>
</tr>
</tbody>
</table>
highest inhibitory activity, which is why it was selected for further investigation. We had already investigated some constituents in diethyl ether extract of heartwood of A. incisus in chapter 2. Also, methanol extracts of the meal that had been extracted by diethyl ether showed much less 5α-reductase inhibitory activity (data not shown). Therefore, we focused on the diethyl ether extracts of A. incisus and investigated the 5α-reductase inhibitory effects of nine compounds that had been isolated from the diethyl ether extracts (Fig. 14). The results are shown in Table 6. α-linolenic acid, known as a naturally occurring potent inhibitor, was used as a positive standard. It should be noted that finasteride, which is known as a potent steroidal inhibitor, showed IC_{50} of 0.73 μM. Artocarpin (1) and chlorophorin (7) showed stronger inhibitory activity than did α-linolenic acid, with chlorophorin (7) showing especially strong inhibitory activity. Artocarpesin (3), 4-prenyloxyresveratrol (8), and artocarbene (9) showed moderate inhibitory activity, while cycloartocarpin (2), isoartocarpesin (4), (+)-norartocarpanone (5), and (+)-dihydromorin (6) did not show any inhibitory activity at the indicated concentrations (Table 6).

Fig. 14 The chemical structures of compound 1-9.
3.2.3. Summary

The methanol extract of heartwood of *A. incisus* showed potent 5α-reductase inhibitory activity. The author investigated the 5α-reductase inhibitory effects of nine compounds isolated from *A. incisus*. Chlorophorin (IC$_{50}$ = 37 μM) and artocarpin (IC$_{50}$ = 85 μM) showed more potent inhibitory effects than did α-linolenic acid, which is known as a naturally occurring potent inhibitor.

3.3. The 5α-Reductase Inhibitory Components from Thai Plants

3.3.1. Experimental

3.3.1.1. Sample plants

3.3.1.2. 5α-Reductase assay

5α-reductase inhibitory activity was assayed by the method described in chapter 3.2.1.5.

3.3.1.3. Extraction of samples

The leaves (*L. leucocephala*, *M. hirsuta*, *A. galanga*, *I. maerothyra*, *A. squamosa*, *P. foetida*, *A. scholaria*, *P. betle*, *T. indica*, *Eucalyptus* sp., *A. incisus*, *F. indica* and *A. myriophylla*), flowers (*C. ternatea*), vines (*P. foetida*), fruits (*A. concinna*) and skin of fruits (*C. hystrix*) were dried and milled. The 100 g of milled samples were extracted with acetone at room temperature for 24 hrs and then filtrated through the filter paper quality No.4. The extractions were performed for 3 times and acetone extracts were pooled together, then concentrated in vacuo at 40°C.

The juice of *C. hystrix* fruits was obtained by squeezing the peeled fruits. The juice was concentrated in vacuo at 50°C, then freeze-dried.

3.3.1.4. Extraction and separation of extractives of *A. incisus*

The acetone extract (2g) of leaves of *A. incisus* were suspended in water and partitioned with *n*-hexane, diethyl ether and ethyl acetate, successively to give *n*-hexane-soluble (0.438g, 22% of the acetone extract), diethyl ether-soluble (1.452g, 72.6%), ethyl acetate-soluble (0.026g, 1.3%) and aqueous portion (0.086g, 4.3%), respectively. The diethyl ether-soluble portion (1g) was fractionated into 8 fractions (fr. A–H) by column chromatography on silica gel (Wakogel C-200, Wako, Osaka, Japan) (200g) eluting with ethyl acetate-*n*-hexane gradient [ethyl acetate : *n*-hexane = 1 : 3, 0.5 l (fr. A:0.081g, fr. B:0.019g)→1 : 2, 0.5 l (fr. C:0.011g, fr.}
Tyrosinase and 5α-Reductase Inhibitory Components from Artocarpus incisus Tree

D: 0.400 g → 1: 1, 0.5 ℓ (fr. E: 0.134 g) → 1: 0.5, 0.5 ℓ (fr. F: 0.081 g) → ethyl acetate, 0.5 ℓ (fr. G: 0.197 g) → MeOH, 0.5 ℓ (fr. H: 0.003 g). Of these, fr. D (TLC, silica gel, ethyl acetate/n-hexane, 1:3, Rf 0.2-0.5) was obtained as the 5α-reductase inhibitory fraction. Compound 10 (95 mg, 0.53% of dried leaves) and 11 (24 mg, 0.14% of dried leaves) were isolated as the active constituents from a portion of fr. D (320 mg) by preparative HPLC (Inertsil PREP-ODS; 20 mm i.d. × 250 mm) using H2O/CH3CN (40/60), 12 ml/min.

