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Abstract. An L(2,1)-labeling of a graphG is an assignmentf from the vertex setV(G)
to the set of nonnegative integers such that| f (x) − f (y)| ≥ 2 if x and y are adjacent
and | f (x) − f (y)| ≥ 1 if x andy are at distance 2 for allx andy in V(G). A k-L(2, 1)-
labeling is an assignmentf : V(G) → {0, . . . , k}, and theL(2, 1)-labeling problem asks
the minimumk, which we denote byλ(G), among all possible assignments. It is known
that this problem is NP-hard even for graphs of treewidth 2. Tree is one of a few classes
for which the problem is polynomially solvable, but still only an O(∆4.5n) time algorithm
for a treeT has been known so far, where∆ is the maximum degree ofT andn = |V(T)|.
In this paper, we first show that an existent necessary condition forλ(T) = ∆ + 1 is also
sufficient for a treeT with ∆ = Ω(

√
n), which leads a linear time algorithm for computing

λ(T) under this condition. We then show thatλ(T) can be computed in O(∆1.5n) time for
any treeT. Combining these, we finally obtain an O(n1.75) time algorithm, which greatly
improves the currently best known result.
Keywords. frequency/channel assignment, graph algorithm,L(2, 1)-labeling, vertex col-
oring.

1 Introduction

Let G be an undirected graph. AnL(2,1)-labeling of a graphG is an assignmentf from the
vertex setV(G) to the set of nonnegative integers such that| f (x) − f (y)| ≥ 2 if x andy are
adjacent and| f (x) − f (y)| ≥ 1 if x andy are at distance 2 for allx andy in V(G). A k-L(2,1)-
labeling is an assignmentf : V(G) → {0, . . . , k}, and theL(2,1)-labeling problemasks the
minimumk among all possible assignments. We call this invariant, the minimum valuek, the
L(2,1)-labeling numberand is denoted byλ(G). Notice that we can usek + 1 different labels
whenλ(G) = k since we can use 0 as a label for conventional reasons.

The original notion ofL(2,1)-labeling can be seen in Hale [8] and Roberts [10] in the
context of frequency/channel assignment, where ‘close’ transmitters must receive different fre-
quencies and ‘very close’ transmitters must receive frequencies that are at least two frequencies
apart so that they can avoid interference. Due to its practical importance, theL(2,1)-labeling
problem has been widely studied. On the other hand, this problem is also attractive from the
graph theoretical point of view since it is a kind of vertex coloring problem. In this context,
L(2,1)-labeling is generalized intoL(h, k)-labeling for arbitrary nonnegative integersh andk,



and in fact, we can see thatL(h,0)-labeling is equivalent to the classical vertex coloring prob-
lem.

Related Work: There are also a number of studies about theL(2,1)-labeling problem from the
algorithmic point of view. It is known to be NP-hard for general graphs [7], and it still remains
NP-hard for some restricted classes of graphs, such as planar, bipartite, chordal graphs [1], and
recently it turned out to be NP-hard even for graphs of treewidth 2 [5]. In contrast, only a few
graph classes are known to have polynomial time algorithms for this problem. Among those,
Chang and Kuo [4] established a polynomial time algorithm for theL(2,1)-labeling problem
for trees. Their polynomial time algorithm fully exploits the fact thatλ(T) is either∆ + 1 or
∆ + 2 for any treeT. It is based on dynamic programming, and runs in O(∆4.5n) time, where∆
is the maximum degree of a treeT andn = |V(T)|.
Our Contributions: In this paper, we first show that an existent necessary condition forλ(T) =

∆+1 for a treeT is also sufficient for trees with∆ = Ω(
√

n), which leads a linear time algorithm
for computingλ(T) under this condition. Then we show that theL(2,1)-labeling problem can
be solved in O(∆1.5n) time for any input tree. Our approach is based on dynamic programming
similar to Chang and Kuo’s O(∆4.5n)-time algorithm [4], where its∆2.5-factor comes from the
complexity of solving the bipartite matching problem of a graph with order∆, and its∆2n-
factor from the number of iterations for solving bipartite matchings. In spite that our algorithm
is also under the same framework, the running timeO(∆1.5n) is attained by reducing the number
of the matching problems to be solved, together with detailed analyses of the algorithm. As a
result, our algorithm achieves O(n1.75) running time, and greatly improves the best known result
O(∆4.5n) time, which could be O(n5.5) in its worst case.

Organization of this Paper: The rest of this paper is organized as follows. Section 2 gives
basic definitions and related results. Section 3 shows that a necessary condition thatλ(T) =

∆ + 1 for a treeT is also sufficient for trees with∆ = Ω(
√

n). In Section 4, after introducing
fundamental ideas of dynamic programming for solving this problem, then we show thatλ(T)
can be computed in O(∆1.5n) time for a treeT. Combining the results in Sections 3 and 4,
Section 5 presents the overall O(n1.75) time algorithm for any input tree. Finally, Section 6
gives some concluding remarks.

