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Abstract: This paper investigates some properties of bandpass ladder networks composed only of two 

kinds of basic LC resonant sections and gives the necessary and sufficient condition for the realization. 

This condition can be regarded as a direct generalization of the famous Fujisawa's necessary and sufficient 

condition for LC low-pass ladder networks. Examples are shown to illustrate the synthesis process. 
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 1. Introduction 

 Typical bandpass filters used in portable telephone 

handsets are monoblock dielectric filters. For these fil-

ters Lu et  a1.'  '2) recently proposed a new equivalent 

circuit which consists only of two basic kinds of reso-

nant circuits, each of them being composed of a lumped-

capacitor and a distributed-element. 

 Though these circuits can be regarded as two-variable 

networks, the realizability conditions for the above type 

of networks have not been shown in the synthesis theory 

of two-variable networks. 

 The synthesis problem of the above mixed lumped-

and distributed-networks can be reduced to that of a 

kind of tansformerless LC ladder networks. Although 

the realization of transformerless ladder networks has 

extensively studied in particular in 1960's and 1970's, 

the realization theorem was not given for the above 

kinds of networks. Closely related results were how-

ever given as the famous Fujisawa's necessary and suf-

ficient condition for mid-series or mid-shunt low-pass 

ladders3), Watanabe's sufficient condition for band-

pass ladder networks4), Ozaki's sufficient condition for 
series-paralell RC three-terminal networks5), and Nishi's 

sufficient conditions for some kinds of RC 3-terminal 

networks6)' 7) . 

 This paper gives the necessary and sufficient condition 

for the realization of bandpass ladders composed only of 

two basic LC resonant sections. This result can be con-

sidered as a direct extension of Fujisawa's Theorem3) 

for low-pass ladders. 

 It is expected that the new criteria can be utilized
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to design some practical bandpass filters with finite at-
tenuation poles and can also be applied to the design 
of mixed structures composed of both lumped and dis-
tributed elements. 

 2. Main Theorem 

 2.1 Notations and definitions 
 The bandpass ladder network we deal with is an LC 

2-port composed of two kinds of basic LC resonant sec-
tions, that is, Type-A sections and Type-B sections 
shown in Figs.1(a) and 1(b), respectively. These two 

sections are alternately connected in cascade so that 
the right-most section is a Type-A section, while the 
left-most section is either a Type-A or Type-B section. 
Let the number of Type-B sections be m. Then the 
number of Type-A sections is m or m + 1. The ladder 
2-port we consider is thus shown in Fig. 2 (surrounded 

by a dotted line) and is denoted by N. 
 We assume that the resonant angular frequencies of all 

Type-A sections are identical and that they are denoted 
by WA. This assumption is reasonable because a filter 
for a portable telephone has a very narrow bandwidth 

and WA roughly corresponds to the center frequency of 
this filter. 

 On the other hand the angular frequencies of Type-
B sections are denoted by wBi , (i = 1, 2, ... , m). Let 
mj(> 0) (resp. mh(> 0)) be the number of wsi 
which are smaller (resp. larger) than WA. Of course 

m = ml + mh holds. The frequencies wBi correspond 
to the finite attenuation poles (abbreviated as FAP's) 
of the bandpass ladder filter. 

 The driving-point admittance function Y(s) of the 2-

port N terminated with a conductance g (as illustrated 
in Fig.2) can be written as 

_(1)      N(s)_ Ne (s) + sNo (s)  Y(s)
M(s) s2Me(s)+sMo(s)



where the polynomials N(s) and M(s) are relatively 

prime, i.e.,  (N, M) = 1; Ne(s) and s2Me(s) (resp. 
sNo(s) and sMo(s)) are respectively the even (resp. 

odd) parts of the numerator and the denominator.

Fig.1 Basic resonant sections

Fig.2 A bandpass ladder 2-port N 

  terminated with a conductance g

 2.2 Some properties of Y(s) and yif 

 The following lemmas concerning Y(s) (Eq.1) can be 
readily derived. 

