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Abstract: According to the recent knowledge of brain science, it is suggested that there exists the func-
tions distribution in the brain, which means that different neurons are activated depending on which sort 
of sensory information the brain receives. We have already developed a learning network with functions 
distribution which is called Learning Petri Network (LPN) and have also shown that this network could 
learn nonlinear and discontinuous mappings which Neural Network(NN) can not. In this paper, a more 
realistic application which has dynamic characteristics is studied. From simulation results of a nonlinear 
crane control system using LPN controller, it has been proved that the control performance of LPN con-
troller is superior to that of NN controller. 
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 1. Introduction 

 The aim of this paper is to realize a new type of con-

trol system using advanced knowledges of the brain sci-

ence. According to the recent knowledges of the brain 

science, there exist mathematical, musical and gymnas-

tic knowledges in the brain and a specific part of the 

brain is activated corresponding to the specific knowl-

edge. This phenomena is called functions distribution 

in the brain. It is also known that the brain can select 

the best action refering to the experience it mastered. 

This phenomena is called learning of the brain. 

 The proposed control methodology is a unique one in 

respect that functions distribution and learning capabil-

ity the brain has are introduced to the control technol-

ogy. 

  Petri network was chosen as a fundamental frame-

work in order to realize functions distribution artifi-

cially. Petri network is composed of two kinds of nodes. 

One is the places where informations are stored, and 

the other one is the transitions which deal with trans-

actions. Tokens in the petri network are transfered on a 

specific route instead of all network routes, as a result, 

a locally activated route of token transfer is established 

in the network. This establishment of the route depends 

on the inputs of network and parameter variables in the 

network. Therefore, by adjusting the parameter vari-

ables through learning an appropriately activated local 

route can be formed. 

  Using the concept of realizing functions distribu-
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Ti : j transition 
Pii : place between Ti and T; 
D;k : time delay from Ti to P;k 
Dpij : staying time of token at P3 
hi7 : firing weight between Po and Ti 

h(Pi;) : firing signal of Po 

h(Ti) : firing signal of Ti 
h° (Ti) : target of firing signal of Ti 

Fig.1 Basic structure of Learning Petri Network

tion artificially in the network, Learning Petri Network 

(LPN) has been proposed and applied to pattern recog-
nition problems and nonlinear system idntification prob-
lems effectively1)2)3) 

 In this paper, it is studied whether LPN can be ap-

plied to the control of a nonlinear crane system or not, 
and it has been clarified that LPN has the excellent con-
trol performance compared to the neural network con-
troller. 

 It is also stated how the architecture of LPN is im-

proved to cope with the control of the nonlinear dynamic 
systems. 

 2. Fundamental Structure of Learning 
    Petri Network 

  In Fig.1, fundamental structure of LPN is shown. 
 The architecture of LPN is imitated by the architec-



ture of Petri network, which is not equipped with the 

ability of learning. Therefore, in order to make LPN 
have the learning capability and dynamic characteris-
tics, the following 3 terms are added to Petri network 

 • Tokens are equipped with firing signals which are 

   introduced in LPN. 
 • Firing weights are introduced on the input  arcs 

   of the transitions and learning can be realized by 
   changing the firing weights. 

 • Recurrent connections between the nodes are avail-

   able and time delays are introduced on the output 
arcs of the transitions. 

 Therefore, the dynamic behavior of LPN can be re-
alized. Comparison between Petri network and LPN is 
shown in Table 1 . 

 3. Firing Rules of Transition 

 In this chapter, how the locally activated route is es-
tablished will be explained. It is the most important 

point how to fire the transition in order to make an ap-
propriately activated local route. 

 Firing signal h(T3, t) of T3 node at time t can be ex-

pressed by Eq.(1). 

h(T„ t) = f ({h(Pi„ t)}, {AA)(1) 
whereh(P 23 , t) : firing signal of Pi, place 

                   at time t                    
: parameter variable related to 
Ti node 

f ({h(Pi„, t)}, {A }) : transition processing function 

 Table 1. Comparison between Petri Network and 
                LPN

           Petri NetL.P.N. 