3.3.1.5. Isolated compounds from A. incisus

All nuclear magnetic resonance (NMR) experiments were performed at 400 MHz. Sample was dissolved in acetone-d6, and chemical shifts were referenced to internal TMS for 1H NMR and to deuterated solvents for 13C-NMR.

Compound 10, 2-geranyl-2',3',4',4'-tetrahydroxy-dihydrochalcone: yellow powder, FAB-MS (glycerol): m/z = 409 ([M-H]-). 1H-NMR (acetone-d6): δ = 1.54 (3H, d, J = 0.73 Hz, 9'-H), 1.60 (3H, d, J = 0.98 Hz, 8'-H), 1.75 (3H, d, J = 0.98 Hz, 10''-H), 1.97 (2H, m, 4''-H), 2.04 (2H, m, 5''-H), 2.93 (2H, m, β-H), 3.17 (2H, m, α-H), 3.45 (2H, dd, J = 0.73, 6.6 Hz, 1''-H), 5.07 (1H, m, 6'-H), 5.19 (1H, m, 2''-H), 6.33 (1H, d, J = 2.4 Hz, 3'-H), 6.41 (1H, dd, J = 2.4, 8.9 Hz, 5'-H), 6.59 (1H, d, J = 8.1 Hz, 5-H), 6.65 (1H, d, J = 8.1 Hz, 6-H), 7.77 (1H, d, J = 8.9 Hz, 6'-H), 12.82 (1H, s, 2'-OH). 13C-NMR (acetone-d6): δ = 16.5 (10'-C), 17.7 (9''-C), 25.8 (8''-C), 25.9 (1''-C), 27.5 (5'-C), 28.1 (β-C), 40.2 (α-C), 40.4 (4''-C), 103.1 (3'-C), 108.6 (5'-C), 113.3 (5-C), 113.8 (1'-C), 120.5 (6-C), 124.4 (2''-C), 124.9 (6'-C), 127.3 (2-C), 131.5 (7'-C), 132.1 (1-C), 133.3 (6''-C), 134.9 (3''-C), 143.4 (3-C), 144.1 (4-C), 165.2 (4'-C), 166.1 (2'-C), 204.9 (C=O).

Compound 11, 3'-Geranyl-2',3',4',4'-tetrahydroxychalcone, Yellow powder. HRFABMS: [M+H]+ m/z = 409.2014 (C25H29O6 requires m/z = 409.2015). 1H-NMR (acetone-d6): δ = 1.52 (3H, s, 9''-H), 1.58 (3H, d, J = 0.98 Hz, 8''-H), 1.77 (3H, d, J = 0.98 Hz, 10''-H), 1.94 (2H, m, 4''-H), 2.02 (2H, m, 5''-H). 3.36 (2H, d, J = 7.3 Hz, 1'-'H), 5.07 (1H, m, 6''-H), 5.27 (1H, m, 2''-H), 6.51 (1H, d, J = 8.8 Hz, 5'-H), 6.88 (1H, d, J = 8.3 Hz, 5-H), 7.20 (1H, dd, J = 2.0, 8.3 Hz, 6-H), 7.32 (1H, d, J = 2.0 Hz, 2-H), 7.67 (1H, d, J = 15.1 Hz, α-H), 7.75 (1H, d, J = 15.1 Hz β-H), 7.96 (1H, d, J = 8.8 Hz, 6'-H), 13.9 (1H, s, 2'-OH). 13C-NMR (acetone-d6): δ = 16.3 (10'-C), 17.7 (9''-C), 22.2 (1''-C), 25.8 (8''-C), 27.4 (5'-C), 40.5 (4''-C), 107.8 (5'-C), 114.2 (1'-C), 115.7 (2'-C), 115.9 (3'-C), 116.2 (5-C), 118.3 (α-C), 123.0 (2''-C), 123.1 (6-C), 124.9 (6'-C), 128.0 (1-C), 129.9 (6''-C), 131.3 (7'-C), 134.9 (3''-C), 145.0 (β-C), 146.1 (3-C), 148.9 (4-C), 162.4 (4'-C), 164.9 (2''-C), 192.6 (C=O).