 Lemma 1. 
 Let n = deg[Y(s)](> 1) be the degree of Y(s) in 

Eq. (1). Of course n = 2m holds. Then we have: 

1) 

 deg[Ne] = n deg[No] = n — 1(2) 
  deg[Me] = n — 2 deg[Mo] = n — 1 

2) 

(Ne, No) = 1 
or(3) 

(Ne7 No) = s2 + WBi 

0 where WBi° (1 > io > m) is one of the finite attenuation 

poles. 
  The impedance parameters zi3 and the admittance 

parameters yi3 of the LC two-port in Fig. 2 can be eas-
ily derived from the input admittance Y(s) as follows: 

 Lemma 2 
  Impedance parameters are given as follows.

sMo sNo Z11 = , z22 =---- N
e gNe 

+Z12 =s--------------\/M°N0 — McNe(4)             VN
e 

VK12snm 1(s2 +WBi)  
\f4Ne 

whereK12is

oapositivey22= -----csMonstant. Admittance parameters are also given as follows.       sMegM yll=e 

 +y12=N \/M0N0—McNe(5) 

           //-----sMe           1/K12~m1(s2+Wi) 
s Me 

 Let yif = z11 be the input admittance of N with 

output-port open-circuited. We easily see from the con-

figuration of N that yif has a zero at s = jWA. Therefore 

we have

Ne(s) = K(s2 + wA) fl(s2 b),(6) 

1 where K is a positive constant. We assume without loss 
of generality that 

0<bl<b2<...<b,,,,.(7) 

Then we can write yif as 

ylf (s) =Ne(s)  = K(s2+Wa)(52 + b?)  (8) SMo(s)S f1 (s2 + as ) 

where we assume: 

0<al<a2<• •<am, 

It is obvious that yif is a susceptance (reactance) func-
tion. 
 Lemma 3 

  Let us denote yl f as the augmented yif after connect-
ing a Type-A section to N. Then we have 

CA(s2 +w22) 
y1f(8) = y1f(s) + -----------------(9) 

(s2 +w) 
x{Kfi (s2+b?)+CAfl (.92 (ID} 

                si (s2 +aZ) 
where CA is a positive constant and yif is in the same 

form as Eq.(8).



  Assume that for some k(0  < k < m) 

 bk < WA < bk+l •(10) 

  If a polynomial P(x) is expressed as 
  mm 

 P(x) = K fJ(b? — x2) + CA [J(ai2 — x2) 
  11 

_ (K + CA) jj(b? — x2)(11) 

Then P(x) has m zeros, each of which locates in one of 
the m open intervals. i.e., bi E (bi, c ) for 1 < i < k 
and bi E (ai, bi) for k + 1 < i < m. 

 2.3 Necessary and sufficient conditions 
  Theorem 1. The function Y(s) in Eq. (1) repre-

sents the driving-point admittance of the aforementioned 
bandpass ladder network if and only if 

  1) Y(s) is a positive real fucntion. 
2)Y (s) has a pole at the origin (s = 0) and at infinity 

(s = oo) respectively. 
  3). The even part of Y(s) can be written as: 

MeNe — Mo No   Ev[Y(s)] 222       () = sMc— Mo 
         Ke fl1(s2 +WBi)2  

       Mg — s2Me(12) 
where Ke is a positive constant, and wBi (i = 
1, 2, ... , m) are finite zeros of Ev[Y(s)], and m satisfies 
the following relationship: m = ml+mh = [n/2]-1 
where- n = deg[Y(s)]. 

