SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

An 0(n~{1.75}) Algorithm for L(2,1)-labeling of
Trees

Hasunuma, Toru
Department of Mathematical and Natural Sciences, The University of Tokushima

Ishii, Toshimasa
Department of Information and Management Science, Otaru University of Commerce

Ono, Hirotaka
Department of Computer Science and Communication Engineering, Kyushu University

Uno, Yushi
Department of Mathematics and Information Sciences, Graduate School of Science, 0Osaka

Prefecture University

https://hdl.handle.net/2324/14762

HhRIE#R : Lecture Notes in Computer Science. 5124, pp.185-197, 2008-07. Springer
N— 30

HEFIBAMR

An O(n'"®) Algorithm for L(2,1)-labeling of Trees

Toru Hasununtg Toshimasa Ishdi Hirotaka Oné and Yushi Und

! Department of Mathematical and Natural Sciences, The University of Tokushima, Tokushima
770-8502 Japahasunuma@ias. tokushima-u.ac. jp

2 Department of Information and Management Science, Otaru University of Commerce, Otaru

047-8501, Japarishii@res.otaru-uc.ac. jp
3 Department of Computer Science and Communication Engineering, Kyushu University, Fukuoka
812-8581, Japamno@csce.kyushu-u.ac.jp
4 Department of Mathematics and Information Sciences, Graduate School of Science, Osaka Prefecture
University, Sakai 599-8531, Japamo@mi . s.osakafu-u.ac. jp

Abstract. An L(2, 1)-labeling of a grapi® is an assignment from the vertex se¥(G)

to the set of nonnegative integers such thgk) — f(y)| > 2 if x andy are adjacent
and|f(x) — f(y)l > 1if x andy are at distance 2 for alt andy in V(G). A k-L(2,1)-
labeling is an assignmerit: V(G) — {0,...,k}, and theL(2, 1)-labeling problem asks
the minimumk, which we denote by(G), among all possible assignments. It is known
that this problem is NP-hard even for graphs of treewidth 2. Tree is one of a few classes
for which the problem is polynomially solvable, but still only an/®¢n) time algorithm
for a treeT has been known so far, whedds the maximum degree df andn = [V(T)|.

In this paper, we first show that an existent necessary conditiob(Tgr= 4 + 1 is also
sufficient for a tre€l’ with 4 = Q(+/n), which leads a linear time algorithm for computing
A(T) under this condition. We then show thH{') can be computed in @¢*°n) time for
any treeT. Combining these, we finally obtain an®{®) time algorithm, which greatly
improves the currently best known result.

Keywords. frequencychannel assignment, graph algoritin2, 1)-labeling, vertex col-
oring.

1 Introduction

Let G be an undirected graph. A2, 1)-labeling of a graphG is an assignment from the

vertex setV(G) to the set of nonnegative integers such tiéx) — f(y)| > 2 if x andy are

adjacent andf (x) — f(y)| > 1 if x andy are at distance 2 for al andy in V(G). A k-L(2,1)-

labeling is an assignmerit : V(G) — {0,...,k}, and theL(2, 1)-labeling problemasks the
minimumk among all possible assignments. We call this invariant, the minimum kakie

L(2, 1)-labeling numbeiand is denoted by(G). Notice that we can ude+ 1 different labels
whenA(G) = k since we can use 0 as a label for conventional reasons.

The original notion ofL(2, 1)-labeling can be seen in Hale [8] and Roberts [10] in the
context of frequengghannel assignment, where ‘close’ transmitters must recefferetit fre-
guencies and ‘very close’ transmitters must receive frequencies that are at least two frequencies
apart so that they can avoid interference. Due to its practical importanck(2hB-labeling
problem has been widely studied. On the other hand, this problem is also attractive from the
graph theoretical point of view since it is a kind of vertex coloring problem. In this context,
L(2, 1)-labeling is generalized intb(h, k)-labeling for arbitrary nonnegative integdrandk,

and in fact, we can see thiath, 0)-labeling is equivalent to the classical vertex coloring prob-
lem.

Related Work: There are also a number of studies aboutt{# 1)-labeling problem from the
algorithmic point of view. It is known to be NP-hard for general graphs [7], and it still remains
NP-hard for some restricted classes of graphs, such as planar, bipartite, chordal graphs [1], and
recently it turned out to be NP-hard even for graphs of treewidth 2 [5]. In contrast, only a few
graph classes are known to have polynomial time algorithms for this problem. Among those,
Chang and Kuo [4] established a polynomial time algorithm forltf# 1)-labeling problem

for trees. Their polynomial time algorithm fully exploits the fact th4T) is eitherd + 1 or

4 + 2 for any tre€T . It is based on dynamic programming, and runs i) time, where4

is the maximum degree of a trdeandn = |V(T)|.

Our Contributions: In this paper, we first show that an existent necessary conditiol{Tor=
A+1for atre€T is also stficient for trees withd = Q(+/n), which leads a linear time algorithm

for computingA(T) under this condition. Then we show that th@, 1)-labeling problem can

be solved in Qf*°n) time for any input tree. Our approach is based on dynamic programming
similar to Chang and Kuo’s Q-°n)-time algorithm [4], where itg/?5-factor comes from the
complexity of solving the bipartite matching problem of a graph with ortleand its4n-
factor from the number of iterations for solving bipartite matchings. In spite that our algorithm
is also under the same framework, the running tge'°n) is attained by reducing the number

of the matching problems to be solved, together with detailed analyses of the algorithm. As a
result, our algorithm achieves @¥(’®) running time, and greatly improves the best known result
O(4*°n) time, which could be G¢®) in its worst case.