3.3.2. Result and Discussion

The 17 samples prepared from 16 Thai plant species were examined for 5α-reductase inhibitory activity at the concentration of 200 μg/ml. The acetone extracts of A. incisus and I. maerothyra showed potent inhibitory activity at 75% and 79% on 5α-reductase, respectively (Table 7). In our preliminary activity-guided fractionation of the acetone extract of I.
Table 7 The effect of 17 samples prepared from Thai plants on 5α-reductase activity.
(sample concentration: 200 μg/ml)

<table>
<thead>
<tr>
<th>Sample</th>
<th>5α-reductase inhibitory activity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone extract</td>
<td>0</td>
</tr>
<tr>
<td>Alstonia scholaria (leaves)</td>
<td>1</td>
</tr>
<tr>
<td>Annona squamosa (leaves)</td>
<td>1</td>
</tr>
<tr>
<td>Alpinia galanga (leaves)</td>
<td>1</td>
</tr>
<tr>
<td>Tamarindus indica (leaves)</td>
<td>5</td>
</tr>
<tr>
<td>Albizia myriophylla (leaves)</td>
<td>21</td>
</tr>
<tr>
<td>Acacia concinna (fruits)</td>
<td>23</td>
</tr>
<tr>
<td>Flagellaria indica (leaves)</td>
<td>25</td>
</tr>
<tr>
<td>Leucaena leucocephala (leaves)</td>
<td>25</td>
</tr>
<tr>
<td>Citrus hystrix (skin of fruits)</td>
<td>29</td>
</tr>
<tr>
<td>Clitoria ternatea (flowers)</td>
<td>47</td>
</tr>
<tr>
<td>Eucalyptus sp. (leaves)</td>
<td>47</td>
</tr>
<tr>
<td>Passiflora foetida (vines)</td>
<td>47</td>
</tr>
<tr>
<td>Piper betle (leaves)</td>
<td>51</td>
</tr>
<tr>
<td>Mitragyna hirsuta (leaves)</td>
<td>53</td>
</tr>
<tr>
<td>Artocarpus incisus (leaves)</td>
<td>75</td>
</tr>
<tr>
<td>Ixora maerothyra (leaves)</td>
<td>79</td>
</tr>
<tr>
<td>Juice</td>
<td>14</td>
</tr>
</tbody>
</table>

5α-reductase inhibitory activity (%) = \(\frac{A_0 - A}{A_0} \times 100 \)

Where \(A_0 \) and \(A \) represent peak areas of 5α-dihydrotestosterone in the absence and presence of sample, respectively.

Maerothyra, \(\alpha \)-linolenic acid, which is already known as a potent inhibitor (Liang et al., 1992), was identified as a main active component in it by GC-MS. Therefore, *A. incisus* was selected for further investigation. The acetone extract of leaves of *A. incisus* was partitioned by \(n \)-hexane, diethyl ether and ethyl acetate. The 5α-reductase inhibitory activity of \(n \)-hexane-soluble, diethyl ether-soluble, ethyl acetate-soluble and aqueous portion was 20, 67, 33 and 0% at the concentration of 100 μg/ml, respectively. The diethyl ether-soluble portion showing the strongest 5α-reductase inhibitory activity was submitted to further separation by silica gel CC giving 8 fractions [5α-reductase inhibitory activity (%) at 100 μg/ml: fr. A (24%), fr. B (21%), fr. C (42%), fr. D (90%), fr. E (46%), fr. F (13%), fr. G (4%) and fr. H (13%)]. Fr. D showed the strongest inhibitory activity. Further separation of fr. D by preparative HPLC gave the active constituents, compound 10 and 11.

