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Abstract: Properties are well-researched not only on the whole set of binary trees but also on
some subsets of binary trees. In this paper, we discuss properties on a subset of binary trees —
leftchain trees. The concept of leftchain trees is presented with the background of certain appli-
cations and a necessary and sufficient condition is found for leftchain trees. A relation is given on
leftchain trees, it is proved that the relation is a boolean lattice on leftchain trees, and rank and
unrank functions for leftchain trees are obtained based on the result above. It is pointed out that
properties on leftchain trees can be grafted on rightchain trees easily.
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1. Introduction

As one of the important data structures or as a
branch of graph theory, binary trees have been an
interesting research objective for many researchers.
Properties are researched on the whole set of binary
trees, such as enumeration of binary trees'”) and
reconstruction of binary trees®:%):9). Properties are
also researched on some subsets of binary trees, such
as AVL trees® and red-black trees?. In this paper,
we will discuss properties on a new subset of binary
trees — leftchain trees.

Leftchain trees can be regarded as a model for
bus-structures, resources allocation, or other appli-
cations. In section 2, we give the definition of left-
chain trees and prove a necessary and sufficient con-
dition for leftchain trees. In section 3, we give a re-
lation on leftchain trees, prove that the relation is a
boolean lattice, and code leftchain trees with binary
numbers. In section 4, we point out that by sym-
metry properties on leftchain trees can be grafted
on rightchain trees.

2. Leftchain Trees

In this section, we give the definition of leftchain
trees, and prove a necessary and sufficient condition
for leftchain trees.

Definition 1.

A path p = p1p2...p; in a binary tree is called a
leftchain® (rightchain) if and only if

(a) p1 has no left (right) son, and
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(b) for 1 < i < I, p; is the left (right) son of its
successor p;41, and

(c) pi is either the root or the right (left) son of
its parent.

pi is called the header of the leftchain
(rightchain.)

Example 1. The example of leftchains and

rightchains is shown in Fig. 1.

A
B c Lefichains DBA, C,GE, F
Headers : A :C E.,F
D E :
G Righichains ©  FCA, EB, D, G
(Tl) Headers * A , B,D,G
A .
Leftchains BA, C,GED, F
B Headers A,C, D, F
D
' Righichains © FDCA, B,E, G

Headers : A B E,G

(T)

Fig.1 Leftchains and rightchains

Definition 2.

A nonempty binary tree T is called a leftchain
tree if and only if headers of all leftchains of T are
on the rightchain of which the header is the root of
T.

The set is denoted by LCT,, of leftchain trees with
n nodes.

Example 2.
T2 of Example 1 is a leftchain tree, while T; of
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Example 1 is not.

Definition 3.

The i-p sequence”)

(p-i sequence®) of a binary
tree with n nodes is an ordered n-tuple formed by
labelling n nodes of the tree from 1 to n in inorder
(preorder) and reading these labels in preorder (in-
order.)

The i-p sequence (p-i sequence) of a binary tree
T is denoted by i p(T) (p-i(T),) and labels of a
binary tree for the i-p sequence (p-i sequence) are
called i-labels (p-labels.)

An i-p sequence (or a p-i sequence) can be re-
garded as a permutation of (1,2,...,n), and i-p se-
quences are also called tree permutations”).
Example 3.

ip(T1) =(5,2,1,4,3,6,7),

pi(Tq) =(3,2,5,4,1,6, 7),

i-p(T2) = (2, 1,3,6,5,4,7), and

pi(Ty) = (2,1,3,6,5,4,7), here, T, and T, are
binary trees of Example 1.

Definition 4.

A permutation p = (p1,p2, ..., pn) of (1,2,...,n) is
a partition permutation if and only if

p= (1,01 —1,..,1, Ly, Lo —1,..., L1 + 1, ...,
Lig, L —1,.., L1 + 1),
here, 1 < L; < Ly < ... < Ly =n.

The set is denoted by P,, of partition permuta-
tions with n components.

The set of partition permutations C the set of
tree permutations, since a characterization of tree
permutations (i-p sequences) is that (p1,p2,...,Pn)
is a tree permutation if and only if there do not exist

pi,pj, and pi such that py < p; <pj fori <j <k
7)

Example 4.

In Example 3, i p(T2) = (2,1,3,6,5,4,7) is a
partition permutation, here, L; = 2 < Ly = 3 <
L3y =6 < Ly =17, while i_p(Tl) = (5,2, 1,4, 3,6,7)
is not.