Organization of this Paper: The rest of this paper is organized as follows. Section 2 gives
basic definitions and related results. Section 3 shows that a necessary conditidfT jhat

4 + 1 for a treeT is also sificient for trees withd = Q(+/n). In Section 4, after introducing
fundamental ideas of dynamic programming for solving this problem, then we show(THat
can be computed in @{°n) time for a treeT. Combining the results in Sections 3 and 4,
Section 5 presents the overallr®(°) time algorithm for any input tree. Finally, Section 6
gives some concluding remarks.

2 Preliminaries

2.1 Definitions and Notations

A graph G is an ordered set of its vertex sé{G) and edge seE(G) and is denoted by
G = (V(G), E(G)). We assume throughout this paper that all graphs are undirected, simple
and connected, unless otherwise stated. Therefore, aneedd®§(G) is an unordered pair of
verticesu andv, which areend vertice®f e, and we often denote it by= (u, v). Two vertices
u andv areadjacentf (u,v) € E(G), and two edges ardjacentif they share one of their end
vertices. A graplG = (V(G), E(G)) is calledbipartite if the vertex setV(G) can be divided
into two disjoint setd/; andV, such that every edge IB(G) connects a vertex i, and one
in Vy; suchG is denoted by\(1, V>, E).

For a graplG, the per) neighborhoodf a vertexv € V(G) is the seNg(v) = {u € V(G) |
(u,v) € E(G)}, and theclosed neighborhoodf v is the setNg[v] = Ng(V) U {v}. Thedegreeof
a vertexv is [Ng(v)|, and is denoted bglis(v). We used(G) to denote the maximum degree of a

graphG. A vertex whose degree iG) is calledmajor. We often drogG in these notations if
there are no confusions. A vertex whose degree is 1 is calleaf aertex or simply aleaf. A
pathin G is a sequence,, v, .. ., Vv, of vertices such thaw(, vi;;) e Efori=1,2,...,£-1, or
equivalently, a sequencey(Vs), (V2,V3), ..., (Ve-1, V¢) Of edges g, vis1) fori=1,2,...,¢ - 1.
Thelengthof a path is the number of edges on it. Tdistancebetween two vertices andv is
the minimum length of paths connectiogandv. A pathvy, vy, ..., Vv, is acycleif vi = v,. A
graph is areeif it is connected and has no cycle.

In computingL(2, 1)-labelings of trees, it is convenient to regard the input tree to be rooted
at an arbitrary vertex of degree 1 by regardingas a root. Then we can define the parent-
child relationship on vertices in the usual way. For any vewuethe sets of its children and
grandchildren are denoted Bv) andC?(v), respectively. For a vertex defined’ (v) = |C(V)!.

2.2 Related Results and Basic Properties

In general L(h, k)-labelings of a grapks are defined for arbitrary nonnegative integke@nd
k, as an assignment of nonnegative integerg(®) such that adjacent vertices receive labels
at leasth apart and vertices connected by a 2-length path receive labels ak lgaatt. This
problem is one of the generalizations of the vertex coloring problem diflee®)-labeling
problem is equivalent to it. Therefore, we can hardly expect thak (hegk)-labeling problem
is tractable, and in fact,(0, 1)- andL(1, 1)-labeling problems are known to be NP-hard, for
example. We can find a lot of related resultsldh, k)-labelings in comprehensive surveys by
Calamoneri [2] and Yeh [12].

As for theL(2, 1)-labeling problem, it is also known to be NP-hard for general graphs [7].
It remains NP-hard for planar graphs, bipartite graphs, chordal graphs [1], and even for graphs
of treewidth 2 [5]. In contrast, very fewfirmative results are known, e.g., we can decide the
L(2, 1)-labeling number of paths, cycles, wheels [7] and trees [4] within polynomial time. Some
research try to derive upper bounds on L2, 1)-labeling number, and along this direction, a
conjecture that(G) < 4 for any graprG with 4 > 2 is well known and is still open [7].

We here review some significant results bof?, 1)-labeling of graphs or trees that will
become relevant later in this paper. We can seett&) > 4 + 1 holds for any grapfts. Griggs
and Yeh [7] showed a necessary condition.f8) = 4 + 1 on any graplt, by observing that
any major vertex irc must be labeled 0 of + 1 whenA(G) = 4 + 1.

Lemma 1. [7] If A(G) = 4 + 1, then for anyv € V(G), Ng[V] contains at most two major
vertices.

Lemma 2. [7] For any treeT, A(T) is eitherd + 1 or 4 + 2.

Concerning the latter lemma, they also conjectured the problem of determini(i)ifs 4 +

1 or4 + 2 is NP-hard. Chang and Kuo [4] disproved this by presenting a polynomial time
algorithm for computingl(T), whose running time is Q(-°n). Since tree is a natural and one
of the most basic graph classes, this result yields sevéiiahative results for more general
graph classes, e.gx;almost treesfor which the problem can be solved inA3¢*°n) time [6].