Compound 10 was identified as follows. The \(^{13}\text{C}\)-NMR spectrum revealed 25 carbon atoms (DEPT: 10 × C, 7 × CH, 5 × CH₂, and 3 × CH₃). The FAB mass spectral data ([M-H] = 409) together with the \(^{13}\text{C}\)-NMR data suggested the molecular formula to be \(\text{C}_{25}\text{H}_{30}\text{O}_5 \). Compound 10 showed characteristic signals for a dihydrochalcone at \(\delta 2.93 \) (2H, \(m, \text{CH}_- \beta \)) and 3.17 (2H, \(m, \text{CH}_- \alpha \)) in its \(^1\text{H}\) NMR spectrum, and \(\delta 28.1 \) (\(\text{C}^- \beta \)), 40.2 (\(\text{C}^- \alpha \)) and 204.9 (\(\text{C}=\text{O} \)) in its
The 1H-NMR spectrum showed the presence of a geranyl [δ 1.54 (3H, d, J= 0.73, CH₃-9°), δ 1.60 (3H, d, J= 0.98, CH₃-8°), δ 1.75 (3H, d, J= 0.98, CH₃-10°), 1.97 (2H, m, CH₂-4°), 2.04 (2H, m, CH₂-5°), 3.45 (2H, dd, J= 0.73, 6.6, CH₂-1°), 5.07(1H, m, CH-6°), 5.19(1H, m, CH-2°)] and a chelated hydroxyl group [δ 12.82 (1H, s, OH)], in addition to a set of ortho-coupled one proton doublets [δ 6.59 and 6.65 (each J= 8.1 Hz, CH-5, 6)] assignable to that of ring A and three protons in an ABX spin system [δ 6.33 (d, J= 2.4 Hz, CH-3°), 6.41 (dd, J= 2.4, 8.9 Hz, CH-5°) and 7.77(d, J= 8.9 Hz, CH-6°)] due to ring B. The substituted positions of ring A and B were determined as follow. In the HMBC (Heteronuclear Multiple Bond Connectivity) spectrum (Fig. 15), the methylene protons of the geranyl group at δ 3.45 were coupled with three quaternary carbons at δ 127.3 (C-2), 132.1 (C-1) and 143.4 (C-3). Moreover, the benzyl methylene protons at δ 2.93, assigned to H-β of dihydrochalcone moiety, caused a cross-peak with three quaternary carbons at δ 120.5 (C-6), 127.3 (C-2) and 132.1 (C-1). Consequently, the geranyl group was at C-2. Thus, it was concluded that compound 10 was 2'-geranyl-2',3,4,4'-tetrahydroxydihydrochalcone (Fig. 16). In this connection, 13C NMR data of compound 10 were not completely identical to published data (Fujimoto et al., 1987) of 2-ger-
anyl-2',3,4,4'-tetrahydroxydihydrochalcone. Their 13C NMR data showed δ 58.6 (t), but similar value was not in our data. However, it was confirmed that the previous data (Fujimoto et al., 1987) had been erroneously published (Private communication from Fujimoto, Y., Coll. Pharm., Nihon Univ., Japan.). Our MS and 1H NMR data of compound 10 were almost identical to those of 2-geranyl-2',3,4,4'-tetrahydroxydihydrochalcone (Fujimoto et al., 1987). The complete assignment of hydrogen and carbon atoms in the 1H and 13C-NMR spectra of the compound was accomplished for the first time by HMBC and HSQC (Heteronuclear Single Quantum Coherence).

Compound 10, 2-geranyl-2',3,4,4'-tetrahydroxy-dihydrochalcone, showed more potent 5α-reductase inhibitory activity (IC50 = 38 μM) than α-linolenic acid known as naturally occurring potent inhibitor (IC50 = 116 μM). 2-Geranyl-2',3,4,4'-tetrahydroxydihydrochalcone, one of a few naturally occurring C-geranylated dihydrochalcones in nature with highly potent and selective 5-lipoxygenase inhibitory activity, has been isolated from flower part of Indonesian plant, Artocarpus communis (=A. incisus) (Fujimoto et al., 1987, Koshihara et al., 1987). The total synthesis of this compound has been accomplished (Nakano et al., 1989, Chu-sheng et al., 1998). In this study, its new aspect of biological activity, 5α-reductase inhibitory activity, was found.

Compound 11 was deduced as having an elemental formula of C22H28O6 by HRFAB mass spectrometry (obsd. [M+H]+ m/z 409.2014). The 1H NMR spectrum showed characteristic signals of the protons at C-α and C-β positions of the chalcone skeleton [δ 7.67, 7.75 (each 1H, d, J=15.1 Hz)], and revealed the presence of ABC type aromatic protons [δ 6.88 (1H, d, J=8.3 Hz), 7.20 (1H, dd, J=2.0, 8.3 Hz), 7.32 (1H, d, J=2.0 Hz)], AB type aromatic protons [δ 6.51 (1H, d, J=8.8 Hz), 7.96 (1H, d, J= 8.8 Hz)], a geranyl group [δ 1.52, 1.58, 1.77 (each 3H, s), 1.94, 2.02 (each 2H, m), 3.36 (2H, d, J= 7.3 Hz), 5.08, 5.27 (each 1H, m)], and a chelated hydroxyl group [δ 13.9 (1H, s)]. In the HMBC spectrum, the H-1" proton provided a good starting point for the assignment of the proton and carbon resonances from geranyl function. Proton H-1" exhibited correlations with the C-2', C-3', C-4', C-2" and C-3" carbons. This permitted assignment of the C-3' position of the geranyl group. Accordingly, 11 was identi-
Tyrosinase and 5α-Reductase Inhibitory Components from Artocarpus incisus Tree

identified as a novel 3'-geranyl-2',3,4,4'-tetrahydroxychalcone (Fig. 17). The structure and all assignments were confirmed by 1H-1H COSY, 13C-1H COSY and HMBC spectroscopies.