 Learning • does not have • have 

Delay firing delay exists time delay exists 

• any transition can fire • transition which has the 

condition when there exist tokens maximum value of firing 
              satisfying certain condit- signal can fire 

             ions in the preceding pla-
                ces 

fning • tokens satisfying certain only one token is taken 
     transition conditions are transfered away from input places 
              from input places to out- and a token are transfer-

             Put Placesed to output places 

      signal • there is not• there is

 Tokens which have the firing signal calculated by 
Eq.(1) are transfered in the network. Assuming the 
transition processing function to be sigmoid function, 
h(T, , t) can be calculated in the following way. 

h(T3,
//t) _ f((3)(2)     s7 = Eh(Pi3,t)hi9 +B7(3) 

             iEI       

: firing weight between Pi3 and T3 

        (parameter variable) 
63 : firing threshold of T3 (parameter variable) 

f ((,) : sigmoid function 
     I : set of places whose output is connected to T3 

        and from which a token has been transfered. 
        (hereafter, set and density are represented 

       by the same symbol) 

 The firing signals are calculated for the transitions 
which have at least one token in their input places. 
Which transition makes firing is determined by the value 
of firing signal. To be more specific, only the transition 
which has the maximum value of firing signal can fire 

at a time. When the transition, for example T,, fires , 
only one token is taken away from each non-empty place 
connected to input side of T,; , and then a token is given 
the value of firing signal of h(T~, t) and transfered to 
each place connected from output side of T3 . The value 

of firing signal of Pi; ,that is, h(Pii, t) is defined as the 
firing signal of the taken away token. 

  According to the above procedure, tokens are tran-
fered in LPN depending on the value of firing signals 
of tokens in the input places, and the values of firing 

weights on the arcs of LPN. 

 4. Learning Algorithm 

 Learning Algorithm of LPN is based on the Back 
Propagation algorithm in neural networks, but it is a 
fundamental different point that the learning is carried 

out on the only path of the token transfers in LPN in-
stead that all of the weights of neural networks are ad-

justed independently of the input informations. The 
following is a summary of learning algorithm3)4)5) 

hi; — ,[{8h(T3ti)s(T„ t')} +ah] (4) 
t'ET 

 bT, t)—E[ah(Tk,t+Djk+DpJk )   ('— ah(T
;, t)            kEK 

                      aE  
x5(Tk,t+D,k+Dp3k)] + ah(T

,t)(5)



 hi3 : firing weight beteen Pi3 and T3 
y : learning coefficient 

h(P23, t) : firing signal of P2,7 at time t 
h(T3, t) : firing signal of T3 at time t 

       T : set of sampling time 
D3k : time delay from Ti to P3k 

Dp3k : staying time of token at P3k 
       E : criterion function 

       K : set of transition whose input is connected 
          from T3 and to which a token has been 

            transfered. 

 5. Nonlinear Crane System 

 In this chapter, the nonlinear crane system which 
was used to study the applicability of LPN will be ex-

plained. Dynamics of the nonlinear crane system can 
be expressed by the following differential equations(See 

Fig.2). 
 • Subsystem of crane stand moving 

 =—M9—DMGx+Gud (6) 

 0MMmg9DIMGx+lM ud (7)M 

 • Subsystem of load rolling up   

C------+ Gm• Gm(8)  t =—l+uri 
m m 

  where 

      x : distance of crane stand moving 
      0 : angle of swinging rope 

l : length of load rolling up 
     M : mass of stand 

      m : mass of load 
D, C : coefficients of friction 

      g : gravity 
G, Gm : transfer coefficients from torque to driving force 
ud, u,,,,, : control variables for crane stand moving 

         and load rolling up subsystem respectively 

 Putting h(Ti,t) = x(t), h(T2, t) = x(t), h(T3, t) = 
0(t), h(T4,t) = 9(t), h(T5, t) = l(t), h(T6i t) = l(t), 

Eq.(6) ti (8) can be written in the following discrete 
form. 