The relations among leftchain trees, i-p se-
quences, p-i sequences, and partition permutations
are given by the following Theorem 1 and its
Corollary.

Theorem 1.
A nonempty binary tree T € LCT,, <= i_p(T) =

p-i(T).

Proof.

“=—". Tet T have k leftchains, and from root on
the rightchain they are

P11P12---P1lys P21P22---P2ly5 --- » Pk1Pk2---Pkly -

”l

Fig.2 The leftchain tree

The leftchain tree T is shown in Fig. 2. Thus,
by the definitions of i_p(T) and p-i(T),
ip(T)=(L1,L1—1,...,1,
Lo, Ly —1,..Ly +1,

L, Lk — 1, ., L1 + 1)
=p-i(T), )

here, L; = . _; lj, for 1 <i < k.

“e=": Let i.p(T) = (u1,u2,...,un) = pi(T) =
(v1,v2, ..., Up), then u; = v; for 1 <7 < m.

Using induction on n.

(1) When n = 1, the result is true obviously.

(2) Assume when n < k (k > 1) the result is true.
Let u; = m, d;{u;) be the node with the label u;
under i-labels, and d3(v;) be the node with the la-
bel v; under p-labels. Since d;(u;) is the root and
di(uy) = di(m) = do(vp) = da(1), v = 1 = up.
By the definition of i-p sequence, under i-labels la-
bels of nodes on the left subtree are less than the
label of the root, and labels of nodes on the right
subtree are bigger than the label of the root. There-
fore,

Case 1. m = 1, the root d;(uy) has no left subtree,
i.e., di(uq) is a leftchain of T.

Case 2. m > 1, di(u;) has the left subtree
with nodes di (u2), ..., d1(un) and rooted by di(uz).
Since i_p(TE) = (ug, ..., Um), where, TF is the left
subtree of d;(u;), and u,, = 1, di(uz) has no right
subtree, and so on for di(u;) (2 < j < m), ie,
dy (U )d1 (Wrm—1)...d1 (uq) is a leftchain of T.

If T (rooted by dq(u1)) has no right subtree, the
result holds. If T has the right subtree T, then

ip(TR) = (Ums1 — My U2 — M,y U — M) =
(V41 — My Umy2 — My oy U — m) = p_i(TR), by
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the assumption of induction, T € LCTy_,,, so,
T € LCTx.

Therefore, from (1) and (2) the result holds.

O

From the proof of Theorem 1, it is not difficult
to obtain the following result.
Corollary

(1) A nonempty binary tree T € LCT, <=
i-p(T) € P,,.

(2) i-p(T) = p-i(T) <= ip(T) € Py

3. Properties

In this section, we first give a relation Js on
LCT,, and prove < LCT,,dc > is a partial or-
der relation, and then by several biprojective func-
tions we obtain the result that < LCT,, 4o >
is order isomorphic with < P(N,_1),C>, where,
N,_1 is the set of positive integers less than n,
and P(N,_1) is the power set of N,,_;. Thereby,
it is known that < LCT,,<ds > is a boolean lat-
tice and |LCT,| = 2"~1. Lastly, based on the result
above the one-to-one correspondence is established
between LCT,, and B,,_1, here, B,,_; is the set of
binary numbers with n — 1 bits.

Definition 5

Given T,,Ty € LCT,, T, has k leftchains, T,
has [ leftchains, and | < k. T3 is called a com-
position of Ty, which is denoted by Ty d T4, if
and only if, under i-labels, any leftchain of T is
composed of some leftchain(s) of T;.

Example 5
The example of <. is shown in Fig. 3.

(T) (T) (T)
Leftchains Leftchains Leftchains
12 123 12345
3453 45 678910
6 678
78910 910

Fig.3 Example for <4
T3 ﬂc Tl, and T3 ﬂc T2, while T2 ECTI'

Theorem 2. < LCT,,<d > is a partial order rela-
tion.

Proof.

(1) For any T € LCT,, by the definition of 4.,
T A T, so < LCT,,, < > is reflexive.

(2) For any T,,T; € LCT,, if T, 4 T; and
T, <4 T3, by the definition of 4, T; = To, so
< T,,<4 > is anti-symmetric.