Compound 11 showed more potent inhibitory activity (IC$_{50}$= 104 μM) than α-linolenic acid (IC$_{50}$=116 μM) known as a naturally occurring potent inhibitor (Liang et al., 1992).

3.3.3. Summary

The inhibitory effects of 17 samples prepared from Thai plants on 5α-reductase activity were examined. The acetone extract of leaves of A. incisus showed potent 5α-reductase inhibitory activity. Fractionation guided by 5α-reductase inhibitory led to the isolation of 2geranyl-2',3,4,4'-tetrahydroxydihydrochalcone (10) and a novel geranylated chalcone, 3'-geranyl-2',3,4,4'-tetrahydroxychalcone (11) from the acetone extract of leaves of A. incisus. These compounds showed more potent inhibitory effect (2geranyl-2',3,4,4'-tetrahydroxydihydrochalcone (10): IC$_{50}$= 38 μM, 3'-geranyl-2',3,4,4'-tetrahydroxychalcone (11): IC$_{50}$ = 104 μM) than α-linolenic acid known as a naturally occurring potent inhibitor.

3.4. Structure-Activity Relationships

3.4.1. Experimental

3.4.1.1. Materials

Oxyresveratrol (12) was isolated and identified from Chlorophora excelsa by the method described by Christensen et al., 1989. Butein (2',3,4,4'-tetrahydroxychalcone) (13) was provided by the Laboratory of Wood Chemistry, Department of Forest Products, Faculty of Agriculture, Kyushu University in Japan, isolated from the heartwood of Rhus javanica and its purities and identification had been confirmed by comparison with reference (Imamura et al., 1967). 2',3,4,4'-tetrahydroxydihydrochalcone (14) was prepared by reduction of butein (13) with 10% Pd/C (Aldrich Chem. Co.) and confirmed by 1H NMR. Other reagents and methods were described in chapter 3.2. and 3.3..

3.4.1.2. Results and Discussion

To obtain the information on the structure-activity relationships, the author compared the effects of oxyresveratrol (12) and its derivatives (7 and 8) on 5α-reductase activity. As shown in Fig. 18, the introduction of prenyl substituent (8) and geranyl substituent (7) to oxyresveratrol skeleton (12) increased 5α-reductase inhibitory effects dramatically, respectively (12: no inhibition → 8: IC$_{50}$ = 128 μM → 7: IC$_{50}$ = 37 μM). The contribution of the inhibitory effect of geranyl substituent was higher than that of prenyl substituent. Also, as shown in Fig. 19, the cleavage of the ring D of cycloartocarpin (2), producing prenyl substituent (1), caused potent inhibitory activity (2: no inhibition → 1: IC$_{50}$ = 85 μM). Furthermore, artocarpesin (4), which has 3-methyl-1-butenyl substituent, showed no inhibitory effects, while the same type flavone with prenyl substituent showed potent inhibitory activity (4: no inhibition → 3: IC$_{50}$ = 216 μM). The flavonoids with no prenyl or geranyl substituent (4, 5 and 6) did not show potent inhibitory activity. In the case of chalcones and dihydrochalcone, the similar results were obtained. As
Fig. 18 The chemical structures (7, 8, 12) and 5α-reductase inhibitory activity.

Square box: prenyl or geranyl substituent.

Fig. 19 The chemical structures (1-6) and 5α-reductase inhibitory activity.

Square box: prenyl substituent.
shown in Fig. 20, the introduction of geranyl substituent to butein (13) and 2',3,4,4'-tetrahydroxydihydrochalcone (14) increased 5 α-reductase inhibitory effects dramatically, respectively (13: IC50 = 217 μM → 11: IC50 = 104 μM, 14: IC50 = 285 μM → 10: IC50 = 38 μM). These observations led us to the assumption that, in the case of flavonoids and stilbenes, isoprene derived moieties (prenyl and geranyl) may be the most important skeleton to reveal potent 5 α-reductase inhibitory activity. In particular, geranyl substituent was more desirable than prenyl substituent for revealing potent inhibitory activity.