 • Subsystem of crane stand moving

h(T1, t) = h(T1, t — 1) + ATh(T2,t — 1) (9) 

h(T2,t) = (1 — D AT I h(T2, t — 1) 
       — —mg OTh(T3i t — 1) + M ATud(t) (10) 

h(T3, t) = h(T3, t — 1) + OTh(T4i t — 1) (11) 

h(T4,t) _—D+GOTh(T2it— 1)  M h(T
5, t — 1) 

M + m
gATh(T3, t — 1)  Mh(T5, t — 1) 

+ h(T4,t — 1) +GG ATh(t)1)(12) 

 • Subsystem of load rolling up 

h(T5,t) = h(T5, t — 1) + ATh(T6i t — 1) (13) 

h(T6,t) _ (i — C +Gm AT) h(T6, t — 1) 

    + Gr,,. ATum(t)(14) 

m where 
AT : sampling time 

In Fig.3, the nonlinear crane system which is described 
by Eq.(9) ti (14) and its controllers are shown in the 
framework of Universal Learing Network5) . 

 There exist two controllers. One is to control the 
moving of a crane stand and to cotrol the angle of a 
swinging rope, the other is to control the rolling up of a 
load. Each controller is a three layered neural network 
whose hidden layer is made up of 10 nodes. 

 6. Design of a Nonlinear Crane System 
    Controller 

 In this chapter, LPN and neural network controller 
for a nonlinear crane system are designed. In order to 

conrtol nonlinear systems in a stable way, the value of 
the control variables should not change rapidly. But it

Fig.2 Structure of nonlinear crane system



Fig.3 Network of crane control system

may happen that the output value of the LPN controller 

changes abruptly at the time of route changes. Particu-

larly at the beginning of the learning, abrupt changes of 

the LPN controller output may make the system unsta-

ble, though such phenomena do not occur after enough 

learning. 

 In order to solve this problem, LPN has been im-

proved in the following two points.

Fig.4 Structure of control system with error signal

Fig.5 Structure of control system without error signal

 As mentioned in chapter 3, firing rule was such that 
only the transition which has the maximum value of fir-
ing signal can fire at a time. One of the improvement is 
to change the firing rule so as to fire n transitions which 
have the large value of firing signal. According to the 
one transition firing rule, the value of the control vari-

able may change abruptly, but adopting the n transition 
firing rule can make the system work stably. 

 The other improvement is to filter the out of the con-
troller in the following  , 

 h(T3,t) 4a*h'(T3,t)+(1.0—a)*h(T3,t-1) (15) 
where 

h(T3, t) : controller output after filtering 
h' (T3 , t) : controller output before filtering 

     a : filter constant 

 Filtering the output of the controller makes the pos-
sibility of unnecessary change of the route decrease. As 
Eq.(15) is a kind of computation which can be realized 
by the recurrent network with time delays, filter con-
stant a can also be adjusted by learning. 

  Hereafter, two control systems are studied to inves-

tigate the effectiveness of the LPN controller compared 
with the neural network(NN) controlller. One is the con-
troller system where error signal of the crane output and 
its reference value is inserted to the controller (Control 
system with error signal) , the other one is the system 
where reference change signal instead of error signal is 

inserted to the controller (Control system without error 
signal) (See Fig.4,Fig.5 respectively). 

  Control system with error signal is a so called feed-
back control system which calculates the control vari-
ables for crane stand moving and load rolling up sub-

system ud, urn from error signals of x(t) and xref, 1(t) 
and /ref and from ±(t), i(t), 9(t), 9(t) . On the other 
hand, control system without error signal is especially 
designed to show the usefullness of the LPN controller 

and the inputs of the controller are the system outputs 
x(t), ±(t), 0(t), 9(t), 1(t), i(t) and reference change sig-
nal. Reference change signal is a step function given at 
the time when reference signal xre f and /„f is altered. 

  Both control systems are the same in a sense that the 

inputs to the controller change abruptly by the change 
of reference signals. But, because of the excellent capa-
bility of the negative feedback system, selecting on ap-

propriately activated local route in the controller may 
not improve the control performance of the system in the 
control system with error signal. On the contrary, an ap-

propriately activated local route of the LPN controller 
in the control system without error signal is expected to 
improve the performance because functions distribution



in the LPN controller work effectively. In the next chap-

ter, simulations for a nonlinear crane control system are 
carried out to study the effectiveness of selecting an ap-

propriate local route in the LPN controller compared 
with NN controller. 