3 A Linear Time Algorithm for Trees with 4 = 2(+/n)

From this section, we concentrate ourselves onlif#1)-labeling problem on trees. Obvi-
ously, Chang and Kuo's algorithm [4] runs in linear timefit= O(1). In this section, we show

that theL(2, 1)-labeling problem for trees can be also solved in linear timesif /n + f—g + 171.

Let T be a tree. As shown in Lemmas 1 and 2, we have a necessary conditit(T jot
A+1 (or a stficient condition fort(T) = 4+2), but no simple necessary andiitient condition
is known although some research such as [11] gavefaismt condition ford(T) = 4 + 1.
Here, we present anotherfBaient condition fori(T) = 4+ 1, which implies that the necessary
condition forA(T) = 4 + 1 of Lemma 1 is also gticient for larged.

Let N3[v] denote the set of vertices whose distance frosiat most three.

Theorem 1. If for anyv e V(T), N3[v] contains at most —6 major vertices andN[v] contains
at most two major vertices, thelfT) = 4 + 1.

Proof: Suppose that for any € V(T), N3[V] contains at mostl — 6 major vertices andl[v]
contains at most two major vertices.

At first, label every major vertex with O af + 1 so that two major vertices within distance
two do not have the same label. Since for ang V(T), N[V] contains at most two major
vertices, this labeling can be correctly done.

Next, regardl as a rooted tree by choosing one vertex as the root. Following the definition
of the L(2, 1)-labeling, we will label each vertex in the rooted tree in the breadth-first-search
order. Suppose that a vertexs labeledb and the parent of is labeleda, where|a - b| > 2.
Divide the setC(v) of children ofvinto C’(v), C"”(v) andR(v) as follows:

— C’(v) = {w e C(v) | wis not a major vertex and has a major vertexcifw) U C2(w)},
— C”(v) = {we C(v) | wis a major vertey,
— R(V) = C(v) = C'(v) - C"(v).

Note thatC’(v)| < 4 - 6, |C” (V)| < 2, and ifd(v) = 4 then|C’(v)| < 4 — 7 and|C” (V)| < 1.

Case 1:d(v) < 4. LetU(a,b) ={a,b—1,b,b+1}uU{0,1,4,4+1},andU(a,b) = {0,1,...,4+
1} — U(a, b). Assign injectively labels it (a, b) to vertices inC’(v). SincelC’(v)| <4 - 6
andlU(a,b)| =4 + 2 - |U(a, b)| > 4 - 6, such a labeling is possible. Lietv) be the set of
labels inU(a, b) which are not used in the labeling Gf (V).

Case 1-1:|C”(v)| = 0. Assign injectively labels ib(V)U({0, 1,4, 4+ 1} —{a,b—1,b, b+1})
to vertices inR(V).

Case 1-2:|C”(v)| = 1. Assign injectively labels ih(v)U ({1,4,4+ 1} —{a,b—1,b,b+1})
(respectivelyL(v) U ({0,1,4} — {a,b — 1,b,b + 1})) to vertices inR(v), if the major
vertex inC(v) is labeled O (respectively, + 1).

Case 1-3:|C”(v)| = 2. Assign injectively labels i(v) U ({1,4} — {b,a— 1,a,a+ 1}) to
vertices inR(v).

Here,|L(V)| = |U(a,b)| - [C’'(V)| = 4 + 2 - |U(a, b)| - [C'(V)I. Also,

- {0,1,4,4+1} - {a,b-1,b,b+ 1}| = |U(a, b)| - 4,
— (L A4,4+1)-{a,b-1,bb+1} >|U(ab) -5,
- 1{0,1, 4} - {a,b-1,b,b+1}| > [U(a, b)| - 5,

- 1,4} -{a,b—1,b,b+ 1}| > |U(a,b)| — 6.

SincelR(v)| £ 4 -2 —|C’(v)| - |IC”(V)|, each labeling in Cases 1-1,1-2, and 1-3 is possible.

Case 2:d(v) = 4. LetU(a) = {aj u {0,1,4,4 + 1} andU(a) = {0,1,...,4 + 1} — U(a).
Assign injectively labels irJ(a) to vertices inC’(v). Since|C’(v)| < 4 — 7 and|U(a)| =
4+ 2-|U(@)| = 4 - 3, such a labeling is possible. Lefv) be the set of labels it/ (a)
which are not used in the labeling Gf(v).

Case 2-1:|C”(v)| = 0. Assign injectively labels ih.(v) U ({4,4 + 1} — {a}) (respectively,
L(v) U ({0, 1} — {a})) to vertices inR(v), if vis labeled O (respectively, + 1).

Case 2-2:|C”(v)| = 1. Assign injectively labels ih.(v) U ({4} — {a}) (respectivelyl (v) U
({1} - {a})) to vertices inR(v), if vis labeled O (respectively, + 1).
Here,|L(v)| = |U(a)| — IC'(V)| =4 + 2 —|U(a)| — |C’(v)|. Also,
- 4,4+ 1} —{a}l > U] -3,
- {01} - {all = U@l - 3,
— {4} —{all = [U(a)l - 4,
- {1} —{a}l = [U(a)l - 4.
Since|R(V)| = 4 - 1 —|C’/(V)| — |C”(V)|, each labeling in Cases 2-1 and 2-2 is possible.