2 Preliminaries

2.1 Definitions and Notations

A graph G is an ordered set of its vertex setV(G) and edge setE(G) and is denoted by
G = (V(G),E(G)). We assume throughout this paper that all graphs are undirected, simple
and connected, unless otherwise stated. Therefore, an edgee ∈ E(G) is an unordered pair of
verticesu andv, which areend verticesof e, and we often denote it bye = (u, v). Two vertices
u andv areadjacentif (u, v) ∈ E(G), and two edges areadjacentif they share one of their end
vertices. A graphG = (V(G),E(G)) is calledbipartite if the vertex setV(G) can be divided
into two disjoint setsV1 andV2 such that every edge inE(G) connects a vertex inV1 and one
in V2; suchG is denoted by (V1,V2,E).

For a graphG, the (open) neighborhoodof a vertexv ∈ V(G) is the setNG(v) = {u ∈ V(G) |
(u, v) ∈ E(G)}, and theclosed neighborhoodof v is the setNG[v] = NG(v) ∪ {v}. Thedegreeof
a vertexv is |NG(v)|, and is denoted bydG(v). We use∆(G) to denote the maximum degree of a



graphG. A vertex whose degree is∆(G) is calledmajor. We often dropG in these notations if
there are no confusions. A vertex whose degree is 1 is called aleaf vertex, or simply aleaf. A
pathin G is a sequencev1, v2, . . . , v` of vertices such that (vi , vi+1) ∈ E for i = 1,2, . . . , `−1, or
equivalently, a sequence (v1, v2), (v2, v3), . . . , (v`−1, v`) of edges (vi , vi+1) for i = 1,2, . . . , ` − 1.
The lengthof a path is the number of edges on it. Thedistancebetween two verticesu andv is
the minimum length of paths connectingu andv. A pathv1, v2, . . . , v` is acycleif v1 = v`. A
graph is atree if it is connected and has no cycle.

In computingL(2,1)-labelings of trees, it is convenient to regard the input tree to be rooted
at an arbitrary vertexr of degree 1 by regardingr as a root. Then we can define the parent-
child relationship on vertices in the usual way. For any vertexv, the sets of its children and
grandchildren are denoted byC(v) andC2(v), respectively. For a vertexv, defined′(v) = |C(v)|.

2.2 Related Results and Basic Properties

In general,L(h, k)-labelings of a graphG are defined for arbitrary nonnegative integersh and
k, as an assignment of nonnegative integers toV(G) such that adjacent vertices receive labels
at leasth apart and vertices connected by a 2-length path receive labels at leastk apart. This
problem is one of the generalizations of the vertex coloring problem sinceL(h,0)-labeling
problem is equivalent to it. Therefore, we can hardly expect that theL(h, k)-labeling problem
is tractable, and in fact,L(0,1)- andL(1,1)-labeling problems are known to be NP-hard, for
example. We can find a lot of related results onL(h, k)-labelings in comprehensive surveys by
Calamoneri [2] and Yeh [12].

As for theL(2,1)-labeling problem, it is also known to be NP-hard for general graphs [7].
It remains NP-hard for planar graphs, bipartite graphs, chordal graphs [1], and even for graphs
of treewidth 2 [5]. In contrast, very few affirmative results are known, e.g., we can decide the
L(2,1)-labeling number of paths, cycles, wheels [7] and trees [4] within polynomial time. Some
research try to derive upper bounds on theL(2,1)-labeling number, and along this direction, a
conjecture thatλ(G) ≤ ∆2 for any graphG with ∆ ≥ 2 is well known and is still open [7].

We here review some significant results onL(2,1)-labeling of graphs or trees that will
become relevant later in this paper. We can see thatλ(G) ≥ ∆+1 holds for any graphG. Griggs
and Yeh [7] showed a necessary condition forλ(G) = ∆ + 1 on any graphG, by observing that
any major vertex inG must be labeled 0 or∆ + 1 whenλ(G) = ∆ + 1.

Lemma 1. [7] If λ(G) = ∆ + 1, then for anyv ∈ V(G), NG[v] contains at most two major
vertices.

Lemma 2. [7] For any treeT, λ(T) is either∆ + 1 or ∆ + 2.

Concerning the latter lemma, they also conjectured the problem of determining ifλ(T) is ∆ +

1 or ∆ + 2 is NP-hard. Chang and Kuo [4] disproved this by presenting a polynomial time
algorithm for computingλ(T), whose running time is O(∆4.5n). Since tree is a natural and one
of the most basic graph classes, this result yields several affirmative results for more general
graph classes, e.g.,p-almost trees, for which the problem can be solved in O(λ2p+4.5n) time [6].

3 A Linear Time Algorithm for Trees with ∆ = Ω(
√

n)

From this section, we concentrate ourselves on theL(2,1)-labeling problem on trees. Obvi-
ously, Chang and Kuo’s algorithm [4] runs in linear time if∆ = O(1). In this section, we show

that theL(2,1)-labeling problem for trees can be also solved in linear time if∆ >
√

n + 65
16 + 11

4 .



Let T be a tree. As shown in Lemmas 1 and 2, we have a necessary condition forλ(T) =

∆+1 (or a sufficient condition forλ(T) = ∆+2), but no simple necessary and sufficient condition
is known although some research such as [11] gave a sufficient condition forλ(T) = ∆ + 1.
Here, we present another sufficient condition forλ(T) = ∆+1, which implies that the necessary
condition forλ(T) = ∆ + 1 of Lemma 1 is also sufficient for large∆.

Let N3[v] denote the set of vertices whose distance fromv is at most three.

Theorem 1. If for anyv ∈ V(T), N3[v] contains at most∆−6 major vertices andN[v] contains
at most two major vertices, thenλ(T) = ∆ + 1.