4) Let WBi and the m+1 pairs of zeros of Ne(s) be ar-
ranged respectively in the order of increasing magnitude 
as 

0 < WB1 < ... , < WBmI < WA 
  < WB,ni+1<...< WBm< oo(13) 

  b1 < ... < bmt < WA < bmi+i < ... < bm(14) 

Then for every i < ml and every j < mh there are: 

  wBi< bi< WA1 < i < ml 
and(15) 

 WA<bmd+j<WB1<j<mh                          mi+3 

Comment 1 In Conditions 3 and 4 of Theorem 1 m1 may 

possibly be 0 or M. Thus Theorem 1 holds even in the 
following simple cases: 

  1) WA is larger than all warn ; i.e. wBi < WA, which 
indicates that ml = m.

  2) WA is smaller than (.0133;  i.e. WA < W131, which 
indicates that ml = 0. 

  Furthermore, in the second special case, if WA = 0, 

then Y(s) has no pole at origin, which means that con-
dition 2 turns into "Y(s) has a pole at infinity". In this 
case Theorem 1 is equivalent to Fujisawa's First Theo-
rem for low-pass ladders3). 
Comment 2 Condition 4 of Theorem 1 is an extended 
version of Fujisawa's condition3) and is in the same form 

as Watanabe's sufficient condition4). However, Condi-
tion 4 is both necessary and sufficient for the proposed 
circuit configuration (Fig.2(a)). 

  Proof of the above theorem is obtained by using Lem-
mas 2 and 3. It is however considerably lengthy and in-
volved, but are resemble to those of Fujisawa's theorem 
and Watanabe's one. So we omit it. 

 3. Synthesis Procedure 

  The synthesis procedure is an iterative process of the 

following two steps (illustrated in Figs. 3(a) and 3(b)). 
 Step I: If Y(s) has no zero at any FAPs (s = jwB, ), 

then remove a shunt arm (Type-A section) so that the 
residual function Yr, (s) has a zero at one of the FAPs. 

 Step II. If Y(s) has a zero at one of the FAPs (s = 

jWB, ), then extract a Type-B section to realize the FAP.

Fig.3(a) Step I: Removal of a Type-A section from Y(s)

Fig.3(b) Step II: Removal of a Type-B section 

 from a reminder admittance function Yn (s)

 4. Examples 

 In this section we demonstrate the detail synthesis 

process described above using two simple examples.



  Example 1. Let the  Y(s) of a bandpass ladder be 

(s2 + 1)(8s4 + 71s2 + 135) 
+ s(5s4 + 40s2 + 59) 

Y(s) 
s(5s4 + 35s2+54) + s2(3s2                    +14)(16) 

The even part of Y(s) is 

Ev[Y(s)]_(s2+----------------------4)2(s2 + 9)2(17) 

where 

   D = (5s4 35s2 + 54)2 s2(-82 + 14)2 

It is obvious that w 2, w 3 and both are larger 
than WA (= 1) so in this case ml = 0, mh = 2. 

 It can be easily examined that Y(s) satisfies the four 
conditions of Theorem 1 and that Y(s) owns no zero at 
either win = 2 or wB2 = 3. So we have to apply step 
I and extract a Type-A section first. Then by carrying 

out step II and step I iteratively we can synthesize it 
into a bandpass ladder as shown in Fig.4. 

          1/9 1/4 

         • Y(s) 1 -1 

      Fig.4 The final bandpass ladder of Example 1 

  Example 2. Here we deal the case that wBi locates 
both below and above WA . Let the Y(s) of a bandpass 
ladder be 

(s2 + 1)(8s4 27.25s2 + 12.5) 
         s(5s4 + 17.5s2 + 10.25) 

(19)   s(5s4 + 13.75s2 + 6.5) + s2(3s2 + 5.25) 

Then the even part of Y(s) is 

               (s2 + 4)2(s2 + 4)2 Ev[Y(s)] _(5 s4+ 13.75s2 + 6.5)2 — s2(3s2 +5.25)2(20) 

It is obvious that co,, = 1/2, wB2 = 2, with the former 
being smaller and the latter being bigger than WA (= 1). 
So this is the case mi = 1, mh = 1. It can be easily 
examined that Y(s) satisfies the four conditions of The-
orem 1 and that Y(s) owns no zero at either of the two 
w So we should begin by extracting a Type-A section 
first. Then by carrying out step II and step I appropri-
ately, we can synthesize it into a bandpass ladder. The 
final ladder configuration is shown in Fig.5.

