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   Abstract: In this paper, generalization capability of a Radial Basis Function controller using 
   RasVal in Universal Learning Network was studied. RasVal is an abbreviation of Random Search 

   with Variable Search Length and it can search for a global minimum systematically and effec-
   tively in a single framework which is not a combination of different methods. In this paper, a new 
   method to overcome the over-fitting problem in nonlinear control systems is proposed, where the 
   weighting coefficients of control variables in the criterion function are increased in order to obtain 

   the generalization capability of RasVal. From simulation results of a nonlinear crane system, it 
   has been shown that the smaller the scale of the R.B.F. controller is, the smaller the weighting 

coefficients of the control variables could be. 

   Keywords: Universal learning network, Random search method, Nonlinear control, Neural 
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 1. Introduction 
  Universal Learing Network (U.L.N.)1) is a new-

type of network which can be used to model and 
control large-scale complicated systems such as eco-
nomic, social and living phenomena as well as indus-
trial plants. Universal Learning Network consists 
of nonlinearly operated nodes and multi-branches 
that may have arbitrary time delays between the 
nodes. A new control method has been already pre-
sented for nonlinear systems using Universal Learn-
ing Network with radial basis function(R.B.F.) and 
it has been compared to the commonly used con-
trol method using neural networks. In the above 
system using Universal Learning Network, as learn-
ing algorithm of parameters in the controller was 
based on the gradient method, the problem of falling 
into a local minimum that leads to low efficiency 
of learning could not be solved. To overcome this 

problem, a new learning algorithm that can find 
a global minimum was presented and it was ap-
plied to build the optimal controller of a nonlin-
ear control system. The proposed learning algo-
rithm is called RasVal2) which is an abbreviation of 
Random Search with Variable Search Length and 
it can search for a global minimum systematically 
and effectively in a single framework which is not a 
combination of different methods. RasVal is a kind

of random search based on the probability density 
function of searching, which can be modified using 

informations on the results of the past searching 
in order to execute the intensified and diversified 
searching. The features of RasVal are as follows. 

(1) it does not require differential calculations as 
the gradient method, therefore, it takes a shorter 
calculation time than the gradient method. 

(2) random search with the intensification and di-
versification is carried out in order to solve the local 
minimum problem. 

By applying RasVal to a nonlinear crane control 
system, it has been proved that a new learning al-

gorithm is superior in performance to the back prop-
agation learning algorithm3) . 

But, in the simulations to study the generalization 
capability of RasVal, it was found that too much 
learning causes the over-fitting problem, that is, 
the control system becomes instable at the differ-
ent condition from that of learning. In this paper, 

a new method to overcome the over-fitting problem 
in the nonlinear control systems is proposed, where 
the weighting coefficients of control variables in the 

criterion function are increased in order to obtain 
the generalization capability of RasVal. From sim-
ulation results of a nonlinear crane system, it has 
been shown that the smaller the scale of the R.B.F. 
controller is, the smaller the weighting coefficients 
of the control variables could be.
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 2. Universal Learning Network with 
    Radial Basis Function 

 In this section, Universal Learning Network with 
Radial Basis Function is summarized, which is used 
to model the system to be controlled and its con-
troller. 
Universal Learning Network (U.L.N.) is a new-type 
of network, it consists of nonlinearly operated nodes 
and branches that may have arbitrary time delays 
including zero or minus ones. Structure of U.L.N. 
is shown in  Fig.1. 
Basic equation of U.L.N. with Multi Branches is 
represented by Eq. (1) : 

hj(t) = Oj({hi(t — Dij(p))1i E JF(j),p E B(i, j)}, 

{r.n(t)In E N(j)}, {Am(t)Im E M(j)}) (1) 
          jEJ, tET 

where, 
hi (t): output value of node j at time t; 
Am(t): value of mth parameter at time t; 
r.n(t): value of nth external input variable at time 

    t; 
Oj: nonlinear function of node j; 
Dij(p): time delay of pth branch from node i to 

      node j; 
JF(j): set of node numbers whose outputs are 

       connected to node j; 
JB (j) : set of node numbers whose inputs are 

       connected from node j; 
B (i, j) : set of branches from node i to node j; 
N(j): set of external input variable numbers that 

     are connected to node j; 
N: set of external input variable numbers; 
MU):  set of parameter numbers, with respect 

      to these parameters, output of node j 
      can be partially differentiable; 