Proof: Suppose that for anyv ∈ V(T), N3[v] contains at most∆ − 6 major vertices andN[v]
contains at most two major vertices.

At first, label every major vertex with 0 or∆ + 1 so that two major vertices within distance
two do not have the same label. Since for anyv ∈ V(T), N[v] contains at most two major
vertices, this labeling can be correctly done.

Next, regardT as a rooted tree by choosing one vertex as the root. Following the definition
of the L(2,1)-labeling, we will label each vertex in the rooted tree in the breadth-first-search
order. Suppose that a vertexv is labeledb and the parent ofv is labeleda, where|a − b| ≥ 2.
Divide the setC(v) of children ofv into C′(v),C′′(v) andR(v) as follows:

– C′(v) = {w ∈ C(v) | w is not a major vertex and has a major vertex inC(w) ∪C2(w)},
– C′′(v) = {w ∈ C(v) | w is a major vertex},
– R(v) = C(v) −C′(v) −C′′(v).

Note that|C′(v)| ≤ ∆ − 6, |C′′(v)| ≤ 2, and ifd(v) = ∆ then|C′(v)| ≤ ∆ − 7 and|C′′(v)| ≤ 1.

Case 1:d(v) < ∆. Let U(a,b) = {a,b−1,b,b+ 1}∪ {0,1, ∆, ∆+ 1}, andŪ(a,b) = {0,1, . . . , ∆+

1} − U(a,b). Assign injectively labels in̄U(a,b) to vertices inC′(v). Since|C′(v)| ≤ ∆ − 6
and|Ū(a,b)| = ∆ + 2− |U(a,b)| ≥ ∆ − 6, such a labeling is possible. LetL(v) be the set of
labels inŪ(a,b) which are not used in the labeling ofC′(v).
Case 1-1:|C′′(v)| = 0. Assign injectively labels inL(v)∪({0,1, ∆, ∆+1}−{a,b−1,b,b+1})

to vertices inR(v).
Case 1-2:|C′′(v)| = 1. Assign injectively labels inL(v)∪ ({1, ∆, ∆+ 1} − {a,b−1,b,b+ 1})

(respectively,L(v) ∪ ({0,1, ∆} − {a,b − 1,b,b + 1})) to vertices inR(v), if the major
vertex inC(v) is labeled 0 (respectively,∆ + 1).

Case 1-3:|C′′(v)| = 2. Assign injectively labels inL(v) ∪ ({1, ∆} − {b,a − 1,a,a + 1}) to
vertices inR(v).

Here,|L(v)| = |Ū(a,b)| − |C′(v)| = ∆ + 2− |U(a,b)| − |C′(v)|. Also,
– |{0,1, ∆, ∆ + 1} − {a,b− 1,b,b + 1}| = |U(a,b)| − 4,
– |{1, ∆, ∆ + 1} − {a,b− 1,b,b + 1}| ≥ |U(a,b)| − 5,
– |{0,1, ∆} − {a,b− 1,b,b + 1}| ≥ |U(a,b)| − 5,
– |{1, ∆} − {a,b− 1,b,b + 1}| ≥ |U(a,b)| − 6.

Since|R(v)| ≤ ∆ − 2− |C′(v)| − |C′′(v)|, each labeling in Cases 1-1,1-2, and 1-3 is possible.
Case 2:d(v) = ∆. Let U(a) = {a} ∪ {0,1, ∆, ∆ + 1} and Ū(a) = {0,1, . . . , ∆ + 1} − U(a).

Assign injectively labels inŪ(a) to vertices inC′(v). Since|C′(v)| ≤ ∆ − 7 and|Ū(a)| =
∆ + 2 − |U(a)| ≥ ∆ − 3, such a labeling is possible. LetL(v) be the set of labels in̄U(a)
which are not used in the labeling ofC′(v).
Case 2-1:|C′′(v)| = 0. Assign injectively labels inL(v) ∪ ({∆, ∆ + 1} − {a}) (respectively,

L(v) ∪ ({0,1} − {a})) to vertices inR(v), if v is labeled 0 (respectively,∆ + 1).



Case 2-2:|C′′(v)| = 1. Assign injectively labels inL(v) ∪ ({∆} − {a}) (respectively,L(v) ∪
({1} − {a})) to vertices inR(v), if v is labeled 0 (respectively,∆ + 1).

Here,|L(v)| = |Ū(a)| − |C′(v)| = ∆ + 2− |U(a)| − |C′(v)|. Also,
– |{∆, ∆ + 1} − {a}| ≥ |U(a)| − 3,
– |{0,1} − {a}| ≥ |U(a)| − 3,
– |{∆} − {a}| ≥ |U(a)| − 4,
– |{1} − {a}| ≥ |U(a)| − 4.

Since|R(v)| = ∆ − 1− |C′(v)| − |C′′(v)|, each labeling in Cases 2-1 and 2-2 is possible.

It can easily be checked that the labeling ofC(v) is a validL(2,1)-labeling. Therefore,λ(T) =

∆ + 1.�
From Theorem 1, we can see that the necessary condition forλ(T) = ∆ + 1 in Lemma 1 is

also sufficient if the number of major vertices is at most∆ − 6.

