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Abstract: Properties are well-researched not only on the whole set of binary trees but also on 

 some  subsets  of  binary  trees.  In  this  paper,  we  discuss  properties  on  a  subset  of  binary  trees  -

leftchain  trees.  The  concept  of  leftchain  trees  is  presented  with  the  background  of  certain  appli-

cations and a necessary and sufficient condition is found for leftchain trees. A relation is given on 

leftchain trees, it is proved that the relation is a boolean lattice on leftchain trees, and rank and 

unrank functions for leftchain trees are obtained based on the result above. It is pointed out that 

properties on leftchain trees can be grafted on rightchain trees easily. 
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 1. Introduction 
  As one of the important data structures or as a 

branch of graph theory, binary trees have been an 
interesting research objective for many researchers. 
Properties are researched on the whole set of binary 
trees, such as enumeration of binary treesl),7) and 
reconstruction of binary trees5),6),9). Properties are 
also researched on some subsets of binary trees, such 
as AVL trees3> and red-black trees4> . In this paper, 
we will discuss properties on a new subset of binary 
trees — leftchain trees. 

 Leftchain trees can be regarded as a model for 
bus-structures, resources allocation, or other appli-
cations. In section 2, we give the definition of left-
chain trees and prove a necessary and sufficient con-
dition for leftchain trees. In section 3, we give a re-
lation on leftchain trees, prove that the relation is a 
boolean lattice, and code leftchain trees with binary 
numbers. In section 4, we point out that by sym-
metry properties on leftchain trees can be grafted 
on rightchain trees. 

 2. Leftchain Trees 
 In this section, we give the definition of leftchain 

trees, and prove a necessary and sufficient condition 
for leftchain trees. 

Definition 1. 
 A path p = pip2...pi in a binary tree is called a 

leftchains) (rightchain) if and only if 
 (a) p1 has no left (right) son, and
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 (b) for 1 < i < 1, pi is the left (right) son of its 
successor pi+ 1i and 

 (c) p1 is either the root or the right (left) son of 
its parent. 

PI is called the header of the leftchain 
(rightchain.) 

Example 1. The example of leftchains and 
rightchains is shown in Fig. 1. 
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 DE F 
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                 z Fig.1 Leftchains and rightchains 

Definition 2. 

 A nonempty binary tree T is called a leftchain 

tree if and only if headers of all leftchains of T are 

on the rightchain of which the header is the root of 

T. 

 The set is denoted by LCT, of leftchain trees with 

n nodes. 

Example 2. 

 T2 of Example 1 is a leftchain tree, while T1 of



Example 1 is not. 

Definition 3. 
 The i-p  sequence') (p-i sequence5)) of a binary 

tree with n nodes is an ordered n-tuple formed by 
labelling n nodes of the tree from 1 to n in inorder 
(preorder) and reading these labels in preorder (in-
order.) 
 The i-p sequence (p-i sequence) of a binary tree 
T is denoted by i_p(T) (p_i(T),) and labels of a 
binary tree for the i-p sequence (p-i sequence) are 
called i-labels (p-labels.) 

  An i-p sequence (or a p-i sequence) can be re-
garded as a permutation of (1, 2, ..., n), and i-p se-
quences are also called tree permutations"). 

Example 3. 
i_p(Ti) = (5,2,1,4,3,6,7), 
p_i(Ti) = (3,2,5,4,1,6,7), 
i_p(T2) = (2,1,3,6,5,4,7), and 
p_i(T2) = (2, 1, 3, 6, 5, 4, 7), here, Ti and T2 are 

binary trees of Example 1. 

Definition 4. 
  A permutation p = (Pi, P2, ..., pn) of (1, 2, ..., n) is 

a partition permutation if and only if 
  p = (L1, L1 - 1, ...,1, L2, L2 - 1, ..., L1 + 1, ... , 

Lk, Lk - 1, •••, Lk-1 + 1), 
here, 1 < L1 < L2 < ... < Lk = n. 

  The set is denoted by Pn of partition permuta-
tions with n components. 

  The set of partition permutations C the set of 
tree permutations, since a characterization of tree 
permutations (i-p sequences) is that (p1,P2, ••• 'PO 
is a tree permutation if and only if there do not exist 

     and pk such that pk < pi < pi for i < j < k 
7). 

Example 4. 
  In Example 3, i_p(T2) = (2, 1, 3, 6, 5, 4, 7) is a 

partition permutation, here, L1 = 2 < L2 = 3 < 
L3 = 6 < L4 = 7, while i_p(T i) = (5, 2, 1, 4, 3, 6, 7) 
is not. 