M: set of parameter numbers; 
J: set of node numbers; 
T: set of sampling times; 
Let a criterion function be written as Eq.(2): 

 E = E ({hT(s)}, {Am(s)})(2) 

r E Jo, m E M0, s E To 

Hwhere 

Jo: set of node numbers related to evaluation; 

Mo: set of parameter numbers related to 

     evaluation; 

To: set of sampling times related to evaluation . 

Therfore, U.L.N. forms a surperset of all kinds of 

neural network paradigms with supervised learning

capability. 
The important features of U.L.N. are that functions 
of the nodes can take any nonlinear functions and 
the nodes can be connected to each other arbitrar-
ily. So the structure of U.L.N. is a general one in 
the sense that U.L.N. with sigmoid functions and 

one sampling time delays corresponds to the recur-
rent neural network. 

B(k,i) I ) 
~lllct (n 

~ _  

------ N°  N j Iak(D) Nk ---------- 

              ..., ...~I ... re...  

Fig.1 Structure of U.L.N. with Multi Branches 

U.L.N. with R.B.F. can be expressed as follows. 

hi(t) = E fjm(xj'm,) + bj (3) 
mEL(j) 

fjm(xjm) = kjmexp(xjm)(4) 

1hi(t - Di3 ( )) — hjm(P) 2 (5) 

iEJF(j) pEB(i,j)rim 
where, 
L(j): set of the numbers of R.B.F. functions of 

    node j; 
kjm,h~m(p),a- (p),bj: parameters for node j. 

 3. Random Search Method with Vari-
    able Search Length (RasVal) 
  In this section, RasVal is summarized, which is 
used for learning of the parameters in the controller 
of the system. 
RasVal is a kind of random search method based 
on the probability density functions of searching, 
which can be modified using informations on suc-
cess or failure of the past searching. 
The features of RasVal are as follows. (1)it does 
not require differential calculations as the gradi-
ent method, therefore, it takes a shorter calcula-
tion time than the gradient method, and (2)random 
search with the intensification and diversification 
can lead to the solution of the local minimum prob-
lem. 
Calculation procedure of RasVal is as follows. 

if E(A + x) < E())---> a E--- ,\ + x; (6) 

                  (searching is success)



 if E(A + x) > E(A)---> A 4-- A. (7) 

                (searching is failure) 
where, E : criterion function; 
A = [A ...Am...AIMI]T : parameter vector; 
x = [x1...xm,...xIMl]T : parameter search vector. 
The probability density function f (xm) of searching 
xm(see Fig.2) is represented as Eq.(8),(9) and (10): 

.f (xm) = Pm/3e13x-, xm < 0;(8) 

.f (xm) = gm/3e- 13'm , xm > 0;(9) 

Pm+qm=1.0(10)

Fig.2 Probability Density Function of Searching x,,,, 

Therefore x,,,, can be calculated as follows: 

 if 0<z<pm, >x,,,.,,=
/3Pm                   ln() (11) 

 if pm<z<1.0=-~ln(lz) (12) 
          gm 

where, z : random numbers in [0,1]. 

 Parameters ,Q, pm, q,,, of f (xm) which are related 
to searching range and direction are modified based 
on the informations of success or failure of the past 
searching as follows. 

/3= +13(13) 
In case of negative direction searching : 

pmE—apm+(1-a)•SF (14) 
In case of positive direction searching : 

qm<—agm+(1-a)•SF (15) 
In case of failure, 

n<---n+1(16) 

In case of success, 

n4—n, n=0;(17) 

n4--n-1, 0<n<no (18)

n — no,n > no(19) 

where, 

SF = 1.0, in case of success; 
SF = 0.0, in case of failure; 

a : exponential filter coefficient; 

,Q + /3 : upper limit of /3; 
,Q : lower limit of /3; 

: coefficient. 