It can easily be checked that the labelingff/) is a validL(2, 1)-labeling. Therefore)(T) =
4+1.0

From Theorem 1, we can see that the necessary conditiot{Tdr= 4 + 1 in Lemma 1 is
also stficient if the number of major vertices is at mast 6.

Corollary 1. If the number of major vertices is at mast- 6, thenA(T) = 4 + 1if and only if
for anyv € V(T), N[v] contains at most two major vertices.

Corollary 2. If 4 > (/n+ 22+ L thenA(T) = 4 + 1if and only if for anyv € V(T), N[V]
contains at most two major vertices.

Proof: Suppose that for any e V(T), N[V] contains at most two major vertices. Assume that
there aref —5 major verticesv;, (1 < i < 4-5). Since any two edges joining two major vertices
are not adjacent, the number of edges joining two major vertices is at%s‘[herefore,

A4-5
| Utcics—s E(W;)| > 4(4 - 5) - —

whereE(w;) denotes the set of edges incidentdn T. Hencen—- 1> (4 — %)(A —5). From

this inequality, we obtaid < 1/n + % + 171. Therefore, i1 > 1/n + ‘13—2 + 171, then the number
of major vertices is at most — 6. Hence, from Corollary 1, this corollary follows.

Clearly, the condition tha¥l[v] contains at most two major vertices for ang V(T) can be

checked in linear time. Thus, whein> /n + f—g + 1?1, we can decidg(T) in linear time, and if

AT) =4+1,thenad +1)-L(2, 1)-labeling of T can be obtained by an algorithm based on the
proof of Theorem 1, which runs in linear time. Otherwise, we can ohtgi2)-L(2, 1)-labeling

by Algorithm Greepy: traverseT in the breadth first order, and if reached vertewheref (v) =
aand f(u) = bfor its parentu, label vertices irC(v) from{0,1,...,4+2} - {b,a-1,a,a+ 1}.
This is always possible sindg€(v)| < [{0,1,...,4 + 2} — {b,a— 1,8 a + 1}| for anyv, and it
gives ¢ + 2)-L(2, 1)-labeling.

4 An O(4%°n)-time Algorithm

4.1 Chang and Kuo’s Algorithm

In this subsection, we review a dynamic programming algorithm fot_{Bel)-labeling prob-
lem of trees, which is proposed by Chang and Kuo [4], since our algorithm also utilizes the
same formula of the principle of optimality. For a tr€avith maximum degred, Griggs and

Yeh [7] proved thaii(T) = 4+ 1 or4 + 2. The algorithm determinesif{T) = 4+ 1, and if so,
we can easily construct the labeling withl) = 4 + 1.
Before describing the algorithm, we introduce some notations. We assunieithatoted
at some leaf verte for explanation. Given a vertex we denote the subtree dfrooted atv
by T(v). LetT(u, V) be a tree rooted atthat formsT (u, v) = ({u} U V(T (V)), {(u, v)} U E(T (V))).
Note that thiu is just a virtual vertex for explanation afidu, v) is uniquely decided fof (v)
in a sense. For a rooted tree, we call the length of the longest path from the root to a leaf its
height ForT(u, v), we define

frifAaTuv) | fw=af(vy=b)<4+1
o((u V), (3 b)) = {O otherwise,
whereA(T(uy,Vv) | f(u) = a, f(v) = b) denotes thé (2, 1)-labeling number oif (u, v) under the
assumption thaf(u) = aand f(v) = b, that is, the minimunk of k-L(2, 1)-labeling onT (u, v)
satisfyingf(u) = aand f(v) = b. This¢ function satisfies the following:

1 if there is a distinct assignmeay, Cy, . . ., Cy(y) ON
Wi, Wa, . .., Wy, Whereg; is different froma, b,
b-1,b+1, ands((v,w), (b, c)) = 1 for eachi,

0 otherwise,

((u.v), (a, b))=

@)

wherews, Wo, . .., Wy) are children ofv. The existence of an assignmenic, ..., Cy () ON

W1, Wo, ..., Wy (y) @s above is formalized as the maximum bipartite matching problem; we con-
sider a bipartite grap@(u, v, a, b) = (V(v), X, E(u,v, a, b)), whereV(v) = {wi,Wo, ..., Wy) €

CV)}, X=1{0,1,...,4,4+ 1} andE(u,v,a,b) = {(w,c) | 5((v,w), (b,c)) = 1,ce X-{a},we

V(v)}. (Analogously, we also defin@(u,v, —, b) by E(u,v, —,b) = {(w,c) | §((v,w), (b,c)) =

1,c € X,w € V(v)}, which will be used in Subsection 4.3.) We can see that an assignment
C1,Co, ..., Cdv) ON W1, Wo, ..., Wy IS feasible if there exists a matching with sid€v) of

G(u,v, a,b). Namely, forT(u,v) and two labelsa andb, we can easily (i.e., in polynomial
time) determine the value @f{(u, V), (a, b)) if the values ofs function for T (v, w;) and any

two pairs of labels are given. According to these observations, Chang and Kuo proposed the
following dynamic programming algorithm:

Algorithm CK

Step 0. Le®((u,V), (x,*)) := 1 for all T(u, v) of height 1, wherex(, =)
means all pairs of labelsandb, wherela— b| > 2. Leth ;= 2.