Corollary 1. If the number of major vertices is at most∆ − 6, thenλ(T) = ∆ + 1 if and only if
for anyv ∈ V(T), N[v] contains at most two major vertices.�

Corollary 2. If ∆ >
√

n + 65
16 + 11

4 , thenλ(T) = ∆ + 1 if and only if for anyv ∈ V(T), N[v]
contains at most two major vertices.

Proof: Suppose that for anyv ∈ V(T), N[v] contains at most two major vertices. Assume that
there are∆−5 major verticeswi (1 ≤ i ≤ ∆−5). Since any two edges joining two major vertices
are not adjacent, the number of edges joining two major vertices is at most∆−5

2 . Therefore,

| ∪1≤i≤∆−5 E(wi)| ≥ ∆(∆ − 5)− ∆ − 5
2

,

whereE(wi) denotes the set of edges incident towi in T. Hence,n− 1 ≥ (∆ − 1
2)(∆ − 5). From

this inequality, we obtain∆ ≤
√

n + 65
16 + 11

4 . Therefore, if∆ >
√

n + 65
16 + 11

4 , then the number
of major vertices is at most∆ − 6. Hence, from Corollary 1, this corollary follows.�

Clearly, the condition thatN[v] contains at most two major vertices for anyv ∈ V(T) can be

checked in linear time. Thus, when∆ >
√

n + 65
16 + 11

4 , we can decideλ(T) in linear time, and if
λ(T) = ∆+ 1, then a (∆+ 1)-L(2,1)-labeling ofT can be obtained by an algorithm based on the
proof of Theorem 1, which runs in linear time. Otherwise, we can obtain (∆+2)-L(2,1)-labeling
by AlgorithmG: traverseT in the breadth first order, and if reached vertexv wheref (v) =

a and f (u) = b for its parentu, label vertices inC(v) from {0,1, . . . , ∆+ 2} − {b,a− 1,a,a+ 1}.
This is always possible since|C(v)| ≤ |{0,1, . . . , ∆ + 2} − {b,a − 1,a,a + 1}| for anyv, and it
gives (∆ + 2)-L(2,1)-labeling.

4 An O(∆1.5n)-time Algorithm

4.1 Chang and Kuo’s Algorithm

In this subsection, we review a dynamic programming algorithm for theL(2,1)-labeling prob-
lem of trees, which is proposed by Chang and Kuo [4], since our algorithm also utilizes the
same formula of the principle of optimality. For a treeT with maximum degree∆, Griggs and



Yeh [7] proved thatλ(T) = ∆+ 1 or∆+ 2. The algorithm determines ifλ(T) = ∆+ 1, and if so,
we can easily construct the labeling withλ(T) = ∆ + 1.

Before describing the algorithm, we introduce some notations. We assume thatT is rooted
at some leaf vertexr for explanation. Given a vertexv, we denote the subtree ofT rooted atv
by T(v). Let T(u, v) be a tree rooted atu that formsT(u, v) = ({u} ∪V(T(v)), {(u, v)} ∪E(T(v))).
Note that thisu is just a virtual vertex for explanation andT(u, v) is uniquely decided forT(v)
in a sense. For a rooted tree, we call the length of the longest path from the root to a leaf its
height. ForT(u, v), we define

δ((u, v), (a,b)) =

{
1 if λ(T(u, v) | f (u) = a, f (v) = b) ≤ ∆ + 1,
0 otherwise,

whereλ(T(u, v) | f (u) = a, f (v) = b) denotes theL(2,1)-labeling number onT(u, v) under the
assumption thatf (u) = a and f (v) = b, that is, the minimumk of k-L(2,1)-labeling onT(u, v)
satisfying f (u) = a and f (v) = b. Thisδ function satisfies the following:

δ((u, v), (a,b))=



1 if there is a distinct assignmentc1, c2, . . . , cd′(v) on
w1,w2, . . . ,wd′(v), whereci is different froma,b,
b− 1,b + 1, andδ((v,wi), (b, ci)) = 1 for eachi,

0 otherwise,

(1)

wherew1,w2, . . . ,wd′(v) are children ofv. The existence of an assignmentc1, c2, . . . , cd′(v) on
w1,w2, . . . ,wd′(v) as above is formalized as the maximum bipartite matching problem; we con-
sider a bipartite graphG(u, v,a,b) = (V(v),X,E(u, v,a,b)), whereV(v) = {w1,w2, . . . ,wd′(v) ∈
C(v)}, X = {0,1, . . . , ∆, ∆ + 1} andE(u, v,a,b) = {(w, c) | δ((v,w), (b, c)) = 1, c ∈ X − {a},w ∈
V(v)}. (Analogously, we also defineG(u, v,−,b) by E(u, v,−,b) = {(w, c) | δ((v,w), (b, c)) =

1, c ∈ X,w ∈ V(v)}, which will be used in Subsection 4.3.) We can see that an assignment
c1, c2, . . . , cd′(v) on w1,w2, . . . ,wd′(v) is feasible if there exists a matching with sized′(v) of
G(u, v,a,b). Namely, forT(u, v) and two labelsa and b, we can easily (i.e., in polynomial
time) determine the value ofδ((u, v), (a,b)) if the values ofδ function for T(v,wi) and any
two pairs of labels are given. According to these observations, Chang and Kuo proposed the
following dynamic programming algorithm:

Algorithm CK

Step 0. Letδ((u, v), (∗, ∗)) := 1 for all T(u, v) of height 1, where (∗, ∗)
means all pairs of labelsa andb, where|a− b| ≥ 2. Leth := 2.