 7. Simulations of a Nonlinear Crane Con-

    trol System 

 The aim of control is to move the crane stand and 
to roll up the load in order to reach the target concur-
rently. In the subsystem of crane stand moving, in the 

first half of the control time the crane stand should be 
moved from  —0.5m to 0.0m and in the latter half of the 
control time the crane stand should be moved from 0.0m 
to 0.5m. In the subsystem of load rolling up, in the first 
half of the control time the load should be rolled up from 
1.0m to 0.5m and in the latter half of the control time, 

the load should be rolled down from 0.5m to 1.0m. 
 The criterion function which can realize the above 

mentioned dynamics of a nonlinear crane control sys-
tem is represented as follows. 

E = Ex + El(16) 

         [Qll(Xref 2  Ex = — h(Ti, s)) 

+Q12(h(T2, s))2 + Q13(h(T3, s
11))2 +Q14(h(T4, s))2+Rl(ud(s))2J (17) 

El=2E [Q21(lref—h(T5,s))2 + Q22(h(T6, s))2 
    S 

ll    +R2(um(s))21(18) 

: criterion function of crane stand moving 
El: criterion function of load rolling up 

Q, R : weighting coefficients 
xref : reference value of x(t) 
lre f : reference value of 1 (t) 

 Using the criterion function E, the control perfor-
mance of the nonlinear crane control system by the LPN 
controller is compared with that of the neural network 
controller. 

 Simulation conditions are shown Table 2. As men-
tioned above, the object of the simulations is to investi-

gate whether an appropriate route can be selected in 
the network according to the change of the environ-
ment(change of reference value) as well as to study the 

effectiveness of the LPN controller compared with the 
neural network controller.

Table 2. Simulation conditions

                 mass of crane stand M 40.0 [kg] 
                      mass of load m 2.0 [kg]  
              coefficient of friction of 

                 crane stand moving D300.0 [kg/sec] 
         transfer coefficient from torque 

                   to driving force Gm 700.0 [N/v]  
                      sampling time 0.02(s)  

                   number of sampling 2000  
                     number of learning 50000  
   range of random number for initial value of 

                        firing weights ± 0.03  
   range of random number for initial value of 

                      firing thresholds ± 0.005  
         learning coefficient of firing weights 0.00005 

       learning coefficient of firing thresholds 0.00000001  
              weighting coefficient of 

                  criterion function Qn1.00 
                         Q121.00 
Q131.00 
Q141.00 
R10.01 
                         Q211.00 

                         Q221.00 
                    R20.01  
 Controller of crane stand moving 

          number of nodes in the first layer4 
        number of nodes in the hidden layer10 
        number of nodes in the output layer1 
         function of nodes in the first layer Sigmoid 

        function of nodes in the hidden layer Sigmoid 
        function of nodes in the output layer Sigma  

Controller of load rolling up 
          number of nodes in the first layer 2 

        number of nodes in the hidden layer10 
        number of nodes in the output layer1 
          function of nodes in the first layer Sigmoid 

        function of nodes in the hidden layer Sigmoid 
        function of nodes in the output layer Sigma

 7.1 Simulation Results of Control System 

     with Error Signal 

 Setting up the number of firing transitions to 5,3,1, 

simulations were carried out three times changing the 

initial value of parameter variables. 

 In Table 3, the values of the criterion functions 

E, Es, E1 obtained by the LPN controller and neural 

network controller are shown. 

 In Fig.6 andFig.7, dynamics of the crane stand mov-

ing and load rolling up are also shown, where the num-

ber of the firing transitions in the hidden layer is three. 

From Fig.6 and Fig.7, it is seen that there is no differ-

ence between the dynamics of the system obtained by 

the LPN controller and that obtained by the neural net-

work controller. And it is also seen that the number of 

the firing transitions has little influence on the dynam-

ics of the system. This is because the capability of the 

feedback control exceeds the locally activated appropri-

ate routes in the LPN controller in the control system 

of error signal. 