  The relations among leftchain trees, i-p se-

quences, p-i sequences, and partition permutations 
are given by the following Theorem 1 and its 
Corollary. 

Theorem 1. 
  A nonempty binary tree T E LCTn <---> i_p(T) =

p_i(T). 
Proof. 
      Let T have k leftchains, and from root on 
the rightchain they are 

p11p12...p111, p21p22...p212, ••• , pk1Pk2...pklk •

Fig.2 The leftchain tree

 The leftchain tree T is shown in Fig. 2. Thus, 

by the definitions of i_p(T) and p_i(T), 
i_p(T) = (L1, L1 - 1, ...,1, 

L2iL2 - 1,...,L1+ 1, 

Lk, Lk - 1, •••, Lk-1 + 1) 
=p_i(T), 

 here, Li = >~ i , for 1 < i < k. 
"<----": Let i_p(T) _ (ui, u2, •.., un) = p_i(T) 
(v1, v2, •••, vn), then ui = vi for 1 < i < n. 

  Using induction on n. 
  (1) When n = 1, the result is true obviously. 

  (2) Assume when n < k (k > 1) the result is true. 
Let u1 = m, di(ui) be the node with the label ui 
under i-labels, and d2(vi) be the node with the la-
bel vi under p-labels. Since di (ui) is the root and 
d1(u1) = di(m) = d2(vm) = d2(1), vm = 1 = um. 
By the definition of i-p sequence, under i-labels la-
bels of nodes on the left subtree are less than the 
label of the root, and labels of nodes on the right 
subtree are bigger than the label of the root. There-
fore, 
Case 1. m = 1, the root di (ui) has no left subtree, 
i.e., d1(u1) is a leftchain of T. 
Case 2. m > 1, di (u1) has the left subtree 
with nodes di(u2), ..., di(um) and rooted by di(u2). 
Since i p(T L) = (u2, ..., um), where, TL is the left 
subtree of di(ui), and um = 1, di(u2) has no right 
subtree, and so on for di(ui) (2 < j < m), i.e., 
di (um )di (um_ )...di (ui) is a leftchain of T. 

 If T (rooted by di(ui)) has no right subtree, the 
result holds. If T has the right subtree TR, then 

i_p(TR) = (um+1 - m, 14m+2 - m, ..., uk - m) = 

                                    R (vm+1 - m, vm+2 - m, ..., vk - m) = p_i(T), by



the assumption of induction, TR E  LCTk-nt, so, 
T E LCTk. 

 Therefore, from (1) and (2) the result holds. 

 From the proof of Theorem 1, it is not difficult 
to obtain the following result. 

Corollary 

 (1) A nonempty binary tree T E LCTn <---> 
i_p(T) E Pn. 

 (2) i_p(T) = p_i(T) <---->--i_p(T) E Pn. 

 3. Properties 

 In this section, we first give a relation 4 c on 
LCTn, and prove < LCTn, 4 c > is a partial or-
der relation, and then by several biprojective func-
tions we obtain the result that < LCTn, 4 c > 
is order isomorphic with < P(JVn_1), C>, where, 
JVn-1 is the set of positive integers less than n, 
and P(.iUn_ 1) is the power set of Ain_ 1. Thereby, 
it is known that < LCTn, 4 c > is a boolean lat-
tice and I LCTnI = 2n-1. Lastly, based on the result 
above the one-to-one correspondence is established 
between LCTn and Bn_1, here, Bn_1 is the set of 
binary numbers with n - 1 bits. 
Definition 5 

 Given T1, T2 E LCTn, Ti has k leftchains, T2 
has 1 leftchains, and 1 < k. T2 is called a com-
position of T1, which is denoted by T2 4 c T1, if 
and only if, under i-labels, any leftchain of T2 is 
composed of some leftchain(s) of Ti. 

Example 5 

 The example of 4 c is shown in Fig. 3.

          Fig.3 Example for 4 c 

 T3 4 c T1, and T3 4 c T2, while T2 /d cT1. 

Theorem 2. < LCTn, 4 > is a partial order rela-

tion.

Proof. 

 (1) For any T E LCTn, by the definition of 4 c, 
T 4 c T, so < LCTn, 4 c > is reflexive. 

 (2) For any Ti, T2 E LCTn, if T2 4 c T1 and 
Ti 4 c T2, by the definition of <1c,  Ti = T2, so 
< Tn, 4 > is anti-symmetric. 