Step 1. For alll (u, v) of heighth, computes((u, v), (x,)).

Step 2. Ifh = h* whereh* is the height of root of T, then goto Step 3.
Otherwise let := h + 1 and goto Step 1.

Step 3. If6((r, v), (a, b)) = 1 for some & b), then output “Yes”.
Otherwise output “No”. Halt.

Since Steps 0, 2 and 3 can be done just by looking up the tahde tbe running time is
dominated by Step 1; the total running time of the algorithm i5,Q(t(v)), wheret(v) denotes
the time for calculatings((u, v), (, *)). Each calculation o6((u, V), (a, b)) in Step 1 can be

executed in Q¥ (v) U X[>°) = O42°) time, because an @°) time algorithm is known for the
maximum matching of a bipartite graph withvertices [9]. Since the number of pais) is
at most ¢ + 2) x (4 + 2), we obtairt(v) < (4 + 2)? x O4?®) = O(4*). Thus the total running
time of the algorithm i .y t(v) = O*n) *.

In the following subsections, we propose a mafeci&nt algorithm. It is also based on the
formula (1) as the principle of optimality, but it comput&gu, v), (x, *)) more dficiently.

4.2 Preprocessing Operations for Input Trees

In this subsection, we introduce preprocessing operations in our algorithri. hetan orig-
inal input tree. These preprocessing operations are carried out for the purpose that (1) re-
move inessential vertices froim where “inessential” means that they do nfieat thelL(2, 1)-
labeling number off, and (2) divideT into several subtrees that preserveslifiz 1)-labeling
number ofT. Obviously, these operations enable to reduce the input size to solve and we may
expect some speedup. However, tiieet for speedup is not important actually, because the
preprocessing operations may do nothing for some instances. Instead, a more imfi@tant e
is that we can restrict the shape of input trees, which enables the amortized analysis of the
running time of our algorithm shown later.

First, we describe how to remove inessential vertices.

1. Check if there is a leaf whose unique neighbarhas degree less thah If so, removev
and edgey, v) from T until such a leaf does not exist.

This operation does notfact theL(2, 1)-labeling number off, that is,A(T) = A(T’) where

T is the original tree and@” is the resulting tree. This is because Tinsuch leaf vertex can

be properly labeled by some number{h1,...,4 + 1} if uand any other neighbor vertices
of u are properly labeled by numbers amoj@yl,...,4 + 1}. Also, the operation does not
change the maximum degrdgeSince this can be done in linear time, the labeling problem for
T is equivalent to the one fdF’ in terms of linear time computation. Thus, from now on, we
assume that an input tr8ehas the following property.

Property 1. All vertices connected to a leaf vertex are major vertices.

We defineV, as the set of all leaf vertices . Also we defineVg as the set of major vertices
whose children are all leaves.
Next, we explain how to divid& into subtrees. We call a sequence of consecutive vertices

V1, Vo, ...,V apath component (vi,vi;1) € Eforalli = 1,2,...,¢£ -1 andd(v;) = 2 for all
i =1,2,...,¢ and we callf the sizeof the path component. For example, consider vertices
V1, Vo, V3 andv, of T where eacly; is connected to;, 1 fori = 1,2, 3. Ifd(vy) =--- = d(vg) = 2

holds, thenv, ..., vy is a path component with size 4.

2. Check if there is a path component whose size is at least 4y;s®&y,. .., V., and letvg
andv,,; be the unique adjacent vertices\gfandv, other thanv, andv,_1, respectively.
If it exists, assum@ is rooted at/, divide T into Ty := T (v, Vo) andT, := T(v4, v5), and
removev, andvs. Continue this operation until such a path component does not exist.

By a careful analysis, this running time is reduced ta%q).

We assume! > 7, because otherwise the original algoritldK is already a linear time algo-
rithm. Here, we show that(T) = 4 + 1 if and only if A(T,) = A(T2) = 4 + 1. The only-if
part is obvious, and we show the if part. Suppose fifat) = aand f(vy) = bina (¢ + 1)-

L(2, 1)-labeling of T1, and f(v4) = & andf(vs) = b’ in a 4 + 1)-L(2, 1)-labeling of T,. Then
setf(v,) = cwhere|c — a > 2 andc is neitherb nor &, and setf (v3) = ¢ where|c’ — ¢| > 2,

|c’ —a&| = 2 andc’ is neithera norb’. This gives a{ + 1)-L(2, 1)-labeling of T and is always
possible sincel > 7. Namely, we can find ab(2, 1)-labeling ofT by findingL(2, 1)-labelings

of T1 andT, independently, which guarantees that this preprocessing presgrvé$-((2, 1)-
labeling of T if it exists. Clearly, this operation can be done in linear time. Thus, from now on,
we assume that an input tré&ehas the following property.

Property 2. The size of any path componentbfis at most 3.