Step 1. For allT(u, v) of heighth, computeδ((u, v), (∗, ∗)).
Step 2. Ifh = h∗ whereh∗ is the height of rootr of T, then goto Step 3.

Otherwise leth := h + 1 and goto Step 1.
Step 3. Ifδ((r, v), (a,b)) = 1 for some (a,b), then output “Yes”.

Otherwise output “No”. Halt.

Since Steps 0, 2 and 3 can be done just by looking up the table ofδ, the running time is
dominated by Step 1; the total running time of the algorithm is O(

∑
v∈V t(v)), wheret(v) denotes

the time for calculatingδ((u, v), (∗, ∗)). Each calculation ofδ((u, v), (a,b)) in Step 1 can be



executed in O(|V(v)∪X|2.5) = O(∆2.5) time, because an O(n2.5) time algorithm is known for the
maximum matching of a bipartite graph withn vertices [9]. Since the number of pairs (a,b) is
at most (∆ + 2)× (∆ + 2), we obtaint(v) ≤ (∆ + 2)2 ×O(∆2.5) = O(∆4.5). Thus the total running
time of the algorithm is

∑
v∈V t(v) = O(∆4.5n) ‡.

In the following subsections, we propose a more efficient algorithm. It is also based on the
formula (1) as the principle of optimality, but it computesδ((u, v), (∗, ∗)) more efficiently.

4.2 Preprocessing Operations for Input Trees

In this subsection, we introduce preprocessing operations in our algorithm. LetT be an orig-
inal input tree. These preprocessing operations are carried out for the purpose that (1) re-
move inessential vertices fromT, where “inessential” means that they do not affect theL(2,1)-
labeling number ofT, and (2) divideT into several subtrees that preserves theL(2,1)-labeling
number ofT. Obviously, these operations enable to reduce the input size to solve and we may
expect some speedup. However, the effect for speedup is not important actually, because the
preprocessing operations may do nothing for some instances. Instead, a more important effect
is that we can restrict the shape of input trees, which enables the amortized analysis of the
running time of our algorithm shown later.

First, we describe how to remove inessential vertices.

1. Check if there is a leafv whose unique neighboru has degree less than∆. If so, removev
and edge (u, v) from T until such a leaf does not exist.

This operation does not affect theL(2,1)-labeling number ofT, that is,λ(T) = λ(T′) where
T is the original tree andT′ is the resulting tree. This is because, inT, such leaf vertexv can
be properly labeled by some number in{0,1, . . . , ∆ + 1} if u and any other neighbor vertices
of u are properly labeled by numbers among{0,1, . . . , ∆ + 1}. Also, the operation does not
change the maximum degree∆. Since this can be done in linear time, the labeling problem for
T is equivalent to the one forT′ in terms of linear time computation. Thus, from now on, we
assume that an input treeT has the following property.

Property 1. All vertices connected to a leaf vertex are major vertices.

We defineVL as the set of all leaf vertices inT. Also we defineVQ as the set of major vertices
whose children are all leaves.

Next, we explain how to divideT into subtrees. We call a sequence of consecutive vertices
v1, v2, . . . , v` a path componentif (vi , vi+1) ∈ E for all i = 1,2, . . . , ` − 1 andd(vi) = 2 for all
i = 1,2, . . . , `, and we call̀ the sizeof the path component. For example, consider vertices
v1, v2, v3 andv4 of T where eachvi is connected tovi+1 for i = 1,2,3. If d(v1) = · · · = d(v4) = 2
holds, thenv1, . . . , v4 is a path component with size 4.

2. Check if there is a path component whose size is at least 4, sayv1, v2, . . . , v`, and letv0

andv`+1 be the unique adjacent vertices ofv1 andv` other thanv2 andv`−1, respectively.
If it exists, assumeT is rooted atv1, divideT into T1 := T(v1, v0) andT2 := T(v4, v5), and
removev2 andv3. Continue this operation until such a path component does not exist.

‡ By a careful analysis, this running time is reduced to O(∆3.5n).



We assume∆ ≥ 7, because otherwise the original algorithmCK is already a linear time algo-
rithm. Here, we show thatλ(T) = ∆ + 1 if and only if λ(T1) = λ(T2) = ∆ + 1. The only-if
part is obvious, and we show the if part. Suppose thatf (v1) = a and f (v0) = b in a (∆ + 1)-
L(2,1)-labeling ofT1, and f (v4) = a′ and f (v5) = b′ in a (∆ + 1)-L(2,1)-labeling ofT2. Then
set f (v2) = c where|c− a| ≥ 2 andc is neitherb nor a′, and setf (v3) = c′ where|c′ − c| ≥ 2,
|c′ − a′| ≥ 2 andc′ is neithera nor b′. This gives a (∆ + 1)-L(2,1)-labeling ofT and is always
possible since∆ ≥ 7. Namely, we can find anL(2,1)-labeling ofT by findingL(2,1)-labelings
of T1 andT2 independently, which guarantees that this preprocessing preserves (∆+1)-L(2,1)-
labeling ofT if it exists. Clearly, this operation can be done in linear time. Thus, from now on,
we assume that an input treeT has the following property.

Property 2. The size of any path component ofT is at most 3.