 Learning curves of the filter constant a of the crane 

stand moving and load rolling up are shown in Fig.8 in



case that the number of firing transitionins is three. In 

Fig.9, results of the route formation at various times 

in the LPN controller of crane stand moving are also 

shown. 

 From Fig.8 and Fig.9, it is clarified that a converges 

to the appropriate constant after learning and different 

routes are constituted at different control times, which 

means the creation of functions distribution depending 

on the change of the dynamics of the system.

Table 3. Criterion function of crane control system 

              with error signal

Fig.7 Dynamics of load rolling up (with error signal)

Fig.8 Learning curves of parameter  a 

         (with error signal)

Fig.6 Dynamics of crane stand moving 

       (with error signal)

 7.2 Simulation Results of Control System 

     without Error Signal 

 As the case of control system with error singnal, set-

ting up the number of firing od transitions to 5, 3, 1, 

simulations were carried out 3 times changing the initial 

value of parameter variables. In Table 4, the value of 

the criterion function E,  Es, E1 obtained by the LPN 

controller and neural network controller are shown.

 In Fig.11 and Fig.12, dynamics of the crane stand 

moving and load rolling up with 3 firing transitions in 

the hidden layer are also shown. 

 It is also shown in Fig.13 and Fig.14 that learning 

curves of the filter constant a under the condition that 

the three transitions can fire, and results of the route 

establishment in the LPN controller at various times. 

Although a should take the value from 0.0 to 1.0, it has 

been found that a converged to the value which is more 

than 1.0. It is not valid for a to take the value more 

than 1.0 in an usual sense of exponential filtering. Nev-

ertheless the results in Fig.13 is admissible in the sense 

of finding optimal a in order to optimize the criterion 

function in the recurrent network. It is also clarified



 Fig.10 Changing of h(Ta, t) caused by 

          alterating reference change signal 

Table 4. Criterion function of crane control system 

              without error signal

Fig.9 Route Formations at various times 

          (with error signal)

that different routes are constructed at different control 

times depending on the behavior of the dynamics of the 

system in the LPN controller. 

  From the results mentioned above, it is clear that in 

the simulation of control system without error signal, 

better control performance can be achieved by the LPN 

controller than the neural network controller. 

  As shown in Fig.10, change of the output of the neu-

ral network controller caused by alteration of the refer-

ence change signal is small. On the contrary, as an ap-

propriate route can be established in the LPN controller 

by changing the reference change signal, the LPN con-

troller can realize better performance than the neural 

network controller. 

  It is also seen that the larger the number of firing tran-

sitions is, the better the control performance is. This is 

because firing a number of transitions can acquire bet-

ter nonlinear characteristics of the controller than firing 

just only one transition. 

  But, firing a good many number of transitions de-

grades the control performance as it approches to the 

neural network controller. 

 Threrfore, it is important to decide the appropriate 

number of firing trasitions in the hidden layer of the 

LPN controller so as to make the functions distribution 

work effectively. Fig.11 Dynamics of crane stand moving 

        (without error signal)



the nonlinear systems depending on the changes of the 

environments. 

 The control system without error signal is designed 

 self-willedly in order to show the usefullness of the LPN 

controller. 

 In a near future, it should be studied that the LPN 

controller shows its effectiveness mentioned in the privi-

ous chapter even when it is applied to the usual feedback 

control systems which are more complicated and large 

scale than the one studied in this paper.

Fig.12 Dynamics of load rolling up 

      (without error signal)

Fig.14 Route Formations at various times 

        (without error signal)

Fig.13 Learning curves of parameter a 

       (without error signal)

 8. Conclusion 

 In this paper, a new control methodology for nonlin-

ear system has been proposed, which has the structure 

of functions distribution and the capability of learning. 

From simulations, it has been clarified that the LPN 

controller can achieve the desirable control characteris-

tics of the system even when the neural network con-

troller can not control the system preferably. 

 This is a first step to realize a self-organizing system 

that can reorganize the structure of the controller of
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