 (3) For any T1, T2, T3 E LCTn, if T2 4 c Ti, and 
T3 4 c T2, .by the definition of <1c,  under i-labels, 
any leftchain of T3 is composed of some leftchain(s) 
of T2, and any leftchain of T2 is composed of some 
leftchain(s) of T1. So, under i-labels, any leftchain 
of T3 is composed of some leftchain(s) of T1, i.e., 
< LCTn, 4 c > is transitive. 
 From (1), (2) and (3), < LCTn, 4 > is a partial 

order relation. 

 It can be proved directly that < LCTn, 4 c > 

is a complemented distributive lattice (boolean lat-
tice), but for simplicity, we will prove the result by 
establishing an order isomorphic relation between 
< LCTn, 4c > and < P(Nn-1), C>. 

 Based on Theorem 1 and its Corollary, a left-
chain tree with n nodes can be represented by an 
element of Pn. In fact, for p E Pn 

P = (L1, L1-1, •••,1, L2, L2-1, •••, L1+1, Lk, Lk-
1, ..., Lk-1 + 1) 
can be simplified as an ordered k-tuple (L1, L2 - 
L1, ...,Lk - Lk_1), or as another ordered k-tuple 
(L1,L2,..., Lk). 

Definition 6. 
  (1) Tn = {(al, a2i ..., ak)I k E JVn, ai E JVn for 

1<i<k, and E7                  k1a3=n}. 

  (2) Sn = {(xl, x2, ..., xk E Ain, xi E Ain, for 
1 < i < k, and 1 < xi <x2<...<xk=n}. 

Example 6. 
 T3 = {(1,1,1),(1,2),(2,1),(3)}. 

 83 = {(1, 2, 3), (1, 3), (2, 3), (3)} . 

  The one-to-one correspondence between Pn and 
Tn can be established by a biprojective function A 
that 

A: Pn Tn, 
A(L1,L1 - 1,•••,1,L2,L2 - 1,•••,L1 + 1, ••• 

Lk, Lk - 1, •••, Lk-1 + 1) 
_ (L1i L2 - Li, •••, Lk - Lk-1), and 

= (L1, L1 - 1,...,1,L2,L2 - 1, ..., L1 + 1, ... , 
Lk, Lk - 1, •••, Lk-1 + 1), 
where, Li = E; for 1 < i < k. 

 For T E LCTn, we will denote A(i_p(T)) by a(T)



simply. The implication of a(T)  =  (al, a2, ..., ak) is 
that T has k leftchains, and k leftchains have al, 
a2, ... , ak nodes from the root of T respectively. 

  The one-to-one correspondence between Pn and 
Sn can also be established by a biprojective function 
13 that 

13 : P n --) Sn 
13(L1,L1 - 1,...,1,L2,L2 - 1, ...,Li + 1, ••• 

Lk, Lk - 1, •••, Lk-1 + 1) 
= (Li, L2, •••, Lk), and 

/3' (L1, L2, ..., Lk) 
= (L1,L1 - 1,...,1,L2,L2 - 1,...,L1 + 1,, 
Lk, Lk - 1, •••, Lk-1 + 1)• 

 For T E LCTn, we will denote B(i_p(T)) by /3(T) 
simply. The implication of 13(T) = (x1, x2, ..., xk) is 
that T has k leftchains, and under i-labels labels for 
headers of k leftchains are xl, x2, ... ,xk from the 
root of T respectively. 

  The relation between Tn and Sn can be given by 
a biprojective function -y that 

7 : Tn Sn 
7(al, a2, ..., ak) = (xi, x2, •.., xk), here, xi = 

aj, for 1 < i < k, and 
  7-1(Xi,x)=(aaahere,a= x        1~2~...,k1~2~•••~k>>11 

and ai=xi-xi_1 for 1 <i <k. 
  Obviously, 7 = /3 o a-1. 

Definition 7. 
  Given t1 = (al, a2, ..., ak) E Tn, t2= 

(b1, b2i ..., b1) E Tn, and 1 < k, t2 is called a com-
position of ti, which is denoted by t2 4T t1, if and 
only if 
for any i (1 < i < 1,) ]pi (1 < pi < k,) s.t. 

E,2-1 b.) = EPi 1 aj. 

Example 7. t1 = (2,3,1,4), t2 = (3,2,3,2) and 
t3 = (5, 5). t3 <1T  t1 and t3 4 T t2, while t2 , Tt1 

  From definitions of <1c,  aT and a, there is the 
result 

Lemma 1. For Ti, T2 E LCTn, T2 <I T1 <----> 
a(T2) dT a(Ti). 