4.3 Efficient Search for Augmenting Paths

As observed in Subsection 4.1, the running time of algorithmCK is dominated by Step 1.
Step 1 of algorithmCK computes the maximum bipartite matching O(∆2) times for calculat-
ing δ((u, v), (∗, ∗)) for T(u, v), which takes O(∆4.5) time. In this subsection, we show that for
T(u, v), δ((u, v), (∗, ∗)) can be calculated more efficiently; for a fixed labelb, {δ((u, v), (i,b)) |
i ∈ {0,1, ..., ∆ + 1}} can be obtained in O(∆1.5d′(v)) time by computing a single maximum bi-
partite matching and a single graph search, whered′(v) is the number of children ofv. This
shows thatt(v) = O(∆2.5d′(v)).

Let G(u, v,−,b) = (V(v),X,E(u, v,−,b)) be the bipartite graph defined in Subsection 4.1,
whereV(v) = {w1,w2, . . . ,wd′(v)} andX = {0,1, . . . , ∆ + 1}. In this subsection, we may refer to
i ∈ X as a labeli. It is not difficult to see that the following property holds.

Lemma 3. If G(u, v,−,b) has no matching of sized′(v), thenδ((u, v), (i,b)) = 0 for any label
i. �

Below, consider the case whereG(u, v,−,b) has a matching of sized′(v); without loss of
generality, letM = {(wi+1, i) | i ∈ {0,1, . . . , d′(v) − 1}} be such a matching inG(u, v,−,b) (note
that byd′(v) ≤ ∆, each vertex inV(v) is matched). Recall, as mentioned in Subsection 4.1, that
for each labeli ∈ {0,1, . . . , ∆ + 1}, δ((u, v), (i,b)) = 1 if and only ifG(u, v, i,b) has a matching
of sized′(v). Clearly,δ((u, v), (i,b)) = 1 for eachi ∈ {d′(v),d′(v) + 1, . . . , ∆ + 1}.

Next consider the value ofδ((u, v), (i,b)) for i ∈ {0,1, . . . , d′(v) −1}. Let i ∈ {0,1, . . . ,
d′(v) −1}. Note thatG(u, v, i,b) has the matchingM − {(wi+1, i)} of size d′(v) − 1. Given a
matchingM′, a path is calledM′-alternating if its edges are alternately in and not inM′. In
particular, anM′-alternating path is calledM′-augmentingif the end vertices of the path are
both unmatched byM′. It is well-known thatM′ is a maximum matching if and only if there
is noM′-augmenting path.

Hence,G(u, v, i,b) has a matching of sized′(v) if and only if G(u, v, i,b) has an (M −
{(wi+1, i)})-augmenting path;G(u, v,−,b) has an (M − {(wi+1, i)})-augmenting path not passing
through vertexi. It follows that for each labeli ∈ {0, . . . , d′(v) − 1}, we can decide the value
of δ((u, v), (i,b)) by checking whether there exists an (M − {(wi+1, i)})-augmenting path not
passing through vertexi in G(u, v,−,b). Notice that for any labeli, if such an augmenting path
P exists, then one of two end vertices ofP is always included inX′, whereX′ = {d′(v),d′(v) +

1, . . . , ∆+1} ⊆ X (note that the other end vertex iswi+1). Moreover, by the following Lemma 4,
we can decide the value ofδ((u, v), (i,b)), i ∈ {0,1, . . . , ∆ + 1} simultaneously by traversing all
vertices which can be reached by anM-alternating path from some vertex inX′ in G(u, v,−,b).



Lemma 4. δ((u, v), (i,b)) = 1 if and only if vertexi can be reached by anM-alternating path
from some vertex inX′ in G(u, v,−,b).

Proof: Assume thatδ((u, v), (i,b)) = 1. Then, there exists an (M − {(wi+1, i)})-augmenting
pathP not passing through vertexi. Note that two end vertices ofP arewi+1 and some vertex
u ∈ X′. Hence, it follows that vertexi can be reached by theM-alternating pathP∪ {(wi+1, i)}
from u ∈ X′.

Assume that vertexi can be reached by anM-alternating path from some vertex inX′ in
G(u, v,−,b). Let P be such anM-alternating path in which vertexi appears exactly once. Since
P starts from a vertex inX′, we can observe that the edge which appears immediately before
reaching vertexi in P is (wi+1, i) ∈ M. Hence, the pathP − {(wi+1, i)} is an (M − {(wi+1, i)})-
augmenting path not passing through vertexi, and it follows thatδ((u, v), (i,b)) = 1.�

All vertices which can be reached by anM-alternating path from some vertex inX′ in
G(u, v,−,b) can be computed in O(|E(u, v,−,b)| + |X′|) = O(∆d′(v)) time, by using the depth
first search from vertexs in Gs, whereGs denotes the graph obtained fromG(u, v,−,b) by
adding a new vertexsand new edges connectingsand each vertex inX′.

Consequently,{δ((u, v), (i,b)) | i ∈ {0,1, ..., ∆+1}} can be obtained by computing a single bi-
partite matching and a single depth first search. The time complexity is O(∆1.5d′(v) +∆d′(v)) =

O(∆1.5d′(v)). Hence,δ((u, v), (∗, ∗)) can be obtained in O(∆2.5d′(v)) by applying the above com-
putation for each labelb; t(v) = O(∆2.5d′(v)).