Some of the isoprenylated compounds from the moraceous plants have exhibited interesting biological activity (Nomura et al., 1998). It has been reported that isoprenoid-substituted flavonoids isolated from Artocarpus species possess inhibitory effects on K+-dependent amino acid transport (Parenti et al., 1998), arachidonate 5-lipoxygenase and mouse TNF-α release, cytotoxicity, antiplatelet activity, and antibacterial activity against cariogenic bacteria (Nomura et al., 1998). Thus the Artocarpus plants are important medicinal resources. In this study, we found a new facet of the biological activity of the Artocarpus plant, 5 α-reductase inhibitory activity.

Several naturally occurring, nonsteroidal compounds had been reported as 5 α-reductase inhibitor. The inhibitory effects of the green tea flavonoids, such as epicatechin-3-gallate and epigallocatechin-3-gallate, against 5 α-reductase were examined. Liao et al proposed that the gallyl or galloyl group of these tea gallates may interact with a specific site on 5 α-reductase, and other parts of the catechin molecule may also be important for inhibition since simple gallates were not active (Liao et al., 1995). Also, the inhibitory effects of some polyunsaturated fatty acids, such as γ-linolenic acid and α-linolenic acid against 5 α-reductase were examined (Liang et al., 1992). Polyunsaturated fatty acids, but not their mono-unsaturated or saturated counterparts, are also moderately potent inhibitors of 5 α-reductase enzyme activity. 5 α-Reductase is a membrane-bound enzyme that appears to require the unique environment of the lipid bilayer for...
activity (Russell et al., 1994). The addition of phospholipids to solubilized enzyme preparations frequently stimulates activity (Cooke et al., 1985), suggesting a role for lipids in modulating enzyme activity. The inhibition of 5α-reductase enzyme activity by polyunsaturated fatty acids may therefore reflect another property of this modulation, such as perturbation of the lipid matrix of microsomal membranes. It is intriguing that key substructures of active compounds from A. incisus, isoprenyl-derived substituents (prenyl and geranyl), have similar shapes to unsaturated alkyl moieties of polyunsaturated fatty acids. Therefore, our present results indicate that isoprenyl derived moieties of active compounds from A. incisus may act on 5α-reductase by a similar mechanism as that of polyunsaturated fatty acids.

It should be noted that the present investigation does not allow any conclusion about the selectivity (type 1 or 2) of 5α-reductase inhibition (Russell et al., 1994), as only one enzyme has been investigated.

Our observations of some 5α-reductase inhibitors having prenyl substituent may lead to the design and discovery of new type of 5α-reductase inhibitors. Furthermore, from the chemotaxonomic point of view, specific extracts of plants known as having flavonoids, stilbenes, or other types with prenyl substituent, for example Moraceae, Leguminosae, Berberidaceae, Platanaceae, Rubiaceae, and Rutaceae (Wollenweber, 1982), could be candidates for 5α-reductase inhibitory materials.

3.4.3. Summary
Several flavonoids and stilbenes, obtained from A. incisus and other plants or synthesized, were tested for their inhibitory activity against 5α-reductase. Structure-activity relationship, in the case of flavonoids and stilbenes, suggested that the presence of an isoprene substituent (prenyl and geranyl) would enhance 5α-reductase inhibitory effects. Our observations of some 5α-reductase inhibitors having prenyl substituent may lead to the design and discovery of new type 5α-reductase inhibitors.

4. Conclusion
Tropical forest area occupies 40-50% of the all forest area in the world. The PNG mainland and surrounding islands, and Thailand possess an extraordinarily rich flora and great diversity of vegetation types that parallel the diverse physiography of lands. A high proportion of the land area has a forest cover, most of it evergreen rain forest. The great diversity of tropical woody plants is reflected in the qualitative and quantitative diversity of extractives of the woods from a chemical point of view of the wood components. Therefore, the tropical woody plants will give us a great chance to find bioactive components.

In this study, we have focused on the inhibitory components on tyrosinase and 5α-reductase from tropical woody plants for effective and useful use as biomass resources.

In chapter 2, the inhibitory components of Artocarpus incisus heartwood which showed the strongest inhibitory activity in 23 PNG wood species, their structure-activity relationships and inhibitory mechanism were evaluated.
First, the inhibitory effects of methanol extracts of heartwood of 23 PNG wood species on tyrosinase activity were examined. The extract of *A. incisus* showed the strongest tyrosinase inhibitory activity which was almost equivalent to kojic acid. The extract apparently inhibited melanin biosynthesis of both cultured B16 melanoma cells without any cytotoxicity and back of brown guinea pig without skin irritation. Thus, the potentiality of the extracts of *A. incisus* is evident both as material of a useful skin whitening agent and as a remedy for the disturbances in pigmentation. Tyrosinase inhibitory activity-guided fractionation led to the isolation of seven active compounds including two new compounds, 3,2',4'-trihydroxy-6',6'-dimethyl-pyra-no(3',2':4,5)-trans-stilbene, named artocarbene and 6-(3'-methyl-1'-butenyl)-5,7,2',4'-tetrahydroxyflavone, named isoartocarpesin. Other active compounds were (+)-dihydromorin, chlorophorin, (+)-norartocarpanone, 4'-prenyloxyresveratrol, artocarbene and artocarpesin. These compounds likely caused melanin biosynthesis inhibitory effects.