(3) For any Ty, T2, T3 € LCT,, if T, 4Ty, and
T3 < Ts, by the definition of d, under i-labels,
any leftchain of T3 is composed of some leftchain(s)
of T3, and any leftchain of T3 is composed of some
leftchain(s) of T;. So, under i-labels, any leftchain
of T3 is composed of some leftchain(s) of T}, i.e.,
< LCT,,d¢ > is transitive.

From (1), (2) and (3), < LCT,, 4 > is a partial
order relation.

(]

It can be proved directly that < LCT,,,do >
is a complemented distributive lattice (boolean lat-
tice), but for simplicity, we will prove the result by
establishing an order isomorphic relation between
< LCT,,d¢ > and < P(N,_1),C>.

Based on Theorem 1 and its Corollary, a left-
chain tree with n nodes can be represented by an
element of P,,. In fact, for p € P,,

p=(L1,L1—1,...,1, Ly, Lo—1, ..., L1+1, Lg, Ly —
1, L1+ 1)
can be simplified as an ordered k-tuple (Lq, Lo —
Ly,...,Lr — Lig_1), or as another ordered k-tuple
(L1, Lo, ..., Lg).

Definition 6.

(1) T, = {(ay,az,...,ax)lk € N,,a; € N, for
1 <i<k,and Z?:l a; =n}.

(2) Sp = {(z1,72,...., 2K}k € Np,z; € N, for
1<i<k,and 1<z <x9 <..<zxf=n}

Example 6.
13 = {(19 1, 1)7 (132>’ (27 l)v (3)} :
Ss =1{(1,2,3),(1,3),(2,3),(3)} .

The one-to-one correspondence between P, and
7, can be established by a biprojective function A
that

A: P, — 7T,

A(L,Ly = 1,..,1,Ly,Ly — 1,..,Ly + 1, ... |
Li, Lk —1,..., L1 + 1)
= (Ll, L2 - L], ceey Lk - Lk—l), and

A7 (a1, az, ..., ax)

= (Ll,Ll - 1,...,1,L2,L2 - ].,...,Ll + ].,
Lk:7Lk -1, "’7L'k*1 + 1)7
where, L; = 23:1 aj, for 1 <i<k.

For T € LCT,, we will denote A(i_p(T)) by o(T)
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simply. The implication of a(T) = (a1, az, ..., ax) is
that T has k leftchains, and k leftchains have a;,
as, ... , ai nodes from the root of T respectively.

The one-to-one correspondence between P,, and
S,, can also be established by a biprojective function
B that

B:P, — S,

B(Li,Ly — 1,..,1, Ly, Ly —
Ly, Ly — 1, ey L1 + 1)
= (Ll,Lz, veey Lk), and

B~Y(Ly, L, ..., Lg)
= (Ly,Lh - 1,..,1, Ly, Lo — 1,.., L1 + 1, ...,
Li, Ly —1,.., L1 +1).

For T € LCT,, we will denote B(i_p(T)) by 5(T)
simply. The implication of 3(T) = (z1, 2, ..., Tx) is
that T has k leftchains, and under i-labels labels for
headers of k leftchains are x1, 2, ...

1,onLi +1, ..

,xx, from the
root of T respectively.

The relation between 7, and S,, can be given by
a biprojective function - that

v: T, — &g,

v(a1,az,...,ak) = (z1,22,...,2k), here, z; =
> =1 @, for 1 <i <k, and

vy~ Hzy, T2,y k) = (@1, a2, ..
and @; = x; — ;-1 for 1 <i < k.

.,ax), here, a; =z,
Obviously, y = Boa~ .

Definition 7.

Given t; = (a1,a2,...ax) € T, ta =
(b, bg,....;by) € Tp, and | < K, t5 is called a com-
position of t;, which is denoted by t» < t1, if and
only if
for any i (1 < i <L) 3p; 1 < pi < k,) st

Z;=1 b = Z?:] a;-

Example 7. t, = (2,3,1,4), to = (3,2,3,2) and
t3 = (5,5). t3 ﬂT tl and t3 Sthz, while t2 /STtl

From definitions of <, <p and «, there is the
result

Lemma 1. For Tl,TQ € LCT,, T, d¢ T, <
(l(TQ) S]T (X(Tl).

Definition 8.