From Eq.(6) ti (19), the intensification and diversi-
fication of the search can be realized such that when 
there is quite a possibility of finding good solutions 
around the current one, the intensified search for 
the vicinity of the current solution is carried out; 

on the other hand, when there is no possibility of 
finding good solutions, the diversified search is ex-
ecuted in order to find good solutions in the region 
far from the current solution. 

 4. Generalization Capability of Non-

    linear Crane Control Systems Using 
    RasVal 

  Generally, the words "generalization capability" 
means the ability of assurance of that the system 

works well even in the different enviroments from 
that at learning stage. It is commonly said that 
the generalization capability will be improved by 
learning a great number of cases with different en-
vironments and also by reducing the scale of net-

works for learning. Recently, some papers on the 
enhancement of the generalization capability have 
been reported by using the second order derivatives 
in Universal Learning Network4> . These methods 

are based on the idea that a criterion function re-
lating to the improvement of system robustners is 
added to the usual criterion function in order to en-
hance the generalization capability. 
In this paper, a new method for the enhancement of 

the generalization capability in the nonlinear con-
trol systems is presented, where control signals to a 

plant to be controlled are suppressed by increasing 
the weighting coefficients related to the control sig-
nals in the criterion function. In the next section, 

simulations of a nonlinear crane system are carried 
out in order to study the above new method. 

 5. Simulation 

 5.1 Nonlinear Crane Control System 

 In order to investigate the performance of the gen-
eralization capability of RasVal learning for nonlin-
ear control systems with R.B.F. controller, a nonlin-
ear crane control system was studied(Fig.3). The



aim of control is to bring the trolley to the target 

position, and to winch the load to the target height 
at the same time by minimizing the criterion func-

tion.

       Fig.3 Nonlinear Crane System 

The equations of the crane system are represented 
in the followings: 

 mg D  +  G  .  G 
 =  

M0—  M  x+—ud(20) 

M+m D + G.G   0 = 
1Mg8—lMx+ 1Mud (21)

• 
 l _ c + Gm1 +Gm urn(22) 

m m 

where, M: mass of the trolley; m: mass of the load; 
l: height of the load from the intial position; 8: 
angle of the load; x: location of the trolley; C, D: 
coefficients of the friction. ud, um are input voltage 

control vaules from the controller to the crane sys-
tem. 
Assuming the following notations, 

hi(t) = x(t) h2(t) = ±(t) 
h3(t) = 0(t) h4(t) = 8 (t) 
h5(t) = 1(t) h6(t) = i(t) 

then,equations can be expressed in the discrete 
forms. 

hi(t) = aiihi(t — 1) + a21h2(t — 1)(23) 
  h2(t) = a22h2(t — 1) + a32h3(t — 1) 
  + blud(t)(24) 

h3(t) — a33 h3 (t — 1) + a43h4 (t — 1) (25) 
         h2(t — 1) h3(t — 1)  h

4(t) = a24 h5(t — 1) + a34 h5 (t — 1) 

      + a44 h4 (t — 1) + h
5bl 1------------ud (t) (26) 

h5(t) — a55 h5 (t — 1) + a65h6(t- 1) (27) 
h6(t) = a66h6(t — 1) + b2urn(t)(28) 

  The structure of the nonlinear crane control sys-
tem is shown in Fig.4. The controller is constructed 
by the radial basis function network. The arbitrary 

time delay is assumed to be 1.0 sampling time. The 
nonlinear crane control system has two parts. The

upper part is a crane system which has 6 nodes(real 
line frame); the lower part is a controller(dotted line 
frame). The U.L.N. with R.B.F. controller has two 
R.B.F. controllers, each of the R.B.F. controllers 
has a three layered structure. In the controller, the 
left controller has two inputs(x,8), the right con-
troller has two inputs(/, 1).

  Fig.4 Structure of Nonlinear Crane Control 

          System with R.B.F. Controller 

 5.2 Simulation Results 

 Simulations were carried out to study the gener-

alization capability of the proposed method. In the 

simulations, control time is 40 seconds. And the cri-

terion function for RasVal learning can be expressed 

as follows. 