Second, several flavonoids, stilbenes and related 4-substituted resorcinols, obtained from *A. incisus* and other plants or synthesized, were tested for their inhibitory activity against tyrosinase. The structure-activity relationships suggested that specific natural or synthesized compounds having 4-substituted resorcinol skeleton have potent tyrosinase inhibitory ability. Kinetic studies have indicated that specific compounds having 4-substituted resorcinol skeleton exhibit competitive inhibition of the oxidation of DL-DOPA by mushroom tyrosinase. These findings could lead to the design and discovery of new tyrosinase inhibitors. From the chemotaxonomic point of view, crude extracts of plants known as containing flavonoids, stilbenes or other types with 4-substituted resorcinol skeleton, for example Moraceae or Leguminosae, may be candidates for tyrosinase inhibitory materials.

In chapter 3, we examined 5α-reductase inhibitory components from PNG and Thai plants, respectively, and discussed their structure-activity relationship.

First, the methanol extract of heartwood of *A. incisus* showed potent 5α-reductase inhibitory activity. The author investigated the 5α-reductase inhibitory effects of nine compounds isolated from *A. incisus* heartwood. Chlorophorin and artocarpin showed more potent inhibitory effects (IC$_{50}$ = 37 µM and 85 µM, respectively) than did α-linolenic acid, which is known as a naturally occurring potent inhibitor.

Second, the inhibitory effects of 17 samples prepared from Thai plants on 5α-reductase activity were examined. The acetone extract of *A. incisus* leaves showed potent 5α-reductase inhibitory activity. Fractionation guided by 5α-reductase inhibitory test led to the isolation of 2'-geranyl-2', 3,4,4'-tetrahydroxy-dihydrochalcone and a novel geranylated chalcone, 3'-geranyl-2',3,4,4'-tetrahydroxychalcone from the acetone extract of *A. incisus* leaves. These compounds showed more potent inhibitory effect (2'-geranyl-2', 3,4,4'-tetrahydroxydiiodrochalcone : IC$_{50}$ = 38 µM, 3'-geranyl-2',3,4,4'-tetrahydroxychalcone : IC$_{50}$ = 104 µM) than α-linolenic acid known as a naturally occurring potent inhibitor.

Third, several flavonoids and stilbenes, obtained from *A. incisus* and other plants or synthesized, were tested for their inhibitory activity against 5α-reductase. Structure-activity relationship, in the case of flavonoids and stilbenes, suggested that the presence of an isoprene-derived
substituent (prenyl and geranyl) would enhance 5α-reductase inhibitory effects. Our observations of some 5α-reductase inhibitors having prenyl substituent may lead to the design and discovery of new type 5α-reductase inhibitors.

Early studies on the phenolic constituents of *Artocarpus* plants by Indian researchers showed many flavone derivatives (Venkataraman, 1972). Most of *Artocarpus* flavonoids and stilbenes are characterized by the structure bearing 2′, 4′-dioxygenated pattern in the B ring and the isoprenoid side chain. Also, many *Artocarpus* plants are found in Indonesia and have been used for the Indonesian traditional folk medicine called ‘Jamu’ (Takahashi, 1988). Therefore, it is very interesting to clarify the relationship between the usage and biological activities of the isoprenoid-substituted phenolic compounds.

In this study, the relationships between the characteristic structures of phenolic compounds in *A. incisus* and tyrosinase and 5α-reductase inhibitory activities were discussed. As the results of this thesis, it was concluded as follows. 2′, 4′-Dioxygenated pattern in the B ring, which constructs 4-substituted resorcinol, is important to possess the potent tyrosinase inhibitory activity. On the other hand, the isoprenoid side chain is important to reveal the potent 5α-reductase inhibitory activity. Furthermore, from the chemotaxonomic point of view, crude extracts of plants known as having flavonoids, stilbenes or other types with 4-substituted resorcinol skeleton, for example Moraceae or Leguminosae, may be candidates for tyrosinase inhibitory materials. Also, crude extracts of plants known as having flavonoids, stilbenes, or other types with isoprenoid side chains, for example Moraceae, Leguminosae, Berberidaceae, Platanaceae, Rubiaceae, and Rutaceae, could be candidates for 5α-reductase inhibitory materials. These findings could lead not only to the design and discovery of superior inhibitors, but also to the effective and useful use of biomass resources, for example woody plants.