4.4 Efficient Computation of δ-values near Leaves

In Subsections 4.1 and 4.3, we have observed that algorithmCK runs in O(
∑

v∈V t(v)) =

O(∆2.5 ∑
v∈V d′(v)) time. In this subsection, we show that algorithmCK can be implemented

to run in O(∆2.5 ∑
v∈V−VL−VQ

d′′(v)) time by avoiding unnecessary bipartite matching compu-
tations for vertices incident to leaves, whereVL and VQ are defined in Subsection 4.2 and
d′′(v) = |C(v) − VL|.

For a vertexv ∈ VL ∪ VQ, we can easily obtainδ((u, v), (∗, ∗)) without computing the
bipartite matching. Actually, for a leafv ∈ VL, δ((u, v), (a,b)) = 1 if and only if |a− b| ≥ 2. For
a vertexv ∈ VQ, we haveδ((u, v), (a,b)) = 1 if and only ifb ∈ {0, ∆ + 1} and|a− b| ≥ 2 (notice
that each vertex inVQ is major). Thus, the running time of algorithmCK is dominated by Step
1 for verticesv ∈ V − VL − VQ; O(

∑
v∈V t(v)) = O(

∑
v∈V−VL−VQ

t(v)).
Also for a vertexv ∈ V − VL − VQ incident to some leaf, we can gain some saving of time

for computingδ((u, v), (∗, ∗)); for a labelb, the calculation ofδ((u, v), (∗,b)) can be done in
O(∆1.5d′′(v)) time, instead of O(∆1.5d′(v)) time. Letv be a vertex inV − VL − VQ incident to
some leaf;C(v) ∩ VL , ∅. Note thatv is major by Property 1, and thatδ((u, v), (∗,b)) = 0 for
eachb < {0, ∆ + 1}. Thus, we have only to decide the value ofδ((u, v), (∗,b)) for b ∈ {0, ∆ + 1}.

Then, we can observe that for computingδ((u, v), (∗,b)), it suffices to check whether there
exists a feasible assignment only onC(v)−VL, instead ofC(v). Actually, if b = 0 and there exists
a feasible assignment onC(v) − VL, then the number of the remaining labels is∆ + 2− |C(v) −
VL| − |{a,0,1}| = |C(v) ∩ VL| and we can assign to each leaf inC(v) ∩ VL distinct labels among
the remaining labels (note that|C(v)| = ∆−1 sincev is major). The case ofb = ∆+1 can also be
treated similarly. Therefore, it follows that the calculation ofδ((u, v), (∗,b)) is dominated by the
maximum matching computation in the subgraph ofG(u, v,−,b) induced by (V(v) − VL) ∪ X;
its time complexity is O(∆1.5|V(v) − VL|)) = O(∆1.5d′′(v)).



Consequently, algorithmCK can be implemented to run in O(
∑

v∈V−VL−VQ
t(v)) = O(∆2.5

∑
v∈V−VL−VQ

d′′(v)) (note thatd′′(v) = d′(v) for each vertexv with C(v) ∩ VL = ∅).

4.5 Amortized Analysis

In Subsections 4.2–4.4, we have observed that by an efficient implementation of algorithm
CK, λ(T) can be decided in O(

∑
v∈V−VL−VQ

t(v)) = O(∆2.5 ∑
v∈V−VL−VQ

d′′(v)) time. Below, we
show that O(∆2.5 ∑

v∈V−VL−VQ
d′′(v)) = O(∆1.5n) by amortized analysis; namely, we show the

following lemma.

Lemma 5. AlgorithmCK can be implemented to run in O(∆1.5n) time.�

Let VB be the set of verticesv ∈ V − VL − VQ with d′′(v) ≥ 2, VP be the set of vertices
v ∈ V − VL − VQ with d′(v) = 1, andV′P = V − (VL ∪ VQ ∪ VB ∪ VP). Note that each vertex
in VP belongs to a certain path component. Also note that eachv ∈ V′P satisfiesd′′(v) = 1 and
C(v) ∩ VL , ∅, and hence by Property 1, it is incident to exactly∆ − 2 leaves.

Now by Property 2, for each vertexv ∈ VP, there exist the rootr or a vertex inVB ∪
V′P among its ancestors which are at most at distance 3 fromv. Hence, we have|VP| ≤
3
∑

v∈VB∪V′P
d′′(v) + 3. By

∑
v∈VP

d′′(v) = |VP|, it follows that

∆2.5 ∑
v∈V−VL−VQ

d′′(v) = ∆2.5 ∑
v∈VB∪V′P∪VP

d′′(v)
= ∆2.5 ∑

v∈VB∪V′P
d′′(v) + ∆2.5|VP|

≤ ∆2.5(
∑

v∈VB∪V′P
4d′′(v) + 3)

= O(∆2.5(
∑

v∈VB∪V′P
d′′(v) + 1)).

Thus, for proving O(∆2.5 ∑
v∈V−VL−VQ

d′′(v)) = O(∆1.5n), it suffices to show that
∑

v∈VB∪V′P
d′′(v)

= O(n/∆).

Lemma 6.
∑

v∈VB∪V′P
d′′(v) = O(n/∆).