4.3 Hficient Search for Augmenting Paths

As observed in Subsection 4.1, the running time of algoritbkhis dominated by Step 1.
Step 1 of algorithnCK computes the maximum bipartite matching/€)(times for calculat-
ing 8((u, v), (x, ¥)) for T(u, V), which takes Q¢*°) time. In this subsection, we show that for
T(u,v), 6((u,v), (+, *)) can be calculated mordteiently; for a fixed labeb, {5((u, V), (i, b)) |
i €{0,1,...,4 + 1}} can be obtained in Q&°d’(v)) time by computing a single maximum bi-
partite matching and a single graph search, wliéfg is the number of children of. This
shows that(v) = O(4%°d’(v)).

Let G(u,v,—,b) = (V(V), X, E(u,v, —, b)) be the bipartite graph defined in Subsection 4.1,
whereV(v) = {wy, Wy, ..., Wy} andX = {0,1,...,4 + 1}. In this subsection, we may refer to
i € X as alabel. It is not difficult to see that the following property holds.

Lemma 3. If G(u, Vv, —, b) has no matching of siz#(v), thens((u, v), (i, b)) = 0 for any label
i.o

Below, consider the case whe®&u, v, —, b) has a matching of size'(v); without loss of
generality, letM = {(wi,1,i) | i €{0,1,...,d(v) — 1}} be such a matching i&(u, v, —, b) (note
that byd’(v) < 4, each vertex itV (v) is matched). Recall, as mentioned in Subsection 4.1, that
for each label € {0,1,...,4 + 1}, 5((u, V), (i, b)) = 1 if and only if G(u, v, i, b) has a matching
of sized’(v). Clearly,é((u, v), (i, b)) = 1 for eachi € {d’(v),d'(V) + 1,...,4 + 1}.

Next consider the value af((u, V), (i,b)) fori € {0,1,..., d’'(v) =1}. Leti € {0,1,...,
d’(v) —1}. Note thatG(u, v, i,b) has the matching/l — {(wi,1,i)} of sized’(v) — 1. Given a
matchingM’, a path is calledv’-alternatingif its edges are alternately in and nothf. In
particular, anM’-alternating path is calle’-augmentingf the end vertices of the path are
both unmatched b’. It is well-known thatM’ is a maximum matching if and only if there
is no M’-augmenting path.

Hence,G(u, v, i,b) has a matching of sizd’(v) if and only if G(u, v,i,b) has an ¥ -
{(wi41, 1)})-augmenting pathG(u, v, —, b) has an M — {(wi.1, 1)})-augmenting path not passing
through vertex. It follows that for each label € {0,...,d(v) — 1}, we can decide the value
of 6((u,v), (i, b)) by checking whether there exists ad {(wi,1,i)})-augmenting path not
passing through verteéxn G(u, v, —, b). Notice that for any label if such an augmenting path
P exists, then one of two end verticesPfs always included irX’, whereX’ = {d’'(v), d’(v) +
1,...,4+1} € X (note that the other end vertexig,;). Moreover, by the following Lemma 4,
we can decide the value 6€(u, V), (i, b)), i € {0,1,...,4 + 1} simultaneously by traversing all
vertices which can be reached byMralternating path from some vertexJ in G(u, v, —, b).

Lemma 4. 6((u, V), (i, b)) = 1if and only if vertex can be reached by ahl-alternating path
from some vertex iXX’ in G(u, v, —, b).

Proof: Assume that((u, V), (i,b)) = 1. Then, there exists arvl(— {(wi1,1)})-augmenting
pathP not passing through vertéxNote that two end vertices & arew;,; and some vertex
u € X’'. Hence, it follows that vertekcan be reached by thd-alternating pathP U {(wi.1,)}
fromue X'.

Assume that vertekcan be reached by avi-alternating path from some vertex Xi in
G(u,v, —, b). Let P be such aM-alternating path in which vertéxappears exactly once. Since
P starts from a vertex itX’, we can observe that the edge which appears immediately before
reaching vertex in P is (wi,1,i) € M. Hence, the patl? — {(wi1,1)} is an M — {(wi,1,1)})-
augmenting path not passing through veiteand it follows thats((u, v), (i,b)) = 1. O

All vertices which can be reached by &m-alternating path from some vertex K in
G(u,v, —, b) can be computed in @(u,v, —, b)| + |X’|) = O(d’(v)) time, by using the depth
first search from vertes in G5, whereGg denotes the graph obtained frd&{u, v, —, b) by
adding a new verteg and new edges connectis@nd each vertex iX’.

Consequentlys((u, v), (i, b)) | i € {0,1, ..., 4+1}} can be obtained by computing a single bi-
partite matching and a single depth first search. The time complexityiS@(v) + Ad’(v)) =
O5d’(v)). Henceg((u, v), (x, ¥)) can be obtained in Q&°d’(v)) by applying the above com-
putation for each labdd; t(v) = O4%°d’(v)).

4.4 Hficient Computation of §-values near Leaves

In Subsections 4.1 and 4.3, we have observed that algor@Knruns in OQ, t(V)) =
OU?® 3oy d'(V)) time. In this subsection, we show that algoriti@K can be implemented
to run in O@?° Zvev-v -V, d7(V)) time by avoiding unnecessary bipartite matching compu-
tations for vertices incident to leaves, wheére and Vg are defined in Subsection 4.2 and
d”(v) = IC(V) — ViI.