Given s; = (x1,Z9,...,2k) € Sp, 82 =
(Y1,Y2, Y1) € Sn, and | < k, sy is called a com-
position of s1, which is denoted by s; dg 51, if and
only if

{y1,v2, - ui} C{z1, 22, ..., Tk}

Example 8. 5, = (2,5,6,10), s = (3,5,8,10) and

s3 = (5,10). s3dgs; and s3 J g s2, while s3 Agsy,

From definitions of <7, <g and ~, there is the
result

Lemma 2. For t;,ty € T, to dp t; < v(t2) I
Y(ta).

Definition 9. § is a biprojective function that
6 : Sn I P(Nn_l),

&(z1,x Tg) = 0 k=1 a
D2 TR {$1,$2,...,$k,1} 7k >1 ’
6—1(A) — { (n)

,casel
(x1,T2, .y Th—1,m) ,caSE2 "
here, casel : A =0 and
case2 : (A = {z1,z2,....,zp—1}) N1 < 22 < ... <
mk—l)-

nd

From definitions of < g and 8, there is the result

Lemma 3. For s;,52 € Sy, 53 dg 81 < 8(s2) C
6(51).

Now, we can give the relation between <
LCT,,d¢ > and < P(N,,_1),C>.

Theorem 3.

< LCT,,ds > is order isomorphic with <
P(Nn-1),C>.

Proof.

From Lemmas 1, 2 and 3, f = éovyoais an
order isomorphic function from < LCT,,d¢ > to
< P(Nn_l), C>.

O

Thus, by Theorem 3, we have
Corollary

(3) < LCT,,<d¢ > is a boolean lattice.

(4) |LCT,| =2

Based on Theorem 3 and its Corollary, when
n > 1 the one-to-one correspondence can be es-
tablished between LCT,, and B,,_;. Since between
P(N,) and B, there is the one-to-one correspon-
dence € that

€: P(N,) — By,

€(A) = b1by...bn, here, b; = {(1) ’zii for 1 <
i <n, and

C_l(blbg...bn) = {ZI(’L (S Nn) /\(bl = 1)},
when n > 1 the one-to-one correspondence between
LCT,, and B,,_; can be expressed as g that

g=¢cof=¢€oboyoa=¢€o0bof3, and

—1 —

g :f_loe”:a]o'y‘loé_loe‘l:
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B los loe .
i.e., g is a rank function®>”) and g~
function®"? for LCT,.

1 is a unrank

Corollary
(5) For T € LCT,, and n > 1, T has k leftchains
<= k — 1 is the number of 1’s in g(T).
Proof.
T has k leftchains
— B(T) = (z1,22, ..., Th—1,7)
< 60 B(T) = {z1,22,...., Tk—1} and 1 < T3 <
e < Tg—1
<= k—1is the number of I’s in g(T)= ¢(603(T)).
O
In fact, for T € LCT, and n > 1 g(T) can be
formed by labelling all edges on all leftchains with
0’s and the rest (all edges on the rightchain) with
1’s, and reading these labels in preorder.

Example 9. ¢(T;) = 010011000, ¢(T2) =
001010010 and ¢g(T3) = 000010000, where, T4, T5
and T3 are leftchain trees of Example 5.

4. Conclusion

The bus-structure with k& branches and n nodes
can be regarded as a leftchain tree with k leftchains
and n nodes, and the problem can also be abstracted
as a leftchain tree with k leftchains and n nodes that
n resources are to be allocated among k users. By
symmetry, properties on leftchain trees (LCT) can

Fig.4 the Hasse Diagram

be grafted on rightchain trees (RCT) easily.

As the end of this paper, the Hasse Diagram® of
< LCT,,<¢ > and the comparison of LCT,, P,,
Tvy Sny P(No_1), Bno1 and RCT,, are given as in
Fig. 4 and Fig. 5 respectively for n = 4.

PN, ;) B,
ter, b P, T, S, 1 1 RCT,
lPocy| a(lCT) f(CT,)

(1,23,4) 1(1,L,L1,1) | (1,234) | {1,2,3}

(1,243 1,1,2) | (1,24) | {1,2} 110

1324 (1L,2,1) | (1,34) {13} 101

(2134)( @LD | (234 | (23} | o11

i
<
A
/\
<
A\,
™~

2143 22) | 24 (2} 010

3214 @30 3.4) {3} 001

432D @ (C)) ¢ 000

NI SN 2 1Y VS

Fig.5 the comparison of LCT,, P,, T,, Sy,
P(Np-1), Bn—1 and RCT,
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