 E = 2E[Qi(lref — 1(t))2 
           t=o 

+ Q2 (xre f — x(t))2 + Q392 (t) + Q402 (t) 
   + Q5um(t) + Q6ud(t)] 

  +  (Q7x2(tf) + Q812(tf)) (29) 

where, lre f , xre f : reference value of 1, x; t1: final 
sampling time; Qi: coefficient of the criterion func-
tion. 
Simulation conditions were shown in Table 1. 
The generalization capability was investigated as 
follows. While learning of parameters was carried 
out so as to bring x from 0.0m to 0.2m and 1 from 
2.0m to 1.7m in the 40 seconds, kinetic dynamics 
for investigating the generalization capability was 
calculated by changing the reference input from x 
= 0.0m to 0.2m ,from 1 = 2.0m to 1.7m in the first 
20 seconds; and from x = 0.2m to 0.4m ,from 1 = 
1.7m to 2.0m in the last 20 seconds. By changing 
the initial parameters of the R.B.F. controller ran-
domly, simulations were carried out 5 times. Fig.5 
show the average learning curues and 1(t), x(t), 0(t)



of the nonlinear crane system which were obtained 

for the study of the generalization capability, on 
the condition that  L(j)=4 (four R.B.F. functions), 

Q5 = Q6 = 0.001 and learning is carried out 20000 
times and 80000 times respectively. 
From Fig.6 it is shown that when the learning was 
continued until 80000 times, dynamics of the system 

becomes instable because of the over-fitting of the 
learning. Curved surfaces of control signals ud, urn 
which are the function of (x, 0) and (1,1) respectively 
are shown in Fig.7 and Fig.8. It is understood that 
curved serfaces of Fig.8 obtained when the learning 

is carried out too much can not calculate the appro-

priate control signal Urn around /„f -/ = 0.3. Ther-
fore, suppressing of the control signals was tried to 
make by increasing the weighting coefficients Q5, Q6 
related to um, ud in the criterion function. 

Fig.9 N Fig.12 show the curved surfaces of con-
trol signals ud, urn obtained by the condition that 
four R.B.F. functions, Q5 = Q6 = 1.0; three 
R.B.F. functions, Q5 = Q6 = 0.4; two R.B.F. func-
tions, Q5 = Q6 = 0.3; and one R.B.F. function, 

Q5 = Q6 = 1.0 are used and learning is carried out 
80000 times. Q5i Q6 in Fig.9 ti Fig.11 are the low-
est value, where stable dynamics is obtained even 
when the reference inputs x„ f, /„ ./ are changed in 
the middle of the control. 

From Fig.9 ti Fig.12 and Table 2, it is known 
that the larger the number of R.B.F. functions is, 
the more needed the suppression of control signals 
are, and it is also known that sufficient generaliza-

tion capability can not be obtained by using one 
R.B.F. function. 

 6. Conclusion 

 In this paper, the generalization capability of 

R.B.F. controller using RasVal in Universal Learn-
ing Network was studied. From simulations of a 
nonlinear control system, it has been proved that 
the generalization capability is enhanced by sup-

pressing the control signals, and a great numbers 
of R.B.F. functions in the controller of the system 
deteriorate the generalization capability. 
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Fig.5 Learning Curves and Kinetic Dynamics for Studying Generalization Capability (Learning Times: 20000)

Fig.6 Learning Curves and Kinetic Dynamics for Studying Generalization Capability (Learning Times: 80000)

Fig.7 Curved Surfaces of Control Signals Ud and  Urn (Learning Times: 20000)

Fig.8 Curved Surfaces of Control Signals Ud and Um (Learning Times: 80000)



Fig.9 Curved Surfaces of Control Signals Ud and Um(Four R.B.F. Nodes)

 Fig.10 Curved Surfaces of Control Signals Ud and Uni(Three R.B.F. Nodes)

Fig.11 Curved Surfaces of Control Signals Ud and Um(Two R.B.F. Nodes)

Fig.12 Curved Surfaces of Control Signals Ud and Um(One R.B.F. Node)