Proof: Let E′ be the set of all edges connecting a vertex inVB∪V′P and its non-leaf child. Note
that |E′| = ∑

v∈VB∪V′P
d′′(v). Let EL denote the set of all edges incident to a leaf, andEP denote

the set of all edges connecting a vertex inVP and its unique child. Also note that|EL| = |VL|,
|EP| = |VP|, EL ∩ EP = ∅, and (EL ∪ EP) ∩ E′ = ∅. Hence, we have|E′| ≤ |E| − |EL| − |EP| =
n− 1− |VL| − |VP|. Now, byV = VL ∪ VQ ∪ VB ∪ VP ∪ V′P and thatVL,VQ,VB,VP andV′P are
disjoint each other, we haven = |V| = |VL| + |VQ| + |VB| + |VP| + |V′P|. Therefore, it follows that
|E′| ≤ n− 1− (n− |VB| − |V′P| − |VQ|) = |VB| + |V′P| + |VQ| − 1.

Now since each vertexu ∈ VB has at least two non-leaf children and each leaf not incident
to VB ∪ V′P is incident to a vertex inVQ, we can observe that|VQ| ≥ |VB| + 1 holds. Since
each vertex inV′P (respectively,VQ) is incident to exactly∆ − 2 (respectively,∆ − 1) leaves,
we have|VL| ≥ |V′P|(∆ − 2) + |VQ|(∆ − 1). Consequently, we have

∑
v∈VB∪V′P

d′′(v) = |E′| ≤
|VB| + |V′P| + |VQ| − 1 ≤ 2|VQ| + |V′P| − 2 ≤ 2|VL|/(∆ − 2)− 2.�

5 An O(n1.75)-time Algorithm

Summarizing the arguments given in Sections 3 and 4, we give a description of the overall
algorithm namedL-T, for determining in O(n1.75) time whetherλ(T) = ∆+ 1 or not for
any input treeT.



Algorithm L-T

Preprocessing. Execute the preprocessing described in Subsection 4.2.
Step 0. IfN[v] contains at least three major vertices for some vertexv ∈ V,

output “No”. Halt.
Step 1. If the number of major vertices is at most∆ − 6, output “Yes”. Halt.
Step 2. ForT(u, v) with v ∈ VQ (its height is 2), let

δ((u, v), (a,0)) := 1 for each labela , 0,1,
δ((u, v), (a, ∆ + 1)) := 1 for each labela , ∆, ∆ + 1,
δ((u, v), (∗, ∗)) := 0 for any other pair of labels.

Let h := 3.
Step 3. For allT(u, v) of heighth, computeδ((u, v), (∗, ∗)) by fixing f (v) := b

and applying the method described in Subsections 4.3 and 4.4 for each
labelb.

Step 4. Ifh = h∗ whereh∗ is the height of rootr of T, then goto Step 5.
Otherwise leth := h + 1 and goto Step 3.

Step 5. Ifδ((r, v), (a,b)) = 1 for some (a,b), then output “Yes”.
Otherwise output “No”. Halt.

We show that algorithmL-T can be implemented to run in O(n1.75) time. Clearly,
all of the preprocessing, Steps 0 and 1 can be executed in linear time. As observed in Sub-
section 4.5, Steps 2–5 can be executed in O(∆1.5n) time. Moreover, as shown in the proof of
Corollary 2, if N[v] contains at most two major vertices for any vertexv ∈ V and the total
number of major vertices is at least∆ − 5, we have∆ = O(

√
n). Thus, Steps 2–5 take O(n1.75)

time, and it follows that the running time of algorithmL-T is O(n1.75).
Moreover, we remark that in both cases ofλ(T) = ∆ + 1, ∆ + 2, we can easily construct a

λ(T)-L(2,1)-labeling in the same complexity. Actually, ifλ(T) = ∆ + 2, then aλ(T)-L(2,1)-
labeling can be obtained by AlgorithmG in Section 3. Ifλ(T) = ∆ + 1 is determined as
a result of Step 1, then according to the proof of Theorem 1, aλ(T)-L(2,1)-labeling can be
obtained in linear time. Also ifλ(T) = ∆ + 1 is determined as a result of Step 5, then we can
obtain theλ(T)-L(2,1)-labeling in O(∆1.5n) time, following the dynamic programming based
procedure of Steps 2–5. Namely we have the following result.

Theorem 2. For trees, theL(2,1)-labeling problem can be solved in O(min{n1.75, ∆1.5n}) time.
�

6 Concluding Remarks

Finally, we remark that our results can be extended to apply to some wider variations of labeling
problems, as well as theL(2,1)-labeling problem on trees.

It is known that Chang and Kuo’s algorithm [4] can be extended to solve theL(h,1)-labeling
problem on trees [3] andp-almost trees[6], where ap-almost tree is a connected graph with
n + p − 1 edges. By extending the original Chang and Kuo’s algorithm, theL(h,1)-labeling
problem on trees can be solved in O((h + ∆)5.5n) = O(λ5.5n) time, andL(2,1)-labeling on
p-almost trees can be solved in O(λ2p+4.5n) time for λ given as an input. Our techniques in
Subsection 4.3 can also be applied to speed up those algorithms. In fact, it is easy to show



that our techniques can solve theL(h,1)-labeling problem on trees in O(λ3.5n) time, and the
L(2,1)-labeling problem onp-almost trees in O(λ2p+2.5n) time. Moreover, if some properties
such as Theorem 1 hold, then we may expect some more improvement on these problems.
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