Fig.5 The final bandpass ladder of example 2

 The values of each element in Fig.5 are shown below: 

 CA(3) = 1 LA(3) = 1 
CB (2) = 1 LB (2) = 1/4 

 CA(2) = 1 LA(2) = 1(
21) 
 CB(1) = 1 LB(1) = 4 

CA(1) = 1 LA(1)=1 

g=1 

 5. The Dual Form of Theorem 1 

 Theorem 1 is expressed in the form of driving-point 
admittance function of the bandpass ladders. How-
ever, when it is expressed in the form of driving-point 
impedance function, we can get a new necessary and suf-
ficient condition for realizing a bandpass ladder that is 
composed of two kinds of series resonant section (series 
resonant Type-A section and B, as depicted in Figs.6(a) 
and (b)). This new theorem is the dual form of Theo-
rem 1 and is named as Theorem 2. The overall ladder 
network as shown in Fig.7 is the dual form of Fig.2(a).

(a) Basic series resonant (b) Basic series resonant 
    section section 

        Fig.6 Basic series resonant section

Fig.7 The dual form of Fig.2(a) in series sections

 Theorem
/2. Write 

 Z(s) =N(s)=Ne(s)+No(s)  M(
s) Me(s) + M0(s) 

Ni (s) + sN2 (s)(
22) 

s(Mi (s) + sM2 (s)) 
where the polynomials N(s) and M(s) are relatively



prime; i.e., (N, M) = 1;  Ne(s) and Me(s), No(s) and 
Mo(s) are the even and the odd parts of the numerator 
and the denominator respectively, and Mo(s) = sMi(s) 
and Me(s) = s2M2(s), Ne(s) = Ni(s), No(s) = sN2(s). 
(Ni(s), N2 (s), Mi (s) and M2 (s) are even polynomials.) 
Then Z(s) represents the driving-point impedance of the 
aforementioned bandpass ladder, if and only if 

1). Z(s) is positive real. 
2). Z(s) has a pole at the origin (s = j0) and at 

infinity (s = joo), respectively. 
 3). The even part of Z(s) can be written as: 

 Ev[Z(s)] =NeMe - NoMo Me - mg 
         m222         Ke Ji _1(s+ Wai)(23) 

               M2 - s2M2                      1 

where Ke is a positive constant, coBi, i = 1, 2, ... , 
ml, mi + 1, ... ,m are the finite real frequency zeros of 
Ev[Z(s)] (defined as FAPs). Let m be the total num-
ber of the FAPs, then m = integer[n/2] - 1 and here 
n = deg[Z(s)] is the order of Z(s); ml and mh are re-
spectively the number of zeros below and above WA A. The 
FAPs can be arranged according to the magnitude in the 
increasing sequence as follows 

O < WB1 < ... < WBm <WA 
  < (.0Bmc+l<...<WBm,< oo(24) 

 4). The even polynomial Ne(s) possesses m + 1 (= 
ml + mh + 1) positive real frequency zeros b1, ..., bm1 _1, 
bmi , WA , bmi+1, b"m,i+2, •••, bm. And for every i < ml and 
every j < mh there are: 

 WBi<bz<WA1 <i<ml 
and(25) 
WA < bm,i+~<WB1 < j < mh mi+7 

 6. Conclusion 

 The necessary and sufficient realizability theorems for 
bandpass ladders composed of two kinds of resonant

sections have been provided in this paper. The condi-
tions can be regarded as direct extensions of Fujisawa's 
necessary and sufficient condition for low-pass ladder 
networks3). Examples were provided to give concrete 
form to theoretical developments. It is expected that 
the new theorems can be extended into more general 
cases. 
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