For a vertexv € V| U Vg, we can easily obtaii((u, v), (+, *)) without computing the
bipartite matching. Actually, for a leafe V,, 6((u,v), (a,b)) = 1 if and only ifla—b| > 2. For
a vertexv € Vg, we haves((u, V), (a b)) = 1 ifand only ifb € {0,4 + 1} and|a - b| > 2 (notice
that each vertex iWg is major). Thus, the running time of algorith@K is dominated by Step
1 for verticesv € V — Vi — Vg; O(Zvev t(V)) = ORvev-v, v, t(V))-

Also for a vertexv € V — V| — Vg incident to some leaf, we can gain some saving of time
for computings((u, v), (x, x)); for a labelb, the calculation of((u, v), (x,b)) can be done in
O@**d”(v)) time, instead of O(*°d’(v)) time. Letv be a vertex iV — V| — Vg incident to
some leafC(v) N VL # 0. Note thatv is major by Property 1, and thaf(u, v), (x, b)) = 0 for
eachb ¢ {0,4 + 1}. Thus, we have only to decide the values¢{u, v), (x, b)) for b € {0, 4 + 1}.

Then, we can observe that for computis{@u, v), (x, b)), it suffices to check whether there
exists a feasible assignment only®¢v)—V,, instead ofC(v). Actually, if b = 0 and there exists
a feasible assignment @(v) — V|, then the number of the remaining labelglis 2 — |C(v) —
VL - I{a, 0,1} = |C(v) n V.| and we can assign to each leafdfv) N V| distinct labels among
the remaining labels (note th&x(v)| = 4—1 sincevis major). The case df = 4+ 1 can also be
treated similarly. Therefore, it follows that the calculatio@(fl, v), (x, b)) is dominated by the
maximum matching computation in the subgrapl@&éd, v, —, b) induced by ¥ (v) — VL) U X;
its time complexity is Q4*|V(v) - V_|)) = O(*>d” (v)).

Consequently, algorithr€K can be implemented to run in ®(cy_v, v, t(v)) = ou?®
Zvev-v - d”7(V)) (note thatd”(v) = d’'(v) for each vertex with C(v) NV = 0).

4.5 Amortized Analysis

In Subsections 4.2-4.4, we have observed that byfliciemt implementation of algorithm
CK, A(T) can be decided in Qyey_v, v, t(V)) = OU*® Yyey_v, v, d”(V)) time. Below, we
show that Of*° ¥ey_v,_v, d”(v)) = O(4*°n) by amortized analysis; namely, we show the
following lemma.

Lemma 5. AlgorithmCK can be implemented to run in(@-°n) time.o

Let Vg be the set of verticeg € V - V| — Vg with d”(v) > 2, Vp be the set of vertices
veV -V, -Vgowithd(v) = 1, andV} = V - (VL U Vo U Vg U Vp). Note that each vertex
in Vp belongs to a certain path component. Also note that gach], satisfiesd”(v) = 1 and
C(v) NV # 0, and hence by Property 1, it is incident to exaetly 2 leaves.

Now by Property 2, for each vertex € Vp, there exist the root or a vertex inVg U
V{ among its ancestors which are at most at distance 3 fromence, we havgVp| <
3 Zvevguv, d7(V) + 3. BY Xyey, d”(V) = [Ve, it follows that

475 2vev-v-vo d7(V) = 4% 2Zvevsuviuve d7(V)
= 47 3 jevguyy, @7 (V) + 47°|Vpl
< AzE(ZvevBuvg, 4d”(v) + 3)
= O(AZ'S(ZvevBuv;, d”(v) + 1)).

Thus, for proving Of>®° ¥ey-v, v, d”(V)) = O(*n), it suffices to show thaEevguy, 4 (V)
= O(n/4).

Lemma 6. yevguv;, d”(V) = O(n/4).

Proof: Let E’ be the set of all edges connecting a verte¥gru V, and its non-leaf child. Note
that|E’| = X evauv, d7(V). Let EL denote the set of all edges incident to a leaf, Badienote
the set of all edges connecting a vertednand its unique child. Also note th, | = [V |,
|Ep| = |Vp|, ELNEp = 0, and €. U Ep) N E’ = 0. Hence, we haviE’| < |E| — |EL| — |Ep| =
n—-1-|V.| - |Vp|. Now, byV =\VL U VQ UVgUVpU V{D and thaNL,VQ,VB,Vp andV’P are
disjoint each other, we have= |V| = [V_| + [Vq| + [Va| + [Vp| + [V}|. Therefore, it follows that
IE'l<n-1-(n-|Vgl - Vol = Vql) = Vel + V| + [Vql — 1.

Now since each vertex € Vg has at least two non-leaf children and each leaf not incident
to Vg U V} is incident to a vertex in/g, we can observe thg@¥q| > [Vg| + 1 holds. Since
each vertex iV}, (respectivelyVp) is incident to exactlyl — 2 (respectivelyd — 1) leaves,
we havelV | > V|4 - 2) + [Vol(4 — 1). Consequently, we havEyev,uv, d”(V) = [E'] <
Vel + IVpl + Vgl = 1 < 2Vgl + IVa| = 2 < 2V |/(4 = 2) - 2.0

5 An O(n'"%)-time Algorithm

Summarizing the arguments given in Sections 3 and 4, we give a description of the overall
algorithm named. aBeL-TreE, for determining in O"°) time whetherl(T) = 4 + 1 or not for
any input treer .