Definition 8. 
   Given s1 = (xl, x2, ..., xk) E Sn, s2 

(Y1, Y2, •••, yi) E Sn, and 1 < k, s2 is called a com-
position of si, which is denoted by s2 <s s1, if and 
only if 

{y1, y2, •••, g {xl, X2, •.•, xk}• 

Example 8. Si = (2,5,6,10), s2 = (3,5,8, 10) and

s3 = (5,10). s3 4 s S1 and s3 4 s s2, while s2I ssl, 

 From definitions of 4 T, 4 s and 7, there is the 
result 

Lemma 2. For t1i t2 E Tn, t2 4T t1 <----> 7(t2) 4 
7(tl). 

Definition 9. 6 is a biprojective function that 
6 : Sn -* P(JVn-1), 

6(xl, x2i ••., xk) = 0, ~£ = 1, and                    {xl,x2,                             •••, xk-1 },k>1 

     (n),casel 6-1(A)= 
             (x1, X2, ..., xk_i, n) ,case2 

here, casel : A = 0 and 
case2 : (A = {xl, x2, ..., xk_1 }) n(xl < x2 < ... < 
xk-1). 

  From definitions of 4 s and 6, there is the result 

Lemma 3. For si, 32 E Sn, s2 4 s s1 <----> 6(s2) C 
6(si). 

  Now, we can give the relation between < 
LCTn, a c > and < P(Nn-1), C>• 

Theorem 3. 
  < LCTn, d c > is order isomorphic with < 

POrn-i), C>. 
Proof. 
  From Lemmas 1, 2 and 3, f = 6 o -y o a is an 
order isomorphic function from < LCTn, 4 c > to 

< P(JVn-1), C>• 

  Thus, by Theorem 3, we have 
Corollary 
  (3) < LCTn, 4 c > is a boolean lattice. 

  (4) I LCTnI = 2n-1 

  Based on Theorem 3 and its Corollary, when 
n > 1 the one-to-one correspondence can be es-
tablished between LCTn and Bn_i. Since between 
P(JVn) and Bn there is the one-to-one correspon-
dence e that 

E : P(JVn) -* Bn, 

E(A) = bib2...bn, here, bi =0'iA for 1 < 
                         1 ,iEA 

i < n, and 

E-1(bib2...bn) = {iI (i E Nn) A(bi = 1)}, 
when n > 1 the one-to-one correspondence between 
LCTn and Bn_1 can be expressed as g that 

g=co f =E06o'yoa=€o6o/3, and 
g-1 = f-1 0 E-1 = a-1 0 ,y-1 0 6-1 0 E-1 =



 0-1 o 6-1 0 E-1• 
 i.e., g is a rank function2),7) and g-1 is a unrank 

function2)'7) for LCTn. 

Corollary 

 (5) For T E LCTn and n > 1, T has k leftchains 
<---> k - 1 is the number of l's in g(T). 
Proof. 

 T has k leftchains 
<----> /3(T) = (x1, x2,..., xk-1, n) 
<----> S o /3(T) = {x1, x2i ..., xk_1} and x1 < x2 < 

<xk_1 

<---> k-1 is the number of l's in g(T)= E(So/3(T)). 

 In fact, for T E LCTn and n > 1 g(T) can be 
formed by labelling all edges on all leftchains with 
0's and the rest (all edges on the rightchain) with 
l's, and reading these labels in preorder. 

Example 9. g(Ti) = 010011000, g(T2) = 
001010010 and g(T3) = 000010000, where, T1, T2 
and T3 are leftchain trees of Example 5. 

 4. Conclusion 

 The bus-structure with k branches and n nodes 
can be regarded as a leftchain tree with k leftchains 
and n nodes, and the problem can also be abstracted 
as a leftchain tree with k leftchains and n nodes that 

n resources are to be allocated among k users. By 
symmetry, properties on leftchain trees (LCT) can

Fig.4 the Hasse Diagram

be grafted on rightchain trees (RCT) easily. 

 As the end of this paper, the Hasse Diagram8) of 

< LCTn, 4 C > and the comparison of LCTn, Pn, 
Tn, Sn, P(Arn_1), Bn_1 and RCTn are given as in 
Fig. 4 and Fig. 5 respectively for n = 4.

Fig.5 the comparison of LCTn, Pn, Tn, Sn, 

P(.Nn-i), Bn-i and RCTn 
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