References

BRUNET, P. C. J. (1980) : The metabolism of the aromatic amino acids concerned in the cross-linking of insect
Tyrosinase and 5α-Reductase Inhibitory Components from Artocarpus incisus Tree

GRINO, P. B., GRIFFIN, J. E. and WILSON, J. D. (1990) : Testosterone at high concentrations interacts with the human androgen receptor similarly to dihydrotestosterone. Endocrinology 126 : 1165–1172

J. Chem. Soc. 2560-2565

Tyrosinase and 5a-Reductase Inhibitory Components from Artocarpus incisus Tree

6. Acknowledgement

I express my sincerest thanks to Professor Dr. K. Sakai, and Associate Professor Dr. R. Kondo, Department of Forestry and Forest Products Science, Faculty of Agriculture, Kyushu University, for their supervision, encouragement and patience during the whole course of the work. I am extremely grateful to Mr. K. Fujita in the same Department for his guidance in the course of this study and critical advice. I am deeply grateful to Professor Dr. Y. Shoyama, Faculty of Pharmaceutical Sciences, Kyushu University for his critical reading and Mr. H. Sato, Kansai Koso Co. Ltd. for melanin biosynthesis inhibitory test and preparation of rat liver microsomes.

This work was supported in part by a Grant-in-Aid for Scientific Research from the Japanese Ministry of Education (Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists).

(Received 21 March 2000: Accepted 18 October 2000)
Artocarpus incisus 樹木からのチロシンアーゼ及び 5α-リダクターゼ阻害成分

清水 邦義

要 旨

世界の森林面積の約40-50％は熱帯林であり、特に熱帯多雨林は蓄積量も多く、かつ構成樹種が極めて多種多様であることを特徴としている。これらの樹種の特徴は、化学成分的に見ると微量成分である抽出成分の量的、質的な大きな変異として現れる。即ち熱帯樹木抽出成分は有用成分の宝庫であり、興味ある成分が見いだされる可能性が高い。本研究では、熱帯産樹木抽出成分から、シミやソバカスなどのメラニン色素沈着症の治療薬になり得るチロシンアーゼ阻害成分ならびに前立腺肥大症や男性型脱毛症の治療薬として期待される5α-リダクターゼ阻害成分の探索を行った。

まず、23種のパブリニューギニア産樹木心材抽出物からのチロシンアーゼ阻害成分の探索を行った。その結果、Artocarpus incisus の心材メタノール抽出物のみ、既知の強力な阻害剤であるコウジ酸と同等の阻害活性を示した。さらにB16メラノーマ細胞や茶色モルモットを用いたメラニン生成抑制試験においても色素の著しい淡色効果を示した。チロシンアーゼ阻害活性を指標に、活性成分の探索を行った。2つの新規化合物（artocarbene, isoartocarpesinと命名）を含む7つの強力なチロシンアーゼ阻害成分を単離同定した。構造-活性相関を検討し、4位置換レゾルシノール構造が強力な阻害活性発現に重要であることを明らかにした。

次に、パブリニューギニア及びタイ産植物抽出物からの5α-リダクターゼ阻害成分の探索を行った。その結果、A. incisusの心材及び葉部抽出物が高い阻害活性を示した。活性成分の探索を行い、新規化合物（3'-geranyl-2',3,4,4'-tetrahydroxychalcone）を含む一連のイソプレノイド置換フランオイド及びスチルベンを単離、同定した。特に、artocarpin, chlorophorin, 2-geranyl-2',3,4,4'-tetrahydroxydihydrochalcone, 3'-geranyl-2',3,4,4'-tetrahydroxychalconeは既知の天然非ステロイド系阻害剤であるα-リノレン酸より高い阻害活性を示した。構造-活性相関検討により、イソプレノイド置換基（ブレビル基またはゲラニル基）の存在が阻害活性発現に重要なことが判明した。

キーワード：Artocarpus incisus, クワ科, 心材, artocarbene, チロシンアーゼ阻害剤, メラニン生成阻害剤, isoartocarpesin, 4位置換レゾルシノール, 構造活性相関, 5α-リダクターゼ阻害剤, 葉, 3'-geranyl-2',3,4,4'-tetrahydroxychalcone