Algorithm L ABEL-TREE

Preprocessing. Execute the preprocessing described in Subsection 4.2.

Step 0. IfN[v] contains at least three major vertices for some vertex/,
output “No”. Halt.

Step 1. If the number of major vertices is at mdst 6, output “Yes”. Halt.

Step 2. FofT (u, v) with v € Vq (its height is 2), let

6((u,v), (&, 0)) := 1 foreach labeh # 0, 1,
o((u,v), (&4 + 1)) := 1 for each labeh # 4,4 + 1,
6((u, v), (%, *)) := 0 for any other pair of labels.

Leth:= 3.
Step 3. For alll (u, v) of heighth, computes((u, v), (x, x)) by fixing f(v) := b
and applying the method described in Subsections 4.3 and 4.4 fof each
labelb.
Step 4. Ifh = h* whereh* is the height of root of T, then goto Step 5.
Otherwise leh := h + 1 and goto Step 3.
Step 5. If6((r, v), (a, b)) = 1 for some 4, b), then output “Yes”.

Otherwise output “No”. Halt.

We show that algorithnh apeL-Tree can be implemented to run in @(’®) time. Clearly,
all of the preprocessing, Steps 0 and 1 can be executed in linear time. As observed in Sub-
section 4.5, Steps 2-5 can be executed in'®xf) time. Moreover, as shown in the proof of
Corollary 2, if N[V] contains at most two major vertices for any vertex V and the total
number of major vertices is at least- 5, we havet = O(+/n). Thus, Steps 2-5 take @4’
time, and it follows that the running time of algorithmseL-Tre is O(n*75).

Moreover, we remark that in both casesi¢t) = 4 + 1,4 + 2, we can easily construct a
A(T)-L(2, 1)-labeling in the same complexity. Actually,A{T) = 4 + 2, then aA(T)-L(2, 1)-
labeling can be obtained by Algorith@reepy in Section 3. IfA(T) = 4 + 1 is determined as
a result of Step 1, then according to the proof of Theorem A(Ta-L(2, 1)-labeling can be
obtained in linear time. Also ift(T) = 4 + 1 is determined as a result of Step 5, then we can
obtain theA(T)-L(2, 1)-labeling in O¢*°n) time, following the dynamic programming based
procedure of Steps 2-5. Namely we have the following result.

Theorem 2. For trees, the (2, 1)-labeling problem can be solved in(@in{n'">, 41°n}) time.
O

6 Concluding Remarks

Finally, we remark that our results can be extended to apply to some wider variations of labeling
problems, as well as tHg2, 1)-labeling problem on trees.

Itis known that Chang and Kuo’s algorithm [4] can be extended to solvie(thd)-labeling
problem on trees [3] ang-almost treeg6], where ap-almost tree is a connected graph with
n+ p — 1 edges. By extending the original Chang and Kuo’s algorithm Li{el)-labeling
problem on trees can be solved in B 4)>°n) = O(1>°n) time, andL(2, 1)-labeling on
p-almost trees can be solved in.B¢¥**°n) time for A given as an input. Our techniques in
Subsection 4.3 can also be applied to speed up those algorithms. In fact, it is easy to show

that our techniques can solve théh, 1)-labeling problem on trees in @°n) time, and the
L(2, 1)-labeling problem orp-almost trees in OP+?°n) time. Moreover, if some properties
such as Theorem 1 hold, then we may expect some more improvement on these problems.

References

1. H.L.Bodlaender, T. Kloks, R. B. Tan and J. van Leeuwen. Approximationséotoring of graphs.
The Computer Journal7, 193-204 (2004).

2. T. Calamoneri. Thé&(h, k)-labelling problem: A survey and annotated bibliograpfiye Computer
Journal49, 5, 585-608 (2006).

3. G.J.Chang, W. -T. Ke, D. Kuo, D. D. -F. Liu and R. K. Yeh. O, 1)-labeling of graphsDiscrete
Mathematic220, 57—-66 (2000).

4. G. J. Chang and D. Kuo. THg2, 1)-labeling problem on graphSIAM J. Disc. Math9, 309-316
(1996).

5. J. Fiala, P. A. Golovach and J. Krato@lh\Distance constrained labelings of graphs of bounded
treewidth. Proc. 32th International Colloquium on Automata, Languages and Programming
(ICALP), 360-372 (2005).

6. J. Fiala, T. Kloks and J. KratochvFixed-parameter complexity of-labelings.Discrete Applied
Mathematicsl13 59-72 (2001).

7. J. R. Griggs and R. K. Yeh. Labelling graphs with a condition at distan&&M J. Disc. Math5,
586-595 (1992).

8. W. K. Hale. Frequency assignment: theory and applicat®rs. IEEE68, 1497-1514 (1980).

9. J. E. Hopcroft, R. M. Karp. Am>? algorithm for maximum matchings in bipartite grapB$AM J.
Comput2, 4, 225-231 (1973).

10. F. S. Roberts. T-colorings of graphs: recent results and open prolilésugete Mathematic93,
229-245 (1991).

11. W.-F. Wang. Thé.(2, 1)-labelling of treesDiscrete Applied Mathematickb4, 598-603 (2006).

12. R. K. Yeh. A survey on labeling graphs with a condition at distance Distrete Mathematic806,
1217-1231 (20086).

